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Abstract: The decolorization of azo dye Orange II using a UVA-Fe3+-PMS-oxalate system was studied.
A series of experiments was performed to investigate the effects of several variables, including the
pH, PMS dosage, Fe3+ concentration, oxalate concentration, and coexisting anions. The results
revealed that a lower pH facilitated the decolorization, and relatively high decolorization efficiency
(97.5%) could be achieved within 5 min at pH 3.0. The electron paramagnetic resonance (ESR) and
radical quenching experiments revealed that SO4

•− played a crucial role in the decolorization of
Orange II (85.8%), •OH was of secondary importance (9%), and 1O2 made a small contribution to
the decolorization (5.2%). Furthermore, the formation of •OH in the experimental system strongly
depended on HO2

•/O2
•−. These reactive oxidants were able to directly attack the azo bond of the

luminescent group in Orange II and initiate the decolorization process. The efficient UVA-Fe3+-PMS-
oxalate system showed great application potential in the treatment of wastewater contaminated by
azo dyes.

Keywords: PMS activation; Orange II; decolorization; UVA irradiation; Fe3+-oxalate complexes

1. Introduction

Wastewater discharged from tanneries, textile, food, and paper production industries
is one of the most critical environmental problems nowadays [1]. These have negative
impacts on the health of humans, animals, and the environment. Nearly half of the global
productions of synthetic textile dyes are classified as azo compounds. Azo dyes are highly
carcinogenic due to amine and benzidine emissions. Azo group proliferation is difficult to
degrade by traditional biological treatment methods due to their complex structures and
stabilities. Therefore, it is of great environmental concern to develop effective and feasible
treatment technologies to treat azo dye contamination.

Advanced oxidation processes (AOPs) have been gaining more attention for the detox-
ification of water contaminated with azo dyes. Some strong oxidative species (e.g., •OH,
HO2

•/O2
•−) can be generated in AOPs and are very effective in dye bleaching and even

mineralization [2]. AOPs have also become attractive technologies due to the usage of eco-
nomical reagents (e.g., hydrogen peroxide, peroxydisulfate (PDS), and peroxymonosulfate
(PMS)) and the potential to mineralize contaminants through radical generations [3]. In
recent years, sulfate radical anion (SO4

•−)-based oxidation has gained attention for the
efficient degradation of non-biodegradable contaminants in aquatic environments [3–5].
Furthermore, SO4

•−, with a high standard redox potential (2.5–3.1 V), higher than that
of the hydroxyl radical (•OH, 1.8–2.7 V, depending on the pH), transformed the contam-
inants into simpler or more degradable products, or even mineralized the contaminants
in wastewater [6]. SO4

•− can be readily generated from the decomposition of PDS and
PMS by thermal activation, transition metal (i.e., Fe2+, Co2+), and irradiation [3]. The use of
PMS and UV irradiation at 254 nm was employed for the generation of sulfate radicals to
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degrade many organic contaminants [7]. However, low wall-plug efficiency and high costs
of UV irradiation at 254 nm restrict its application. As one of the common metal activators,
ferrous ion (Fe2+) has been widely used for PMS activation due to its cost-effectiveness
and environmental non-toxicity [8]. The photo-transformation of Fe3+ into Fe2+ by UVA
irradiation is the source of Fe2+ to activate PMS, and Fe3+ could be regenerated from the
activation of PMS by Fe2+. These two steps may form a closed-loop process until the
complete consumption of PMS. Therefore, a treatment process combining UVA, Fe3+, and
PMS might provide an appreciable degradation of contaminants.

However, the major obstacle to this process is the slow rate of Fe3+ transformation back
to Fe2+. Employing different chelates enhanced the oxidation ability and reduced the for-
mation of iron sludge by accelerating the regeneration of Fe2+ [9]. Natural polyphenols [10],
3,4,5-trihydroxybenzoic acid [8], epigallocatechin-3-gallate [11], ethylenediaminetetraacetic
acid [12], and oxalic acid [13] have been found to accelerate the Fe3+/ Fe2+ cycling in
SO4

•−-based AOPs. It was demonstrated that oxalate is an effective chelating agent for
Fe3+ [10], and oxalate has a simple structure with a bidentate ligand, which contains two
carboxyl groups and two pairs of electrons [13]. The ligands of oxalate could decline the
standard redox potential of Fe3+/Fe2+ coupling [14], affecting the activity of iron complexes
(Fe3+/Fe2+ = 0.77 V, Fe2+/Fe3+-oxalate = 0.002 V). The addition of oxalate facilitates the re-
dox ability of Fe2+ and improves the reactions between the iron and the oxidant. In addition,
it was reported that oxalic acid and its ionophores have a lower reactivity [15] so it cannot
react with the target contaminants in a significantly competitive manner, thus avoiding
significant depletion of the active species. Few papers have reported the introduction of a
chelating agent into the UVA-Fe3+-PMS system.

In this study, Orange II was used as the model contaminant of an azo dye, whose
decolorization was studied in a UVA-Fe3+-PMS-oxalate system. The effects of the pH, initial
concentrations of PMS, oxalate, Fe3+, and coexisting anions on the decolorization process
were investigated. Additionally, the active oxidants involved and the mechanisms by which
oxalate promoted the catalytic performance of the UVA-Fe3+-PMS process were elucidated.
Our work may provide insight into the operational parameters for the treatment of azo dye
using the UVA-Fe3+-PMS-oxalate system.

2. Materials and Methods
2.1. Chemicals and Reagents

Orange II (4-(2-hydroxy-1-naphthylazo) benzenesulfonic acid, >85.0%) was obtained
from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). Potassium monop-
ersulfate (OXONE®, KHSO5·0.5KHSO4·0.5K2SO4, ≥99.0%), potassium persulfate (PDS,
K2S2O8, ≥99.0%), iron(III) perchlorate hydrated (Cl3FeO12·12H2O, ≥99.0%), and ferrozine
(C20H13N4NaO6S2, ≥97.0%) were purchased from Sigma-Aldrich (USA). Benzoquinone
(C6H4O2, 99.0%), furfuryl alcohol (C5H6O2, 98.0%), sodium propionate (C3H5NaO2),
sodium pyruvate (C3H3NaO3), sodium gluconate (C6H11NaO7), sodium succinate
(C4H4Na2O4), and glutaric acid (C5H8O4) were obtained from Aladdin Co., Ltd. (China).
Tert-butyl alcohol (TBA), isopropanol (IPA), sodium oxalate (Na2C2O4), and sodium citrate
(C6H5Na3O7) were purchased from Sinopharm Chemical Reagent Co., Ltd. (China). Hy-
drogen peroxide (H2O2, 35%) was obtained from Chongqing Jiangchuan Chemicals, China.
Ultrapure water (18 MΩ cm) was used in all experiments.

2.2. Experimental Procedures

Batch experiments were conducted in glass bottles (250 mL) under magnetic stirring
(400 rpm) at a constant water bath temperature (293 K). The desired amounts of Orange II,
Fe3+, oxalate, and PMS were added to the solution, and the solution pH was adjusted with
a HClO4 or NaOH solution. Reactions were initiated after the UVA light was turned on.
Each sample was collected at specific time intervals, and residual Orange II in the mixture
was analyzed by a spectrometric method at a wavelength of 484 nm using a UV795 UV-vis
spectrophotometer (Yoke China).
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Quenching experiments were conducted by adding specific concentrations of IPA,
TBA, CHCl3, and FFA to the solution, which was prepared using the same procedure for
the solutions of PMS, Fe3+, oxalate, and Orange II to identify the contributions of different
reactive oxidants to Orange II decolorization in the experimental system. Due to the high
volatility of CHCl3, the top of the flask was sealed with a rubber stopper in the O2

•−

scavenging experiments, and the magnetic stirring method was replaced by bubbling air to
keep the suspension well-mixed.

2.3. Analytical Methods

The concentrations of ferrous ions in the solutions (Fe2+) were determined using
ferrozine and a spectrophotometer at a wavelength of 562 nm (ε562 = 27,900 M cm−1) [16].
The total aqueous iron (Fe(T)) was determined by adding ascorbic acid to reduce Fe(III) to
Fe(II). The presence of SO4

•−, •OH, 1O2, and O2
•− was detected by electron spin resonance

(ESR) using a JEOL JES-FA300 ESR spectrometer with 60 mM 5,5-dimethyl-1-pyrroline-N-
oxide (DMPO) as a spin trapping agent for •OH and SO4

•− and for HO2
•/O2

•− in water;
2,2,6,6-tetramethyl-4-piperidinol (TEMP) was used for 1O2.

To compare the reaction rate constants under different conditions, the pseudo-first-
order model was used to fit the kinetic data. The pseudo-first-order equation can be
expressed as Equation [17]:

ln(C/C0) = −kobs t,

where C0 and C are the concentrations at an initial time and any reaction time t, respectively.
kobs (min−1) was calculated from the slope of the plots of ln(C/C0) vs. t.

3. Results and Discussion
3.1. Decolorization of Orange II in Different Peroxides Systems (PDS, PMS, and H2O2)

The decolorization of Orange II in the different systems is shown in Figure 1. In the 30
min reaction, the decolorization efficiencies in the UVA-Fe3+-H2O2-oxalate system, UVA-
Fe3+-PDS-oxalate system, and UVA-Fe3+-PMS-oxalate system were 31.61%, 73.9%, and
95.04%, respectively. The different decolorization efficiencies of Orange II in the different
peroxides systems could be explained by the generation of sulfate radical (SO4

•−) and
low bond energy of PMS. A part of these peroxides dissociated after UVA irradiation, as
illustrated in the following reactions [6]; however, most of them reacted with the generated
Fe2+ to produce strong oxidants.

H2O2 + hυ→ 2•OH, (1)

S2O8
2− + hυ→ 2SO4

•−, (2)

HSO5
− + hυ→ SO4

•− + •OH, (3)

In the H2O2 system, a photo-Fenton system was formed, and its main oxidant was
•OH. In the PMS and PDS systems, the main oxidant was SO4

•−. The standard redox
potential of SO4

•− (2.5–3.1 V) is higher than that of •OH (1.8–2.7 V), which may have caused
the UV/PMS system to have a stronger oxidizing capacity. It has been found that PMS
is more likely to exhibit heterolytic cleavage due to its non-symmetrical structure [1,18].
Therefore, it might be easier for PMS to generate homolytic cleavage compared to PDS. The
S-S bond in PDS is stronger than the S-O bond in PMS, so it is more difficult to break the
S-S bond than the S-O bond. Previous studies have also found that PMS showed better
performance in metallic activation compared to PS or H2O2 [19,20]. In this study, the UVA-
Fe3+-PMS-oxalate system demonstrated better kinetic performances over the UV/H2O2
and UV/PDS systems for Orange II decolorization. Therefore, PMS was chosen as the
source of SO4

•−, and the factors influencing the decolorization of azo dyes mechanisms in
the UVA-Fe3+-PMS-oxalate system were investigated. The absorption spectra of Fe3+, PMS,
oxalate, Fe3+-oxalate complexes, and Orange II are shown in Figure S1.
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Figure 1. The decolorization of Orange II in different peroxides systems ([Fe3+]0 = 100 µM,
[Orange II]0 = 50 µM, [H2O2]0 = [PDS]0 = [PMS]0 = 150 µM, [oxalate]0 = 80 µM, under UVA ir-
radiation, λirr. = 365 nm, pH = 3).

3.2. Effects of Carboxylates on the Decolorization of Orange II in UVA-Fe3+-PMS System

In the natural environment, small molecules of carboxylic acids can combine with Fe3+

to form Fe3+-polycarboxylate complexes. It is well known that Fe3+-polycarboxylate com-
plexes undergo ligand-to-metal charge transfer (LMCT) upon light irradiation, resulting in
a series of reactive oxidative species [21,22]. Seven different carboxylates (oxalate, pyruvate,
propionate, succinate, glutarate, citrate, and gluconate) were employed to investigate the
effects of different carboxylates on the decolorization efficiency of Orange II.

As shown in Figure 2, the addition of oxalate, pyruvate, citrate, and gluconate signifi-
cantly promoted the decolorization of Orange II compared to the system without carboxy-
late, indicating that these carboxylates complexed with Fe3+ and produced photoreactive
complexes, accelerating the Fe3+/Fe2+ cycle. The addition of glutarate slightly promoted the
decolorization of Orange II. The addition of succinate and propionate had a slight inhibitory
effect on the decolorization of Orange II, with the lowest value of kobs (0.037 min−1). The
complexation of glutarate with Fe3+ formed a low photo-reactive complex. The inhibition
effects of succinate and propionate may be ascribed to two factors: firstly, Fe3+ was still
present as Fe(III)-OH in the system, probably due to the low complexation constants of
succinate and propionate acid with Fe3+ [23]; secondly, succinate or propionate would
compete with Orange II for the reactive oxidants produced by the photolysis of Fe3+.

Of the seven carboxylates, the presence of oxalate imposed the most significant en-
hancement to the decolorization of Orange II, and the decolorization efficiency of Orange II
was 97.5% within 15 min. The initial decolorization rate was the fastest in the presence of
oxalate, with the highest kobs of 0.515 min−1. Ferrioxalate is an Fe3+-polycarboxylate com-
plex with high photoactivity [22]. Under irradiation, ferrioxalate generates carbon-centered
radicals and Fe2+ (Reactions 4 and 5). As for carbon-centered radicals, they transform into
O2
•− in the presence of dissolved oxygen (Reaction 6) [24,25].

[FeIII(C2O4)3] 3−+ hv→ [FeII(C2O4)2] 2− + C2O4
•−, (4)

[FeII(C2O4)2] 2− + hv→ FeII(C2O4) + C2O4
•−, (5)

C2O4
•− + O2 → O2

•− + 2CO2, (6)

More importantly, the generated Fe2+ activated the PMS to generate strong oxidants
to decolorize the Orange II. The production of Fe2+ was monitored in the experimental
system; it increased from 0.0 to 42.24 µM within 10 min (Table S1). Ferrioxalate with a
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high quantum yield acted as a source of Fe2+ under UVA irradiation and supported the
subsequent activation of PMS. Concerning the decolorization efficiency and rate constant
of Orange II, oxalate was used as the chelating agent in this study.

Additionally, the decolorization of Orange II in the Fe3+-PMS-oxalate system without
irradiation was investigated (Figure S2). No decolorization was observed in the dark,
implying that UVA irradiation initiated the process of PMS activation, and then Orange II
decolorization. Furthermore, Orange II decolorization under different irradiation wave-
lengths was also studied, and the results are presented in Figure S3. Under a wavelength of
395 nm, no decolorization was found. The decolorization process successfully occurred
under 254 nm and simulated sunlight irradiation.
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Figure 2. The effects of different carboxylates on the decolorization of Orange ([Fe3+]0 = 100 µM,
[Orange II]0 = 50 µM, [PMS]0= 150 µM, [carboxylates]0 = 80 µM, under UVA irradiation, λirr. = 365 nm,
pH = 3).

3.3. Effect of the Initial pH on the Decolorization of Orange II in UVA-Fe3+-PMS System

The pH has a profound effect on the speciation of Fe3+-carboxylate complexes and the
generation of radicals in SO4

•−-based AOPs. In order to investigate the effects of the initial
pH on the decolorization of Orange II in the UVA-Fe3+-PMS-oxalate system, experiments
were performed at different solution pH conditions (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and
9.0).

The effects of the pH on the decolorization of Orange II are shown in Figure 3. As the
pH increased from 1.0 to 3.0, the decolorization efficiencies increased from 77.4% to 97.5%.
When the pH increased from 3.0 to 5.0, the decolorization of Orange II obviously decreased.
With the further increasing pH from 6.0 to 9.0, no decolorization of Orange II was observed
in the experimental system. The highest decolorization efficiency was achieved at pH 3.0,
with a decolorization efficiency of 97.5% within 10 min.

At pH 3.0, the complexes of Fe3+ and oxalate are mainly present in the forms of
Fe(C2O4)2

− and Fe(C2O4)3
3−, which have high photoactivity and can rapidly photolyze to

provide Fe2+ and then activate the PMS [25,26]. With increasing pH levels (4.0–5.0), Fe3+-
oxalate complexes are mainly present as Fe(C2O4)2

+ and Fe(C2O4)+, which show relatively
lower photoactivity [27]. At pH 6.0 and above, most Fe3+ is present mainly as Fe(OH)3,
which is not photoreactive [28]. The redox cycle of Fe3+/Fe2+ was completely halted;
therefore, the decolorization of Orange II did not take place under such pH conditions.
When the pH was lower than 3.0, the percentage of free Fe3+ increased with the decrease
in pH, which was less photoactive, resulting in a slower Fe2+ production rate and a lower
decolorization efficiency of Orange II. In addition, Fe2+ is readily soluble in a wide range of
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pH levels (2.0–9.0), while Fe3+ precipitates when the pH is higher than 3.0 [29]. The soluble
iron catalyst might have had high availability for the activation of PMS.
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because the production of radicals from the PMS activation increased with the increase in 
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Figure 3. The effects of the initial pH on the decolorization of Orange II ([Fe3+]0 = 100 µM, [Orange
II]0 = 50 µM, [PMS]0 = 150 µM, [oxalate]0 = 80 µM, under UVA irradiation, λirr. = 365 nm).

3.4. Effect of PMS Dosage on the Decolorization of Orange II in UVA-Fe3+-PMS System

The production of reactive oxidants was strongly dependent on PMS; therefore, the
effect of the PMS dosage on the Orange II decolorization in the experimental system was
investigated. PMS was the source of reactive oxidants, and, as shown in Figure 4, the
increase in the PMS dosage from 50 µM to 200 µM led to a significant increase in the Orange
II decolorization. The decolorization efficiencies of Orange II at the PMS dosages of 50,
80, 100, 120, and 150 µM were 55.9%, 75.6%, 86.2%, 92.4%, and 97.5%, respectively. This is
because the production of radicals from the PMS activation increased with the increase in
the PMS dose [7]; more radicals led to higher decolorization efficiency.
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However, a further increase in the PMS dosage did not induce an increase in the
decolorization efficiency in the experimental system. Similar results have been observed
in previous studies in which polychlorinated biphenyl degradation was the target con-
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taminant [11,28]. As the concentrations of the Fe3+ and oxalate were fixed, an excessive
PMS dosage could hardly generate more radicals in the system. Additionally, an excessive
dosage of PMS acts as a free-radical scavenger itself and therefore decreases the reactivity
of radicals on Orange II [30,31]. Consequently, the optimum PMS dosage was 150 µM in
the experimental system.

3.5. Effects of Fe3+ and Oxalate Concentrations on the Decolorization of Orange II in
UVA-Fe3+-PMS System

The concentration of Fe3+ plays an important role in the oxidation of organic com-
pounds. The produced Fe2+ via the photolysis of ferrioxalate activated the PMS to generate
highly reactive sulfate radicals. In addition, both the Fe3+-aqueous complexes and ferriox-
alate could produce •OH under UVA irradiation and may contribute to the decolorization
of Orange II [32]. Therefore, the Fe3+ concentration is a key parameter in the decolorization
of Orange II in the UVA-Fe3+-PMS-oxalate system.

As presented in Figure 5a, the decolorization efficiency of Orange II was only 21.9% in
the absence of Fe3+, while it significantly increased to 94.6% with the addition of 50 µM Fe3+.
The PMS directly oxidized the Orange II at pH 3.0, while the kobs was low (0.015 min−1).
All decolorization efficiencies of Orange II were above 94% with the addition of Fe3+

(from 50 to 150 µM). The variation in the Fe3+ concentrations in our experiments slightly
affected the decolorization efficiency of Orange II, while the decolorization rate constants
of Orange II increased from 0.260 min−1 to 0.718 min−1

, with an increase in the Fe3+

concentrations. More Fe2+ was provided to promote the activation of PMS with increasing
Fe3+ concentrations. However, an excessive amount of Fe2+ can react with SO4

•− at
diffusion control rates and be detrimental to decolorization efficiency. However, the Fe3+

concentration did not affect the decolorization efficiency in our system. This may have been
because more •OH was generated through Fe3+ photolysis, offsetting or even overweighing
the quenching of SO4

•− by excessive Fe2+.
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(Cl•, Cl2•−, and ClHO•−) and free available chlorine, accounting for the acceleration of the 
Orange II decolorization [33]. Although NO3− could scavenge SO4•− and •OH and produce 

Figure 5. The effects of the Fe3+ concentration (a) and oxalate concentration (b) on the decolorization
of Orange ([Fe3+]0 = 100 µM [Orange II]0 = 50 µM, [PMS]0 = 150 µM, under UVA irradiation,
λirr. = 365 nm, pH 3).

When the Fe3+ concentration was fixed at 100 µM, the effect of the oxalate concentra-
tion on the decolorization of Orange II was studied, as shown in Figure 5b. An increased
decolorization rate of Orange II was observed from 10 µM to 80 µM oxalate, after which
the increase in the oxalate concentration led to decreases in the decolorization efficiency
and rate. Due to the high photoactivity of ferrioxalate, Fe3+ can be rapidly converted into
Fe2+ under UVA irradiation. Additionally, the appropriate amount of oxalate effectively
accelerated the redox cycle of Fe3+/Fe2+ and promoted the activation of the PMS. However,
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a relatively high concentration of oxalate also competed with the Orange II for SO4
•− attack

and reduced the decolorization efficiency and rate of Orange II.

3.6. Effects of Coexisting Anions on the Decolorization of Orange II in the UVA-Fe3+-PMS System

In AOP degradation experiments, a saline solution is commonly used as a reaction so-
lution. To explore the potential effects of anions in the UVA-Fe3+-PMS system, experiments
on the decolorization of Orange II were also conducted in the presence of different anions
(Cl−, CO3

2−, SO4
2−, and NO3

−) with different concentrations (0.01, 0.1, and 1.0 mM).
As presented in Figure 6, similar decolorization efficiencies were found under different

experimental conditions with different coexisting anions at different concentrations. The
kobs was almost not affected by the addition of 0.01 mM anions. At relatively high concen-
trations, the different anions exhibited different effects, kobs (in Table 1), in the presence of
different anions, following the order of Cl− > NO3

− > SO4
2− > CO3

2−.
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Figure 6. The effects of coexisting anions at 0.01 mM (a), 0.1 mM (b), and 1 mM (c) on the decoloriza-
tion of Orange ([Fe3+]0 = 100 µM, [Orange II]0 = 50 µM, [PMS]0 = 150 µM, [oxalate]0 = 80 µM, under
UVA irradiation, λirr. = 365 nm, pH 3).

Table 1. kobs in the UVA-Fe3+-PMS-oxalate system in the presence of different coexisting anions at
different concentrations.

Anion kobs (min−1)
(0.0 mM)

kobs (min−1)
(0.01 mM)

kobs (min−1)
(0.1 mM)

kobs (min−1)
(1 mM)

Cl−

0.515

0.525 0.679 0.887
NO3

− 0.565 0.668 0.798
SO4

2− 0.601 0.613 0.642
CO3

2− 0.514 0.467 0.444

The presence of Cl− significantly enhanced the decolorization rate of Orange II, which
could be attributed to the reaction of Cl− with PMS generating chorine-containing radicals
(Cl•, Cl2•−, and ClHO•−) and free available chlorine, accounting for the acceleration of
the Orange II decolorization [33]. Although NO3

− could scavenge SO4
•− and •OH and

produce nitrate radicals with a lower redox potential of 2.3–2.7 V, it could produce •OH
through UV photolysis with a quantum yield of 0.09 [34]. SO4

2− showed a slight promoting
effect on the Orange II decolorization due to the decrease in the PMS decomposition with
increasing ionic strength [35]. The decolorization rate of Orange II slowed down with the
addition of CO3

2−. CO3
2− acts as a scavenger to SO4

•− or •OH and forms less reactive
radicals, such as CO3

•− and HCO3
•− [36].
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3.7. Mechanisms of Decolorization of Orange II in the UVA-Fe3+-PMS-Oxalate System
3.7.1. Predominant Oxidants for Orange II Decolorization

In the UVA-Fe3+-PMS-oxalate system, possible reactive species, including SO4
•−, •OH,

HO2
•/O2

−, and 1O2, might be generated according to Reactions 7–12 [8]. To identify the
reactive oxidants responsible for Orange II decolorization in the experimental system, a
comprehensive investigation was conducted using ESR technology and radical scavengers.

Fe2+ + HSO5
− → Fe3+ + SO4

•− + HO− (7)

SO4
•− + H2O→ H+ + SO4

2− + •OH, (8)

SO4
•− + OH− → SO4

2− + •OH, (9)

2Fe3+ + 2HSO5
− + 6H2O→ 2Fe2+ + 4HO2

•− + 2SO4
2− + 10H+, (10)

Fe2+ + O2 → O2
•− + Fe3+, (11)

2O2
•− + 2H2O→ 1O2 + H2O2 + 2OH−, (12)

• SO4
•− and •OH

To confirm free-radical generation via the electron transfer process in the UVA-Fe3+-
PMS-oxalate system, the production of SO4

•− and •OH was investigated by ESR technology.
DMPO-OH and DMPO-SO4 adducts were observed in both UVA irradiation and dark con-
ditions (Figure 7a,d). The EPR peaks had much higher intensity under the UVA irradiation
than that in the dark. This indicates that the UVA irradiation significantly promoted the gen-
eration of radicals in this system. The signal of the DMPO-OH adduct was much stronger
than that of the DMPO-SO4 adduct, probably due to the conversion of DMPO-SO4 to
DMPO-OH or the insignificant production of DMPO-SO4. In addition, both the intensities
of the DMPO-OH and DMPO-SO4 adducts obviously increased with the reaction time.

To identify which free radical acted as the primary oxidant for Orange II decolorization
in the UVA-Fe3+-PMS-oxalate system, the effects of radical scavengers (isopropyl alcohol
(IPA) and tert-butyl alcohol (TBA)) on the decolorization of Orange II were investigated.
IPA can react efficiently with both SO4

•− and •OH ((k (•OH, IPA) = 1.2–2.8 × 109 M−1·s−1,
k(SO4•-, IPA)= 1.6–7.7 × 107 M−1·s−1)), whereas TBA can selectively react with OH (k
(HO•, TBA)= (3.8–7.6) × 108 M−1·s−1, k(SO4•-, TBA) = (4.0–9.1) × 105 M−1·s−1) [37], and thus,
the discrepancy in the quenching effect could allow us to differentiate the contribution of
SO4

•− and •OH. The addition of IPA as a scavenger for both SO4
•− and •OH significantly

reduced the degradation of Orange II, which is consistent with the results of the ESR
experiment. As shown in Figure 8a, approximately 95.0% of the Orange II decolorization
was inhibited in the presence of 130 mM IPA. However, the decolorization of Orange II was
slightly reduced when TBA was used as the •OH scavenger. The decolorization efficiency
of Orange II decreased to 88.7% in the presence of 104 mM of TBA (Figure 8b). This result
suggests that SO4

•− rather than •OH was the predominant oxidant that was responsible
for Orange II decolorization in the UVA-Fe3+-PMS-oxalate system, •OH played a secondary
role in the decolorization of Orange II. Furthermore, the addition of IPA did not completely
suppress the Orange II decolorization, indicating that other oxidants also contributed to
the decolorization of Orange II in the UVA-Fe3+-PMS-oxalate system.



Processes 2023, 11, 903 10 of 14

Processes 2023, 11, x FOR PEER REVIEW 10 of 15 
 

 

DMPO-SO4 to DMPO-OH or the insignificant production of DMPO-SO4. In addition, both 
the intensities of the DMPO-OH and DMPO-SO4 adducts obviously increased with the 
reaction time. 

324 326 328 330 332 334 324 326 328 330 332 334 324.4 324.5 324.6 324.7 324.8 324.9 325.0

324 326 328 330 332 334 324 326 328 330 332 334 324.4 324.5 324.6 324.7 324.8 324.9 325.0

In
te

ns
ity

 (a
.u

.)

Magnetic field (mT)

 1 min
 5min
 10min

*

*
*

*
····

(a)

In
te

ns
ity

 (a
.u

.)
Magnetic field (mT)

 1 min
 5min
 10min

♥ ♥ ♥

(b)

In
te

ns
ity

 (a
.u

.)

Magnetic field (mT)

 1min
 5min
 10min

(c)

In
te

ns
ity

 (a
.u

.)

Magnetic field (mT)

 1 min
 5min
 10min

*
* *

*· · · ·

(d) (e)

In
te

ns
ity

 (a
.u

.)

Magnetic field (mT)

 1 min
 5min
 10min

♥♥ ♥

In
te

ns
ity

 (a
.u

.)
Magnetic field (mT)

 1 min
 5min
 10min

(f)

 

Figure 7. Signals of reactive oxidants in UVA-Fe3+-PMS-oxalate system under UVA irradiation and 
in the dark (SO4•− and •OH under UVA irradiation (a) and in the dark (d); 1O2 under UVA irradiation 
(b) and in the dark (e); HO2•/O2•− under UVA irradiation (c) and in the dark (f)). * signal of DMPO-
OH adduct ; • signal of DMPO-SO4 adduct ; ♥signal of DMPO-1O2 adduct ; ▼signal of HO2•/O2•− 
adduct.  

To identify which free radical acted as the primary oxidant for Orange II decoloriza-
tion in the UVA-Fe3+-PMS-oxalate system, the effects of radical scavengers (isopropyl al-
cohol (IPA) and tert-butyl alcohol (TBA)) on the decolorization of Orange II were investi-
gated. IPA can react efficiently with both SO4•− and •OH ((k (•OH, IPA) = 1.2–2.8 × 109 M−1·s−1, 
k(SO4•-, IPA)= 1.6–7.7 × 107 M−1·s−1)), whereas TBA can selectively react with OH (k (HO•, TBA)= 
(3.8–7.6) × 108 M−1·s−1, k(SO4•-, TBA) = (4.0–9.1) × 105 M−1·s−1) [37], and thus, the discrepancy in 
the quenching effect could allow us to differentiate the contribution of SO4•− and •OH. The 
addition of IPA as a scavenger for both SO4•− and •OH significantly reduced the degrada-
tion of Orange II, which is consistent with the results of the ESR experiment. As shown in 
Figure 8a, approximately 95.0% of the Orange II decolorization was inhibited in the pres-
ence of 130 mM IPA. However, the decolorization of Orange II was slightly reduced when 
TBA was used as the •OH scavenger. The decolorization efficiency of Orange II decreased 
to 88.7% in the presence of 104 mM of TBA (Figure 8b). This result suggests that SO4•− 
rather than •OH was the predominant oxidant that was responsible for Orange II decol-
orization in the UVA-Fe3+-PMS-oxalate system, •OH played a secondary role in the decol-
orization of Orange II. Furthermore, the addition of IPA did not completely suppress the 
Orange II decolorization, indicating that other oxidants also contributed to the decolori-
zation of Orange II in the UVA-Fe3+-PMS-oxalate system. 

Figure 7. Signals of reactive oxidants in UVA-Fe3+-PMS-oxalate system under UVA irradiation
and in the dark (SO4

•− and •OH under UVA irradiation (a) and in the dark (d); 1O2 under UVA
irradiation (b) and in the dark (e); HO2

•/O2
•− under UVA irradiation (c) and in the dark (f)). * signal

of DMPO-OH adduct; • signal of DMPO-SO4 adduct;

Processes 2023, 11, x FOR PEER REVIEW  10  of  15 
 

 

was much stronger than that of the DMPO‐SO4 adduct, probably due to the conversion of 

DMPO‐SO4 to DMPO‐OH or the insignificant production of DMPO‐SO4. In addition, both 

the  intensities of the DMPO‐OH and DMPO‐SO4 adducts obviously  increased with the 

reaction time. 

324 326 328 330 332 334 324 326 328 330 332 334 324.4 324.5 324.6 324.7 324.8 324.9 325.0

324 326 328 330 332 334 324 326 328 330 332 334 324.4 324.5 324.6 324.7 324.8 324.9 325.0

In
te

ns
ity

 (
a.

u.
)

Magnetic field (mT)

 1 min
 5min
 10min

*

*
*

*
····

(a)
In

te
ns

ity
 (

a.
u.

)

Magnetic field (mT)

 1 min
 5min
 10min

♥ ♥ ♥

(b)

In
te

ns
ity

 (
a.

u.
)

Magnetic field (mT)

 1min
 5min
 10min

(c)

In
te

ns
ity

 (
a.

u.
)

Magnetic field (mT)

 1 min
 5min
 10min

*
* *

*· · · ·

(d) (e)

In
te

ns
ity

 (
a.

u.
)

Magnetic field (mT)

 1 min
 5min
 10min

♥♥ ♥

In
te

ns
ity

 (
a.

u.
)

Magnetic field (mT)

 1 min
 5min
 10min

(f)

 

Figure 7. Signals of reactive oxidants in UVA‐Fe3+‐PMS‐oxalate system under UVA irradiation and 

in the dark (SO4•− and •OH under UVA irradiation (a) and in the dark (d); 1O2 under UVA irradiation 

(b) and in the dark (e); HO2•/O2•− under UVA irradiation (c) and in the dark (f)). 

  * signal of DMPO‐OH adduct; • signal of DMPO‐SO4 adduct ;       ♥        signal of DMPO‐1O2 adduct 

; 
▼
signal of HO2•/O2•− adduct.  

To  identify  which  free  radical  acted  as  the  primary  oxidant  for  Orange  II 

decolorization  in  the UVA‐Fe3+‐PMS‐oxalate  system,  the  effects  of  radical  scavengers 

(isopropyl alcohol (IPA) and tert‐butyl alcohol (TBA)) on the decolorization of Orange II 

were investigated. IPA can react efficiently with both SO4•− and •OH ((k (•OH, IPA) = 1.2–2.8 × 

109 M−1∙s−1, k(SO4•‐, IPA)= 1.6–7.7 × 107 M−1∙s−1)), whereas TBA can selectively react with OH (k 

(HO•,  TBA)=  (3.8–7.6)  ×  108 M−1∙s−1,  k(SO4•‐,  TBA)  =  (4.0–9.1)  ×  105 M−1∙s−1)  [37],  and  thus,  the 

discrepancy  in  the quenching effect could allow us  to differentiate  the contribution of 

SO4•− and •OH. The addition of IPA as a scavenger for both SO4•− and •OH significantly 

reduced  the degradation of Orange  II, which  is  consistent with  the  results of  the ESR 

experiment. As shown in Figure 8a, approximately 95.0% of the Orange II decolorization 

was inhibited in the presence of 130 mM IPA. However, the decolorization of Orange II 

was  slightly  reduced when  TBA was  used  as  the  •OH  scavenger.  The  decolorization 

efficiency of Orange II decreased to 88.7% in the presence of 104 mM of TBA (Figure 8b). 

This result suggests  that SO4•− rather  than •OH was  the predominant oxidant that was 

responsible  for  Orange  II  decolorization  in  the  UVA‐Fe3+‐PMS‐oxalate  system,  •OH 

played a secondary role in the decolorization of Orange II. Furthermore, the addition of 

IPA  did  not  completely  suppress  the Orange  II  decolorization,  indicating  that  other 

signal of DMPO-1O2 adduct; H signal of
HO2

•/O2
•− adduct.

Processes 2023, 11, x FOR PEER REVIEW 11 of 15 
 

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

C t/C
0

t(min)

 130 mM IPA
 13.0 mM IPA
 1.30 mM IPA
 without IPA

(a)

 
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

C t/C
0

t(min)

 104 mM TBA
 10.4 mM TBA
 1.04 mM TBA
 without TBA

(b)

 
Figure 8. The effects of IPA (a) and TBA (b) on the decolorization of Orange ([Fe3+]0 = 100 µM, [Or-
ange II]0 = 50 µM, [PMS]0 = 150 µM, [oxalate]0 = 80 µM, under UVA irradiation, λirr. = 365 nm, pH 3). 

• HO2•/O2•− and 1O2 
In a previous work, superoxide radicals (HO2•/O2•−) and singlet oxygen (1O2) were 

reported to be generated during the activation of PMS [38]. ESR experiments also proved 
the presence of O2•− and 1O2 in the experimental system under UVA irradiation (Figure 
7b,c) and in the dark (Figure 7e,f). Therefore, the contributions of O2•− and 1O2 to the de-
colorization of Orange II should be assessed. 

Trichloromethane (CHCl3, TCM) is an effective HO2•/O2•− quencher that can capture 
electrons so as not to form HO2•/O2•−. A series of different concentrations of TCM were 
added to explore the contribution of HO2•/O2•− to Orange II decolorization. Figure 9a 
shows the effects of TCM on the decolorization of Orange II in the experimental system. 
The decolorization efficiency of Orange II was partly inhibited, and it decreased to 87.7% 
in the presence of 124 mM TCM, which is very close to that in the presence of 104 mM 
TBA. Considering TCM is resistant to •OH (k (•OH, TCM) < 2 × 106 M−1·s−1,) [39], the results of 
the scavenging experiment by TCM clearly contradict those of TBA. Furthermore, •OH 
has a stronger oxidative capacity than HO2•/O2•−. This indicates that HO2•/O2•− might be 
the precursor of •OH, which indirectly participated in the decolorization of Orange II. 
Furthermore, the similar inhibition of TCM and TBA on the decolorization of Orange II 
demonstrates that •OH formation strongly depended on HO2•/O2•−. 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

C t/C
0

t(min)

 124 mM TCM
 12.4 mM TCM
 1.24 mM TCM
 without TCM

(a)
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

C t/C
0

t(min)

 115 mM FFA
 11.5 mM FFA
 1.15mM FFA
 0.115mM FFA
 0.0115mM FFA
 without FFA

(b)

 
Figure 9. The effects of TCM (a) and FFA (b) on the decolorization of Orange ([Fe3+]0 = 100 µM, 
[Orange II]0 = 50 µM, [PMS]0 = 150 µM, [oxalate]0 = 80 µM, under UVA irradiation, λirr. = 365 nm, pH 
3). 

Figure 8. The effects of IPA (a) and TBA (b) on the decolorization of Orange ([Fe3+]0 = 100 µM,
[Orange II]0 = 50 µM, [PMS]0 = 150 µM, [oxalate]0 = 80 µM, under UVA irradiation, λirr. = 365 nm,
pH 3).

• HO2
•/O2
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In a previous work, superoxide radicals (HO2
•/O2

•−) and singlet oxygen (1O2)
were reported to be generated during the activation of PMS [38]. ESR experiments also
proved the presence of O2

•− and 1O2 in the experimental system under UVA irradiation
(Figure 7b,c) and in the dark (Figure 7e,f). Therefore, the contributions of O2

•− and 1O2 to
the decolorization of Orange II should be assessed.
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Trichloromethane (CHCl3, TCM) is an effective HO2
•/O2

•− quencher that can capture
electrons so as not to form HO2

•/O2
•−. A series of different concentrations of TCM were

added to explore the contribution of HO2
•/O2

•− to Orange II decolorization. Figure 9a
shows the effects of TCM on the decolorization of Orange II in the experimental system.
The decolorization efficiency of Orange II was partly inhibited, and it decreased to 87.7% in
the presence of 124 mM TCM, which is very close to that in the presence of 104 mM TBA.
Considering TCM is resistant to •OH (k (•OH, TCM) < 2 × 106 M−1·s−1,) [39], the results of
the scavenging experiment by TCM clearly contradict those of TBA. Furthermore, •OH
has a stronger oxidative capacity than HO2

•/O2
•−. This indicates that HO2

•/O2
•− might

be the precursor of •OH, which indirectly participated in the decolorization of Orange II.
Furthermore, the similar inhibition of TCM and TBA on the decolorization of Orange II
demonstrates that •OH formation strongly depended on HO2

•/O2
•−.
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FFA was adopted as an 1O2 scavenger in the UVA-Fe3+-PMS-oxalate system. As
presented in Figure 9b, the degradation of Orange II was completely halted by the addition
of the FFA. Considering that FFA is able to react with 1O2 and radicals, the distinction in
the extent of inhibition between the IPA and FFA was due to the involvement of 1O2 in
the Orange II decolorization. As far as the reactivity with radicals and 1O2 is concerned,
Orange II is expected to react faster with radicals [1], and 1O2 makes a slight contribution to
the decolorization of Orange II. The generated 1O2 could arise from the self-decomposition
of PMS or the dissolution of O2. The self-decomposition of PMS could be excluded from the
experimental system because it generally takes place under neutral and alkaline conditions.
Therefore, 1O2 might come from the O2 in the PMS system.

Conclusively, reactive oxidants coexisted in the UVA-Fe3+-PMS-oxalate system, in-
cluding SO4

•−, •OH, and HO2
•/O2

•−. 1O2. SO4
•− was the predominant oxidant for the

decolorization of Orange II, and the other three oxidants directly or indirectly participated
in the decolorization process. Specifically, 85.8% of the Orange II decolorization was in-
duced by SO4

•− oxidation, while 9.0% of the Orange II decolorization could be attributed
to •OH attack. The remaining 5.2% was attributed to the reaction between Orange II and
1O2. Furthermore, the formation of •OH in the experimental system strongly depended on
the HO2

•/O2
•−.

3.7.2. Possible Pathway of Decolorization

In order to explore the evolution of Orange II’s molecular structure characteristics
in the UVA-Fe3+-PMS-oxalate system, the UV-vis spectra of the samples as a function of
reaction time are presented in Figure 10. The spectrum exhibits four characteristic peaks at
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230, 310, 430, and 484 nm. The typical peaks located at 484 nm and 430 nm were ascribed to
the hydrazone form and the azo form of the dye, respectively. Furthermore, the other two
peaks in the ultraviolet region, located at 230 nm and 310 nm, were ascribed to the benzene
and naphthalene rings of Orange II. With the process of decolorization, the weakening
effect of the peaks at 310 nm and 230 nm was not obvious, which may have been due to the
intermediate products of the Orange II oxidation by those reactive oxidants. Most of these
were aromatic compounds containing a benzene ring structure, which can be oxidized by
the reactive oxide species in the system to oxygenated organic substances and can further
be oxidized to small acids and other substances [40]. The peaks at 484 nm and 430 nm
decreased significantly (the absorbance decreased from 0.365 to 0.192), indicating that the
reactive oxidants produced by the system were able to directly attack the azo bond of the
luminescent group in Orange II, leading to the decolorization of Orange II by breaking the
conjugated π bond [41].
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Figure 10. UV-vis spectra of Orange II decolorization at different times in the UVA-Fe3+-PMS-oxalate
system ([Fe3+]0 = 100 µM, [Orange II]0 = 50 µM, [PMS]0 = 150 µM, [oxalate]0 = 80 µM, under UVA
irradiation, λirr. = 365 nm, pH = 3).

4. Conclusions

In this study, the performance of Orange II decolorization was investigated in the
UVA-Fe3+-PMS-oxalate system using oxalate as an accelerant. Oxalate had the greatest
promoting effect on the decolorization of Orange II compared to the other six carboxylates.
Efficient degradation was obtained in a pH range of 1–5, and the highest decolorization
efficiency was observed at pH 3.0. Increases in the PMS dosage promoted the decolorization
of Orange II. Fe3+ concentrations employed in the experimental system had a relatively
small effect on the decolorization of Orange II. The coexisting anions exhibited different
effects on the decolorization process. Furthermore, the electron paramagnetic resonance
and radical quenching experiments revealed that SO4

•− was the predominant oxidant
responsible for the decolorization of Orange II. •OH and 1O2 also participated in the
decolorization process. The possible pathway of Orange II decolorization was presented
based on the UV-vis spectrum, suggesting that the azo bond of the luminescent group in
Orange II was attacked by the reactive oxidants in the experimental system. This study
provides a simple and eco-friendly strategy for the treatment of wastewater containing
azo dyes.
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