N
N

N

HAL

open science

Automated Test Case (Generation for Service
Composition from Event Logs

Sébastien Salva, Jarod Sue

» To cite this version:

Sébastien Salva, Jarod Sue. Automated Test Case Generation for Service Composition from Event
Logs. 2023 38th IEEE/ACM International Conference on Automated Software Engineering Work-
shops (ASEW), Sep 2023, Luxembourg, France. pp.127-134, 10.1109/ASEW60602.2023.00022 . hal-
04395198

HAL Id: hal-04395198
https://uca.hal.science/hal-04395198v1

Submitted on 15 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://uca.hal.science/hal-04395198v1
https://hal.archives-ouvertes.fr

Automated Test Case Generation for Service
Composition from Event Logs

Sébastien Salva and Jarod Sue
LIMOS - UMR CNRS 6158
University Clermont Auvergne, France
email: sebastien.salva@uca.fr, jarod.sue @uca.fr

Abstract—Service compositions, e.g., Internet of Things (IoT)
service compositions or RESTful service compositions are widely
used in the industry to enhance the interoperability and in-
tegration of their systems and applications. Testing service
compositions is considered as a long and difficult activity as each
service may be deployed on different servers and often requires
specialised testing tools. This paper proposes an automated
approach to help developers generate test cases for experimenting
every service in isolation. These test cases can be later adapted or
used for regression testing. This approach is based upon 4 steps
that aim to: 1. extract traces from event logs, 2. gather similar
behaviours to reduce the final number of test cases and to extract
knowledge, which will be used while the test case generation,
3. produce generic test cases given under the form of IOTS
(Input Output Transition Systems) that encode the use of mock
components and provide test verdicts, 4. generate test scripts and
mock components for every service. We evaluate our approach
on 4 Web service compositions and show that our algorithms
build effective test cases and scale well with the event log size.

Index Terms—Service Composition; Test Case Generation; Mock
Generation; 10TS

I. INTRODUCTION

Events that occur in service compositions are now com-
monly recorded in log files. These files are more and more
analysed with tools allowing to continuously extract knowl-
edge helping IT personnel understand system behaviours or
performance. In this paper, we propose to use event logs to
automatically generate tests for service compositions. In this
scope, it is well admitted that the design and use of automatic
test generation approaches is quite interesting in the industry
since testing such systems is usually performed manually by
writing some test scripts. The design of automatic approaches
is also quite challenging as testing such systems is known
to be a hard and long process due to the problems inherent
in controlling or monitoring many concurrent components
interacting with one another simultaneously.

The literature offers several approaches that might be con-
sidered to generate test cases for a service composition under
test, which we denote SUT. Firstly, several Model based Test-
ing (MbT) approaches e.g., (Ulrich and Konig, 1999; van der
Bijl et al., 2004; Cao et al., 2009; Torens and Ebrecht, 2010;
Kanso et al., 2010; Aouadi et al., 2015; Hierons, 2001) have
been proposed. Prior to test generation, a formal specification
must be written and verified. The main problem inherent in
these approaches is that such models are often not available
or not up-to-date, A combination of model learning followed

by test case generation might also be considered. Model
learning is a research field gathering algorithms specialised
in the construction of models by inference (Ali et al., 2018).
Once models are retrieved, a classical MbT approach must be
applied to produce test cases. Test data along with concrete
execution paths are re-generated from models. Basically, this
combination starts from concrete events, such as event logs or
observations obtained by experimentations, generalises them
with formal models and re-generates concrete test cases. It
results in a time consuming process, which usually does not
scale well. Finally, other approaches, e.g., (Paiva et al., 2020),
propose a record and replay technique of event sequences
extracted from event logs. Unfortunately, this technique does
not work well for service compositions, as SUT may include
various possibly non deterministic services, or not testable
ones. Test cases must be adapted w.r.t. these properties.

We present in this paper another test case generation
approach for service compositions from event logs, which
is devised with the previous attention points in mind. The
resulting test cases aim at experimenting every testable service
of SUT in isolation. Unlike the previous approaches, this
implies that our approach generates test scripts with verdicts
but also mock components. Mocking objects or components is
a technique applied to improve the ability of interaction with
the component under test, which finally aims to increase test
coverage or to speed up performance.

Given an event log collected from SUT, our approach
performs four main steps. The first one converts an event log
into formatted event sequences called traces, which intuitively
correspond to sequences of correlated events interchanged
among different services. We do not focus on this step in
the paper and refer to this previous work (Salva et al., 2021)
instead. The traces are then gathered into clusters of similar
traces, from which some knowledge is extracted by means
of an expert system. This knowledge will be used to build
test cases along with test verdicts. Then, test cases modelled
with IOTS (Input Output Transition systems) are generated for
every service. An IOTS test case expresses both the behaviour
of a tester and the behaviours of mock components. Concrete
test scripts and mock components are eventually derived from
IOTS test cases.

We have implemented a prototype tool to experiment our
approach. We investigate its effectiveness by evaluating the
quality of the generated test cases, and we investigate how

our algorithms scale with the event log size.

Paper organisation: Section II introduces our approach
with an example used throughout the paper, along with the
related work. Section III provides some definitions, used
by our algorithms, which are detailed in Section IV. The
next section exposes our evaluation performed on 4 service
compositions. Section VI summarises our contributions and
draws some perspectives for future work.

II. OVERVIEW

We introduce, in this section, a motivating example, which
we will use to describe our algorithms at a high level. The
details of the test case generation are in Section III. Our
example, illustrated in Figure 1 is made up of 4 web services
providing approvals or rejects of loan requests. A first service
“LoanApp” receives a loan request linked to a given account.
According to the amount requested, it calls a second service
”AccMan” to get access to the bank account. This service
calls itself "CheckRisk™ to obtain the risk level related to
this account. If the amount is upper than 10000 euros or if
the risk is high, a third service "AppMan” is requested to
let a human agent study the request and return a response.
Otherwise "LoanApp” returns a positive response.

AccMan H CheckRisk

AppMan

| i

! |

| App. Client K{ LoanApp
| |

|

Fig. 1. Example of composition made up of 4 web services

A. Assumptions

The design of our algorithms is guided by the following
practical assumptions:

« Al Event log: the communications among services can
be monitored. Event logs are collected in a synchronous
environment made up of synchronous communications.
They include timestamps showing when the events oc-
curred. For simplicity, we consider having one event log;

« A2 Event content: services produce communication
events or non-communication events. The former include
parameter assignments allowing to identify the source and
the destination of each event. Besides, a communication
event can be identified either as a request or a response;

o A3 Service collaboration: work-flows of events are
correlated by means of parameter assignments;

o A4 Testable Service: we assume knowing the set of
services that can be experimented and monitored, which
is denoted PCO;

We proposed in (Salva et al., 2021) an approach allowing to
retrieve traces from event logs by exploring the correlation set
space that can be derived from an event log. The tool returns
a set Traces of traces along with a correlation set Corr(o)

for every trace ¢ € Traces. We finally assume that all the
assignments p := v found in ¢ whose parameters are also used
in Corr(o) are replaced by p := *.

B. Related work

A plethora of works have been proposed to generate test
cases without specification, by using random testing or model
learning. A few of them are specialised to communicating
systems (Ozkan et al., 2019; Arcuri, 2018; Petrenko and
Avellaneda, 2019; Aarts et al., 2014; Tian et al., 2017). For
instance, Arcuri proposed algorithms to create test suites for
Web service compositions (Arcuri, 2018) by considering the
test case generation as a a multi-objective problem, whose
objectives are related to metrics over source code properties.
In short, the algorithm iteratively builds new test cases to cover
targets, e.g. statements, and mutates them (use of random
data or mutation operators) while checking the amount of
code covered by the tests until all the targets are covered.
Unfortunately, this kind of white-box approach requires the
source code of the system to be accessible. Instead of apply
random testing, the approach in (Aarts et al., 2014) recovers,
through active model learning, a model Mg of a reference
implementation R, which serves as input for a model based
testing tool. The obtained test cases are used for regression
testing or to check whether another implementation I conforms
to Mg. Petrenko et al. improved this technique by relaxing
some requirements, e.g., the components may be unknown.
(Petrenko and Avellaneda, 2019). The tests, produced while
the recovery of the component behaviours could be adapted to
answer our problem. But this approach is founded upon some
assumptions that strongly limit its adoption (the system should
produce only a single message at a time, it cannot be composed
of concurrent components, all of the components have to be
testable). Zhang et al. proposed a test case generation approach
for Web applications from event logs in (Tian et al., 2017).
The logs are initially covered to infer a Markov chain whose
states are labelled by URLs. A MbT technique is then applied
on this model. Specifically, test cases are built by covering
the branches of the Markov chain. Generally speaking, we
observed that model learning associated to MbT tends to be
time consuming as logs or test results are lifted to the level
of models, which are then analysed to select and build again
concrete test cases.

C. Our approach

Our main objective is to test every testable service of SUT
in isolation. Our approach generates IOTS test cases including
test verdicts derived from knowledge extracted in event logs.
An IOTS test case should hence encode interactions between
a tester and one service under test, along with the possible
interactions of this service with other dependee services. In
our context of isolation testing, these dependee services have
to be replaced by mock components, which aim at simulating
real services. A mock component typically consists of a test-
specific version of a component, which behaves in a predefined

and controlled way, while satisfying some behaviours of the
original.

/askLoan(from:=Client, to :=LoanApp,method:=POST,body:=1000,acc:=99,id:=:)
/checkAccountRisk(from:=LoanApp,to:=AccMan,method:=GET,acc:=99,id:=x)

/ evaluateRisk (from:=AccMan,to:=CheckRisk,method:=GET,acc:=99,id:=x)
/ok(from:=CheckRisk,to:=AccMan,method:=GET ,body:=HIGH,status:=200,id:=:)
/ok(from:=AccMan,to:=LoanApp,method:=GET,status:=200;id:=x)
/checkApp(from:=LoanApp,to:=AppMan,method:=GET,acc:=99,body:=1000,id:=:)
/ok(from:=AppMan,to:=LoanApp,method:=GET,status:=200,body:=ko,id:=x)
/rejectLoan (from:=LoanApp,to:=AccMan,method:=GET,acc:=99,id:=x)
/ok(from:=AccMan,to:=LoanApp,method:=GET,status:=200,body:=Rejected,id:=+)
/ok(from:=LoanApp,to:=Client,method:=GET,status:=200,body:=Rejected, id :=x)

values are hidden and [/ a list of labels expressing some
knowledge. With our example, 2 abstract traces are built.
Figure 3 gives the abstract trace of the second trace of Figure
2. The seventh event is recognised as an error.

< ?checkAccountRisk(from:=LoanApp,to:=AccMan,method:=x,acc:=x,id:=x),{ } >
<!/evaluateRisk (from:=AccMan,to:=CheckRisk,method:=x,acc:=x,i),{mock} >
< !/ok(from:=CheckRisk,to:=AccMan,method:=:,body:=,status:=x,id:=) ,{ mock } >
< !/ok(from:=AccMan,to:=LoanApp,method:=:,statu. Jidi=x),{}>

< acceptLoan(from:=LoanApp,to:=AccMan,method:=:x,body:=x,acc:=+,id:=x),{ } >
< !/ko(from:=AccMan,to:=LoanApp,method:=x,status:=x,body:=x,id:=+),{ error } >

/askLoan(from:=Client, to:=LoanApp,method:=POST,body:=1000,acc:=99,id:=)
/checkAccountRisk(from:=LoanApp, to:=AccMan,method:=GET,acc:=99,id:=)

/ evaluateRisk (from:=AccMan,to:=CheckRisk,method:=GET,acc:=99,id:=:)
/ok(from:=CheckRisk,to:=AccMan,method:=GET,body:=LOWRISKstatus:=200,id:=x)
/ok(from:=AccMan,to:=LoanApp,method:=GET,status:=200,id:=s)
/acceptLoan(from:=LoanApp,to:=AccMan,method:=GET,body:=1000,acc:=99,id:=)
/ko(from:=AccMan,to:=LoanApp,method:=GET,status:=500,body:=ServerError,id:=:)
/ok(from:=LoanApp,to:=Client,method:=GET ,status:=200,body:=ServerError, id :=*)

Fig. 2. Example of two traces collected from the composition of Figure 1

Consider the two traces of Figure 2 extracted from the
web service composition of Figure 1. We also consider that
the set of testable services PCO includes all the services of
this composition. The first trace results from the request of
a small amount loan. AccMan is called and returns a high
risk. Hence, AppMan is called to get a response from a bank
agent. Here, the loan is rejected. The second trace follows
the same scenario, but a low risk is returned. While a request
/acceptLoan is performed to update the account, a server error
occurs. An error is returned to the client.

< /askLoan(from:=Client,to:=LoanApp,method:=+,body:=x,acc:=:,id:=){} >
</checkAccountRisk(from:=LoanApp,to:=AccMan,method:=:,acc:=sx,id:=x),{} >
</evaluateRisk (from:=AccMan,to:=CheckRisk,method:=x,acc:=x,id:=x),{} >
</ok(from:=CheckRisk,to:=AccMan,method:=x,body:=:status:=x,id:=),{ } >
</ok(from:=AccMan, to:=LoanApp,method:=:,status:=xid:=x),{} >
</acceptLoan(from:=LoanApp,to:=AccMan,method:=:,body:=:,acc:=sx,id:=x),{} >
</ko(from:=AccMan,to:=LoanApp,method:=:,status:=,body:=sx,id:=x),{ error } >
</ok(from:=LoanApp,to:=Client,method:=:, status :=x,body:=x,id :=x),{} >

Fig. 3. Example of abstract trace

Step 2 of our approach gathers the similar traces into
clusters. In short, two similar traces share the same sequence
of events and are performed by the same services. This step
is performed to avoid the generation of large test case sets,
as many similar traces, composed of the same event sequence
accompanied by different parameters, may be found in event
logs. With our previous example of two traces, we get two
clusters cl(#;) and cl(;). The clusters are then analysed with
an expert system to extract some knowledge. At the moment,
we try to extract the fact that an event represents an error or
a failure, the fact that an event sequence represents a login
process or a token generation. This knowledge, shortened
under the form of labels, will be used for the generation of tests
and of test verdicts. These clusters and labels are assembled
to form abstract traces, which correspond to sequences of
elements < e(a),/ >, with e(a) an event whose parameter

Fig. 4. Example of abstract trace for the service AccMan

From the set of abstract traces denoted ATraces, Step 3
starts by building the abstract traces and clusters of every
testable service of the set PCO. In the meantime, the algorithm
decorates the events with the symbols ? and ! to express the
notion of input and output. It also adds the label “mock” to
the events produced by some dependee services. These specific
events will be used to generate mock components. The non-
communicating events are removed. To avoid ambiguity, it is
worth noting that an input (resp. output) refers to the inputs
(resp. outputs) of a service under test, that is what it expects
(returns). Figure 4 shows an example of abstract trace for the
service AccMan.

The abstract traces are now covered to generate test cases,
given under the form of IOTS trees. The use of the IOTS
formalism allows to synthesize generic test cases from which
can be derived concrete test scripts. These IOTS trees are
constructed by combining all the traces that share some prefix.
The resulting test cases encode the interactions (inputs) that
can be performed, all the different behaviours that can be
observed and the respective test verdicts. But the following
restrictions are applied to obtain executable test cases: at most
one input is doable at every state of a test case and any output
may be observed. Additionally, the next restriction aims at
limiting the number of output events that may performed by
mock components: at every state, one output event labelled by
“mock” is allowed only. The test verdicts are given by means
of the labels found within the abstract traces. Intuitively, the
test verdict is fail if the label “error” is found with the last
output event. Otherwise, the verdict is pass.

Figure 5 illustrates an IOTS test case for the service
AccMan, obtained from Figure 4. A fail verdict is given
as the event !ko corresponds to an error. Besides, if no
reaction is observed whereas an output is expected, it returns
fail. For readability, this corresponds to the dotted transitions
labelled with the symbol 0. If unexpected outputs are received
(dashed transitions labelled by !*”), it returns the verdict
inconclusive, meaning that we cannot conclude. We cannot
definitely conclude because the event log may not include all
the possible behaviours that can be performed by a component.

Finally, Step 4 converts every IOTS test case into test
scripts. All the transitions labelled by “mock” are put aside.
The remaining tree is converted into a test script. We here use

22

24

g !
/’:; N ?/acceptLoan N
N 3

i /'f//n;k(f;orr('/ PN A (from: = 1/ko(from:=
!/evaluateRisk -~ S LoanApp, : :
. . < CheckRisk, 1| 1/0k\ RS ' AccMan
?/checkAccountRisk (from:=AccMan, - - AdeMan, | !/oktfrom™=_ to:=AccMan, to:=LoanAp 5
(from:=LoanApp, to:=ChéckRisk,” b tg'__ fc an, | AccMan, pyethod:=GET, St; 5'—5(?0py
to:=AccMan, __method:=Ge, D04yl OWRISKito: ~Loandp, ' body=1000, o\ < sorverError
method:=GET,~"~ S, Stf)?és,'_l)oo' 15‘3“‘;5:2“9: acc2Q9, y'Td._l) !
; :=1), id:=1) =1,
% ! {mock} 0 Y {error}

NS

Fig. 5. IOTS Test Case for AccMan

the frameworks TESTNG ! and Citrus 2. The later helps testers
write test cases for services upon varied message protocols,
e.g., HTTP or TCP/IP. The beginning of the test case related
to the IOTS of Figure 5 is given in Figure 6. The service
AccMan is called with the request ”checkAccountRisk”. The
test case then asserts that a HTTP response is received with
the status code 200. A valid response includes only the session
identifier. The test ends by checking with verificationMock()
whether the mock components have been called the expected
number of times.

On the other hand, the IOTS transitions labelled by “mock”
are used to generate mock components, which are composed of
rules of the form “request() ... response()”. For every request
labelled by mock from a service c; to ¢, we search for the
next response from c; to ¢; and we build one rule. Figure 7
lists one rule of the mock ’CheckRisk”, which is written with
the framework Mockserver 3. These steps and algorithms are
now detailed below.

mockServer.when(

request () . withMethod("GET”).withPath(”’/EvaluateRisk”)
.withHeaders(new Header("acc”, 799”),new Header(id”, ”1”))
, Times. exactly (1))

.respond(

response ()

.withHeaders(new Header("id”, ”’17)).withStatusCode(200)
.withBody("LOWRISK”));

@Test @CitrusTest

public void testAccMan() throws FileNotFoundException{
HttpClient toClient = CitrusEndpoints

Chttp (). client () . requestUrl (http :// AccMan/”).build () ;
$(http O

. client (toClient).send () . get(”checkAccountRisk”).message()
.header(”id ”,1) .body("\"acc\"=99")

. accept (MediaType. ALL_VALUE));

$(receive (toClient)

.message()

.type (MessageType. PLAINTEXT)

.name(”Response”)

. extract (fromHeaders()

.header (HttpMessageHeaders. HTTP_STATUS_CODE, statusCode”))
.header(”id ”,”id™)));

variable ("body”,” citrus : message(Response.body())”);
variable (" status 7, “${statusCode}”);

String body = context. getVariable ("body”);

String status = context. getVariable (” status ”);

String id = context . getVariable ("id”);

If (body.equals (") && id.equals(”1”) && status.equals("2007)) assertTrue (true);
else Assumptions.assumeTrue(false ,” Inconclusive ”);

verificationMock () ;

}

Fig. 6. Example of test script for the service AccMan

III. TEST CASE AND MOCK COMPONENT GENERATION

In our context of service composition, we consider that
events have the form e(o) with e some label and o an

Uhttps://testng.org
Zhttps://citrusframework.org/
3https://www.mock-server.com

Fig. 7. Mock component piece of code, which implements the events
!/EvaluateRisk and !ok of the test case of Figure 5

assignment of parameters in P to a value in the set of values
V. These parameters allow the encoding of some specific
features for service compositions e.g., if an event is a request,
the receiver and sender of this request, etc. We write x := x
the assignment of the parameter x with an arbitrary element
of V, which is not of interest. & denotes the event set. The
concatenation of two event sequences G1, G, is denoted G1.05.
€ stands for the empty sequence. For sake of readability,
prefix(c) denotes the set of initial segments of G and we write
0| € 0y iff 6 € prefix(c,). We also use additional notations
on events to make our algorithms more readable. In particular,
the notation deps(e(a)) returns the dependent service involved
in the exchange of the event e(a) with some dependee service:

Definition 1 Let e(a) be an event of €.

o from(e(a)) = ¢ denotes the source component perform-
ing e(Q);

o to(e(®)) = ¢ denotes the destination;

o isreq(e(a)), isresp(e(a)) are boolean expressions ex-
pressing the nature of the event;

from(e(o)) iff isreq(e(ct))

to(e(ar)) iff isresp(e(at))

* otherwise

o deps(e(a)) =

A test case is a deterministic IOTS having a tree form and

whose sink states are either pass, fail or inconclusive. IOTS
.. . e(),l , .
transitions are given under the form ¢ —= ¢’ with e¢(o) some

event and [a label set, which may be empty. The later allows
to easily express some specific behaviours encoded by the
transition, e.g., the call of mock components by means of the
label ”mock”. Furthermore, we use the notation 6 labelled on
transitions to represent the absence of reaction from a service
under test (Phillips, 1987).

IOTS test cases should be constructed with a few restrictions
to avoid indeterministic behaviours while testing. To this end, a
test case should be deterministic and should allow at most one
input event at any state. In reference to (Tretmans, 2008), we
formulate this last restriction by saying that a test case is input
restricted. Additionally, still in the context of isolation testing
and to keep control of the testing process, a mock component
should return at most one response after being invoked with
the same event. As a consequence, test cases should also have
states that offer at most one output expressing a response.
We say that a test case is mock response restricted. This is
formulated with:

Definition 2 A fest case tc is a deterministic IOTS (Q,q0,XU
{6},L,—) where:
o Qs a finite set of states, q0 is the initial state; Q contains
three special states: pass, fail and inconclusive
o X is the finite set of events. ¥; C X is the finite set of
input events beginning with ”?”, X9 C X is the finite set
of output events beginning with ”!”, with XoNYX; =0
o L is a set of labels
o 2C OXXU{B} x L* x Q is a finite set of transitions. A

!
transition (q,e(a),1,q') is also denoted q LLIN q

e tc has no cycles

o tc is input restricted ie. Yq € Q : event(q) = Lo U
{e(a)} for some e(a) € Iy or event(q) = Lo U {0} with
event(g) = {e(@)| 3¢ € Q:q “ ¢}

o tc is mock response restricted i.e. Vg € Q: |{q A, q |
isResp(e(a)) Amock € 1}] < 1.

IV. TEST CASE GENERATION
A. Step 2: Trace Clustering

This step takes as input the set Traces and builds a set of
abstract traces of the form < ej(oy),l] > -+ < ex(og),lx >
such that the parameter values are replaced by ”*” except
for the parameters from, to. /y,...,I; are label sets expressing
some business knowledge about the events.

Definition 3 (Abstract Traces) Let L be a set of labels. An
abstract trace is a sequence < ej(04),l] > -+ < ex(0),lr >€
(€ X L*)* such that e;(0y;)1<i<k € €, and every parameter in
P\ {from,to} is assigned to "*” and I; CL(1 <i<k).

Abstract traces ar extracted by partitioning the set Traces
into equivalent classes. Two traces are said equivalent when
they share the same sequence of abstract events. Given an
event e(a), an abstract event e(a) simply results from the
replacement of the parameter values by ”*” excluding the
parameters from and to. The equivalence relation between two
traces is defined by means of a projection, which performs this
event abstraction:

Definition 4 Two event sequences G|, G, € ¥, are equiva-
lent, denoted ©1 ~ Gy iff proj{fromJo}Gl = proj{from7ro}62
with: projg : € — &* is the projection e (0))...ex(0y) =
projo(er(o)...ex(0g)) and of = {x:=% [x:=ve o Ax ¢
Qtu{x:=v]xi=vemAxeQ}

The equivalent classes {cli,...,cl,} are derived with ~y.
Given a class ¢l = {0}y,...,0,}, our algorithm analyses the
events and parameter values to extract knowledge by means of
an expert system. Generally speaking, the latter is an inference
engine that applies a set of rules to infer new facts. In our
context, we devised rules to encode expert knowledge about
service compositions and to build abstract traces. It is worth
noting that an expert system offers the benefit to save time by
allowing its reuse on several service compositions.

We represent inference rules with this format: When con-
ditions on facts Then actions on facts (format taken by

rule "LabelCrash 1"

when

Sev: Event (paramStatus>=500);

then

insert (new RAevent (Sev, L("error"));
end

Fig. 8. Inference rule example

the Drools inference engine*). To ensure that this step is
performed in a finite time and in a deterministic way, the
inference rules have to meet these hypotheses:

o Finite complexity: a rule can only be applied a limited
number of times on the same knowledge base,

« Soundness: the inference rules are Modus Ponens (simple
implications that lead to sound facts if the original facts
are true).

We devised inference some rules that analyse event content
or event sequences to recognise errors (bas status, crashes,
etc.). Figure 8 exemplifies a rule for recognizing a server
crash by means of the HTTP status. It creates an abstract
event decorated with a new label “error”. We also observed
in many component systems, that the proper functioning of
a component may initially require a login process or the
generation of Access tokens. These initial behaviours are
recognised with further rules, which create abstract events
composed of the labels ”login” or “token”. We denote ID C
L={"login”, token”}.

Once the equivalent class ¢/ = {G},...,0,} has been anal-
ysed by the expert system, we obtain one abstract trace of
the form < ej(a)),l; > -+ < ex(0y),lx >. From n equivalent
classes of traces cly, ..., cl,, we obtain a set of n abstract traces,
which is denoted ATraces. Figure 3 illustrates an example of
abstract trace including a label “error” added by means of the
previous inference rule.

B. Step 3: I0TS Test Case Generation

Algorithm 1: Component Atrace set gen.

input : ATraces

output: ATraces(cy),...,ATraces(cy)

1 foreacht =< e (0),l; > < ex(a),lk >€ ATraces do

2 tinit :=< e} (o)), 1] > -+ < e, (ay,),l,, >€rsuchthat ;NID #0;
3 Foreach ¢ € PCO,t(c) == tinit; cl(t(c)) := cl(t);

4 for 1 <i<kdo

5 if isreq(e;(a;)) A (to(ei (o) € PCO) then

6 L t(to(ei(oy)) :=t(to(ei(on)). <?ei(ay),li >;

7 if deps(ei(o;) € PCO then

8 | t(deps(ei(ow)) :=t(deps(ei(on)). <lei(ou),l;U{mock} >;
9 if isresp(e;(0)) A (from(e;(a;) € PCO) then

10 | t(from(ei(oy)) :=r(from(ei(oy)). <lei(ou),li >;
1 foreach t(c) # tinit do

12 Update cl(t(c)) w.rt. 1(c);

13 if 3'(c) € ATraces(c) :t'(c) =t(c) then

14 | elt'(e)) :=cl('(c))Ucl(t(c));

15 else

16 | ATraces(c) := ATraces(c) U{1(c)};

“https://www.drools.org/

The IOTS test case generation is implemented by Algo-
rithms 1 and 2. Algorithm 1 takes as input a set of abstract
traces ATraces and returns a set of ATraces(c) for every
service ¢ found in the events. To build these new sets,
Algorithm 1 covers every abstract trace t € ATraces (line
1). As stated previously, the proper functioning of a service
may initially require a login process or a token generation.
Our algorithm firstly covers ¢z to extract a subsequence tinit
encoding this initial behaviour. The later is recognised with
events associated with some labels in ID (line 2). The new
abstract traces generated from ¢ will all begin with tinit, which
may be empty. Then, Algorithm 1 builds a new abstract trace
t(c) for every service ¢ found in . Besides, it inserts the notion
of input and output: if the event is a request to a testable
service ¢ € PCO it decorates the event with ”?” (line 5); if the
event is a response from a testable service (line 9), or an event
for or from a dependee service, it decorates the event with ”!”.
For this last case, the label "mock” is also added to events.
This label will be used later to generate mock components.
Indirectly, this algorithm filters out the other events, i.e.. the
non communicating events or the events performed by non
testable services.

Finally, the algorithm updates the traces of the cluster
cl(t(c)) by deleting the events that belonged to the initial
abstract trace ¢ but are no more available in #(c). ¢(c) is added
to the set ATraces(c). If t(c) was already in ATraces(c), only
the cluster c/(¢(c)) is updated.

Algorithm 2: IOTS Test Case Generation

input : ATraces(c)
output: 7C(c)

1 AT = ATraces(c);

2 while AT # 0 do

3 Take r =<ej(ay),l; > -+ < ex(ow),lk >€ AT;

4 Choose arbitrary 6 € cl(r) ;

5 te:=lts(t,0,v(1));

6 Corr(tc) := Corr(c)

7 foreach o, € cl(t;) : 1, € ATraces(c) A prefix(c) N prefix(c2) # 0 do
8 tey = ZZS(GQ,V(Q));

9 tey ==tc || tey;

10 if tcy is input and mock response restricted then
11 tc:=tcy;

12 AT :=AT \ {1 };
13 tc = compl(tc);
14 TC(c) :=TCU{tc};
15 AT := AT \ {r};

Algorithm 2 now takes as input a set Atraces(c) and
produces an IOTS test case set TC(c). Given an abstract
trace ¢ € Atraces(c), the algorithm selects some trace G of
the cluster ¢l(z) and builds an initial test case t¢c composed of
parameter values (lines 2-6). The IOTS zc is derived by means
of the operator Its : (€ x L*)* x & x {fail,pass} — IOTS,
which returns an IOTS (Q,¢0,X,—) defined by the rule <

op),!
er(a)),ly > <ex(oy),lk >,er(an)...ex(0g),vFqo o),

I
q1---qr—1 M v. A verdict v of tc is established by

means of the labels found in the last event < ex(oy),lx >.
This test verdict denoted v(< ej(0t),l] > - < er(0),lx > is
fail iff "error” € I, otherwise the verdict is pass. Thereafter,

Algorithm 2 covers each abstract traces f, € Atraces(c) and
each trace G, € cl(r;) that shares some prefix with the initial
trace G (lines 7-12). Intuitively, the trace G, starts with a same
event sequence than the test case f¢ but may end with other
events, which encode other behaviours. In this case, t¢ must
be completed to include those behaviours that may happen
while testing. Algorithm 2 generates the IOTS ft¢, from G,
and performs a parallel synchronisation between tc and fcy. If
the resulting test case is input restricted and mock response
restricted, it meets the restrictions formulated in Definition 2.
In this case, this new test case is assigned to 7c. Additionally,
as event logs do not necessarily encode all the behaviours of
SUT, the test case tc is completed (line 13) with the operator
compl : IOTS — IOTS defined by these rules:
r1:q1 m q2,q2 € {pass, fail} - q RGN q11 8,
q2,911 i> inconclusive, q i inconclusive
raiqr O g ¢ {pass, fail} - q1 2D g,
q1 Y inconclusive

le(a),! le(ar),! k. .
r3:q1 —>() @ -q L 92,91 = inconclusive

! 2,
r4:q1 Lo, 92,q1 2, @ ¢—k a1 > fail

The inference rule r; means that when the test case tc
is finished by an input event, a transition to a verdict state
and labelled with 0 is added to formulate that the absence of
event is expected. Two transitions to inconclusive are added
to express that we cannot conclude whether the behaviour is
correct when we observe any other unexpected output event
(label !*). r, targets the remaining transitions labelled by
input events and similarly adds transitions to inconclusive. r3
completes the test case with a new transition to express the fact
that any unexpected output leads to the inconclusive verdict. r4
completes the previous rule in the case there are only outgoing
transitions labelled by output events from ¢;. The rule adds
a transition to fail modelling that the absence of reaction is
faulty. These rules were applied to add the transitions to fail
and inconclusive in the test case of Figure 5.

C. Step 4: Generation of Concrete Test Cases

Finally, executable test scripts are generated from IOTS
test cases. Different kinds of languages and frameworks may
be chosen. With regard to our evaluation, we have chosen
to generate test cases using the frameworks TestNG, Citrus
and Mockserver. Given an IOTS test case r € TC(c), some
parameters may still be assigned to “*”. These ones refer
to parameters used to identify sessions. We update these
assignments with concrete values available in the correlation
set Corr(r). In case it still remains unassigned parameters,
those are assigned with random values. In order to generate a
test script from ¢, the transitions of ¢ labelled by “mock” are
initially pruned. The resulting IOTS tree is converted into a
TESTNG test case. In short, every input event is converted into
code that calls the service under test ¢ and waits for a response.
An example is given in Figure 6 (lines 1-20). The related

transitions labelled by an output are used to build assertions.
When there are several transitions expressing several correct
responses, we use the word ”AnyOf” to write an assertion that
accepts several conditions. The test script ends with the call of
the method ”verificationMock”, which aims to check whether
mock components behave as expected while the test execution.
At the moment, we check whether the number of calls to a
mocked request matches with the number of time the request
is found in ¢.

It remains to generate mock components. The previous
IOTS transitions labelled by "mock” are used to derive rules of
the form request()...respond() (rule format of the MockServer
framework). More precisely, for each request to a service c2
and its related response, a rule, which mimics the behaviour of
c2, is constructed. Figure 7 shows an example of rule. Then,
the method “verificationMock™ is written according to these
rules.

V. PRELIMINARY EVALUATION

We implemented our approach in Java for web service
compositions and internet of things communicating over the
HTTP protocol. With this implementation, we evaluated the
following questions:

« RQI: what is the quality of the generated test suites ?

« RQ2: how long does our approach take to generate test

suites? How our tool scales with the log size ?

The study was conducted on 4 web service compositions,
denoted C1 to C4, made up of 4 to 6 components. We
chose to consider different compositions in terms of code
quality. We wrote C1 by refactoring and putting care into the
code quality (no useless or duplicated code, strict parameter
validation, use of design patterns). C2 to C4 were written
by students and include useless getters, have improper error
managements and include prints in output console instead of
event logs. From each composition, event logs were collected
from scenarios performed by hands and completed by means
of the penetration testing tool ZAP . We obtained event logs
composed of 292 to 6440 events to also consider the impact
of the event log size. The source code in Java along with event
logs are available here ©.

A. RQI: what is the quality of the generated test suites ?

To investigate RQ1, we firstly generated the test suites of
every service Cl to C4. The test suite quality is evaluated
with mutation testing. This software testing technique firstly
performs small changes to the source code, which are called
mutants. The later are then experimented with test cases. The
mutants that are detected by test cases are said killed. The
quality is measured by calculating the mutation score, obtained
by dividing the number of killed mutants by the total number
of mutants generated. A high mutation score indicates high test
quality. We generated mutants from every web service with
the tool PITest 7 completed by our own mutations specialised

Shttps://www.zaproxy.org/
Shttps://github.com/JarodSue/AutomatedTestGeneration
Thttps://pitest.org/

Comp.| Event log # Test Cases # Mutants Mut. Mut.
size score score 2
Cl 6440 61 146 0.96 0.96
C2 1073 88 84 0.26 0.78
C3 292 67 101 0.33 0.65
C4 354 134 48 0.46 0.92
TABLE I

QUALITY EVALUATION OF THE TEST SUITES

to Web services (Deletion of Authentication Token, Header
removal, HTTP Verb change). Then, we experimented these
mutants with the generated test cases to calculate mutation
scores.

The results are given in Table I, which provides the number
of generated test cases, the number of mutants and the muta-
tion score for C1 to C4. We obtain a high mutation score for
C1 but passable results for C2 to C4. For these compositions,
We observed that some mutants cannot be killed, i.e. they
cannot be detected by our tests. The later are indeed built over
communicating events found in event logs only. In other terms,
every service is considered as a black box and test cases are not
suited to detect local variable changes in the source code. But
many useless local variables and prints in output console are
used in C2 to C4. Besides, we observed that the removal of the
verb "GET” produces non-killable mutants because when there
is no verb in the service source code, then "GET” is used by
default. This is why we chose to calculate a second score based
upon the killable mutants only. These scores are now between
65 to 96%. We then analysed the killable mutants that are
not detected by test cases. We observed that some mutations
changed some parameter values. But these values are not used
in test cases, hence the mutants were not killed. This problem
comes from to the incompleteness of the event logs. Usually,
event logs do not include all the possible behaviours (all the
scenarios allowed in the real compositions). As a consequence,
the generated test suite is not exhaustive and cannot detect all
the possible mutants and faults. The more complete the event
log is, the more exhaustive the test suite is. This is especially
the case for C3, whose event log includes only 292 events,
compared to the 6440 events for Cl1.

B. RQ2:how long does our approach take to generate test
suites? How our tool scales with the log size ?

1600 700

1400 R2=0,99487" o
2
— 1200 s00 2
£ 1000 2
g 400 &
S s00 @
8 300 &

o

E oo &
%
= 400 g
£

200 100

0 0

0 100 200 300 400 500 600

#Traces

Time taken ms #Test cases Created

Fig. 9. Execution times vs. trace number

The performance of our algorithms mainly depends on two
factors, the size of the event logs (steps 1 and 2) and the
number of abstract traces (steps 3 and 4). For the former factor,

1400 500
R?=0,99265# 450
1200 Z
Py >

»
8

- 1000 g 350

g

Test Cases created

250
200
150

Time taken (m:

°
o u e
© 8
#

0 100 200 300 400 500
Abstract Traces

—8—Time Taken (ms) #Test Cases created

Fig. 10. Execution times vs. abstract trace number

we took back the log of C1 composed of 6440 events, we
extracted 650 traces and split them into sets of 50 to 650 traces.
Then, we executed our tool to get execution times, which are
given in Figure 9 in milliseconds. The test case generation
took less than 2 seconds with the largest set. Figure 9 shows
that the execution time curve increases linearly with respect to
the trace set size. To avoid any bias, Figure 9 also illustrates
the curve of the generated test cases (mocks included), which
follows the same trend. The study of the second factor was
conducted by feeding our algorithms with sets of 50 to 550
abstract traces by 50 increments. These sets were constructed
from 50 initial traces made up of ten events at most, whose
parameter were modified. Figure 10 depicts again execution
times along with the number of generated test cases. An again,
we observe that the time complexity of our approach is linear.

All these results tend to suggest that our tool can take large
event logs and produce effective test cases in reasonable time.

VI. CONCLUSION

We proposed in this paper an automated test case generation
for service compositions, from event logs. The originality of
the approach resides in the fact that test cases along with mock
components are generated for every testable service to test
them in isolation. We have implemented this approach in a
tool prototype, which we used to evaluate its effectiveness and
efficiency. We showed that the test quality is good when event
logs contain sufficient events, and that our algorithms scale
well. As future work, we plan to extend these algorithms with
test case mutation operators to expand the initial test case
set. We will propose specific operators for improving fault
localisation in service compositions.

REFERENCES

Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F. W., and
Verwer, S. (2014). Improving active mealy machine
learning for protocol conformance testing. Mach. Learn.,
96(1-2):189-224.

Ali, S., Sun, H., and Zhao, Y. (2018). Model learning: A
survey on foundation, tools and applications.

Aouadi, M. H. E., Toumi, K., and Cavalli, A. R. (2015).
An active testing tool for security testing of distributed
systems. In 10th International Conference on Availability,
Reliability and Security, ARES 2015, Toulouse, France,
August 24-27, 2015, pages 735-740. IEEE Computer
Society.

Arcuri, A. (2018). Test suite generation with the many
independent objective (mio) algorithm. Information and
Software Technology, 104:195-206.

Cao, D., Felix, P., Castanet, R., and Berrada, 1. (2009). Testing
Service Composition Using TGSE tool. In Press, I. C. S.,
editor, IEEE 3rd International Workshop on Web Services
Testing (WS-Testing 2009), Los Angeles, United States.
IEEE Computer Society Press.

Hierons, R. (2001). Testing a distributed system: generating
minimal synchronised test sequences that detect output-
shifting faults. Information and Software Technology,
43(9):551-560.

Kanso, B., Aiguier, M., Boulanger, F., and Touil, A. (2010).
Testing of Abstract Components. In ICTAC 2010 -
International Conference on Theoretical Aspect of Com-
puting., pages 184-198, Brazil.

Ozkan, B. K., Majumdar, R., and Oraee, S. (2019). Trace
aware random testing for distributed systems. Proc. ACM
Program. Lang., 3(OOPSLA).

Paiva, A., Restivo, A., and Almeida, S. (2020). Test case
generation based on mutations over user execution traces.
Software Quality Journal, 28.

Petrenko, A. and Avellaneda, F. (2019). Learning communi-
cating state machines. In Tests and Proofs, page 112-128,
Berlin, Heidelberg. Springer-Verlag.

Phillips, I. C. C. (1987). Refusal testing. Theor. Comput. Sci.,
50:241-284.

Salva, S., Provot, L., and Sue, J. (2021). Conversation
extraction from event logs. In Proceedings of the 13th
International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management,
IC3K 2021, pages 155-163. SCITEPRESS.

Tian, X., Li, H., and Liu, F. (2017). Web service reliability test
method based on log analysis. In 2017 IEEE International
Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 195-199.

Torens, C. and Ebrecht, L. (2010). Remotetest: A framework
for testing distributed systems. In 2010 Fifth International
Conference on Software Engineering Advances, pages
441-446.

Tretmans, J. (2008). Model Based Testing with Labelled Tran-
sition Systems, pages 1-38. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Ulrich, A. and Konig, H. (1999). Architectures for Testing
Distributed Systems, pages 93—108. Springer US, Boston,
MA.

van der Bijl, M., Rensink, A., and Tretmans, J. (2004). Com-
positional testing with ioco. In Petrenko, A. and Ulrich,
A., editors, Formal Approaches to Software Testing, pages
86-100, Berlin, Heidelberg. Springer Berlin Heidelberg.

