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Abstract

We propose a new procedure to extract information from electron tomography and use them as
an input in a field dislocation mechanics. Dislocation electron tomography is an experimental
technique that provides three-dimensional information on dislocation lines and Burgers vectors
within a thin foil. The characterized 3D dislocation lines are used to construet the spatial
distribution of the equivalent Nye dislocation density tensor. The model dislocation lattice
incompatibility equation and stress balance equation are solved with aspectral ‘code based on
fast Fourier transform algorithms. As an output of the model, one obtainsfhe three-dimensional
distribution of mechanical fields, such as strains, rotations, stresses, resolved shear stresses and
energy, inside the material. To assess the potential of the method, we consider two regions from
a previously compressed olivine sample. Our results réveal significant local variations in local
stress fields and resolved shear stresses in various slip'systemts, which can impact the strong
plastic anisotropy of olivine and the activation of different dislocation slip systems. It also

evidences the built-up of kinematic hardening down to the nanometre scale.

Keywords: Dislocations; Electron Tomography; Mechanics; Plasticity; Olivine
N

1 Introduction

Making the link betweenyplastic flow and the dynamics of crystal defects (dislocations) that
causes it is a formidable challenge that requires the description of their collective behaviour at
the mesoscopic scale [1]. To this end, mesoscopic simulations such as discrete dislocation
dynamics(DDD). [2,43] represent a powerful analysis tool that should be complementary to
experimental observations of dislocations. Complementary experimental/modelling analysis of
dislocation microstructures can bring valuable insights about elementary deformation

mechanisms. Transmission electron microscopy is usually the experimental tool of choice for
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this kind of investigation since it allows a fine characterization of dislocations and their
interactions. However, the understanding of the 3D microstructures is difficult since we only
have access to 2D projections and the tilt capabilities are physically limited in microscopes.
Dislocation Electron Tomography (DET) has been developed to overcome theseslimitations.
The basic principle as originally proposed by Barnard et al. (2006) [4] is to perfectly orient the
diffraction vector used to image the dislocations parallel to the tilt axis, maintaining at best as
possible the Bragg deviation parameter. This technique has been applied in numerous studies
as analyses of dislocation microstructures near cracks [5, 6], [charabterization of helical
configurations of dislocations [7-9], analyses of specific interactions®of dislocations [10],
studies of interactions of dislocations with grain and sub-grain boundaries [11-14], analyses of
dislocation microstructures in a carbide [15] and minerals [16-19]. The DET has been the
subject of several recent reviews [20-23]. Recent/developmefits include reconstructions from
few projected images using black & white contrasts of dislocations [9, 19] or “stereo-pair”
method [24-27], machine-learning reconstruction [28] and 4D analysis [9]. In the present
contribution, we propose to use electron tomography to get access to the line directions of the
dislocation segments. The association.of these line directions with their corresponding Burgers
vectors allows the construction \of the Nye dislocation density tensor at any point in the
reconstructed space. Subsequently, the Nye dislocation density tensor leads up to the prediction
of the internal mechanical fields (strain, stress, energy, etc.) through the use of a Field
Dislocation Mechanics (FDM) model that allows to build a bridge between real dislocation
microstructures and continuum mechanics. To illustrate the potential of this DET/FDM analysis
method, werconsider‘here as a benchmark the characterization of dislocation networks in an
experimentally deformed olivine sample. We will consider in this work two different areas from
a deformed single crystal. We reveal for this complex material (limited number of dislocation

slip systems, strong plastic anisotropy) a three-dimensional stress state characterized by



oNOYTULT D WN =

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-106919.R1

Weidner et al. 4/33

significant spatial variations and long-range elastic interactions between dislocations. The
resulting distribution of dislocation driving stresses allows suggesting possible active slip
systems and the strong heterogeneity of distributions shows that the history of dislocation
dynamics and the associated build-up of kinematic hardening can be captured with the proposed

method.

2 Materials and deformation experiments
~

This study was carried out on an olivine sample (PoEMY) expefimentally deformed by
Demouchy et al. (2013) [29] which had already been the focus of  TEM microstructural
investigations [10, 17]. These axial compression experimentsswere carried out on a cylinder
(length 6.32 mm; diameter 4.19 mm) specimen extracted.from a large, gem-quality, single
crystal of San Carlos olivine ((Mgo.91Fe0.00N10.003)2S104). ”}he sample PoOEM9 [29], was
deformed along [502] in a high-resolution gas-medium high-pressure apparatus [30] at 806 °C,
with a constant strain rate of 5.1x10"'s™] tinder a gaseous (Ar) confining pressure of 300 MPa.
The finite strain reached was &g,tq; = 10.1°% (obtained post-mortem) and the maximum
differential stress was 754 MPa,

N
3 Methods
3.1 Transmission electron microscopy
A complete characterization of the dislocations must include not only the Burgers vectors, but
also the geometry of the lines and their habit planes.
3.1.a Indexation.of Burgers vectors
In the earlies'1980s, Ishida et al. [31] have shown that the product of the Burgers vectors b of

a dislocation and of the diffraction vector g used to perform the weak-beam dark-field (WBDF)

imageis equal to the number of thickness fringes which ends at the extremity of this considered

Page 4 of 33



Page 5 of 33

oNOYTULT D WN =

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-106919.R1

Weidner et al. 5/33

dislocation (the direction of the ending thickness fringes is linked to the sign of the Burgers
vector [32]).
Figure 1 gives an example of a typical WBDF micrograph of POEM9 where the diffraction
vector g: 004 was used to image dislocations (this reflection was chosen as it hasithe highest
structure factor in olivine). The g - b product is equal to +4 with a +[001] Burgersivector. This
number clearly corresponds to the number of terminating thickness fringes seen on figure 1b
and lc.

Figure 1
Asymmetry of the contrast intensity of dislocation extremities is linked to the sign of the
Burgers vectors. This information can be compared to the-one obtained from the directions of
terminating thickness fringes (Figure 2). Taking all these indices into account, we were able to
determine most of the Burgers vector signs. y

Figure 2

3.1.b Dislocation geometry characterization

The electron tomography technique entails acquiring a tilt-series and then utilizing a
reconstruction algorithm to obtain a corresponding three-dimensional (3D) model of the
microstructure. As outlined in p{or studies [8, 16], the principal impediment to performing
electron tomography of dislocations is to maintain a diffraction contrast (which is highly
sensitive to the thin foil orientation) constant across the tilt-series. In order to address this issue,
the diffraction vector, used to image dislocations, must be precisely aligned with the principal
axis of the sample-holder. Furthermore, a slight precession of the electron beam is applied to
homogenizerthe background contrasts (including the presence of thickness fringes) and the
dislocation contrasts (oscillating contrasts of dislocations which cross the thin foil thickness)
[16, 33]. To enhance the dislocation contrasts, a numerical filter has been employed in Imagel

to adjust the contrast. Reconstructions are then conducted with the weighted back-projection
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algorithm [34], while dislocations are directly redrawn into the reconstructed volume using
markers, facilitated by the Chimera-UCSF software [8, 9, 15, 18-20, 35], to attain precisely the
3D coordinates of the dislocation core images.

3.2 Nye tensor and elastic field distribution in an anisotropic elastic material

The Field Dislocation Mechanics (FDM) model employed here [36] introduces discrete
dislocation lines, as characterized by tomography, in the form of equivalent continuous
dislocation density spatial distributions on a regular three-dimensional grid made of voxels. As
an output, the model provides the equilibrated stress field in the voxelized thin foil volume, as
well as the associated elastic displacements, strains, and rotations. The characteristics of
dislocations, namely their line directions and their Burgers.vectors, are introduced through the
Nye dislocation tensor in the model [37]. The Nye ténsor a 1s'a second-order tensor with

components o;; = B;t; in the cartesian coordinate system (€4;€;, e3) aligned with the thin foil

frame. The quantity B; is a length of Burgers vector per unit surface and can be written B; =
nb/Ag e;, where n is the number (notmecessarily an integer) of dislocations of Burgers vector
magnitude b along the direction e;, and Ag is.the spatial resolution surface. The vector t is the
local dislocation line unit vector«Forinstance, an edge (respectively screw) dislocation with
line along the e3 direction and s&ith Burgers vector along the eq (respectively ez) direction
corresponds to an edge (respectively screw) dislocation density a5 (respectively oz3). A mixed
dislocation would be madeef both densities. In practice, any three-dimensional dislocation line
or segment can be transferred into an equivalent Nye dislocation density distribution in a
volume. In the case of a regular grid made of voxels to be used later for fast Fourier transform
(FFT) based numerical calculation of elastic fields, we use the recent method proposed by
Berting[38].to transform discrete dislocation segments into equivalent dislocation densities

properly assigned on voxels. Note that a similar approach was also proposed very recently [39].
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The method used is briefly presented below, the reader is referred to reference [38] for more
details.
Figure 3

Figure 3 illustrates a part of a discrete dislocation line composed of three straight segments
shown in red in the figure. The figure shows a two-dimensional setup for clarity, but the
calculation is performed in three dimensions. The second (middle) dislocation segment is
considered here and shown as a bold red line. It is defined by its starting point, Xa, and its ending
point, xp, following the direction of the segment line vector t. The thin dashed black lines
delimit the grid voxels used in the numerical algorithm used to solve EDMequations. The voxel
size is Hi, H2, and H3 in the xi, X2, and x3 directions. The, position/of the centre of voxel d
considered in the figure is given by its position veetor xq. Its volume is denoted Q4 =
H; x H, X Hy = H3 where we chose that H; = Hy = H; =H! For the voxel d, a surrounding
box of dimension 2H; X 2H, X 2Hj is centeredat point Xa and is shown with purple solid lines
in the figure. If a part of a given dislocation segment falls within this box, then a Nye dislocation
density associated with this segment will be.attributed to this voxel, as follows. If start and/or
end points Xa/Xp are outside the box, the dislocation segment is cropped to new start and/or end
points Xa/Xp. If they are inside, \they remain as they are. Now consider a point x along the
dislocation segment. We define the vector Ra=x4-X, which brings points x on the segment to
the centre of voxel xg. The unit vector t=(xp-Xa)/||Xp-Xa|| 1s the segment tangent vector. The
distance from the segment supporting line to point xq is denoted d. It is the norm of the vector
d=Ru-(Ra.t)t=xq-xo. The vector d starts at point X¢ on the segment supporting line and ends at
point xq. With this, one can parametrize the position x along the dislocation segment as x=xo+st,
where the scalar value se[sa, sb|. The two bounds sa and sb shown in the figure (sa” and/or sp’ if

the segment is cropped) are sa=(Xa-Xo).t and sb=(Xp-Xo).t. From these definitions, one can finally
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parametrize the position vector Rg=x4-x as Rq=d-st. The dislocation density at the voxel d due
to a dislocation segment is given by the following line integral
_ bt g _biy
o (xq) = o [, * S(xa =) dL() = = 1(xa), (1)
where the weight function S is taken to be a Cloud-In-Cell function defined by
s

3 —
S(xq —x) = [lizs (1 H; ) if [xd — x;| < H;, (2)

0 otherwise.

The integral I(xq) can be numerically evaluated as
I(xq) = (s® —s®) —A; = Ay — A3 + By, + Byz + By — Cips, 3)

with the terms

b

( Ai = Hi |[diS - %tisz] ,

1 a

b
__1 1 241 3
J Bl] = ?H] [dld]S — E (dlt] + tidj)S + Etitjs ]a Y 4 (4)
c 1 did]'dkS - %(tld]dk + dit]'dk + did]-tk)sz
ik = HiHH 1 g _ 1 4

\ i+ = (dityty + tidjty + titjdi)s3 — Sttty ]

The domain [sa, sb] is divided into portions[a, b] on which the sign of [[;'(d; — st;) does not
change. For each voxel d, the dislocation density is the sum of all densities due to all dislocation
segments that cross the surrounding box shown in figure 3. The process is repeated for all voxels
forming the simulation volume. Given an initial Nye dislocation density in a volume, we are
now interested in numerically estimating the associated internal stress field within a small strain
anisotropic elasticity mechanical framework. We rely on the FDM model [36]. We denote by
Uk the elastic distortion of a three-dimensional body containing dislocations. In the absence of
dislocations, the distortion would be the gradient of the elastic displacement vector ue, that is
Ue=grad(us). However, it is not true anymore in the presence of dislocations due to

discontinuities in the elastic displacement field, i.e., the Burgers vectors of dislocations. As
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2

z 168  such, the elastic distortion must contain an incompatible, non-gradient, curl part (curl(y)),
6 169  which is related to the Nye tensor. The elastic distortion is thus written as

7

8 170 U, =U!+ U} = grad(u,) + curl(y). (5)
9

10 171 The elastic distortion resumes to the compatible, gradient part, in the absence of dislocations,
172 while the incompatible, curl part, is related to the Nye tensor through the incempatibility
15 173  equation

17174 curl(U}) = a = curl(curl(y)), (6)
175  Where the curl operator removes the compatible part of the elastic distortion. For a given
22 176  distribution of Nye dislocation density in a volume, the elastic incompatible distortion is
24 177  obtained from the solution of equation (6). Then, the compatible elastic distortion is generally

178  nonzero and ensures the balance of stresses inside the volume. That writes

20 179 div(oe) = div(C: U,) = div(C: (U + U)) = 0, y %

32 180  where o is the Cauchy stress tensor and C is the fourth-order elastic moduli tensor. The above
34 181  equation can be rearranged as

182 div(C: grad(u,)) = —div(C: (UY)), )
39 183  and solved for the elastic displacement field ue. Once the elastic displacement is known, the
41 184  compatible elastic distortioft is obtainéd from its gradient and the total elastic distortion is
44 185  finally obtained by adding the incompatible part. The total, balanced, stress field o is then
46 186  obtained by multiplication by the elastic stiffness tensor C. Solving equations (6-8) for a given
48 187  distribution of Nye tensor provides a unique solution for the associated internal stress field [40].
5; 188  Numerical solutions can be obtained from finite element approximations [41] and from spectral
53 189  methods [42]. The latter rely on the use of fast Fourier transform (FFT) algorithms [43] and
55 190 allow simulations of large three-dimensional volumes. Here, we employ an FFT spectral
191  approximation, based on the accelerated scheme [44] and using a special treatment for the

60 192, evaluation of the modified Green tensor in the Fourier space [45]. The reader is referred to
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reference [42] for details, whereby a very similar spectral algorithm was developed. We now
describe the FFT simulation setup to model the dislocations observed in a thin foil by
tomography and obtain their internal stress/strain fields. Figure 4 illustrates the main steps. We
consider as an illustrative example a foil of dimension 960 nm X 960 nm with a.thickness of
X 480 nm shown in figure 4(a). A vertical screw dislocation line which crosses perpendiculatly
the two surfaces of the foil (threading dislocation) is inserted in the middle of the foil and shown
by the solid black line. The FFT grid is here a cube made of 64 X 64 X 64 voxels. The voxel
size, i.e., the spatial resolution of FDM, is set to 15 nm in all simulations.\Figure 4(b) shows
the associated Nye tensor component az5 distributed on the FFT grid after the “Nye’zation”
procedure described above. Note that all dislocation densities are_embedded inside the FFT
volume. To create the two external free surfaces of the thin foils, where the stress field must
satisfy zero-traction boundary conditions, we use(a so4called gas phase, which is common in
FFT simulations. Voxels with much lower elastic stiffness compose the gas phase. The
interfaces between material voxels (with normal stiffness) and gas phase voxels are free
surfaces, where the stress field satisfies zero-traction boundary conditions. An example of this
gas phase method can be found in.reference [42], where the stress field of an edge dislocation
line near a pore was simulated eQd found to agree quantitatively very well with the existing
analytical solution. In figure 4(b), one can see how the external free surfaces of the foil are
created in the present FDMLFFT simulation. Bright voxels compose the foil material, while dark
voxels compose the so-called gas phase. More precisely, the elastic stiffness tensor C of the
olivine material will be attributed to each bright voxel, while a much lower stiffness (10* times
smaller) is7attributedto the dark voxels. In doing so, the internal stresses will be affected near
the two free surfaces to satisfy zero-traction boundary conditions. Figure 4(c) shows the internal
shear stress field 0,5 due to the dislocation line in the foil, obtained after convergence of the

EDM-FFT numerical algorithm. One can see that it is affected by the external surfaces and
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tends to zero at them. Figure 4(d) also shows the elastic strain €;, generated near and at the free
surfaces to cancel the internal stresses 0,3 and 0,3. A qualitative agreement is observed with
elastic fields due to a threading screw dislocation in GaN, simulated by FDM with_a_finite
element approximation [41]. Note finally that because the Nye dislocationtdensity is
numerically spread on FFT voxels, dislocation lines have an apparent core in the FDM
simulations, with a size the order of the FFT voxel length (15nm), but it is to be interpreted as
a numerical core, rather than a physical core. Note that the FDM can be applied to model
dislocation cores [46], but it is not the scope of the present work. The spatia resolution is here
15nm, much too large to properly describe real dislocation cores. The ¢onsequence of having
numerical dislocation cores is that the internal stresses are.smoothed and not well captured near
the physical dislocation cores, but far from the dislocation cores (a few nm) it is correctly
rendered. Short-term stress core corrections can be added [38, 39] and are important when
dealing with small scale discrete dislocation dynamies; dislocation line tension effects and
dislocation reactions. In the present work however, it is not critical and does not alter our
findings, as we consider mostly straight dislocation lines separated by distances much larger
than the physical core size of dislocations. Furthermore, the resolution (15nm) is already small
such that large stresses between d\islocation lines can already be predicted (see next section).
Figure 4
4 Results and discussion
4.1 Dislocation microstructure
In order to take an overall look of the POEM9 microstructure of dislocations, six tilt-series
(obtainedewith the 222 diffraction vector) were acquired at a low magnification, which
representsian analyzed total area of approximately 30 pm? [17], with an average angular range

from -52° to 48°.
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Burgers vector indexations are performed using the thickness fringes technique [31] with the
004 and 222 diffraction vectors (Figures 1 and 2 respectively). They showed that the
microstructures are only composed of dislocations with [001] Burgers vectors and
overwhelmingly with straight screw dislocation characters. An example ofddislocation
microstructure obtained in WBDF conditions with the 004 diffraction vector is. shown en
Figure 1. The electron tomography shows a majority of {110} and (100) glide planes, few
cross-slip configurations [17] and colinear interactions [17]. The reconstructed volumes also
provide access to (u, b) doublets for each dislocation segments, to calcul\ate the Nye tensor,
and to simulate the continuous distribution of stress field.

Two domains of specimen POEM9 are studied in detail: zone. I on Figures 5a-d and zone 2 on
Figures 5e-h. A tilt-series composed of 51 micrographs (acquired every 2° with a tilt angle
ranging from -48° to +52°) and a second tilt-series of 54 micr%graphs (acquired every 2° with
a tilt angle ranging from -56° to +50°) were obtained"in WBDF conditions with the 222
diffraction vector (zones 1 and 2 respeetively). Micrographs from Figures 5a and Se come from
these two tilt-series for a projection angle of 0°. Electron tomography reconstructions enable
the characterization of the (110),(110) and (100) slip systems which are identified by their
colours: white, light grey and blan respectively as in Mussi et al., 2015 [17]. Neither the slip
systems of the pure screw straight dislocations (coral pink-coloured), nor the habit plane of the
red sessile dislocation segment in Figure 5f, can be indexed. Then, the reconstructed volumes
are projected along the [001] direction in order to orientate the pure screw dislocations in edge-
on position (Figures 5S¢ and 5g) and thereafter, to provide optimal viewing conditions to study

the continuous stress distributions.

4.2 Simulation results

Page 12 of 33



Page 13 of 33

oNOYTULT D WN =

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-106919.R1

Weidner et al. 13/33

The dislocation internal stresses in the thin foil are rotated in the olivine crystal reference frame.
The x1, x2 and x3 directions are now aligned with the a, b and c directions of the olivine
orthorhombic unit cell, respectively. In addition to this internal stress, we add the macroscopic
stress applied experimentally during the compression test (754 MPa) also rotated inthe crystal
reference frame. This is possible since we know the angle between the normal of the thin foil

[17 5 12] and the compression axis [502] (approximately 30°). The total stress field at every

voxel in the thin foil is then g;; = mt + Z;j, where al‘]"t is the local internal stress field due to

dislocations and Z;; is the macroscopic stress. It is then possible to project th\e total stress tensor
at every voxel on different slip systems using the associated Schmid tensor expressed in the
olivine orthorhombic reference frame. In the following, we considerthree slip systems, labelled
1, 2 and 3: [001](100), [001](110) and [001](110).respectively. The resolved shear stress
(RSS) for the three systems are denoted by RSS1," RSS2 and l;SS3 in the following. They are
equal to:

RSS1 = (001000 = 4

RSS2 = T[OOl](llO)

033 2 90.63 % 031 + 42.26 % 035,

J_ J_
RSS3 = r[001(110) = J% J_agz ~ 90.63 % 04, — 42.26 % 0. 9)

with a and b the directions of the olivine orthorhombic unit cell.

The macroscopic stress 233.= 10aco/[(5a)? + (2¢)?] ~ 302.8 MPa (with a and c the directions
of the olivine orthorhombic unit cell and o the applied stress) while X3,=0. Figures 5 and 6
show the spatial distribution of the three resolved shear stresses on slices in the thin foil, for the
two thin foil seriessDislocation lines are shown in figure 5. They are removed in Figure 6 for a
better.comparison of RSS distributions in different slip systems. RSS1, RSS2 and RSS3 fields
look similar, local rotations of RSS patterns (lobes) near dislocations can be seen between the

three RSS maps. The distribution of the internal elastic energy density 1/2 &f;Cyjx €k, is also
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shown in Figure 6. It shows elastic interactions between dislocations (interacting elastic fields
between dislocations). Note that the calculation of the mean internal elastic energy within the
thin foil volume give 51.6 kJ/m* for series 1 and 52.2 kJ/m? for series 5. The reader is further
referred to animations in the supplementary materials, where moving slices parallel to slip
planes allow for a better visualization of the long-range elastic interactions between dislocation
lines within the thin foils. Histograms of the RSS distributions in the thin foilsiare provided in
Figure 7(a, b) showing a significant heterogeneity of the stress field within the thin foils. One
can note that the mean value of RSS1 (302.8 MPa) is slightly larger/than that of RSS2 and RSS3
(274.4 MPa). This is because the sample was oriented to activate system I'preferentially. Strong
variations in the stress values can be seen, typically +.400 MPa around the mean values.
Regions with local stresses reaching 1 GPa are also observed, particularly nearby dislocation
dipoles. Finally, Figure 7(c) shows cumulative distribution functions (CDF) for RSS1, RSS2,
RSS3, for the two thin foil series, with RSSwvalues extracted only at the dislocation lines
(instead of taking values at all voxels in the thin feils). In doing so, we only consider dislocation
driving stresses in the single crystal. The CDF are centred about zero. Broad distributions, with
again variations up to + 400 MPa, are clearly evidenced in the CDF for the three slip systems
and the two thin foils, and theyk)ok rather similar. One clear feature in all these maps and
distributions is thus the presence of long-range elastic interactions between dislocations and
significant local variations of the RSS values in the three systems considered due to the

complexity of the three-dimensional stress state.

4.2 Discussion
The present coupled electron tomography/FDM analysis allows obtaining for the first time a
detailed, three-dimensional, physical/mechanical description of dislocation networks in the

studied thin foils. A physical description of dislocations (Burgers vectors, 3D arrangement of
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dislocation lines, junctions, dipoles, networks) is complemented by a mechanical description
(strains, rotations, stresses, energy). In the present study, we specifically discuss two points, (1)
the possible activation of different slip systems in olivine deformed at low temperature due to
the complexity of the three-dimensional stress state, and (2), the history of dislocatien dynamics
and the associated build-up of polarized internal stresses and kinematic hardening in single

crystals at the nanometre scale.

(1) Activation of slip systems: The POEM-9 specimen, from whichsthin foils have been
extracted and analysed here, was compressed along the [502] direction, to preferentially
activate the [001](100) slip system (system 1 and RSSl)a=However, an uncertainty between
the possible activated slip systems was mentioned [29]./Another system, [001](110) was also
proposed as a possible system. A third system ¢ould alsonbe activated, [001](110). They
correspond to system 2 and system 3 in the present study. Our distributions of RSS values in
the thin foil indeed suggest that system 1 is only slightly favoured as compared to systems 2
and 3, because the mean value of RSS1 is only slightly larger (difference of less than 30 MPa).
However, in a recent work [17], systems 2 and 3 are observed to be easier to activate (lower
CRSS) than system 1, system_1 l{ing the second easiest system to activate after system 2 and
3. As such it is not easy to say which one of system 1 or systems (2, 3) was preferentially
activated in our studiedisample. The distributions of the RSS values extracted only at
dislocation lines are certainly more speaking. Indeed, the distributions show very similar
features for all series and slip systems. More precisely, they are all broad and show significant
local variations, £.400 MPa. As such, the slight difference of the mean RSS between system 1
and systems (2, 3), less than 30 MPa, becomes negligible as compared to possible large local

values of RSS. From this, we can conclude that, although POEM-9 was compressed in a way
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to favor slip system 1, the three systems can all be activated, because of the strong heterogeneity

of the internal stress field.

(2) Internal stresses and kinematic hardening: The simulated fields of RSS show asignificant
heterogeneity. Recently, an experimental work on deformed olivine single erystals and
polycrystals using High-Resolution-EBSD (HR-EBSD) revealed a pronounced heterogeneity
in the in-plane elastic shear strains and shear stresses at the surface [47, 48]. Variations up to
+1GPa around the mean value were reported in both polycrystals and sin@le crystals (at low
temperatures) at the micron scale. Such polarization and patterning,offinternal, intragranular
and intergranular stresses, can be related to the build-up of geometrically necessary dislocation
densities. Strong heterogeneity of internal stresses is tobe associated with kinematic hardening.
In the present study, we can look at the heterogengity of interfial stresses down to the scale of
typical HR-EBSD map pixels, i.e., at the nanometre scale. Our results also reveal a significant
heterogeneity of internal stresses at_the nanometre scale in a single crystal containing
dislocation networks. Distributions of RSSishow broad profiles, with variations up to + 400
MPa around the mean value. Interestingly, the histograms show a few negative RSS values.
The results thus suggest that kine\matic hardening has been built-up and is a signature of the

past dynamics of dislocations observed.

The application of our electron tomography/FDM method brings valuable insights regarding
the complexity of plastic flow in olivine. In a simple single crystal subjected to simple
compressionrloading; it shows that plastic anisotropy and activation of dislocation slip systems
can be significantly altered by the large fluctuations of the local mechanical fields. Furthermore,
it evidences the built-up of kinematic hardening. This plastic behaviour observed at the single

crystal, nanometre scale, certainly has a strong impact on the rheology of olivine polycrystals
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within the Earth’s mantle. More generally, our proposed analysis method can also be employed
to investigate other mechanisms and defects typically investigated in the TEM for various
crystals, such as subgrain boundaries, dislocation networks, dislocation grain boundary
interactions, dislocation reactions, interactions between dislocations and pores/pregipitates ete.
Furthermore, as shown in Figure 8, the method also provides elastic fields in the vicinity of and
at free surfaces, which allows making links between elastic fields measurements using
experimental techniques such as precession electron diffraction [49], HR-EBSD (high-
resolution electron backscatter diffraction), HR-TKD (high-resolutionsfransmission Kikuchi
diffraction) [41], ACOM (automated crystal orientation mapping) ASTAR® [50] and defects
inside the material. It must be emphasized that, in addition.to provide 3D anisotropic elastic
fields, our approach allows a spatial resolution of 15 nm in routine use, extendable down to 5
nm. The method can also be used to assess the accuracy of HR-TKD, or ACOM/ASTAR

methods, when measuring the elastic fields‘around disloeation structures.

5 Conclusion

In this contribution, we propose_an, original experimental and theoretical characterization
method for studying dislocation\ networks in crystalline materials. The method combines
dislocation electron tomography, which provides a three-dimensional characterization of
dislocation lines and Burgers vectors, to a field dislocation mechanics model, which provides
the associated intetnal mechanical fields. To demonstrate the potential of our method, we have
considered single crystal thin foils extracted from a compressed olivine single crystal. Our
results haverrevealed significant local fluctuations in the local mechanical fields, particularly
the resolved shear stresses in different slip systems, which certainly play a role in the strong

anisotropy of olivine and the activation of different dislocation slip systems. Our first results

have also evidenced the built-up of kinematic hardening at the nanometre scale in a single
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