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Service compositions, e.g., Internet of Things (IoT) service compositions or RESTful service compositions are widely used in the industry to enhance the interoperability and integration of their systems and applications. Testing service compositions is considered as a long and difficult activity as each service may be deployed on different servers and often requires specialised testing tools. This paper proposes an automated approach to help developers generate test cases for experimenting every service in isolation. These test cases can be later adapted or used for regression testing. This approach is based upon 4 steps that aim to: 1. extract traces from event logs, 2. gather similar behaviours to reduce the final number of test cases and to extract knowledge, which will be used while the test case generation, 3. produce generic test cases given under the form of IOTS (Input Output Transition Systems) that encode the use of mock components and provide test verdicts, 4. generate test scripts and mock components for every service. We evaluate our approach on 4 Web service compositions and show that our algorithms build effective test cases and scale well with the event log size.

I. INTRODUCTION

Events that occur in service compositions are now commonly recorded in log files. These files are more and more analysed with tools allowing to continuously extract knowledge helping IT personnel understand system behaviours or performance. In this paper, we propose to use event logs to automatically generate tests for service compositions. In this scope, it is well admitted that the design and use of automatic test generation approaches is quite interesting in the industry since testing such systems is usually performed manually by writing some test scripts. The design of automatic approaches is also quite challenging as testing such systems is known to be a hard and long process due to the problems inherent in controlling or monitoring many concurrent components interacting with one another simultaneously.

The literature offers several approaches that might be considered to generate test cases for a service composition under test, which we denote SUT. Firstly, several Model based Testing (MbT) approaches e.g., [START_REF] Ulrich | Architectures for Testing Distributed Systems[END_REF][START_REF] Van Der Bijl | Compositional testing with ioco[END_REF][START_REF] Cao | Testing Service Composition Using TGSE tool[END_REF][START_REF] Torens | Remotetest: A framework for testing distributed systems[END_REF][START_REF] Kanso | Testing of Abstract Components[END_REF][START_REF] Aouadi | An active testing tool for security testing of distributed systems[END_REF][START_REF] Hierons | Testing a distributed system: generating minimal synchronised test sequences that detect outputshifting faults[END_REF] have been proposed. Prior to test generation, a formal specification must be written and verified. The main problem inherent in these approaches is that such models are often not available or not up-to-date, A combination of model learning followed by test case generation might also be considered. Model learning is a research field gathering algorithms specialised in the construction of models by inference [START_REF] Ali | Model learning: A survey on foundation, tools and applications[END_REF]. Once models are retrieved, a classical MbT approach must be applied to produce test cases. Test data along with concrete execution paths are re-generated from models. Basically, this combination starts from concrete events, such as event logs or observations obtained by experimentations, generalises them with formal models and re-generates concrete test cases. It results in a time consuming process, which usually does not scale well. Finally, other approaches, e.g., [START_REF] Paiva | Test case generation based on mutations over user execution traces[END_REF], propose a record and replay technique of event sequences extracted from event logs. Unfortunately, this technique does not work well for service compositions, as SUT may include various possibly non deterministic services, or not testable ones. Test cases must be adapted w.r.t. these properties.

We present in this paper another test case generation approach for service compositions from event logs, which is devised with the previous attention points in mind. The resulting test cases aim at experimenting every testable service of SUT in isolation. Unlike the previous approaches, this implies that our approach generates test scripts with verdicts but also mock components. Mocking objects or components is a technique applied to improve the ability of interaction with the component under test, which finally aims to increase test coverage or to speed up performance.

Given an event log collected from SUT, our approach performs four main steps. The first one converts an event log into formatted event sequences called traces, which intuitively correspond to sequences of correlated events interchanged among different services. We do not focus on this step in the paper and refer to this previous work [START_REF] Salva | Conversation extraction from event logs[END_REF] instead. The traces are then gathered into clusters of similar traces, from which some knowledge is extracted by means of an expert system. This knowledge will be used to build test cases along with test verdicts. Then, test cases modelled with IOTS (Input Output Transition systems) are generated for every service. An IOTS test case expresses both the behaviour of a tester and the behaviours of mock components. Concrete test scripts and mock components are eventually derived from IOTS test cases.

We have implemented a prototype tool to experiment our approach. We investigate its effectiveness by evaluating the quality of the generated test cases, and we investigate how our algorithms scale with the event log size.

Paper organisation: Section II introduces our approach with an example used throughout the paper, along with the related work. Section III provides some definitions, used by our algorithms, which are detailed in Section IV. The next section exposes our evaluation performed on 4 service compositions. Section VI summarises our contributions and draws some perspectives for future work.

II. OVERVIEW

We introduce, in this section, a motivating example, which we will use to describe our algorithms at a high level. The details of the test case generation are in Section III. Our example, illustrated in Figure 1 is made up of 4 web services providing approvals or rejects of loan requests. A first service "LoanApp" receives a loan request linked to a given account. According to the amount requested, it calls a second service "AccMan" to get access to the bank account. This service calls itself "CheckRisk" to obtain the risk level related to this account. If the amount is upper than 10000 euros or if the risk is high, a third service "AppMan" is requested to let a human agent study the request and return a response. Otherwise "LoanApp" returns a positive response. 

A. Assumptions

The design of our algorithms is guided by the following practical assumptions:

• A1 Event log: the communications among services can be monitored. Event logs are collected in a synchronous environment made up of synchronous communications. They include timestamps showing when the events occurred. For simplicity, we consider having one event log; • A2 Event content: services produce communication events or non-communication events. The former include parameter assignments allowing to identify the source and the destination of each event. Besides, a communication event can be identified either as a request or a response; • A3 Service collaboration: work-flows of events are correlated by means of parameter assignments; • A4 Testable Service: we assume knowing the set of services that can be experimented and monitored, which is denoted PCO; We proposed in [START_REF] Salva | Conversation extraction from event logs[END_REF] an approach allowing to retrieve traces from event logs by exploring the correlation set space that can be derived from an event log. The tool returns a set Traces of traces along with a correlation set Corr(σ)

for every trace σ ∈ Traces. We finally assume that all the assignments p := v found in σ whose parameters are also used in Corr(σ) are replaced by p := * .

B. Related work

A plethora of works have been proposed to generate test cases without specification, by using random testing or model learning. A few of them are specialised to communicating systems [START_REF] Ozkan | Trace aware random testing for distributed systems[END_REF][START_REF] Arcuri | Test suite generation with the many independent objective (mio) algorithm[END_REF][START_REF] Petrenko | Learning communicating state machines[END_REF][START_REF] Aarts | Improving active mealy machine learning for protocol conformance testing[END_REF][START_REF] Tian | Web service reliability test method based on log analysis[END_REF]. For instance, Arcuri proposed algorithms to create test suites for Web service compositions [START_REF] Arcuri | Test suite generation with the many independent objective (mio) algorithm[END_REF] by considering the test case generation as a a multi-objective problem, whose objectives are related to metrics over source code properties. In short, the algorithm iteratively builds new test cases to cover targets, e.g. statements, and mutates them (use of random data or mutation operators) while checking the amount of code covered by the tests until all the targets are covered. Unfortunately, this kind of white-box approach requires the source code of the system to be accessible. Instead of apply random testing, the approach in [START_REF] Aarts | Improving active mealy machine learning for protocol conformance testing[END_REF] recovers, through active model learning, a model M R of a reference implementation R, which serves as input for a model based testing tool. The obtained test cases are used for regression testing or to check whether another implementation I conforms to M R . Petrenko et al. improved this technique by relaxing some requirements, e.g., the components may be unknown. [START_REF] Petrenko | Learning communicating state machines[END_REF]. The tests, produced while the recovery of the component behaviours could be adapted to answer our problem. But this approach is founded upon some assumptions that strongly limit its adoption (the system should produce only a single message at a time, it cannot be composed of concurrent components, all of the components have to be testable). Zhang et al. proposed a test case generation approach for Web applications from event logs in [START_REF] Tian | Web service reliability test method based on log analysis[END_REF]. The logs are initially covered to infer a Markov chain whose states are labelled by URLs. A MbT technique is then applied on this model. Specifically, test cases are built by covering the branches of the Markov chain. Generally speaking, we observed that model learning associated to MbT tends to be time consuming as logs or test results are lifted to the level of models, which are then analysed to select and build again concrete test cases.

C. Our approach

Our main objective is to test every testable service of SUT in isolation. Our approach generates IOTS test cases including test verdicts derived from knowledge extracted in event logs. An IOTS test case should hence encode interactions between a tester and one service under test, along with the possible interactions of this service with other dependee services. In our context of isolation testing, these dependee services have to be replaced by mock components, which aim at simulating real services. A mock component typically consists of a testspecific version of a component, which behaves in a predefined and controlled way, while satisfying some behaviours of the original.

/askLoan(from:=Client , to:=LoanApp,method:=POST,body:=1000,acc:=99,id:= * ) /checkAccountRisk(from:=LoanApp,to:=AccMan,method:=GET,acc:=99,id:= * ) / evaluateRisk (from:=AccMan,to:=CheckRisk,method:=GET,acc:=99,id:= * ) /ok(from:=CheckRisk,to:=AccMan,method:=GET,body:=HIGH,status:=200,id:= * ) /ok(from:=AccMan,to:=LoanApp,method:=GET,status:=200;id:= * ) /checkApp(from:=LoanApp,to:=AppMan,method:=GET,acc:=99,body:=1000,id:= * ) /ok(from:=AppMan,to:=LoanApp,method:=GET,status:=200,body:=ko,id:= * ) / rejectLoan (from:=LoanApp,to:=AccMan,method:=GET,acc:=99,id:= * ) /ok(from:=AccMan,to:=LoanApp,method:=GET,status:=200,body:=Rejected,id:= * ) /ok(from:=LoanApp,to:=Client,method:=GET,status:=200,body:=Rejected,id := * ) /askLoan(from:=Client , to:=LoanApp,method:=POST,body:=1000,acc:=99,id:= * ) /checkAccountRisk(from:=LoanApp, to:=AccMan,method:=GET,acc:=99,id:= * ) / evaluateRisk (from:=AccMan,to:=CheckRisk,method:=GET,acc:=99,id:= * ) /ok(from:=CheckRisk,to:=AccMan,method:=GET,body:=LOWRISK,status:=200,id:= * ) /ok(from:=AccMan,to:=LoanApp,method:=GET,status:=200,id:= * ) /acceptLoan(from:=LoanApp,to:=AccMan,method:=GET,body:=1000,acc:=99,id:= * ) /ko(from:=AccMan,to:=LoanApp,method:=GET,status:=500,body:=ServerError,id:= * ) /ok(from:=LoanApp,to:=Client,method:=GET,status:=200,body:=ServerError, id := * ) Fig. 2. Example of two traces collected from the composition of Figure 1 Consider the two traces of Figure 2 extracted from the web service composition of Figure 1. We also consider that the set of testable services PCO includes all the services of this composition. The first trace results from the request of a small amount loan. AccMan is called and returns a high risk. Hence, AppMan is called to get a response from a bank agent. Here, the loan is rejected. The second trace follows the same scenario, but a low risk is returned. While a request /acceptLoan is performed to update the account, a server error occurs. An error is returned to the client.

</askLoan(from:=Client,to:=LoanApp,method:= * ,body:= * ,acc:= * ,id:= * ){}> </checkAccountRisk(from:=LoanApp,to:=AccMan,method:= * ,acc:= * ,id:= * ),{}> </evaluateRisk(from:=AccMan,to:=CheckRisk,method:= * ,acc:= * ,id:= * ),{}> </ok(from:=CheckRisk,to:=AccMan,method:= * ,body:= * ,status:= * ,id:=),{}> </ok(from:=AccMan, to:=LoanApp,method:= * ,status:= * ,id:= * ),{}> </acceptLoan(from:=LoanApp,to:=AccMan,method:= * ,body:= * ,acc:= * ,id:= * ),{}> </ko(from:=AccMan,to:=LoanApp,method:= * ,status:= * ,body:= * ,id:= * ),{error}> </ok(from:=LoanApp,to:=Client,method:= * ,status := * , body:= * ,id := * ),{}>

Fig. 3. Example of abstract trace

Step 2 of our approach gathers the similar traces into clusters. In short, two similar traces share the same sequence of events and are performed by the same services. This step is performed to avoid the generation of large test case sets, as many similar traces, composed of the same event sequence accompanied by different parameters, may be found in event logs. With our previous example of two traces, we get two clusters cl(t 1 ) and cl(t 2 ). The clusters are then analysed with an expert system to extract some knowledge. At the moment, we try to extract the fact that an event represents an error or a failure, the fact that an event sequence represents a login process or a token generation. This knowledge, shortened under the form of labels, will be used for the generation of tests and of test verdicts. These clusters and labels are assembled to form abstract traces, which correspond to sequences of elements < e(α), l >, with e(α) an event whose parameter values are hidden and l a list of labels expressing some knowledge. With our example, 2 abstract traces are built. Figure 3 gives the abstract trace of the second trace of Figure 2. The seventh event is recognised as an error.

<?/checkAccountRisk(from:=LoanApp,to:=AccMan,method:= * ,acc:= * ,id:= * ),{}> <!/evaluateRisk (from:=AccMan,to:=CheckRisk,method:= * ,acc:= * ,id:= * ),{mock}> <!/ok(from:=CheckRisk,to:=AccMan,method:= * ,body:= * ,status:= * ,id:=) ,{mock}> <!/ok(from:=AccMan,to:=LoanApp,method:= * ,status:= * ,id:= * ),{}> <?/acceptLoan(from:=LoanApp,to:=AccMan,method:= * ,body:= * ,acc:= * ,id:= * ),{}> <!/ko(from:=AccMan,to:=LoanApp,method:= * ,status:= * ,body:= * ,id:= * ),{ error }> From the set of abstract traces denoted ATraces, Step 3 starts by building the abstract traces and clusters of every testable service of the set PCO. In the meantime, the algorithm decorates the events with the symbols ? and ! to express the notion of input and output. It also adds the label "mock" to the events produced by some dependee services. These specific events will be used to generate mock components. The noncommunicating events are removed. To avoid ambiguity, it is worth noting that an input (resp. output) refers to the inputs (resp. outputs) of a service under test, that is what it expects (returns). Figure 4 shows an example of abstract trace for the service AccMan.

The abstract traces are now covered to generate test cases, given under the form of IOTS trees. The use of the IOTS formalism allows to synthesize generic test cases from which can be derived concrete test scripts. These IOTS trees are constructed by combining all the traces that share some prefix. The resulting test cases encode the interactions (inputs) that can be performed, all the different behaviours that can be observed and the respective test verdicts. But the following restrictions are applied to obtain executable test cases: at most one input is doable at every state of a test case and any output may be observed. Additionally, the next restriction aims at limiting the number of output events that may performed by mock components: at every state, one output event labelled by "mock" is allowed only. The test verdicts are given by means of the labels found within the abstract traces. Intuitively, the test verdict is fail if the label "error" is found with the last output event. Otherwise, the verdict is pass.

Figure 5 illustrates an IOTS test case for the service AccMan, obtained from Figure 4. A fail verdict is given as the event !ko corresponds to an error. Besides, if no reaction is observed whereas an output is expected, it returns fail. For readability, this corresponds to the dotted transitions labelled with the symbol θ. If unexpected outputs are received (dashed transitions labelled by "!*"), it returns the verdict inconclusive, meaning that we cannot conclude. We cannot definitely conclude because the event log may not include all the possible behaviours that can be performed by a component.

Finally, Step 4 converts every IOTS test case into test scripts. All the transitions labelled by "mock" are put aside. The remaining tree is converted into a test script. We here use the frameworks TESTNG 1 and Citrus 2 . The later helps testers write test cases for services upon varied message protocols, e.g., HTTP or TCP/IP. The beginning of the test case related to the IOTS of Figure 5 is given in Figure 6. The service AccMan is called with the request "checkAccountRisk". The test case then asserts that a HTTP response is received with the status code 200. A valid response includes only the session identifier. The test ends by checking with verificationMock() whether the mock components have been called the expected number of times.

On the other hand, the IOTS transitions labelled by "mock" are used to generate mock components, which are composed of rules of the form "request() . . . response()". For every request labelled by mock from a service c 1 to c 2 , we search for the next response from c 2 to c 1 and we build one rule. Figure 7 lists one rule of the mock "CheckRisk", which is written with the framework Mockserver 3 . These steps and algorithms are now detailed below. @Test @CitrusTest 2 public void testAccMan() throws FileNotFoundException{ HttpClient toClient = CitrusEndpoints 4 . http () . client () . requestUrl (" http :// AccMan/").build () ; $( http () 6 . client ( toClient ) .send () . get ("checkAccountRisk").message() . header(" id ",1) .body("\"acc\"=99")

. accept (MediaType.ALL VALUE)); $( receive ( toClient ) 10 . message() . type(MessageType.PLAINTEXT) 12 . name("Response") . extract (fromHeaders() 14 . header(HttpMessageHeaders.HTTP STATUS CODE, "statusCode")) . header(" id "," id ") ) ) ; variable ("body"," citrus :message(Response.body())") ; variable (" status ", "${statusCode}") ; 18 String body = context . getVariable ("body"); String status = context . getVariable (" status ") ; 20 String id = context . getVariable (" id ") ; If (body.equals ("") && id.equals("1") && status. equals ("200") ) assertTrue ( true ) ; 

III. TEST CASE AND MOCK COMPONENT GENERATION

In our context of service composition, we consider that events have the form e(α) with e some label and α an 1 https://testng.org 2 https://citrusframework.org/ 3 https://www.mock-server.com 1 mockServer.when( request () . withMethod("GET").withPath("/EvaluateRisk") 3 . withHeaders( new Header("acc", "99") , new Header("id", "1")) , Times. exactly (1) )

5

. respond( response ()

7

. withHeaders(new Header("id", "1")) . withStatusCode (200) . withBody("LOWRISK")); Fig. 7. Mock component piece of code, which implements the events !/EvaluateRisk and !ok of the test case of Figure 5 assignment of parameters in P to a value in the set of values V . These parameters allow the encoding of some specific features for service compositions e.g., if an event is a request, the receiver and sender of this request, etc. We write x := * the assignment of the parameter x with an arbitrary element of V , which is not of interest. E denotes the event set. The concatenation of two event sequences σ 1 , σ 2 is denoted σ 1 .σ 2 . ε stands for the empty sequence. For sake of readability, pre f ix(σ) denotes the set of initial segments of σ and we write σ 1 ∈ σ 2 iff σ 1 ∈ pre f ix(σ 2 ). We also use additional notations on events to make our algorithms more readable. In particular, the notation deps(e(α)) returns the dependent service involved in the exchange of the event e(α) with some dependee service:

Definition 1 Let e(α) be an event of E.

• f rom(e(α)) = c denotes the source component performing e(α); • to(e(α)) = c denotes the destination;

• isreq(e(α)), isresp(e(α)) are boolean expressions expressing the nature of the event;

• deps(e(α)) =    f rom(e(α)) iff isreq(e(α))

to(e(α)) iff isresp(e(α)) * otherwise

A test case is a deterministic IOTS having a tree form and whose sink states are either pass, fail or inconclusive. IOTS transitions are given under the form q e(α),l ---→ q with e(α) some event and l a label set, which may be empty. The later allows to easily express some specific behaviours encoded by the transition, e.g., the call of mock components by means of the label "mock". Furthermore, we use the notation θ labelled on transitions to represent the absence of reaction from a service under test [START_REF] Phillips | Refusal testing[END_REF].

IOTS test cases should be constructed with a few restrictions to avoid indeterministic behaviours while testing. To this end, a test case should be deterministic and should allow at most one input event at any state. In reference to [START_REF] Tretmans | Model Based Testing with Labelled Transition Systems[END_REF], we formulate this last restriction by saying that a test case is input restricted. Additionally, still in the context of isolation testing and to keep control of the testing process, a mock component should return at most one response after being invoked with the same event. As a consequence, test cases should also have states that offer at most one output expressing a response. We say that a test case is mock response restricted. This is formulated with: Definition 2 A test case tc is a deterministic IOTS Q, q0, Σ ∪ {θ}, L, → where:

• Q is a finite set of states; q0 is the initial state; Q contains three special states: pass, fail and inconclusive • Σ is the finite set of events. Σ I ⊆ Σ is the finite set of input events beginning with "?", Σ O ⊆ Σ is the finite set of output events beginning with "!", with

Σ O ∩ Σ I = / 0 • L is a set of labels • →⊆ Q × Σ ∪ {θ} × L * × Q is a finite set of transitions. A
transition (q, e(α), l, q ) is also denoted q e(α),l ---→ q • tc has no cycles • tc is input restricted i.e. ∀q ∈ Q : event(q) = Σ O ∪ {e(α)} for some e(α)

∈ Σ I or event(q) = Σ O ∪ {θ} with event(q) = {e(α) | ∃q ∈ Q : q e(α),l ---→ q } • tc is mock response restricted i.e. ∀q ∈ Q : |{q e(α),l ---→ q | isResp(e(α)) ∧ mock ∈ l}| ≤ 1.

IV. TEST CASE GENERATION A. Step 2: Trace Clustering

This step takes as input the set Traces and builds a set of abstract traces of the form < e 1 (α 1 ), l 1 > • • • < e k (α k ), l k > such that the parameter values are replaced by "*" except for the parameters from, to. l 1 , . . . , l k are label sets expressing some business knowledge about the events. Definition 3 (Abstract Traces) Let L be a set of labels. An abstract trace is a sequence < e 1 (α 1 ),

l 1 > • • • < e k (α k ), l k >∈ (E × L * ) *
such that e i (α i ) 1≤i≤k ∈ E, and every parameter in P \ { f rom,to} is assigned to "*" and l i ⊆ L(1 ≤ i ≤ k).

Abstract traces ar extracted by partitioning the set Traces into equivalent classes. Two traces are said equivalent when they share the same sequence of abstract events. Given an event e(α), an abstract event e(α ) simply results from the replacement of the parameter values by "*" excluding the parameters from and to. The equivalence relation between two traces is defined by means of a projection, which performs this event abstraction:

Definition 4 Two event sequences σ 1 , σ 2 ∈ E * , are equiva- lent, denoted σ 1 ∼ b σ 2 iff pro j { f rom,to} σ 1 = pro j { f rom,to} σ 2 with: pro j Q : E * → E * is the projection e 1 (α 1 ) . . . e k (α k ) = pro j Q (e 1 (α 1 ) . . . e k (α k )) and α i = {x := * | x := v ∈ α i ∧ x / ∈ Q} ∪ {x := v | x := v ∈ α i ∧ x ∈ Q}
The equivalent classes {cl 1 , . . . , cl n } are derived with ∼ b . Given a class cl = {σ 1 , . . . , σ m }, our algorithm analyses the events and parameter values to extract knowledge by means of an expert system. Generally speaking, the latter is an inference engine that applies a set of rules to infer new facts. In our context, we devised rules to encode expert knowledge about service compositions and to build abstract traces. It is worth noting that an expert system offers the benefit to save time by allowing its reuse on several service compositions.

We represent inference rules with this format: When conditions on facts Then actions on facts (format taken by rule "LabelCrash 1" when $ev: Event(paramStatus>=500); then insert(new Aevent($ev, L("error")); end Fig. 8. Inference rule example the Drools inference engine4 ). To ensure that this step is performed in a finite time and in a deterministic way, the inference rules have to meet these hypotheses:

• Finite complexity: a rule can only be applied a limited number of times on the same knowledge base, • Soundness: the inference rules are Modus Ponens (simple implications that lead to sound facts if the original facts are true).

We devised inference some rules that analyse event content or event sequences to recognise errors (bas status, crashes, etc.). Figure 8 exemplifies a rule for recognizing a server crash by means of the HTTP status. It creates an abstract event decorated with a new label "error". We also observed in many component systems, that the proper functioning of a component may initially require a login process or the generation of Access tokens. These initial behaviours are recognised with further rules, which create abstract events composed of the labels "login" or "token". We denote ID ⊂ L = {"login", "token"}.

Once the equivalent class cl = {σ 1 , . . . , σ m } has been analysed by the expert system, we obtain one abstract trace of the form < e 1 (α 1 ), l 1 > • • • < e k (α k ), l k >. From n equivalent classes of traces cl 1 , . . . , cl n , we obtain a set of n abstract traces, which is denoted ATraces. Figure 3 illustrates an example of abstract trace including a label "error" added by means of the previous inference rule.

B. Step 3: IOTS Test Case Generation

Algorithm 1: Component Atrace set gen.

input : ATraces output: ATraces(c 1 ), . . . , ATraces(c n ) The IOTS test case generation is implemented by Algorithms 1 and 2. Algorithm 1 takes as input a set of abstract traces ATraces and returns a set of ATraces(c) for every service c found in the events. To build these new sets, Algorithm 1 covers every abstract trace t ∈ ATraces (line 1). As stated previously, the proper functioning of a service may initially require a login process or a token generation. Our algorithm firstly covers t to extract a subsequence tinit encoding this initial behaviour. The later is recognised with events associated with some labels in ID (line 2). The new abstract traces generated from t will all begin with tinit, which may be empty. Then, Algorithm 1 builds a new abstract trace t(c) for every service c found in t. Besides, it inserts the notion of input and output: if the event is a request to a testable service c ∈ PCO it decorates the event with "?" (line 5); if the event is a response from a testable service (line 9 ), or an event for or from a dependee service, it decorates the event with "!". For this last case, the label "mock" is also added to events. This label will be used later to generate mock components. Indirectly, this algorithm filters out the other events, i.e.. the non communicating events or the events performed by non testable services.

1 foreach t =< e 1 (α 1 ), l 1 > • • • < e k (α k ), l k >∈ ATraces do 2 tinit :=< e 1 (α 1 ), l 1 > • • • < e m (α m ), l m >∈ t such that l i ∩ ID = / 0 ; 3 Foreach c ∈ PCO,t(c) := tinit; cl(t(c)) := cl(t); 4 for 1 ≤ i ≤ k do 5 if isreq(e i (α i )) ∧ (to(e i (α i ) ∈ PCO) then 6 t(to(e i (α i )) := t(to(e i (α i )). <?e i (α i ), l i >; 7 if deps(e i (α i ) ∈ PCO then 8 t(deps(e i (α i )) := t(deps(e i (α i )). <!e i (α i ), l i ∪ {mock} >; 9 if isresp(e i (α i )) ∧ ( f rom(e i (α i ) ∈ PCO) then 10 t( f rom(e i (α i )) := t( f rom(e i (α i )). <!e i (α i ), l i >;
Finally, the algorithm updates the traces of the cluster cl(t(c)) by deleting the events that belonged to the initial abstract trace t but are no more available in t(c). t(c) is added to the set ATraces(c). If t(c) was already in ATraces(c), only the cluster cl(t(c)) is updated. Algorithm 2 now takes as input a set Atraces(c) and produces an IOTS test case set TC(c). Given an abstract trace t ∈ Atraces(c), the algorithm selects some trace σ of the cluster cl(t) and builds an initial test case tc composed of parameter values (lines 2-6). The IOTS tc is derived by means of the operator lts :

7 foreach σ 2 ∈ cl(t 2 ) : t 2 ∈ ATraces(c) ∧ pre f ix(σ) ∩ pre f ix(σ 2 ) = / 0 do 8 tc 2 := lts(σ 2 , v(t 2 ));
(E × L * ) * × E * × { f ail, pass} → IOT S, which returns an IOTS Q, q0, Σ, → defined by the rule < e 1 (α 1 ), l 1 > • • • < e k (α k ), l k >, e 1 (α 1 ) . . . e k (α k ), v q 0 e 1 (α 1 ),l 1 -----→ q 1 . . . q k-1 e k (α k ),l k -----→ v. A verdict v of tc is established by means of the labels found in the last event < e k (α k ), l k >. This test verdict denoted v(< e 1 (α 1 ), l 1 > • • • < e k (α k ), l k > is fail iff "error" ∈ l k ,
otherwise the verdict is pass. Thereafter, Algorithm 2 covers each abstract traces t 2 ∈ Atraces(c) and each trace σ 2 ∈ cl(t 2 ) that shares some prefix with the initial trace σ (lines 7-12). Intuitively, the trace σ 2 starts with a same event sequence than the test case tc but may end with other events, which encode other behaviours. In this case, tc must be completed to include those behaviours that may happen while testing. Algorithm 2 generates the IOTS tc 2 from σ 2 and performs a parallel synchronisation between tc and tc 2 . If the resulting test case is input restricted and mock response restricted, it meets the restrictions formulated in Definition 2. In this case, this new test case is assigned to tc. Additionally, as event logs do not necessarily encode all the behaviours of SUT, the test case tc is completed (line 13) with the operator compl : IOT S → IOT S defined by these rules:

r 1 :q 1 ?e(α),l ----→ q 2 , q 2 ∈ {pass, f ail} q 1 ?e(α),l ----→ q 11 θ - → q 2 , q 11 ! * -→ inconclusive, q 1 ! * -→ inconclusive r 2 :q 1 ?e(α),l ----→ q 2 / ∈ {pass, f ail} q 1 ?e(α),l ----→ q 2 , q 1 ! * -→ inconclusive r 3 :q 1 !e(α),l ---→ q 2 q 1 !e(α),l ---→ q 2 , q 1 ! * -→ inconclusive r 4 :q 1 !e(α),l ---→ q 2 , q 1 ?e(α),l ----→ q 3 / ∈→ q 1 θ - → f ail
The inference rule r 1 means that when the test case tc is finished by an input event, a transition to a verdict state and labelled with θ is added to formulate that the absence of event is expected. Two transitions to inconclusive are added to express that we cannot conclude whether the behaviour is correct when we observe any other unexpected output event (label !*). r 2 targets the remaining transitions labelled by input events and similarly adds transitions to inconclusive. r 3 completes the test case with a new transition to express the fact that any unexpected output leads to the inconclusive verdict. r 4 completes the previous rule in the case there are only outgoing transitions labelled by output events from q 1 . The rule adds a transition to fail modelling that the absence of reaction is faulty. These rules were applied to add the transitions to fail and inconclusive in the test case of Figure 5.

C. Step 4: Generation of Concrete Test Cases

Finally, executable test scripts are generated from IOTS test cases. Different kinds of languages and frameworks may be chosen. With regard to our evaluation, we have chosen to generate test cases using the frameworks TestNG, Citrus and Mockserver. Given an IOTS test case t ∈ TC(c), some parameters may still be assigned to "*". These ones refer to parameters used to identify sessions. We update these assignments with concrete values available in the correlation set Corr(t). In case it still remains unassigned parameters, those are assigned with random values. In order to generate a test script from t, the transitions of t labelled by "mock" are initially pruned. The resulting IOTS tree is converted into a TESTNG test case. In short, every input event is converted into code that calls the service under test c and waits for a response. An example is given in Figure 6 (lines 1-20). The related transitions labelled by an output are used to build assertions. When there are several transitions expressing several correct responses, we use the word "AnyOf" to write an assertion that accepts several conditions. The test script ends with the call of the method "verificationMock", which aims to check whether mock components behave as expected while the test execution. At the moment, we check whether the number of calls to a mocked request matches with the number of time the request is found in t.

It remains to generate mock components. The previous IOTS transitions labelled by "mock" are used to derive rules of the form request()...respond() (rule format of the MockServer framework). More precisely, for each request to a service c2 and its related response, a rule, which mimics the behaviour of c2, is constructed. Figure 7 shows an example of rule. Then, the method "verificationMock" is written according to these rules.

V. PRELIMINARY EVALUATION

We implemented our approach in Java for web service compositions and internet of things communicating over the HTTP protocol. With this implementation, we evaluated the following questions:

• RQ1: what is the quality of the generated test suites ? • RQ2: how long does our approach take to generate test suites? How our tool scales with the log size ? The study was conducted on 4 web service compositions, denoted C1 to C4, made up of 4 to 6 components. We chose to consider different compositions in terms of code quality. We wrote C1 by refactoring and putting care into the code quality (no useless or duplicated code, strict parameter validation, use of design patterns). C2 to C4 were written by students and include useless getters, have improper error managements and include prints in output console instead of event logs. From each composition, event logs were collected from scenarios performed by hands and completed by means of the penetration testing tool ZAP5 . We obtained event logs composed of 292 to 6440 events to also consider the impact of the event log size. The source code in Java along with event logs are available here6 .

A. RQ1: what is the quality of the generated test suites ?

To investigate RQ1, we firstly generated the test suites of every service C1 to C4. The test suite quality is evaluated with mutation testing. This software testing technique firstly performs small changes to the source code, which are called mutants. The later are then experimented with test cases. The mutants that are detected by test cases are said killed. The quality is measured by calculating the mutation score, obtained by dividing the number of killed mutants by the total number of mutants generated. A high mutation score indicates high test quality. We generated mutants from every web service with the tool PITest7 completed by our own mutations specialised to Web services (Deletion of Authentication Token, Header removal, HTTP Verb change). Then, we experimented these mutants with the generated test cases to calculate mutation scores.

The results are given in Table I, which provides the number of generated test cases, the number of mutants and the mutation score for C1 to C4. We obtain a high mutation score for C1 but passable results for C2 to C4. For these compositions, We observed that some mutants cannot be killed, i.e. they cannot be detected by our tests. The later are indeed built over communicating events found in event logs only. In other terms, every service is considered as a black box and test cases are not suited to detect local variable changes in the source code. But many useless local variables and prints in output console are used in C2 to C4. Besides, we observed that the removal of the verb "GET" produces non-killable mutants because when there is no verb in the service source code, then "GET" is used by default. This is why we chose to calculate a second score based upon the killable mutants only. These scores are now between 65 to 96%. We then analysed the killable mutants that are not detected by test cases. We observed that some mutations changed some parameter values. But these values are not used in test cases, hence the mutants were not killed. This problem comes from to the incompleteness of the event logs. Usually, event logs do not include all the possible behaviours (all the scenarios allowed in the real compositions). As a consequence, the generated test suite is not exhaustive and cannot detect all the possible mutants and faults. The more complete the event log is, the more exhaustive the test suite is. This is especially the case for C3, whose event log includes only 292 events, compared to the 6440 events for C1.

B. RQ2:how long does our approach take to generate test suites? How our tool scales with the log size ? The performance of our algorithms mainly depends on two factors, the size of the event logs (steps 1 and 2) and the number of abstract traces (steps 3 and 4). For the former factor, we took back the log of C1 composed of 6440 events, we extracted 650 traces and split them into sets of 50 to 650 traces. Then, we executed our tool to get execution times, which are given in Figure 9 in milliseconds. The test case generation took less than 2 seconds with the largest set. Figure 9 shows that the execution time curve increases linearly with respect to the trace set size. To avoid any bias, Figure 9 also illustrates the curve of the generated test cases (mocks included), which follows the same trend. The study of the second factor was conducted by feeding our algorithms with sets of 50 to 550 abstract traces by 50 increments. These sets were constructed from 50 initial traces made up of ten events at most, whose parameter were modified. Figure 10 depicts again execution times along with the number of generated test cases. An again, we observe that the time complexity of our approach is linear. All these results tend to suggest that our tool can take large event logs and produce effective test cases in reasonable time.

VI. CONCLUSION

We proposed in this paper an automated test case generation for service compositions, from event logs. The originality of the approach resides in the fact that test cases along with mock components are generated for every testable service to test them in isolation. We have implemented this approach in a tool prototype, which we used to evaluate its effectiveness and efficiency. We showed that the test quality is good when event logs contain sufficient events, and that our algorithms scale well. As future work, we plan to extend these algorithms with test case mutation operators to expand the initial test case set. We will propose specific operators for improving fault localisation in service compositions.
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  t(c)) w.r.t. t(c); 13 if ∃t (c) ∈ ATraces(c) : t (c) = t(c) then 14 cl(t (c)) := cl(t (c)) ∪ cl(t(c)); 15 else 16 ATraces(c) := ATraces(c) ∪ {t(c)};

Algorithm 2 :34
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  tc 2 := tc tc 2 ; 10 if tc 2 is input and mock response restricted then 11 tc := tc 2 ; 12 AT := AT \ {t 2 }; 13 tc := compl(tc); 14 TC(c) := TC ∪ {tc}; 15 AT := AT \ {t};
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