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1 Introduction and definitions.

Small functions with respect to a meromorphic functions are well known in the general theory of complex functions. Particularly, one knows the Nevanlinna theorem on 3 small functions and its generalization due to K. Yamanoi which shows that two meromorphic functions in C sharing 5 small functions, ignoring multiplicity, are equal. Now, we denote by K a complete ultrametric algebraically closed field of characteristic 0. Let a ∈ K and take r > 0. We denote by d(a, r -) the open-disk {x ∈ K | |x -a| < r}, by d(a, r) the closed-disk {x ∈ K | |x -a| ≤ r} and by E the set K \ d(0, R -. Considering two meromorphic functions f, g in K or in d(a, R -), or in E, sharing a few small meromorphic fonctions, we can ask how many small functions are necessary to be able to prove that f and g are identic. A first work was done in [START_REF] Escassut | A short note on two p-adic meromorphic functions sharing a few small ones[END_REF], showing that if f and g share 7 small meromorphic functions, then f = g. Obtaining a better result is not obvious since Yamanoi's Theorem [START_REF] Yamanoi | The second main theorem for small functions and related problems[END_REF] has no equivalent for ultrametric functions. However, in [START_REF] Thi | Non-Archimedean Second Main Theorem sharing small functions[END_REF], Ta Thi Hoai An and Nguyen Viet Phuong have found a method to show that 5 small functions are enough to prove that f = g. This is the work that we mean to develop with some more explanations. The main difficulty in [START_REF] Thi | Non-Archimedean Second Main Theorem sharing small functions[END_REF] appears in Lemma 3, that we translate here as Lemma 5.1 in a more simple context and we try to explain the proof with more details. Now, we denote by D the set d(0, R -) and by E the set K \ d(0, R -) = {x ∈ K | |x -a| ≥ R}. We denote by A(K) (resp. A(D)), the algebra of analytic functions in K (resp. in D the K-algebra of power series converging in D). Next, we denote by A(E) the K-algebra of Laurent series converging in E [START_REF] Escassut | p-adic Analytic Functions[END_REF].

Next, we denote by M(K) (resp. M(D)) the field of fractions of A(K) (resp. A(D)). We also denote by A u (D) the K-algebra of unbounded analytic functions in D and by M u (D) the set of meromorphic functions in D that are not a quotient of two bounded analytic functions in D. Finally, we denote by M(E) the field of fractions of A(E).

Throughout the next paragraphs, we will denote by I the interval ]0, +∞[, by J an interval of the form ]0, R[ with t > 0 and by G the interval [R, +∞[.

We have to introduce the counting function of zeros and poles of f , counting or not multiplicity. Here we will choose a presentation that avoids assuming that all functions we consider admit no zero and no pole at the origin.

Definitions: Let f ∈ M(d(0, r) and for every a ∈ d(0, r), let θ a (f ) be the multiplicity order of a if a is a zero of f and let θ a (f ) = 0, else.

We denote by Z(r, f ) the counting function of zeros of f in d(0, r) in the following way. Let (a n ), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0 < |a n | ≤ r, of respective order s n .

We set Z(r, f ) = θ 0 (f ) log r + σ(r) n=1 s n (log r -log |a n |) and so, Z(r, f ) is called the counting function of zeros of f in d(0, r), counting multiplicity.

In order to define the counting function of zeros of f ignoring multiplicity, we put In order to define the counting function of poles of f , if 0 is a pole of f , we denote by γ 0 (f ) the order of multiplicity of the pole and we put γ 0 (f ) = 0, else. Now, considering the finite sequence (b n ), 1 ≤ n ≤ τ (r) of poles of f such that 0 < |b n | ≤ r, with respective multiplicity order t n , we put N (r, f ) = γ 0 (f ) log r + Remark: If we change the origin, the functions Z, N, T are not changed, up to an additive constant.

θ 0 (f ) = 0 if θ 0 (f ) = 0 and θ 0 (f ) = 1 if θ 0 (f ) ≥ 1.

Consider now a function f ∈ A(E)

. By the definition, the restriction of f to anny annulus R ≤ |x| ≤ S is an annalytic element in that annulus and hence has finitely many zeros in that annulus [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], [START_REF] Escassut | p-adic Analytic Functions[END_REF], [START_REF] Krasner | Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres[END_REF]. Similarly, a meromorphic function f ∈ M(E) has finitely many zeros and finitely many poles in the annulus R ≤ |x| ≤ S. That is summarized in Proposition 1.1: [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], 10], [START_REF] Motzkin | La décomposition d'un élément analytique en facteurs singuliers[END_REF] Let f ∈ M(E). If f has infinitely many zeros in E (resp. infinitely many poles in E), the set of zeros (resp. the set of poles) is a sequence (α n ) n∈N such that

Proposition 1.1 [1] [4],
lim n→+∞ |α n | = +∞. If f has no zero in E, then it is of the form +∞ -∞
a n x n with a n = 0 ∀n > q and |a q |r q > |a n |r n ∀n ∈ Z, n = q, ∀r ≥ R.

Corollary 1.1. [START_REF] Boussaf | Motzkin factorization in algebras of analytic elements[END_REF], [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], [START_REF] Motzkin | La décomposition d'un élément analytique en facteurs singuliers[END_REF] : Let f ∈ M(E) have no zero and no pole in E. There exists a unique integer q ∈ Z such that x -q f (x) has a limit b ∈ K * .

Definitions: Let f ∈ M(E) have no zero and no pole in E. The integer q ∈ Z such that x -q f (x) has a limit b ∈ K * is called the Motzkin index of f and f is called a Motzkin factor if lim |x|→+∞ x -q f (x) = 1 [START_REF] Boussaf | Motzkin factorization in algebras of analytic elements[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], [START_REF] Motzkin | La décomposition d'un élément analytique en facteurs singuliers[END_REF].

Proposition 1.2 [START_REF] Boussaf | Motzkin factorization in algebras of analytic elements[END_REF], [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], [START_REF] Escassut | p-adic Analytic Functions[END_REF], [START_REF] Motzkin | La décomposition d'un élément analytique en facteurs singuliers[END_REF] : Let f ∈ M(E). Then f factorizes in a unique way in the form f S f 0 where f S is a Motzkin factor and f 0 ∈ M(K) has no zero in D.

Notations: We will denote by A c (E) the set of f ∈ A(E) having infinitely many zeros in E.

Similarly, we will denote by M c (E) the set of functions f ∈ M(E) which have infinitely many zeros or poles in E.

Thus we can define counting functions for zeros and poles in that way: let f ∈ M(E) and, for every r > R, let a 1 , ..., a σ(r) be the sequence of zeros of f in the annulus R ≤ |x| ≤ r, with |a j | ≤ |a j+1 |, 1 ≤ j ≤ σ(r), and let s j be the order of a j . Then we put Z R (r, f ) = σ(r) j=1 s j (log(r) -log(|a j |)) and Z R (r, f ) is called the counting function of zeros for f in M(E), counting multiplicity. And we define Z R (r, f ) = σ(r) j=1 (log(r) -log(|a j |)) which is called the counting function of zeros for f in M(E), ignoring multiplicity.

Similarly, let b 1 , ..., b τ (r) be the sequence of poles of f in the annulus R ≤ |x| ≤ r, with |b j | ≤ |b j+1 |, 1 ≤ j ≤ τ (r) and let t j be the order of b j . Then we put N R (r, f ) = τ (r) j=1 t j (log(r)-log(|b j |)) which is called the counting function of poles for f in M(E), counting multiplicity and we put Definitions and notations:

N R (r, f ) = τ (r) j=1 (log(r) -log(|b j |)) which is called the counting function of poles for f in M(E), ignoring multiplicity. Now, we put T R (r, f ) = max(Z R (r, f ), N R (r, f )) and the function T R (r, f ) is called the charac- teristic function of f in M(E).
For each f ∈ M(K) (resp. f ∈ M(D), resp. f ∈ M(E)) we denote by M f (K), (resp. M f (D), resp. M f (E)) then the set of functions h ∈ M(K), (resp. h ∈ M(D), resp. M(E)) such that T (r, h) = o(T (r, f )) when r tends to +∞ (resp. T (r, h) = o(T (r, f )) when r tends to R, resp. T R (r, h) = o(T R (r, f )) when r tends to +∞). Now, if a function Φ from I to R (resp. from ]0, R[ to R, resp. from [R, +∞[ to R) satisfies Φ(r) ≤ o(T (r, f )), or φ(r) = o(T (r, f )), we write Φ(r) ≤ S(r, f ), or Φ(r) = S(r, f ) respectively. Similarly, if f ∈ A(K) (resp. f ∈ A(D), resp. f ∈ A(E)) we shall denote by A f (K) (resp. A f (D), resp. A f (E)) the set M f (K) ∩ A(K), (resp. M f (D) ∩ A(D), resp. M f (E) ∩ A(E)).
The elements of

M f (K) (resp. M f (D), resp. M f (E)) are called small meromorphic functions with respect to f , or small functions in brief. Similarly, if f ∈ A(K) (resp. f ∈ A(D), resp. f ∈ A(E)) the elements of A f (K) (resp. A f (D), resp. A f (E)
) are called small analytic functions with respect to f or small functions in brief.

In [START_REF] Escassut | A short note on two p-adic meromorphic functions sharing a few small ones[END_REF], the following theorem is proved:

Theorem A: Let f ∈ M(K), (resp. let f ∈ M u (D)
) be nonconstant and let h 1 , ..., h q (q ≥ 5) be q distinct small functions with respect to f . We have

q 3 T (r, f ) ≤ q i=1 Z(r, f -h i ) + S(r, f ).
Moreover, if f has finitely many poles, and if h 1 , ..., h q (q ≥ 3) are q distinct small functions with respect to f . We have

q 2 T (r, f ) ≤ q i=1 Z(r, f -h i ) + S(r, f ).
From [START_REF] Thi | Non-Archimedean Second Main Theorem sharing small functions[END_REF], Theorem A is improved in the following way:

Theorem 2.1: Let f ∈ M(K), (resp. let f ∈ M u (D), resp. let f ∈ M c (E)
) be nonconstant and let h 1 , ..., h q (q ≥ 5) be q distinct small functions with respect to f . We have

2q 5 T (r, f ) ≤ q i=1 Z(r, f -h i ) + S(r, f ) (resp. 2q 5 T (r, f ) ≤ 5 s=1 Z(r, f -h is ) + S(r, f ), resp. 2q 5 T R (r, f ) ≤ 5 s=1 Z R (r, f -h is ) + S(r, f )). Definition: Let f, g ∈ M(K) (resp. f, g ∈ M u (D)), resp. f, g ∈ M c (E))
. Then f and g will be said to share a small function w

∈ M(K) (resp. w ∈ M(D), resp. w ∈ M c (E)), ignoring multiplicity, if f (x) = w(x) implies g(x) = w(x) and if g(x) = w(x) implies f (x) = w(x).
In [START_REF] Escassut | A short note on two p-adic meromorphic functions sharing a few small ones[END_REF] the following theorem is proved:

Theorem B: Let f, g ∈ M(K) be transcendental (resp. f, g ∈ M u (D)
) be distinct and share 7 distinct small functions (other than the constant ∞) ignoring multiplicity,

w j ∈ M f (K) ∩ M g (K) (j = 1, ..., 7) (resp. w j ∈ M f (D) ∩ M g (D) (j = 1, ..., 7), ). Then f = g
Moreover, if f and g have finitely many poles and share 3 small functions, then f = g.

Definition: A small function h ∈ M(K) (resp. h ∈ M u (D), resp. h ∈ M c (E)) will be said to be archi-branched with respect to a meromorphic function f ∈ M(K) (resp. f ∈ M u (D), resp. f ∈ M c (E)
) if all zeros of f -h except finitely many are of order at least 3.

Theorem 2.2: Let f ∈ M(K) be transcendental (resp. f ∈ M u (D), resp. f ∈ M c (E)).
Then f admits at most 4 archi-branched small functions. Moreover, if f has finitely many poles, then f admits at most one archi-branched small function.

Remark: Thanks to Yamanoy's theorem [START_REF] Yamanoi | The second main theorem for small functions and related problems[END_REF], it is easily seen that a meromorphic function f in C can't admit more than 4 totally branched small functions, i.e. small function h such that all zeros of f -h has order at least 2, except finitely many [START_REF] Boussaf | Complex and p-adic branched functions and growth of entire functions[END_REF]. Similarly, a meromorphic function f in C can't admit more than 3 archi-branched small functions.

From [START_REF] Thi | Non-Archimedean Second Main Theorem sharing small functions[END_REF], Theorem B is improved in the following way:

Theorem 2.3: Let f, g ∈ M(K) be transcendental (resp. f, g ∈ M u (D), resp. f, g ∈ M c (E))
be distinct and share 5 distinct small meromorphic functions ignoring multiplicity,

w j ∈ M f (K) ∩ M g (K) (j = 1, ..., 5) (resp. w j ∈ M f (D) ∩ M g (D) (j = 1, ..., 5), resp. w j ∈ M f (E) ∩ M g (E) (j = 1, ..., 5), ). Then f = g.
Moreover, if f and g have finitely many poles in K (resp. in D, resp in E) and share 3 small meromorphic functions, ignoring multiplicity, then f = g.

Remarks: 1) When we consider meromorphic functions on C, thanks to the main Nevanlinna Theorem on n small functions due to Yamanoi [START_REF] Yamanoi | The second main theorem for small functions and related problems[END_REF], it is easily seen that two meromorphic functions sharing 5 small ones, ignoring multiplicity, are equal. The absence of such a theorem with p-adic meromorphic functions makes much more difficult the study.

2) If a meromorphic function f ∈ M c (E) has finitely many poles, then it must have infinitely many zeros.

Nevanlinna Theorems

The Nevanlinna Theory is well known in C [START_REF] Nevanlinna | Le théorème de Picard-Borel et la théorie des fonctions méromorphes[END_REF]. It was constructed in a field like K in the eighties and next, in a disk and out of a hole [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], [START_REF] Escassut | An p-adic Nevanlinna theory ouside of a hole Vietnam[END_REF], [START_REF] Escassut | p-adic Analytic Functions[END_REF]. We have to recall the two main Theorems, applied to each domain of definition of meromorphic functions. Theorem 3.1 (First Main Theorem in a disk and in K ) [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]

: Let f, g ∈ M(K) (resp. let f, g ∈ M(D)). Then T (r, f +b) = T (r, f )+O(1). Let P (X) ∈ K[X]. Then T (r, P (f )) = deg(P )T (r, f ) + O(1) and T (r, f P (f )) ≥ T (r, P (f )). Suppose now f, g ∈ A(K) (resp. f, g ∈ A(D)). Then Z(r, f g) = Z(r, f ) + Z(r, g), T (r, f ) = Z(r, f ), T (r, f g) = T (r, f ) + T (r, g) + O(1) and T (r, f + g) ≤ max(T (r, f ), T (r, g)). Moreover, if lim r→+∞ T (r, f ) -T (r, g) = +∞ then T (r, f + g) = T (r, f ) when r is big enough. Theorem 3.2 (First Main Theorem out of a hole): [6] Let f, g ∈ M(E). Then for every b ∈ K, we have T R (r, f + b) = T R (r, f ) + O(log(r)), (r ∈ I) T R (r, f.g) ≤ T R (r, f ) + T R (r, g) + O(log(r)) (r ∈ I), T R (r, 1 f ) = T R (r, f )), T R (r, f + g) ≤ T R (r, f ) + T R (r, g) + O(log(r)) (r ≥ R) and T R (r, f n ) = nT R (r, f ). Given a polynomial P (X) ∈ K[X] of degree q, then T R (r, P • f ) = qT R (r, f ) + O(log(r)).
Moreover, if both f and g belong to A(E), then

T R (r, f + g) ≤ max(T R (r, f ), T R (r, g)) + O(log(r)) (r ≥ R) and T R (r, f g) = T R (r, f ) + T R (r, g), (r ≥ R). Particularly, if f ∈ A(E), then T R (r, f + b) = T R (r, f ) + O(1) (r ≥ R).
Theorem 3.3 (Second Main Theorem in K and in a disk) [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]: Let α 1 , ..., α q ∈ K be distinct, with q ≥ 2, let S = {α 1 , ..., α q } and let

f ∈ M(K) (resp. f ∈ M(d(0, R -))). Then q j=1 Z(r, f -α j ) -Z(r, f -α j ) ≤ T (r, f ) + N (r, f ) -log r + O(1) ∀r > 0 (resp. ∀r < R).
Theorem 3.4 (Second Main Theorem out of a hole) [START_REF] Escassut | An p-adic Nevanlinna theory ouside of a hole Vietnam[END_REF], [START_REF] Escassut | p-adic Analytic Functions[END_REF] :

Let f ∈ M(E) and let a 1 , ..., a q ∈ K be distinct with q ≥ 2.

Then (q -1)T R (r, f ) ≤ q j=1 Z R (r, f -a j ) + O(log(r)) (r ≥ R).
Theorem 3.5 (Second Main Theorem on three small functions) [START_REF] Escassut | An p-adic Nevanlinna theory ouside of a hole Vietnam[END_REF], [START_REF] Escassut | p-adic Analytic Functions[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF] :

Let f ∈ M(K), resp. f ∈ M u (D), resp f ∈ M c (E)) and let h 1 , h 2 , h 3 ∈ M(K), resp. h 1 , h 2 , h 3 ∈ M(D), resp. h 1 , h 2 , h 3 ∈ M(E)
) be small functions with respect to f . Then

T (r, f ) ≤ 3 j=1 Z(r, f -h j ) + o(T (r, f )) (resp. T (r, f ) ≤ 3 j=1 Z(r, f -h j ) + o(T (r, f )), resp. T R (r, f ) ≤ 3 j=1 Z(r, f -h j ) + o(T (r, f )) ).
Considering a small function h 3 whose zeros are the poles of f 1 and f 2 , we can derive Corollary 3.6:

Corollary 3.6: Let f ∈ M(K), resp. f ∈ M u (D), resp f ∈ M c (E)) having finitely many poles and let h 1 , h 2 ∈ M(K), resp. h 1 , h 2 ∈ M(D), resp. h 1 , h 2 ∈ M(E)
) be small functions with respect to f . Then

T (r, f ) ≤ 2 j=1 Z(r, f -h j ) + o(T (r, f )) (resp. T (r, f ) ≤ 2 j=1 Z(r, f -h j ) + o(T (r, f )), resp. T R (r, f ) ≤ 2 j=1 Z(r, f -h j ) + o(T (r, f )) ). Now we have to recall the function m(r, f ) defined for a function f ∈ M(K) or f ∈ M(D) by m(r, f ) = T (r, f ) -N (r, f ) and for a function f ∈ M(E) by m R (r, f ) = T R (r, f ) -N R (r, f
). This function satisfies the Logarithmic derivative lemma [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]:

Lemma 3.7: Let f ∈ M(K) (resp. f ∈ M(d(0, R -))). Then given k ∈ N * , m(r, f k f ) = S(r, f ). Let f ∈ M(E). Then given k ∈ N * , m R (r, f k f ) = S(r, f ).
4 Proofs of Theorems 2.1 and 2.2.

Notation: Let f be a meromorphic function in an annulus which is the set of x ∈ K such that R < |x| < S and let us fix r ∈]R, S[. We know that |f (x)| admits a limit when |x| tends to r, but is not equal to r [4], [START_REF] Escassut | Value Distribution in p-adic Analysis[END_REF]. This limit is usually denoted |f |(r).

Lemma 4.1: Let f ∈ M(K), (resp. let f ∈ M u (D), resp. let f ∈ M c (E)) be nonconstant and let h 1 , ..., h 5 be distinct small functions with respect to f . We have

2T (r, f ) ≤ 5 i=1 Z(r, f -h i ) + S(r, f ). Proof: We first suppose f ∈ M(K), or f ∈ M u (D). Let g = (f -h 2 )(h 3 -h 1 ) (f -h 1 )(h 3 -h 2 )
. Then it is easily seen that:

Z(r, g) = Z(r, f -h 2 ) + S(r, f ), N (r, g) = Z(r, f -h 1 ) + S(r, f ) Z(r, g -1) = Z(r, f -h 3 ) + S(r, f ).
Consequently, in order to prove Lemma 4.1, it is sufficient to prove the following inequality:

(4.1) 2T (r, f ) ≤ N (r, f ) + Z(r, f ) + Z(r, f -1) + Z(r, f -h 4 ) + Z(r, f -h 5 ) + S(r, f )
where h 1 = ∞, h 2 = 0, h 3 = 1 and h 4 and h 5 are two small functions with respect to f different from 0, 1, ∞ and h 4 = h 5 .

If one of the functions h 4 , h 5 is a constant, then (4.1) is immediate by the second main theorem for constants 3.3. Consequently, now we can assume that both h 4 , h 5 are nonconstant small functions.

Let

H = det   f f f f (f -1) h 4 h 4 h 4 h 4 (h 4 -1) h 5 h 5 h 5 h 5 (h 5 -1)   .
By a simple computation, we get:

(4.2) H = f (f -1)h 4 (h 4 -1)h 5 (h 5 -1) (h 4 h 4 - h 5 h 5 f f -1 - h 5 h 5 -1 - h 4 h 4 -1 - h 5 h 5 -1 f f - h 5 h 5 .
Suppose first that H is identically zero. Since f is not a constant and since h 4 , h 5 are not identically 0 or 1, it follows from the definition of H that

h 4 h 4 - h 5 h 5 f f -1 - h 4 h 4 -1 - h 5 h 5 -1 f f (4.3) = h 4 h 4 - h 5 h 5 f h 5 h 5 -1 - h 4 h 4 -1 - h 5 h 5 -1 h 5 h 5 .
We must now distinguish 4 cases.

Case 1.

h 4 h 4 = h 5 h 5 . It follows from (4.3) that either h 4 h 4 -1 = h 5 h 5 -1 or f f = h 5 h 5 . If h 4 h 4 -1 = h 5 h 5 -1 ,
then h 4 and h 5 are constants, which is excluded by hypothesis. Hence

f f = h 5 h 5
and then f is of the form c.h 5 , where c is a constant, which contradicts our hypothesis: h 5 is a small function with respect to f . Case 2.

h 4 h 4 -1 = h 5 h 5 -1
. Similarly to Case 1, we have a contradiction.

Case 3. h 4 h 4 - h 5 h 5 = h 4 h 4 -1 - h 5 h 5 -1 = 0. It follows from (4.3) that f f -1 - f f = h 5 h 5 -1 - h 5 h 5 , whih implies f -1 f = C(h 5 -1) h 5
where C is a constant. Thus we obtain

1 f = 1 - C(h 5 -1) h 5 and hence T (r, 1 f ) = S(r, f ), which is absurd because T (r, 1 f ) = T (r, f ) + S(r, f ). Case 4. h 4 h 4 = h 5 h 5 , h 4 h 4 -1 = h 5 h 5 -1 and h 4 h 4 - h 5 h 5 = h 4 h 4 -1 - h 5 h 5 -1 .
Then it follows from (4.3) that the zeros of f -1 can only occur when h j takes value 0 or 1, for j = 4, 5 or when h 4 h 4 -h 5 h 5 has a zero. In the same way, the zeros of f can only occur when h j takes value 0 or 1, for j = 4, 5 and when h 4 h 4 -1 -h 5 h 5 -1 has a zero. Moreover, by (4.3) we can see that the poles of f can only occur when h j takes value 1 or when h j has a pole, for j = 4, 5

or when

h 4 h 4 - h 5 h 5 - h 4 h 4 -1 + h 5 h 5 -1
has a zero. Therefore we have

(4.4) N (r, f ) + Z(r, f ) + Z(r, f -1) = S(r, f ).
Applying the second Main Theorem 3.3 to f we can derive

T (r, f ) ≤ Z(r, f ) + Z(r, f -1) + N (r, f ) -log(r) = S(r, f ),
which is absurd and finishes proving that H =0. Now, given r > 0, we put

δ(r) = min(1, |h 4 |(r), |h 5 |(r), |h 4 -1|(r), |h 5 -1|(r), ||h 4 -h 5 |(r)).
Then we have

log + ( 1 δ(r) ) ≤ log + max 1, 1 |h 4 |(r) , 1 |h 5 |(r) , 1 |h 4 -1|(r) , 1 |h 5 -1|(r) , 1 |h 4 -h 5 |(r) ≤ log + ( 1 |h 4 |(r) ) + log + ( 1 |h 5 |(r) ) + log + ( 1 |h 4 -1|(r) ), + log + ( 1 |h 5 -1|(r) ) + log + ( 1 |h 4 -h 5 |(r) ) + log(6) = m(r, 1 h 4 ) + m(r, 1 h 5 ) + m(r, 1 h 4 -1 ) + m(r, 1 h 5 -1 ) + m(r, 1 h 4 -h 5
) + log [START_REF] Escassut | An p-adic Nevanlinna theory ouside of a hole Vietnam[END_REF].

Consequently, we can see that

(4.5) log + ( 1 δ(r) ) = S(r, f ).
First, we consider the case when |f -h j |(r) > δ(r) 2 for 2 ≤ j ≤ 5. Then, we have

(4.6) m(r, 1 f ) + m(r, 1 f -1 ) + m(r, 1 f -h 4 ) + m(r, 1 f -h 5 ) ≤ 5 log + 1 δ(r) + O(1) = S(f, r).
Now, let i be an index such that 2 ≤ i ≤ 5 such that |f -h i |(r) ≤ δ(r) 2 . Then for every j = i, with 2 ≤ j ≤ 5, we have

δ(r) ≤ |h i -h j |(r) ≤ |f -h i |(r) + |f -h j |(r) ≤ δ(r) 2 + |f -h j |(r) hence δ(r) 2 ≤ |f -h j |(r).
Therefore, for i = j, we have

5 j=2 j =i m(r, 1 f -h j ) = 5 j=2 j =i log + 1 |f -h j |(r) ≤ 3 log + 1 δ(r) .
Combining (4.5) and the last inequality, we have (4.7)

5 j=2 j =i m(r, 1 f -h j ) = S(r, f ).
On the other hand, for 2 ≤ i ≤ 5, we can write

f f = (f -h i )(f -h i ) + h i (f -h i ) + h i (f -h i ) + h i h i f = (f -h i ) + h i , f (f -1) = f 2 -f = (f -h i ) 2 + (2h i -1)(f -h i ) + h 2 i -h i And now we put g i = (f -h i )(f -h i ) + h i (f -h i ) + h i (f -h i ) and l i = (f -h i ) 2 + (2h i -1)(f -h i )
and then, thanks to properties of determinants, we obtain

(4.8) H = det   g i f -h i l i h 4 h 4 h 4 h 4 (h 4 -1) h 5 h 5 h 5 h 5 (h 5 -1)   .
Now, we have log + (δ(r)) ≤ log + (1+|h i |(r)) ∀i = 2, ..., 5 because it is obvious from the definition for i = 4, 5 and also for i = 2 and i = 3 because h 2 = 0 and h 3 = 1. Consequently, for every i = 2, ..., 5, we have log

+ (δ(r)) ≤ log + (|h i |(r)) + log(2) = m(r, h i ) + log(2) = S(r, f ).
Then by (4.8) and using Lemma 3.7, we obtain for every i = 2, ..., 5 :

log + H f -h i (r) ≤ log + f -h i f -h i (r) + log + (|f -h i |(r)) +O log + (|h i |(r) + log + (|h i |(r)) + log + (|h 4 (r)) + log + (|h 4 |(r)) + log + (|h 5 |(r)) + log + (|h 5 |(r)) ≤ m r, f -h i f -h i + log + (δ(r)) + S(r, f ) = S(r, f )
Hence, for every i = 2, ..., 5 we obtain

m 1 f -h i = log + 1 |f -h i |(r) ≤ log + H f -h i (r) + log + 1 H (r) (4.9) ≤ m r, 1 H + S(r, f ).
Then by (4.6), (4.7), (4.8) and (4.9) we can check that in all cases we have

(4.10) m(r, 1 f ) + m(r, 1 f -1 ) + m(r, 1 f -h 4 ) + m(r, 1 f -h 5 ) ≤ m(r, 1 
H ) + S(r, f ).
Now, by Theorem 3.1, we can write

4T (r, f ) = m(r, 1 f ) + m(r, 1 f -1 ) + m(r, 1 f -h 4 ) + m(r, 1 f -h 5 ) +N (r, 1 f ) + N (r, 1 f -1 ) + N (r, 1 f -h 4 ) + N (r, 1 f -h 5 ) + S(r, f )
hence by (4.10):

4T (r, f ) ≤ m(r, 1 
H ) + N (r, 1 f ) + N (r, 1 f -1 ) + N (r, 1 f -h 4 ) + N (r, 1 f -h 5 ) + S(r, f ). (4.11) ≤ T (r, H) -Z(r, H) + Z(r, f ) + Z(r, f -1) + Z(r, f -h 4 ) + Z(r, f -h 5 ) + S(r, f ).
Now, given a zero α of order s of any function f -h i (2 ≤ i ≤ 5), then α is also a zero of H of order at least s -1. Then from (4.11) we can see that we have:

(4.12) 4T (r, f ) ≤ Z(r, f ) + Z(r, f -1) + Z(r, f -h 4 ) + Z(r, f -h 5 ) + T (r, H) + S(r, f ).
Next, by (4.2) we can check that

m(r, H) ≤ 2m(r, f ) + S(r, f ) N (r, H) ≤ 2N (r, f ) + N (r, f ) + S(r, f ) Consequently (4.13) T (r, H) ≤ 2T (r, f ) + N (r, f ) + S(r, f ).
Then by (4.12) and (4.13), we obtain

2T (r, f ) ≤ N (r, f ) + Z(r, f ) + Z(r, f -1) + Z(r, f -h 4 ) + Z(r, f -h 5 ) + S(r, f )
which finishes proving (4.1) and hence ends the proof of Lemma 4.1 when f belongs to M(K) or M u (D). Next, when f belongs to M c (E) we have a similar proof, writing corresponding counting fonctions T R (r, .) instead of T (r, .), Z R (r, .) instead of Z(r, .), N R (r, .) instead of N (r, .), etc...

Proof of Theorem 2.1: By Lemma 4.1, for every subset {i 1 , ..., i 5 } of {1, ..., q} such that 1 ≤ i 1 < ... < i 5 ≤ q, we have

2T (r, f ) ≤ 5 s=1 Z(r, f -h is ) + S(r, f ), (resp. 2T (r, f ) ≤ 5 s=1 Z(r, f -h is ) + S(r, f ), resp. 2T R (r, f ) ≤ 5 s=1 Z R (r, f -h is ) + S(r, f )).
The number of such inequalities is C 5 q . Summing up over all subsets {i 1 , ..., i 5 } of {1, ..., q}, we can get 2C 5 q T (r, f )

≤ {i 1 ,...,i 5 }⊂{1,...,q} 1≤i 1 <...<i 5 ≤q Z(r, f -h i1 ) + Z(r, h i2 ) + Z(r, h i3 ) + Z(r, h i4 ) + Z(r, h i5 ) + S(r, f ) (resp. 2C 5 q T (r, f ) ≤ {i 1 ,...,i 5 }⊂{1,...,q} 1≤i 1 <...<i 5 ≤q Z(r, f -h i1 ) + Z(r, h i2 ) + Z(r, h i3 ) + Z(r, h i4 ) + Z(r, h i5 ) + S(r, f ), resp. 2C 5 q T R (r, f ) ≤ {i 1 ,...,i 5 }⊂{1,...,q} 1≤i 1 <...<i 5 ≤q Z R (r, f -h i1 ) + Z R (r, h i2 ) + Z( R (r, h i3 ) + Z R (r, h i4 ) + Z R (r, h i5 ) + S(r, f )).
In each one of the last inequalities, we can check that for each index i k , the term Z(r, f -

h i k ) (resp. Z(r, f -h i k ), resp Z R (r, f -h i k )) intervenes C 4
q-1 times. Consequently, we can derive that

2C 5 q T (r, f ) ≤ C 4 q-1 q i=1 Z(r, f -h i ) + S(r, f ), (resp. 2C 5 q T (r, f ) ≤ C 4 q-1 q i=1 Z(r, f -h i ) + S(r, f ), resp. 2C 5 q T R (r, f ) ≤ C 4 q-1 q i=1 Z R (r, f -h i ) + S(r, f )).
Consequently, it follows that

2q 5 T (r, f ) ≤ q i=1 Z(r, f -h i ) + S(r, f ), (resp. 2q 5 T (r, f ) ≤ q i=1 Z(r, f -h i ) + S(r, f ), resp. 2q 5 T R (r, f ) ≤ q i=1 Z R (r, f -h i ) + S(r, f )).
This completes the proof of Theorem 2.1.

Proof of Theorem 2.2: Let f ∈ M(K) be transcendental and let f j , 1 ≤ j ≤ 5 be archibranched small functions with respect to f . Let us apply Theorem 2.1:

(1) 5T (r, f ) ≤ 5 2 5 j=1 Z(r, f -h j ) + o(T (r, f )).
But for each j = 1, ..., 5, we have

Z(r, f -h j ) ≤ Z(r, f -h j ) 3 + o(T (r, f )) ≤ T (r, f ) 3 + o(T (r, f )) hence 5 j=1 Z(r, f -h j ) ≤ T (r, f ) + o(T (r, f )), therefore by (1): 5T (r, f ) ≤ 5 2 5T (r, f ) 3 + o(T (r, f )),
which is absurd and finishes the proof in the general case when f ∈ M(K). The proof is similar when f ∈ M u (D) and when f ∈ M c (E).

Supose now f, h 1 , h 2 have finitely many poles. By Corollary 3.6 we have

T (r, f ) ≤ Z(r, f -h 1 ) + Z(r, f -h 2 ) + o(T (r, f )) hence T (r, f ) ≤ Z(r, f -h 1 ) + Z(r, f -h 2 ) 3 + o(T (r, f )) ≤ 2T (r, f ) 3 + o(T (r, f ))
which is absurd. Similar proofs when f ∈ M u (D) and f ∈ M c (E).

5 Proof of Theorem 2.3.

We first need to establish the following Lemma 5.1.

Lemma 5.1: Let f, g be distinct and belong to M(K), (resp. to M u (D), resp. to M c (E)) sharing q distinct small functions ignoring multiplicity: h 1 , ..., h q with q ≥ 5. Then, for every subset {i 1 , i 2 , i 3 , i 4 } of {1, ..., q}, we have j∈{1,...,q}\{i1,..,i4}

Z(r, f -h j ) + Z(r, g -h j ) ≤ S(r, f ) + S(r, g).

(resp.

j∈{1,...,q}\{i1,..,i4} Z(r, f -h j ) + Z(r, g -h j ) ≤ S(r, f ) + S(r, g), resp.

j∈{1,...,q}\{i1,..,i4}

Z R (r, f -h j ) + Z R (r, g -h j ) ≤ S(r, f ) + S(r, g)).

Proof: Let us first suppose f, g ∈ M(K), or f, g ∈ M u (D). Clearly, we only have to prove that q j=5 Z(r, f -h j ) ≤ S(r, f ) + S(r, g).

Thus, we assume that q j=5 Z(r, f -h j ) = S(r, f ) + S(r, g).

Given any meromorphic function w ∈ M(K), (resp. in M u (D)) we put

L(w) = (w -h 1 )(h 3 -h 2 ) (w -h 2 )(h 3 -h 4 )
and F = L(f ), G = L(g).

Without loss of generality, we may assume that h 1 = ∞, h 2 = 0, h 3 = 1 and we put h = h 4 . Now, we set

B = f (h g -hg )(f -g) f (f -1)(g -h) - g (h f -hf )(f -g) g(g -1)(f -h) . Now, let Q = f (h g -hg )(f -h)(g -1) -g (h f -hf )(g -h)(f -1) = h f f g 2 -h f g -h(h -1)f f g -hh f g 2 + hh f g -h f 2 gg + h f gg + h(h -1)f gg + hh f 2 g -hh f g . Then B = (f -g)Q f (f -1)g(g -1)
.

Suppose first that B is identically zero. Then we have

(5.1) f (h g -hg )(f -g) f (f -1)(g h) = g (h f -hf )(f -g) g(g -1)(f -h) .
If h is a constant, then f = g which contradicts our hypothesis. Hence h is not a constant and then, by (5.1) we have

(f -1)(g -h) g -1)(f -h) -1 = f (h g -hg ) g (h f -hf ) -1 therefore (f -g)(g -h) (g -1)(f -h) = h (f -g )g -(f -g)g g (h f -hf )
and hence

(5.2) f -g f -g = (1 -h)g (h f -hf ) h g(g -1)(f -h) + g g .
Let us fix j ≥ 5, j ≤ q. By (5.1), there exists a common zero α ∈ K (resp. α ∈ D, resp. α ∈ E) of f -h j and g -h j which is not a zero or a pole of h, h , h j -1, h j -h. Then, α must be a pole of the left hand side of (5.2) but cannot be a pole of the right hand side of (5.2). This is a contradiction showing that B cannot be identically zero. Now, let us fix j ≥ 5 such that j ≤ q and suppose that β is a common zero of f -h j and g -h j but is not a zero or a pole of h, h j , h j -1, h j -h. Then it is a zero of f -g and it is not a pole of

Q f (f -1)(f -h)g(g -1)(g -h) ,
and hence it is a zero of B. Now, since f and g share each h j ignoring multiplicity, we have We will estimate m(r, B). By computation, B can be written

B = f (h g -hg ) (f -1)g(g -h) - f f -1 - f f h g -hg g -h + g (h f -hf ) (g -1)f (f -h) - g g -1 - g g h f -hf f -h = f f -1 g g - g -h g - - f f -1 - f f h - h(g -h ) g -h + g g -1 f f - f -h f -h - g g -1 - g g h - h(f -h ) f -h
In this last relation we have a sum of logarithmic derivative and hence, by Lemma 3.7, we can see that (5.4) m(r, B) = S(r, f ) + S(r, g).

Next, we will estimate N (r, B). Clearly, the poles of B can only occur at the zeros of f, g, f -1, g -1, f -h, g -h and at the poles of f, g, h.

Let A be the set of all zeros, 1-points and poles of h. Then we will first estimate the counting function of poles of B when we are in A. Recall that f and g share the constants 0, 1 and ∞.

Let γ be a zero of h. Then we can check that B has no pole at γ. Let γ be a 1-value of h. If B had a pole, then f -1 would have a zero of order s, g -1 would have a zero of order t, f -g whould have a zero and Q would have a zero of order s + t, hence B would have a zero, not a pole. Now, let γ be a pole of h of order n.

If f (γ) = 1, then g(γ) = 1 because f and g share h 3 , hence B has no pole at γ. If f has a pole of order s at γ then g also has a pole of order t because f and g share h 1 . We can assume s ≥ t, then B has a pole of order at most n + 2, hence the counting function of poles of B when γ is a pole of f , g and h and hence is a pole of B of order n + 2, is bounded by thrice the counting function of the poles of h and hence is of the form S(r, f ) + S(r, g).

Next, suppose that f (γ) = 1, ∞, hence g(γ) = 1, ∞. If f and g have no zero at γ, it is clear that B has at most a pole of order n, hence the counting function of poles of B when f (γ) = 0, 1, ∞, (hence g(γ) = 0, 1, ∞) is of the form S(r, f ) + S(r, g). Finally, if f (γ) = 0, then g(γ) = 0 because f and g share h 2 and then we can check that B may admits a pole at γ of order at most 2n + 2. Consequently the couting function of poles of B when γ lies in A and is a pole of h is bounded by thrice the counting function of the poles of h and hence is of the form S(r, f ) + S(r, g).

Thus, the counting function of poles of B when γ lies in A is of the form S(r, f ) + S(r, g).

Consider now the poles of B when γ / ∈ A. Let γ / ∈ A be a common pole of f and g of order s 1 and t 1 respectively. Then, γ is a pole of Q of order at most 2s 1 + 2t 1 + 1. Next, γ is a pole of f -g of order max(s 1 , t 1 ). Hence from the definition of B, γ is a pole of the numerator of B of order at most 2s 1 + 2t 1 + 1 + max(s 1 , t 1 ) and on the other hand, it is a pole of the denominator of B of order 3s 1 + 3t 1 . But since

2s 1 + 2t 1 + 1 + max(s 1 , t 1 ) -3(s 1 + t 1 ) = 1 + max(s 1 , t 1 ) -s 1 -t 1 ≤ 0, it follows that γ is not a pole of B.
Let γ / ∈ A be a common zero of f and g of order s 2 and t 2 respectively. We can check that γ is a zero of Q of order at least s 2 + t 2 + 1 and that γ is a zero of f -g of order at least min(s 2 , t 2 ). On the other hand, we can check that the denominator of B has a zero at γ of order at most s 2 + t 2 . Consequently, B has no pole at γ.

Suppose now that γ / ∈ A is a common zero of f -h and g -h. Then γ is a zero of f -g. On the other hand, γ is a pole of order 1 of f f -h and g g -h

. Consequently, by the definition of B we can check that γ is not a pole of B. Similarly, when γ is a common zero of f -1 and g -1, γ is not a pole of B. Suppose now that γ / ∈ A is a pole of f but is not a pole of g and is not a zero of g, g -1, and g -h. Since f and g share h 0 , that situation does not occur.

Suppose now that γ / ∈ A is a zero of f but is not a pole of g and is not a zero of g. Since f and g share h 0 , that situation does not occur.

Suppose now that γ / ∈ A is a zero of f -h i with i = 3, 4 but is not a pole of g and is not a zero of g, g -1 and g -h. Then γ is a pole of B of order at most 1. Similarly, if γ is a zero of g -h i with i = 3, 4 but is not a pole of f and is not a zero of f, f -1 and f -h. Then γ is a pole of B of order at most 1. However, since f and g share h 3 and h 4 , such a situation does not occur.

Suppose now that γ / ∈ A is a common zero of f -h i and g -h j for some 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4 with i = j and i = 2, j = 2. Then γ is a pole of B of order at most 2. However, in such a situation, since f and g share h i , then γ is a zero of h i -h j . But since h i and h j are small with respect to f and g, the counting function of points γ that are common zeros of f -h i and g -h j for some 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4 with i = j and i = 2, j = 2, is bounded by S(r, f ) + S(r, g).

Finally, suppose that γ / ∈ A is a zero of f -h i and a pole of g for some i = 2, 3, 4 or a zero of g -h i and a pole of f for some i = 2, 3, 4. But since f and g share h 2 , h 3 , h 4 , such a situation is impossible.

In conclusion, we have N (r, B) ≤ S(r, f ) + S(r, g) and therefore, by (5.3) and (5.4) that completes the proof of Lemma 5.1 when f, g ∈ M(K), or f, g ∈ M u (D). Now, when f, g ∈ M c (E), the proof is similar.

Corollary 5.2: Let f, g be distinct and belong to M(K), (resp. to M u (D), resp. to M c (E)) sharing q distinct small functions ignoring multiplicity: h 1 , ..., h q (with q ≥ 5). Then, for every subset {i 1 , i 2 , i 3 , i 4 } of {1, ..., q}, we have Z(r, f -h j ) + Z(r, g -h j ) ≤ S(r, f ) + S(r, g) ∀j = 1, ..., q.

(resp.

Z(r, f -h j ) + Z(r, g -h j ) ≤ S(r, f ) + S(r, g) ∀j = 1, ..., q resp. Z R (r, f -h j ) + Z R (r, g -h j ) ≤ S(r, f ) + S(r, g) ∀j = 1, ..., q.) Proof of Theorem 2.3: Suppose first that f, g ∈ M(K) or f, g ∈ M u (D). Suppose that f and g are not identic. Applying Corollary 5.2 with q = 5, we have Z(r, f -h j ) = S(r, f ) + S(r, g) and Z(r, g -h j ) = S(r, f ) + S(r, g) for every j ∈ {1, ..., 5}. Therefore:

  Now, we denote by Z(r, f ) the counting function of zeros of f ignoring multiplicity: Z(r, f ) = θ 0 (f ) log r + σ(r) n=1 (log r -log |a n |) and so, Z(r, f ) is called the counting function of zeros of f in d(0, r) ignoring multiplicity.

τ

  (r) n=1 t n (log r -log |b n |) and then N (r, f ) is called the counting function of the poles of f , counting multiplicity. Next, in order to define the counting function of poles of f ignoring multiplicity, we put γ 0 (f ) = 1 if γ 0 (f ) > 0 and γ 0 (f ) = 0 else and we set N (r, f ) = γ 0 (f ) log r + τ (r) n=1 (log r -log |b n |) and then N (r, f ) is called the counting function of the poles of f , ignoring multiplicity. Now, we can define the characteristic function of f as T (r, f ) = max(Z(r, f ), N (r, f )). Thus this definition applies to functions f ∈ M(d(0, R -)) as well as functions f ∈ M(K).

2

 2 Small functionsRecall that given three functions φ, ψ, ζ defined in an intervalJ =]R, +∞[ (resp. J =]a, R[), with values in [0, +∞[, we shall write φ(r) ≤ ψ(r) + O(ζ(r)) if there exists a constant b ∈ R such that φ(r) ≤ ψ(r) + bζ(r). We shall write φ(r) = ψ(r) + O(ζ(r)) if |ψ(r) -φ(r)| isbounded by a function of the form bζ(r). Similarly, we shall write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a function h from J =]a, +∞[ (resp. from J =]a, R[) to R such that lim r→+∞ and such that φ(r) ≤ ψ(r) + h(r). And we shall write φ(r) = ψ(r) + o(ζ(r)) if there exists a function h from J =]a, +∞[ (resp. from J =]a, R[) to R such that lim r→+∞ and such that φ(r) = ψ(r) + h(r).

5 j=1Z 5 j=1Z

 55 (r, g -h j ) = (r, f -h j ) ≤ Z(r, B) + S(r, f ) + S(r, g) (5.3)≤ T (r, B) + S(r, f ) + S(r, g) = m(r, B) + N (r, B) + S(r, f ) + S(r, g).
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(5.5) 5 j=1 Z(r, f -h j ) + Z(r, g -h j ) = S(r, f ) + S(r, g). Now, by Theorem 2.1, we have

hence, by (5.5): 2(T (r, f ) + T (r, g)) ≤ S(r, f ) + S(r, g), which is absurd and proves that f = g. Suppose now that f, g ∈ M c (E). Replacing each symbol T (r, .) by T R (r, .) and Z(r, .) by Z R (r, .) we can make the same reasoning and conclude in the same way f = g.

The conclusion concerning meromorphic functions f, g having finitely many poles comes from [START_REF] Escassut | A short note on two p-adic meromorphic functions sharing a few small ones[END_REF] and from [START_REF] Escassut | p-adic Analytic Functions[END_REF], Theorem C.9.18 and Theorem C.9.16.

Remark: After obtaining Relation (5.5), by Theorem A, we could state that Z(r, f -h j ) + Z(r, g -h j ) + S(r, f ) + S(r, g), which could also let us conclude.