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Résumé. As machine learning models gain traction in real world applications,
user demand for transparent results grows. The field of explainability (XAI) is
meeting this challenge with remarkable speed and efficiency. Notable examples
include SHAP and LIME, which are feature-based XAI methods. In this work
we aim to review a distinct category of XAI approaches, whose support for
providing explanations is interpretable explanatory elements representing user
knowledge, instead of raw input features. We categorize these methods based
on the stage at which the knowledge is integrated to the XAI pipeline. Further-
more, we highlight the literature around the assessment of XAI methods. We
emphasize the importance of the metric of faithfulness of knowledge-based ex-
planations, not only to the real world but also to the underlying model.

1 Introduction

AI-based systems are increasingly reaching many aspects of everyday life. Machine lear-
ning (ML) models, mainly deep learning models which are called black-boxes given their high
complexity, are being used with impressive results in applications of varying degrees of stakes.
Examples span from recommendation systems in entertainment services to credit scoring in
banking and diagnostic assistance in medicine. In order to reap the benefits of the advancement
of ML in applications that touch users, especially where outputs obtained by these black-box
systems intervene in critical scenarios, it is imperative that the user or the person affected by the
decision are able to clearly understand why the outcome is as it is (Payrovnaziri et al., 2020).
Hence, explainability is continuously evolving into an indispensable facet of AI research, fur-
ther driven by ethical considerations, user-friendly interfaces and regulatory compliance. Also,
explainability of black-box models serves as a valuable tool for computer scientists working
on improving ML models and debugging, particularly concerning bias mitigation.

XAI approaches of various kinds are becoming abundant. The extensive interest in this
field makes it so XAI approaches are covering most types and variations of ML models, from
convolutional neural networks (Kim et al., 2018; Montavon et al., 2017) to natural language
processing (Lei et al., 2016; Bouchacourt et Denoyer, 2019) to graph neural networks (Ying
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et al., 2019; Funke et al., 2022), etc. In this work, we divert the attention from the conven-
tional and most common category of XAI methods which are feature-based approaches and
shift the focus to a different category : XAI approaches that use various forms of knowledge to
generate explanations. Rather than producing explanations from raw input features, some XAI
methods, which we call knowledge-based XAI methods, take into consideration interpretable
explanatory elements and use them as support for explanations. Feature-based XAI methods,
such as SHAP (Lundberg et Lee, 2017) and LIME (Ribeiro et al., 2016), provide explanations
that belong to the domain of the input features. In the example of image classification, expla-
nations that result from these methods will be blobs of pixels that were deemed important for
the outcome of the model. This means that the explanation itself is unaware and deprived from
any semantic meaning and by results, does not guarantee to be interpretability for the user. In
contrast, knowledge-based XAI approaches draw on elements that are either considered as in-
terpretable by the user or extracted in a way that ensure certain interpretable properties. These
elements will act as potential explanations that conform to the user’s realm of intelligibility.

The objective of this work is to shed light on the existing knowledge-based XAI ap-
proaches. We propose to categorize these methods based on the step at which knowledge is
introduced into the prediction-explanation pipeline (see figure 1), offering a novel perspective
on the process of providing meaningful explanations. Additionally, we delve into the litera-
ture dealing with the assessment of XAI methods. We classify the reviewed methods based on
that literature while highlighting the lack of consideration of the knowledge aspect, which is
significant when describing and evaluating knowledge-based explainability. We also put for-
ward possible ways to close that gap by arguing that faithfulness of explanations to both real
world observations and the underlying model is crucial for the effective deployment of XAI
techniques.

Section 2 sets the context that is of interest for this review along with definitions of some
notions that are repeatedly used in this review. In section 3, existing XAI methods that can be
categorized as knowledge-based are exposed. Section 4 explores existing ways to assess explai-
nability methods while drawing attention to missing aspects that are relevant for knowledge-
based approaches. Section 5 discusses the limitations and concerns that are revealed for knowledge-
based XAI while also emphasizing their advantages and the assets they bring to further pro-
gress the XAI field. Finally, section 6 recapitulates the review and lay out the opportunities that
knowledge-based XAI research provides.

2 Background

This section sets the context surrounding the subject matter of this review. Then, key no-
tions and terminology relevant to discussions in the field of XAI are defined.

2.1 Context

Within the scope of this review, a deep neural network (DNN) is considered as any neural
architecture with more than one hidden layer. DNNs also include convolutional architectures,
object detection modules, image segmentation modules and any deep architecture for feature
extraction, followed by classification neural layers.
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FIG. 1 – ML pipeline and the different levels of knowledge integration for explanations

As for knowledge, it is characterized as any information that the user regards as relevant to
the learning or application domain, and which could be taken into account to generate expla-
nations. Knowledge can exist at various levels ranging from domain-specific scientific know-
ledge, such as medical ontologies, to common knowledge, such as visual attributes used for
object identification. Knowledge can also exhibit varying levels of meaningfulness and expres-
siveness in terms of semantics relevance to the user.

We note that the works we review should not be confused with knowledge-informed ma-
chine learning Von Rueden et al. (2021). The latter intends to integrate prior knowledge to the
predictive system at the training level in order to overcome the challenge of insufficient trai-
ning data. However, the problem this review tackles is how to utilize interpretable explanatory
elements to guarantee the explainability of a DNN. By adopting this approach, explanatory
elements can be anticipated and makes it possible to have an assurance of their alignment with
the user’s vocabulary and expectations of the task at hand.

2.2 Notions related to XAI

The resurgence and fast growth of XAI literature comes with the challenge of reaching
a shared and standard terminology. For this reason, it is important to set definitions of XAI-
related concepts in order to level the vocabulary of this review.

— Interpretability. Interpretability is related to the idea of extracting human-graspable
insights from a set of information that accurately reflects the underlying model and its
decision process.

— Explainability. Explainability is linked to the conversion of the latent information
(usually numeric and highly-dimensional) that the DNN is basing its decisions on, into
elements that could be digestible by humans. The goal is that these elements would be
used to interpret the model and its outcomes.
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— Black-box model. A black-box model is a predictive system that goes through a com-
plex and non-intelligible process to provide decisions. A black-box, by itself, does not
provide the necessary components to guarantee its explainability.

— Self-explainable model. A self-explainable model is one that anticipates, inherently or
by design, elements that could be used to explain inferences. This notion can be asso-
ciated with transparent models, whose explainability is ensured without an additional
module or algorithm.

3 Existing Methods For Knowledge-Based XAI

In this section we present existing methods that use explanatory elements to generate expla-
nations. The state-of-the-art approaches are discussed based on which step of the explanation-
prediction generation pipeline the knowledge could be introduced to be accounted for by the
explainability algorithm. The three steps are : (1) after training the model and being only able
to use it as a blackbox, (2) when training the model and (3) when designing the architecture of
the model. We propose this as a first level of categorizing knowledge-based XAI methods.

3.1 Using the model as a black-box

In this category of knowledge-based approaches, only access to an already trained predic-
tive model is assumed. These methods could also be called post-hoc approaches, i.e., can only
utilize the pre-trained model as an oracle in order to explain how it comes to a certain result or
its overall functioning.

Testing with Concept Vectors (TCAV) Kim et al. (2018) is a concept-based explainability
method that exploits the internal high-dimensional state of a convolutional neural network to
produce representations of concepts, pre-defined by the user, at the level of some layer l. These
representations are the Concept Activation Vectors (CAV). They help explain the internal state
at the level of a specific layer. The explanation is a computed percentage reflecting the number
of inputs, classified as class k, and whose activation vector at layer l was positively influen-
ced by the concept C. Many other concept-based methods approaches were inspired by TCAV,
specifically CAVs as a way to represent human-understandable concepts. The Conceptual and
Counterfactual Explanations via Fault-Lines (CoCoX) Akula et al. (2020) approach aims to
extract concepts, using TCAV, and provide them as counterfactual explanations that allow the
prediction to an alternative desired outcome. Similarly, conceptual Counterfactual Explana-
tions (CCE) Abid et al. (2022) provides a score reflecting the effect that the adding/removing
of a concept, represented by a CAV to/from the instance has on the probability of correctly
classifying it. Completeness Aware Concept-Based Explanations (CACE) Yeh et al. (2020) is
a method that provides concept-based explanations that verify the completeness condition as
defined by the authors of the paper. This means that the explanations be a set of concepts that
are considered to be complete, i.e., having access to them is enough to fully explain the predic-
tion given by the model. Continuing to consider the influence of TCAV, some approaches make
use of the sensitivity score introduced by that method. Automatic Concept-based Explanations
(ACE) Ghorbani et al. (2019) introduce a module for automatic extraction of visual concepts
which are then given as explanations with a score, computed by TCAV.
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Outside of the concept-based explanations, some post-hoc knowledge-based XAI methods
use ontologies for explainability. TREPAN Reloaded Confalonieri et al. (2021) allows the ex-
traction of decision trees to approximate the decision process of a blackbox. This is done by
strengthening the impact of understandable features while extracting the explainable approxi-
mation of the model. The understandability of a feature is judged by its connection to more
general concepts present in a ontology.

3.2 Training the model

Some XAI approaches propose to take into account knowledge when training the neural
network. Contrary to the previous category, this one (as well as the next one) goes into the
ad-hoc approach of explainability. This means that a complementary module is anticipate be-
fore training the model in order to address its explainability. This should not be confused with
transparent models, where the classification algorithm itself provides explanations for its de-
cision, i.e., no additional method should be implanted or thought in order to understand the
results of the model.

Explainable Neural-Symbolic Learning (X-NeSyL) Díaz-Rodríguez et al. (2022) is an XAI
method that models knowledge in a graph form and insert it in the training loop of the neural
model. The authors propose an "XAI-informed training procedure", called SHAP-Backprop,
which takes into account, at the level of the loss function, the coherence of feature attribution
scores computed from the neural component with the knowledge graph. The predictive model
would therefore be able to give a prediction in tandem with its explanation. Explaining mo-
del Decisions through Unsupervised Concepts Extraction (EDUCE) Bouchacourt et Denoyer
(2019) also aims to provide explanations alongside the prediction. However, the explanatory
elements in this case are automatically extracted concepts.

3.3 Designing the neural network

In this section we review methods that propose to integrate prior knowledge at the level of
defining the topology of the neural architecture. Some of these works do not explicitly aim to
provide explanations. However, they are included given that they are motivated by making the
architecture of neural network based on domain knowledge instead of random, which means
that such an architecture would contains elements from prior knowledge. These elements could
then be utilized, once the model is trained, to provide explanations to its decisions.

Concept Lattice-based Artificial Neural Network (CLANN) Tsopzé et al. (2007) is an ap-
proach that propose to generate the topology of the neural network from prior knowledge, the
training data in this case, transformed into a concept lattice. The obtained topology would be
justifiable and could facilitate the extraction of rules from the trained network. This motivation
could be aligned with the aim to provide a degree of intelligibility to the decision process of
the neural network. DeepGONet Bourgeais et al. (2021) suggests the conception of a new neu-
ral architecture, based on a multi-layer perceptron, whose learning process is constrained by a
domain ontology. In this work, the neurons of the network are explainable elements by them-
selves as they contains domain significance inherited from the ontology. Another approach,
OntoClassifierBourguin et al. (2021) makes use of ontologies to provide explanations for the
user. The work uses a semantic bottleneck approach : semantic layers are anticipated in the
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architecture of the classifier to allow the extraction of semantic features. This makes the ex-
tracted features, which leads to a prediction, semantically meaningful to the user and therefore
making the classifier explainable.

4 Assessment Methods
This section presents the existing approaches for assessing and evaluating XAI methods.

It also highlights ways of consideration of the knowledge aspects in knowledge-based me-
thods when assessing them. We propose to review the methods based on two approaches. In
a first part, a descriptive approach in presented, where XAI methods are compared and jud-
ged in terms of their properties and characterization. The second part highlights some existing
evaluation techniques for the performance of XAI methods.

4.1 Properties and Characterisation
A descriptive comparison in terms of characteristics and properties allows to situate the

existing methods with regards to the expectation of the user of the explanations and its inten-
ded application. Many works exist in this vein. Some provide formal frameworks for descri-
bing explanations (Amgoud, 2023; Marques-Silva et Ignatiev, 2022). These formalization are
mostly restricted for feature-based explainability. Other works aim to provide a sort of grid or
catalog of properties to describe and contrast explainability techniques (Sokol et Flach, 2020).
Table 1 summarizes the previously presented knowledge-based XAI methods categorized by
some of the most useful and common properties.

Here’s a description of these properties and their symbols as used in table 1 :
— Step at which the knowledge is integrated in the XAI process : As presented in our

categorization of knowledge-base XAI literature in section 3, knowledge can be taken
into account at the post-hoc level (P), the training level (T) or the design of the neural
architecture level (D).

— Data type : Some XAI methods work for a specific type of data, such as images (IMG),
text (TXT) or tabular data (TAB). They might also be conceived for a domain-specific
type of data (OTH).

— Target to explain : An explainability method might aim to explain different elements
of the machine learning model : a prediction (PRED), a group of predictions (GRP)
which usually equates to predictions for a specific class, or the whole model (MOD).
This categorization matches local, cohort and global explanations respectively.

— Family of explanations : In a general way, the definition of an explanation in not
unique. Therefore many different family of explanations exist. Abductive explanations
(ABD) which are the most plausible or likely explanations. Self-explainable surrogate
models (SUR) can generated to approximate the behavior of the black-box. Counter-
factuals (CNT) answer the question What should be changed in the input in order for
it to be classified as a class of interest?. Many other families of explanations exist.

— Portability : XAI approaches that are conceived in a way that is independent from the
specifications of the model they are trying to explain are called model-agnostic (ANY).
In contrast, model-specific methods utilize the architecture and the implementation cha-
racteristics of the blackbox in order to generate explanations. It can be specific to any
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deep neural networks (DNN), convolutional neural networks (CNN), multi-layer per-
ceptron (MLP), etc.

— Knowledge Form : Knowledge providing explanatory elements that are comprehen-
sible by humans can take different shapes : knowledge graphs (G), ontologies (O),
collections of concepts (C), etc.

— Knowledge Origin : Knowledge used to supply explanatory elements can be pre-
defined (PD), guaranteeing their relevance to the user’s mental model of the system.
They can also be automatically extracted (AE) by the XAI module itself. This disco-
very might lessen the interpretability of the explanatory elements based to the degree
to which the extraction is user-attended.

Step Data type Target Family Portability Form Origin
TCAV (Kim et al., 2018) P IMG GRP ABD DNN C PD
ACE (Ghorbani et al., 2019) P IMG GRP ABD DNN C AE
CCE (Abid et al., 2022) P IMG PRED CNT DNN C PD
CACE (Yeh et al., 2020) P IMG+TXT GRP ABD DNN C AE
CoCoX (Akula et al., 2020) P IMG PRED CNT CNN C AE
TREPAN Reloaded (Confalonieri et al., 2021) P TAB MOD SUR ANY O PD
X-NeSyL (Díaz-Rodríguez et al., 2022) T IMG PRED ABD DNN G PD
EDUCE (Bouchacourt et Denoyer, 2019) T IMG+TXT PRED ABD DNN C AE
CLANN (Tsopzé et al., 2007) D TAB - - MLP - -
DeepGONet (Bourgeais et al., 2021) D OTH MOD ABD MLP O PD
OntoClassifier (Bourguin et al., 2021) D IMG PRED ABD DNN O PD

TAB. 1 – Properties and characteristics of knowledge-based XAI methods

We note that knowledge form and knowledge origin are not commonly found when des-
cribing XAI approaches. However, they are crucial for knowledge-based explainability as they
help position on which method is more adequate for the intended application by the user of the
explanation.

4.2 Evaluation Techniques
One of the challenges of XAI is the lack of standardized objective performance metrics,

making it difficult to compare and contrast the quality and the performance of XAI approaches
in a formal and systematic way. Nonetheless, there exist some works on quantitative evaluation
that allow to inspect XAI methods in terms of performance metrics. Rahnama et al. (2023)
propose to classify evaluation methods for additive XAI methods based on the availability
or not of ground-truth explanations. When ground-truth is unavailable, robustness measures
(Alvarez-Melis et Jaakkola, 2018; Agarwal et al., 2022) can be used to measure the effect
that (un)important features (explanations given by the local additive XAI methods) have on
the prediction by nullifying them. When ground truth is on hand, additive explanations can be
evaluated by using a synthetic dataset or an interpretable model. In this case, the accuracy of
the explainability method will be the similarity between the local explanations it provides and
the intrinsic explanation or the weights of the model respectively. These metrics can also be
classified by their target : evaluating the explainer VS evaluating the explanation. Although
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this categorization is suggested by Rathee et al. (2022) in the context of explainable graph
neural networks, it can be extended to evaluating XAI in general. Evaluating the explainer itself
goes back to checking the faithfulness, the sparsity and the correctness of the XAI algorithm.
While evaluating the explanations that are produced means investigating the plausibility of it
in comparison to the human rationale. Table 2 summarize evaluation metrics according to the
aforementioned taxonomies.

Ground-Truth No Ground-Truth
Explainer - Similarity with interpretable

model weights
- Correctness

- Faithfulness

- Robustness

Explanation - Similarity with intrinsic
explanation from synthetic data

- Plausibility

- Sparsity

TAB. 2 – Evaluation methods for XAI

It is worth noting that, to our knowledge, these evaluation metrics have not been formalized
to take into account the user knowledge aspect of knowledge-based XAI methods. To address
this issue we propose a definition of faithfulness of knowledge-based XAI methods in two
levels. The first we call plausibility and it evaluates the alignment of the explanations with the
real world (according to the user), i.e., prior knowledge that exists on the domain and that is
relevant for the user. The second is fidelity and it reflects the alignment of the explanations
provided with the underlying model. The choice of these definitions go with our argument that
explanations provided by an XAI method are expected to be not only attuned with the real
world or the system as seen by the user but should also reliably mirror the underlying model
that the method is trying to explain.

The analysis of plausibility implies a comparison of the XAI output with an established
model of the system that the user has in mind. This definition have a likeness to the correctness
metrics as defined by Rathee et al. (2022) for graph neural networks. In order for the XAI
method to be useful for the user, provided explanations should fall into the vocabulary that
the user uses himself when dealing with the domain in question. The availability of explana-
tory elements that are used as support for the explanations makes it easier to compare XAI
explanations with ground truth since they belong to the same domain. Such analysis comes
with difficulties, specially in terms of the subjectivity of the mental model that each user or
expert has on the domain in question. Hence, although the actual measure of plausibility may
be quantitative, it hides a certain subjectivity. Ideally, an evaluation of plausibility should also
be careful to take into account the uncertainty or the potential error in the paradigm that the
user is basing its expectations on.

As for fidelity, its evaluation could be considered as an objective reflection of the relation-
ship between the predictions and its explanations. At this level, no human-defined elements
are required in order to compute the metric. The goal of fidelity is to investigate whether the
XAI algorithm is producing explanations that uphold the hypothesis representing the black-
box classifier. To quantify fidelity, Sokol et Flach (2020) propose to compute a performance



R. El Cheikh et al.

metric between the output scores of the black-box model and the score of the explanations.
Fidelity can be linked to what Vilone et Longo (2021) introduced as the explanation comple-
teness methodology for formal comparison of XAI methods. This approach aims to evaluating
which XAI method produces explanations that most comprehensively describe the inferential
process of the underlying model.

5 Discussion and Challenges
Most knowledge-based post-hoc approaches heavily relies on the concept activation vec-

tors (CAVs) as defined by the TCAV approach (Kim et al., 2018). However, the quality of the
CAVs which represent the concept depends on the quality of the linear classifier. It was shown
by its authors that despite obtaining CAVs with good accuracies for low level concepts such as
colors or texture, that is not true when dealing with higher level concepts such as characteristics
relating to people (ethnicity, gender, age range). Therefore, relying on CAVs to represent the
elements the user wishes to use to generate explanations can quickly become problematic when
the complexity of the concept can’t be sufficiently captured by a linear classifier. Nevertheless,
the post-hoc approach to knowledge-based explainability is valuable when the incorporation
of domain knowledge before model training is not a viable option due to various reasons. It
also offers significant advantages in scenarios where users are already employing a black-box
model and now have a need to gain insights into its decision-making process. Post-hoc ex-
plainability methods provide users with an explainability tool without the need to modify the
model’s architecture or retrain it, hence harming its predictive performance.

As for the origin of the knowledge, approaches resting on automatic extraction present
some limitations as to whether the explanatory elements reflects efficiently the user’s needs.
Also, some extracted concepts can be very generic, attributed to a confounding variable or
not easily discernible. This reproach could also be true for pre-defined knowledge. Should the
XAI algorithm trust the provided elements to generate explanations? Or is it its responsibility
to verify an existing relation between explanatory elements and input data?

However, despite having some limitations and despite being less discussed as a separate
category in the field of XAI, we believe that explainability relying on elements, that are ei-
ther pre-defined or automatically extracted in a way to be interpretable by the user, presents
advantages compared to feature-based approaches. First and foremost, knowledge-based ex-
planations offers a more straightforward comparison with the ground-truth. When defining
defining ground-truth and when interpreting explanations, leveraging established knowledge
allows for a degree of context and reliability that raw features alone often lack. Furthermore,
as a consequence of utilizing a shared vocabulary, it is reasonable that knowledge-based expla-
nations may demonstrate a higher consistency with the user’s expectations and might be more
likely to resonate with them. As a result, we suspect that this would minimize the potential for
confirmation bias and ambiguity in interpretation of the predictions and their explanations.

A concern that is also raised by this review is the question of whether ad-hoc methods
are more faithfulness to the real world and to the model compared to post-hoc methods. To
answer this question, plausibility and fidelity as defined in section 4 should be more thoroughly
investigated. First, we assess plausibility by comparing explanations with the ground-truth.
This evaluation method allows to gauge the accuracy and coherence of explanations in relation
to the mental model that the user might have on the system. Additionally, the added need to test
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the linkage of test data with the knowledge used in post-hoc methods, which seems realistic
and cautious in real-life applications, further underscores the complexity of assessing fidelity
in a post-hoc context. Second, measuring fidelity involves computing metrics that quantify the
alignment between the explanation and prediction. It’s worth noting that the nature of post-hoc
explanations reduces the interconnectedness of the process of producing a prediction and its
explanation. This could hamper fidelity as the detachment from the initial prediction process
may lead to explanations that lack cohesion with the model’s original intent.

6 Conclusion and Opportunities
In conclusion, this review has delved into knowledge-based explainability methods for

deep neural networks. In order to generate explanations for the predictions produced by a
black-box classifier, this category of XAI utilizes interpretable elements that are judged to be
relevant for the user of the explanations. We identify three stages at which the knowledge could
be taken into consideration by the XAI algorithm and we categorize the methods based on this
criteria. The three levels are : while designing the neural architecture, while training the model,
and after training it. This classification provides a structured framework for understanding
how knowledge is leveraged to reach interpretable ML-based systems. It also highlights the
versatility of knowledge-based XAI in addressing various scenarios and needs by the user.

In addition to categorizing knowledge-based XAI approaches, this work tackled the exis-
ting methods for assessing explainability methods. The review has been conducted at two dis-
tinct tiers. The first concerns descriptive comparison approaches which include formalization
of explanations and cataloguing of properties and characterizations to compare and contrast
XAI methods. The second tier pertains to quantitative evaluation techniques which involve the
application of metrics and statistical measures to evaluate the quality and performance of XAI
methods. Exploring assessment techniques for XAI helped identify gaps, particularly in the
case of knowledge-based XAI. Current evaluation methods may need refinement to account
for the specificities presented by knowledge-based XAI.

Essentially, anticipating explanatory elements and basing the explanation on them is a way
of involving the user. It shows a certain degree of consideration not only of their mental model
of the realm that model is approximating but also of the vocabulary that they would normally
use to provide explanations. This contributes to the overall effectiveness and user-friendliness
of the explanation process.

The challenges that we present in section 5 provide an opportunity for a deeper experimen-
tal investigation to answer two questions. First, does knowledge, represented as explanatory
elements, provide better explanations than raw features? Second, is anticipating the explana-
tory elements at the level of designing or training the model a way to guarantee faithfulness of
the explanations not only to the real world, but also to the underlying black-box?
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Summary
Au fur et à mesure que les modèles d’apprentissage automatique gagnent du terrain dans les

applications réelles, la demande des utilisateurs pour des résultats transparents augmente. Le
domaine de l’explicabilité (XAI) relève ce défi avec une rapidité et une efficacité remarquables.
Parmi les exemples notables, on peut citer SHAP et LIME, qui sont des méthodes XAI basées
sur les caractéristiques. Dans ce travail, nous visons à examiner une catégorie distincte d’ap-
proches XAI, dont le support pour fournir des explications est constitué d’éléments explicatifs
interprétables représentant la connaissance de l’utilisateur, au lieu de caractéristiques d’entrée
brutes. Nous classons ces méthodes en fonction de l’étape à laquelle la connaissance est in-
tégrée au pipeline XAI. En outre, nous mettons en lumière la littérature relative à l’évaluation
des méthodes XAI. Nous soulignons l’importance de la métrique d’exactitude des explications
basées sur la connaissance, non seulement par rapport au monde réel mais aussi au modèle
sous-jacent.


