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Survey on p-adic meromorphic functions sharing 5 small ones

on a work by Ta Thi Hoai An and Nguyen Viet Phuong, with

some additional properties

Alain Escassut

Abstract

Let K be a complete ultrametric algebraically closed field of characteristic 0, let D be the
open disk {x ∈ K |x| < R} and let E = K \ D. Let f, g be two meromorphic functions in
K (resp. two unbounded meromorphic functions in D, resp. two meromorphic functions in
E) having infinitely many zeros or poles in E) sharing 5 small meromorphic functions in the
same set (ignoring multiplicity). Then f = g. Moreover, if f and g have finitely many poles
in K (resp. in D, resp. in E), and share 3 small functions, (ignoring multiplicity), then f = g.
We define archi-branched small functions and show that a meromorphic function f (in K, D,
or E) can’t have 5 archi-branched small functions.

.

1 Introduction and definitions.

Small functions with respect to a meromorphic functions are well known in the general theory of
complex functions. Particularly, one knows the Nevanlinna theorem on 3 small functions and its
generalization due to K. Yamanoi which shows that two meromorphic functions in C sharing 5
small functions, ignoring multiplicity, are equal.

Now, we denote by K a complete ultrametric algebraically closed field of characteristic 0. Let
a ∈ K and take r > 0. We denote by d(a, r−) the open-disk {x ∈ K | |x − a| < r}, by d(a, r) the
closed-disk {x ∈ K | |x − a| ≤ r} and by E the set K \ d(0, R−. Considering two meromorphic
functions f, g in K or in d(a,R−), or in E, sharing a few small meromorphic fonctions, we can
ask how many small functions are necessary to be able to prove that f and g are identic. A
first work was done in [7], showing that if f and g share 7 small meromorphic functions, then
f = g. Obtaining a better result is not obvious since Yamanoi’s Theorem [14] has no equivalent
for ultrametric functions. However, in [13], Ta Thi Hoai An and Nguyen Viet Phuong have found
a method to show that 5 small functions are enough to prove that f = g. This is the work that
we mean to develop with some more explanations. The main difficulty in [13] appears in Lemma
3, that we translate here as Lemma 5.1 in a more simple context and we try to explain the proof
with more details.

Now, we denote by D the set d(0, R−) and by E the set K \ d(0, R−) = {x ∈ K | |x− a| ≥ R}.
We denote by A(K) (resp. A(D)), the algebra of analytic functions in K (resp. in D the K-
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Survey on meromorphic functions sharing 5 small ones 2

algebra of power series converging in D). Next, we denote by A(E) the K-algebra of Laurent series
converging in E [8].

Next, we denote by M(K) (resp. M(D)) the field of fractions of A(K) (resp. A(D)). We
also denote by Au(D) the K-algebra of unbounded analytic functions in D and byMu(D) the set
of meromorphic functions in D that are not a quotient of two bounded analytic functions in D.
Finally, we denote by M(E) the field of fractions of A(E).

Throughout the next paragraphs, we will denote by I the interval ]0,+∞[, by J an interval of
the form ]0, R[ with t > 0 and by G the interval [R,+∞[.

We have to introduce the counting function of zeros and poles of f , counting or not multiplicity.
Here we will choose a presentation that avoids assuming that all functions we consider admit no
zero and no pole at the origin.

Definitions: Let f ∈ M(d(0, r) and for every a ∈ d(0, r), let θa(f) be the multiplicity order of
a if a is a zero of f and let θa(f) = 0, else.

We denote by Z(r, f) the counting function of zeros of f in d(0, r) in the following way.
Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0 < |an| ≤ r, of respective

order sn.

We set Z(r, f) = θ0(f) log r +
σ(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f) is called the counting

function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f ignoring multiplicity, we put θ0(f) = 0 if

θ0(f) = 0 and θ0(f) = 1 if θ0(f) ≥ 1. Now, we denote by Z(r, f) the counting function of zeros

of f ignoring multiplicity: Z(r, f) = θ0(f) log r +
σ(r)∑
n=1

(log r − log |an|) and so, Z(r, f) is called the

counting function of zeros of f in d(0, r) ignoring multiplicity.

In order to define the counting function of poles of f , if 0 is a pole of f , we denote by γ0(f) the
order of multiplicity of the pole and we put γ0(f) = 0, else. Now, considering the finite sequence
(bn), 1 ≤ n ≤ τ(r) of poles of f such that 0 < |bn| ≤ r, with respective multiplicity order tn, we

put N(r, f) = γ0(f) log r+
τ(r)∑
n=1

tn(log r − log |bn|) and then N(r, f) is called the counting function

of the poles of f , counting multiplicity.
Next, in order to define the counting function of poles of f ignoring multiplicity, we put γ0(f) =

1 if γ0(f) > 0 and γ0(f) = 0 else and we set N(r, f) = γ0(f) log r +
τ(r)∑
n=1

(log r − log |bn|) and then

N(r, f) is called the counting function of the poles of f , ignoring multiplicity.

Now, we can define the characteristic function of f as T (r, f) = max(Z(r, f), N(r, f)). Thus
this definition applies to functions f ∈M(d(0, R−)) as well as functions f ∈M(K).

Remark: If we change the origin, the functions Z, N, T are not changed, up to an additive
constant.

Consider now a function f ∈ A(E). By the definition, the restriction of f to anny annulus
R ≤ |x| ≤ S is an annalytic element in that annulus and hence has finitely many zeros in that
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annulus [4], [5], [8], [10]. Similarly, a meromorphic function f ∈M(E) has finitely many zeros and
finitely many poles in the annulus R ≤ |x| ≤ S. That is summarized in Proposition 1.1:

Proposition 1.1 [1] [4], [5], 10], [11] Let f ∈M(E). If f has infinitely many zeros in E (resp.
infinitely many poles in E), the set of zeros (resp. the set of poles) is a sequence (αn)n∈N such that

lim
n→+∞

|αn| = +∞. If f has no zero in E, then it is of the form
+∞∑
−∞

anx
n with an = 0 ∀n > q and

|aq|rq > |an|rn ∀n ∈ Z, n 6= q,∀r ≥ R.

Corollary 1.1. [1], [4], [5], [11] : Let f ∈ M(E) have no zero and no pole in E. There exists
a unique integer q ∈ Z such that x−qf(x) has a limit b ∈ K∗.

Definitions: Let f ∈ M(E) have no zero and no pole in E. The integer q ∈ Z such that
x−qf(x) has a limit b ∈ K∗ is called the Motzkin index of f and f is called a Motzkin factor if

lim
|x|→+∞

x−qf(x) = 1 [1], [5], [11].

Proposition 1.2 [1], [4], [5], [8], [11] : Let f ∈ M(E). Then f factorizes in a unique way in
the form fSf0 where fS is a Motzkin factor and f0 ∈M(K) has no zero in D.

Notations: We will denote by Ac(E) the set of f ∈ A(E) having infinitely many zeros in E.
Similarly, we will denote by Mc(E) the set of functions f ∈ M(E) which have infinitely many
zeros or poles in E.

Thus we can define counting functions for zeros and poles in that way: let f ∈ M(E) and,
for every r > R, let a1, ..., aσ(r) be the sequence of zeros of f in the annulus R ≤ |x| ≤ r,
with |aj | ≤ |aj+1|, 1 ≤ j ≤ σ(r), and let sj be the order of aj . Then we put ZR(r, f) =∑σ(r)
j=1 sj(log(r) − log(|aj |)) and ZR(r, f) is called the counting function of zeros for f in M(E),

counting multiplicity. And we define ZR(r, f) =
∑σ(r)
j=1 (log(r) − log(|aj |)) which is called the

counting function of zeros for f in M(E), ignoring multiplicity.
Similarly, let b1, ..., bτ(r) be the sequence of poles of f in the annulus R ≤ |x| ≤ r, with |bj | ≤

|bj+1|, 1 ≤ j ≤ τ(r) and let tj be the order of bj . Then we putNR(r, f) =
∑τ(r)
j=1 tj(log(r)−log(|bj |))

which is called the counting function of poles for f in M(E), counting multiplicity and we put
NR(r, f) =

∑τ(r)
j=1 (log(r)− log(|bj |)) which is called the counting function of poles for f in M(E),

ignoring multiplicity.
Now, we put TR(r, f) = max(ZR(r, f), NR(r, f)) and the function TR(r, f) is called the charac-

teristic function of f in M(E).

2 Small functions

Recall that given three functions φ, ψ, ζ defined in an interval J =]R,+∞[ (resp. J =]a,R[),
with values in [0,+∞[, we shall write φ(r) ≤ ψ(r) + O(ζ(r)) if there exists a constant b ∈ R such
that φ(r) ≤ ψ(r) + bζ(r). We shall write φ(r) = ψ(r) + O(ζ(r)) if |ψ(r) − φ(r)| is bounded by a
function of the form bζ(r).

Similarly, we shall write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a function h from J =]a,+∞[

(resp. from J =]a,R[) to R such that lim
r→+∞

h(r)
ζ(r)

= 0 (resp. lim
r→R

h(r)
ζ(r)

= 0) and such that φ(r) ≤
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ψ(r) +h(r). And we shall write φ(r) = ψ(r) + o(ζ(r)) if there exists a function h from J =]a,+∞[

(resp. from J =]a,R[) to R such that lim
r→+∞

h(r)
ζ(r)

= 0 (resp. lim
r→R

h(r)
ζ(r)

= 0) and such that φ(r) =

ψ(r) + h(r).

Definitions and notations: For each f ∈M(K) (resp. f ∈M(D), resp. f ∈M(E)) we denote
by Mf (K), (resp. Mf (D), resp. Mf (E)) then the set of functions h ∈M(K), (resp. h ∈M(D),
resp. M(E)) such that T (r, h) = o(T (r, f)) when r tends to +∞ (resp. T (r, h) = o(T (r, f)) when
r tends to R, resp. TR(r, h) = o(TR(r, f)) when r tends to +∞). Now, if a function Φ from I to R
(resp. from ]0, R[ to R, resp. from [R,+∞[ to R) satisfies Φ(r) ≤ o(T (r, f)), or φ(r) = o(T (r, f)),
we write Φ(r) ≤ S(r, f), or Φ(r) = S(r, f) respectively.

Similarly, if f ∈ A(K) (resp. f ∈ A(D), resp. f ∈ A(E)) we shall denote by Af (K) (resp.
Af (D), resp. Af (E)) the set Mf (K) ∩ A(K), (resp. Mf (D) ∩ A(D), resp. Mf (E) ∩ A(E)).

The elements ofMf (K) (resp. Mf (D), resp. Mf (E)) are called small meromorphic functions
with respect to f , or small functions in brief. Similarly, if f ∈ A(K) (resp. f ∈ A(D), resp.
f ∈ A(E)) the elements of Af (K) (resp. Af (D), resp. Af (E)) are called small analytic functions
with respect to f or small functions in brief.

In [7], the following theorem is proved:

Theorem A: Let f ∈M(K), (resp. let f ∈Mu(D)) be nonconstant and let h1, ..., hq (q ≥ 5) be
q distinct small functions with respect to f . We have

q

3
T (r, f) ≤

q∑
i=1

Z(r, f − hi) + S(r, f).

Moreover, if f has finitely many poles, and if h1, ..., hq (q ≥ 3) are q distinct small functions
with respect to f . We have

q

2
T (r, f) ≤

q∑
i=1

Z(r, f − hi) + S(r, f).

From [13], Theorem A is improved in the following way:

Theorem 2.1: Let f ∈M(K), (resp. let f ∈Mu(D), resp. let f ∈Mc(E)) be nonconstant and
let h1, ..., hq(q ≥ 5) be q distinct small functions with respect to f . We have

2q
5
T (r, f) ≤

q∑
i=1

Z(r, f − hi) + S(r, f)

(resp.
2q
5
T (r, f) ≤

5∑
s=1

Z(r, f − his) + S(r, f),

resp.
2q
5
TR(r, f) ≤

5∑
s=1

ZR(r, f − his) + S(r, f)).
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Definition: Let f, g ∈ M(K) (resp. f, g ∈ Mu(D)), resp. f, g ∈ Mc(E)). Then f and g
will be said to share a small function w ∈ M(K) (resp. w ∈ M(D), resp. w ∈ Mc(E)), ignoring
multiplicity, if f(x) = w(x) implies g(x) = w(x) and if g(x) = w(x) implies f(x) = w(x).

In [7] the following theorem is proved:

Theorem B: Let f, g ∈ M(K) be transcendental (resp. f, g ∈ Mu(D) ) be distinct and share
7 distinct small functions (other than the constant ∞) ignoring multiplicity, wj ∈ Mf (K) ∩
Mg(K) (j = 1, ..., 7) (resp. wj ∈Mf (D) ∩Mg(D) (j = 1, ..., 7), ). Then f = g

Moreover, if f and g have finitely many poles and share 3 small functions, then f = g.

Definition: A small function h ∈ M(K) (resp. h ∈ Mu(D), resp. h ∈ Mc(E)) will be said to
be archi-branched with respect to a meromorphic function f ∈ M(K) (resp. f ∈ Mu(D), resp.
f ∈Mc(E)) if all zeros of f − h except finitely many are of order at least 3.

Theorem 2.2: Let f ∈ M(K) be transcendental (resp. f ∈ Mu(D), resp. f ∈ Mc(E)). Then
f admits at most 4 archi-branched small functions. Moreover, if f has finitely many poles, then f
admits at most one archi-branched small function.

Remark: Thanks to Yamanoy’s theorem [14], it is easily seen that a meromorphic function f in
C can’t admit more than 4 totally branched small functions, i.e. small function h such that all
zeros of f − h has order at least 2, except finitely many [2]. Similarly, a meromorphic function f
in C can’t admit more than 3 archi-branched small functions.

From [13], Theorem B is improved in the following way:

Theorem 2.3: Let f, g ∈ M(K) be transcendental (resp. f, g ∈ Mu(D), resp. f, g ∈ Mc(E))
be distinct and share 5 distinct small meromorphic functions ignoring multiplicity, wj ∈Mf (K)∩
Mg(K) (j = 1, ..., 5) (resp. wj ∈Mf (D)∩Mg(D) (j = 1, ..., 5), resp. wj ∈Mf (E)∩Mg(E) (j =
1, ..., 5), ). Then f = g.

Moreover, if f and g have finitely many poles in K (resp. in D, resp in E) and share 3 small
meromorphic functions, ignoring multiplicity, then f = g.

Remarks: 1) When we consider meromorphic functions on C, thanks to the main Nevanlinna
Theorem on n small functions due to Yamanoi [14], it is easily seen that two meromorphic functions
sharing 5 small ones, ignoring multiplicity, are equal. The absence of such a theorem with p-adic
meromorphic functions makes much more difficult the study.

2) If a meromorphic function f ∈ Mc(E) has finitely many poles, then it must have infinitely
many zeros.

3 Nevanlinna Theorems

The Nevanlinna Theory is well known in C [12]. It was constructed in a field like K in the eighties
and next, in a disk and out of a hole [3], [9], [5], [6], [8]. We have to recall the two main Theorems,
applied to each domain of definition of meromorphic functions.
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Theorem 3.1 (First Main Theorem in a disk and in K ) [3], [5], [9]: Let f, g ∈ M(K)
(resp. let f, g ∈M(D)). Then T (r, f+b) = T (r, f)+O(1). Let P (X) ∈ K[X]. Then T (r, P (f)) =
deg(P )T (r, f) +O(1) and T (r, f ′P (f)) ≥ T (r, P (f)).

Suppose now f, g ∈ A(K) (resp. f, g ∈ A(D)). Then Z(r, fg) = Z(r, f) + Z(r, g), T (r, f) =
Z(r, f), T (r, fg) = T (r, f) + T (r, g) + O(1) and T (r, f + g) ≤ max(T (r, f), T (r, g)). Moreover, if

lim
r→+∞

T (r, f)− T (r, g) = +∞ then T (r, f + g) = T (r, f) when r is big enough.

Theorem 3.2 (First Main Theorem out of a hole): [6] Let f, g ∈ M(E). Then for every
b ∈ K, we have TR(r, f + b) = TR(r, f) + O(log(r)), (r ∈ I) TR(r, f.g) ≤ TR(r, f) + TR(r, g) +

O(log(r)) (r ∈ I), TR(r,
1
f

) = TR(r, f)), TR(r, f + g) ≤ TR(r, f) + TR(r, g) + O(log(r)) (r ≥ R)

and TR(r, fn) = nTR(r, f). Given a polynomial P (X) ∈ K[X] of degree q, then TR(r, P ◦ f) =
qTR(r, f) +O(log(r)).

Moreover, if both f and g belong to A(E), then

TR(r, f + g) ≤ max(TR(r, f), TR(r, g)) +O(log(r)) (r ≥ R)

and TR(r, fg) = TR(r, f) + TR(r, g), (r ≥ R). Particularly, if f ∈ A(E), then TR(r, f + b) =
TR(r, f) +O(1) (r ≥ R).

Theorem 3.3 (Second Main Theorem in K and in a disk) [3], [5], [9]: Let α1, ..., αq ∈ K
be distinct, with q ≥ 2, let S = {α1, ..., αq} and let f ∈M(K) (resp. f ∈M(d(0, R−))). Then
q∑
j=1

(
Z(r, f − αj)− Z(r, f − αj)

)
≤ T (r, f) +N(r, f)− log r +O(1) ∀r > 0 (resp. ∀r < R).

Theorem 3.4 (Second Main Theorem out of a hole) [6], [8] : Let f ∈ M(E) and let
a1, ..., aq ∈ K be distinct with q ≥ 2. Then
(q − 1)TR(r, f) ≤

∑q
j=1 ZR(r, f − aj) +O(log(r)) (r ≥ R).

Theorem 3.5 (Second Main Theorem on three small functions) [6], [8], [9] : Let
f ∈ M(K), resp. f ∈ Mu(D), resp f ∈ Mc(E)) and let h1, h2, h3 ∈ M(K), resp. h1, h2, h3 ∈
M(D), resp. h1, h2, h3 ∈M(E)) be small functions with respect to f . Then

T (r, f) ≤
3∑
j=1

Z(r, f − hj) + o(T (r, f))

(resp. T (r, f) ≤
3∑
j=1

Z(r, f − hj) + o(T (r, f)),

resp. TR(r, f) ≤
3∑
j=1

Z(r, f − hj) + o(T (r, f)) ).

Considering a small function h3 whose zeros are the poles of f1 and f2, we can derive Corollary
3.6:

Corollary 3.6: Let f ∈M(K), resp. f ∈Mu(D), resp f ∈Mc(E)) having finitely many poles
and let h1, h2 ∈ M(K), resp. h1, h2 ∈ M(D), resp. h1, h2 ∈ M(E)) be small functions with
respect to f . Then
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T (r, f) ≤
2∑
j=1

Z(r, f − hj) + o(T (r, f))

(resp. T (r, f) ≤
2∑
j=1

Z(r, f − hj) + o(T (r, f)),

resp. TR(r, f) ≤
2∑
j=1

Z(r, f − hj) + o(T (r, f)) ).

Now we have to recall the function m(r, f) defined for a function f ∈ M(K) or f ∈ M(D) by
m(r, f) = T (r, f)−N(r, f) and for a function f ∈M(E) by mR(r, f) = TR(r, f)−NR(r, f). This
function satisfies the Logarithmic derivative lemma [9]:

Lemma 3.7: Let f ∈ M(K) (resp. f ∈ M(d(0, R−))). Then given k ∈ N∗, m(r, f
k

f ) = S(r, f).

Let f ∈M(E). Then given k ∈ N∗, mR(r, f
k

f ) = S(r, f).

4 Proofs of Theorems 2.1 and 2.2.

Notation: Let f be a meromorphic function in an annulus which is the set of x ∈ K such that
R < |x| < S and let us fix r ∈]R,S[. We know that |f(x)| admits a limit when |x| tends to r, but
is not equal to r [4], [5]. This limit is usually denoted |f |(r).

Lemma 4.1: Let f ∈ M(K), (resp. let f ∈ Mu(D), resp. let f ∈ Mc(E)) be nonconstant and
let h1, ..., h5 be distinct small functions with respect to f . We have

2T (r, f) ≤
5∑
i=1

Z(r, f − hi) + S(r, f).

Proof: We first suppose f ∈ M(K), or f ∈ Mu(D). Let g =
(f − h2)(h3 − h1)
(f − h1)(h3 − h2)

. Then it is

easily seen that:
Z(r, g) = Z(r, f − h2) + S(r, f),
N(r, g) = Z(r, f − h1) + S(r, f)
Z(r, g − 1) = Z(r, f − h3) + S(r, f).
Consequently, in order to prove Lemma 4.1, it is sufficient to prove the following inequality:

(4.1) 2T (r, f) ≤ N(r, f) + Z(r, f) + Z(r, f − 1) + Z(r, f − h4) + Z(r, f − h5) + S(r, f)

where h1 =∞, h2 = 0, h3 = 1 and h4 and h5 are two small functions with respect to f different
from 0, 1,∞ and h4 6= h5.

If one of the functions h4, h5 is a constant, then (4.1) is immediate by the second main
theorem for constants 3.3. Consequently, now we can assume that both h4, h5 are nonconstant
small functions.
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Let

H = det

 ff ′ f ′ f(f − 1)
h4h

′
4 h′4 h4(h4 − 1)

h5h
′
5 h′5 h5(h5 − 1)

 .

By a simple computation, we get:

(4.2) H = f(f−1)h4(h4−1)h5(h5−1)
(( (h′4

h4
−h
′
5

h5

)( f ′

f − 1
− h′5
h5 − 1

)
−
( h′4
h4 − 1

− h′5
h5 − 1

)(f ′
f
−h
′
5

h5

))
.

Suppose first that H is identically zero. Since f is not a constant and since h4, h5 are not identically
0 or 1, it follows from the definition of H that(h′4

h4
− h′5
h5

) f ′

f − 1
−
( h′4
h4 − 1

− h′5
h5 − 1

)f ′
f

(4.3) =
(h′4
h4
− h′5
h5

) fh′5
h5 − 1

−
( h′4
h4 − 1

− h′5
h5 − 1

)h′5
h5
.

We must now distinguish 4 cases.

Case 1.
h′4
h4

=
h′5
h5

. It follows from (4.3) that either
h′4

h4 − 1
=

h′5
h5 − 1

or
f ′

f
=
h′5
h5

. If
h′4

h4 − 1
=

h′5
h5 − 1

,

then h4 and h5 are constants, which is excluded by hypothesis. Hence
f ′

f
=
h′5
h5

and then f is of

the form c.h5, where c is a constant, which contradicts our hypothesis: h5 is a small function with
respect to f .

Case 2.
h′4

h4 − 1
=

h′5
h5 − 1

. Similarly to Case 1, we have a contradiction.

Case 3.
h′4
h4
− h′5
h5

=
h4

h4 − 1
− h′5
h5 − 1

6= 0. It follows from (4.3) that

f ′

f − 1
− f ′

f
=

h′5
h5 − 1

− h′5
h5
,

whih implies
f − 1
f

=
C(h5 − 1)

h5

where C is a constant. Thus we obtain

1
f

= 1− C(h5 − 1)
h5

and hence T (r,
1
f

) = S(r, f), which is absurd because T (r,
1
f

) = T (r, f) + S(r, f).

Case 4.
h′4
h4
6= h′5
h5
,

h′4
h4 − 1

6= h′5
h5 − 1

and
h′4
h4
− h′5
h5
6= h′4
h4 − 1

− h′5
h5 − 1

.

Then it follows from (4.3) that the zeros of f − 1 can only occur when hj takes value 0 or 1,

for j = 4, 5 or when
h′4
h4
− h′5
h5

has a zero. In the same way, the zeros of f can only occur when hj
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takes value 0 or 1, for j = 4, 5 and when
h′4

h4 − 1
− h′5
h5 − 1

has a zero. Moreover, by (4.3) we can

see that the poles of f can only occur when hj takes value 1 or when hj has a pole, for j = 4, 5

or when
h′4
h4
− h′5
h5
− h′4
h4 − 1

+
h′5

h5 − 1
has a zero. Therefore we have

(4.4) N(r, f) + Z(r, f) + Z(r, f − 1) = S(r, f).

Applying the second Main Theorem 3.3 to f we can derive

T (r, f) ≤ Z(r, f) + Z(r, f − 1) +N(r, f)− log(r) = S(r, f),

which is absurd and finishes proving that H 6=0.
Now, given r > 0, we put

δ(r) = min(1, |h4|(r), |h5|(r), |h4 − 1|(r), |h5 − 1|(r), ||h4 − h5|(r)).

Then we have

log+(
1
δ(r)

) ≤ log+
(

max
(
1,

1
|h4|(r)

,
1

|h5|(r)
,

1
|h4 − 1|(r)

,
1

|h5 − 1|(r)
,

1
|h4 − h5|(r)

))
≤ log+(

1
|h4|(r)

) + log+(
1

|h5|(r)
) + log+(

1
|h4 − 1|(r)

),+ log+(
1

|h5 − 1|(r)
) + log+(

1
|h4 − h5|(r)

)

+ log(6) = m(r,
1
h4

) +m(r,
1
h5

) +m(r,
1

h4 − 1
) +m(r,

1
h5 − 1

) +m(r,
1

h4 − h5
) + log(6).

Consequently, we can see that

(4.5) log+(
1
δ(r)

) = S(r, f).

First, we consider the case when |f − hj |(r) > δ(r)
2 for 2 ≤ j ≤ 5. Then, we have

(4.6) m(r,
1
f

) +m(r,
1

f − 1
) +m(r,

1
f − h4

) +m(r,
1

f − h5
) ≤ 5 log+

( 1
δ(r)

)
+O(1) = S(f, r).

Now, let i be an index such that 2 ≤ i ≤ 5 such that |f − hi|(r) ≤ δ(r)
2 . Then for every j 6= i,

with 2 ≤ j ≤ 5, we have

δ(r) ≤ |hi − hj |(r) ≤ |f − hi|(r) + |f − hj |(r) ≤
δ(r)

2
+ |f − hj |(r)

hence
δ(r)

2
≤ |f − hj |(r).

Therefore, for i 6= j, we have

5∑
j=2
j 6=i

m(r,
1

f − hj
) =

5∑
j=2
j 6=i

log+
( 1
|f − hj |(r)

)
≤ 3 log+

( 1
δ(r)

)
.
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Combining (4.5) and the last inequality, we have

(4.7)
5∑

j=2
j 6=i

m(r,
1

f − hj
) = S(r, f).

On the other hand, for 2 ≤ i ≤ 5, we can write

ff ′ = (f − hi)(f ′ − h′i) + h′i(f − hi) + hi(f ′ − h′i) + hih
′
i

f ′ = (f ′ − h′i) + h′i,

f(f − 1) = f2 − f = (f − hi)2 + (2hi − 1)(f − hi) + h2
i − hi

And now we put gi = (f − hi)(f ′ − h′i) + h′i(f − hi) + hi(f ′ − h′i) and
li = (f − hi)2 + (2hi − 1)(f − hi) and then, thanks to properties of determinants, we obtain

(4.8) H = det

 g′i f ′ − h′i li
h4h

′
4 h′4 h4(h4 − 1)

h5h
′
5 h′5 h5(h5 − 1)

 .

Now, we have log+(δ(r)) ≤ log+(1+|hi|(r)) ∀i = 2, ..., 5 because it is obvious from the definition
for i = 4, 5 and also for i = 2 and i = 3 because h2 = 0 and h3 = 1. Consequently, for every
i = 2, ..., 5, we have log+(δ(r)) ≤ log+(|hi|(r)) + log(2) = m(r, hi) + log(2) = S(r, f). Then by
(4.8) and using Lemma 3.7, we obtain for every i = 2, ..., 5 :

log+
∣∣∣ H

f − hi

∣∣∣(r) ≤ log+
(∣∣∣f ′ − h′i
f − hi

∣∣∣(r))+ log+(|f − hi|(r))

+O
(

log+(|hi|(r) + log+(|h′i|(r)) + log+(|h4(r)) + log+(|h′4|(r)) + log+(|h5|(r)) + log+(|h′5|(r))
)

≤ m
(
r,
f ′ − h′i
f − hi

)
+ log+(δ(r)) + S(r, f) = S(r, f)

Hence, for every i = 2, ..., 5 we obtain

m
( 1
f − hi

)
= log+

( 1
|f − hi|(r)

)
≤ log+

∣∣∣ H

f − hi

∣∣∣(r) + log+
∣∣∣ 1
H

∣∣∣(r)
(4.9) ≤ m

(
r,

1
H

)
+ S(r, f).

Then by (4.6), (4.7), (4.8) and (4.9) we can check that in all cases we have

(4.10) m(r,
1
f

) +m(r,
1

f − 1
) +m(r,

1
f − h4

) +m(r,
1

f − h5
) ≤ m(r,

1
H

) + S(r, f).

Now, by Theorem 3.1, we can write

4T (r, f) = m(r,
1
f

) +m(r,
1

f − 1
) +m(r,

1
f − h4

) +m(r,
1

f − h5
)

+N(r,
1
f

) +N(r,
1

f − 1
) +N(r,

1
f − h4

) +N(r,
1

f − h5
) + S(r, f)
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hence by (4.10):

4T (r, f) ≤ m(r,
1
H

) +N(r,
1
f

) +N(r,
1

f − 1
) +N(r,

1
f − h4

) +N(r,
1

f − h5
) + S(r, f).

(4.11) ≤ T (r,H)− Z(r,H) + Z(r, f) + Z(r, f − 1) + Z(r, f − h4) + Z(r, f − h5) + S(r, f).

Now, given a zero α of order s of any function f − hi (2 ≤ i ≤ 5), then α is also a zero of H of
order at least s− 1. Then from (4.11) we can see that we have:

(4.12) 4T (r, f) ≤ Z(r, f) + Z(r, f − 1) + Z(r, f − h4) + Z(r, f − h5) + T (r,H) + S(r, f).

Next, by (4.2) we can check that

m(r,H) ≤ 2m(r, f) + S(r, f)

N(r,H) ≤ 2N(r, f) +N(r, f) + S(r, f)

Consequently

(4.13) T (r,H) ≤ 2T (r, f) +N(r, f) + S(r, f).

Then by (4.12) and (4.13), we obtain

2T (r, f) ≤ N(r, f) + Z(r, f) + Z(r, f − 1) + Z(r, f − h4) + Z(r, f − h5) + S(r, f)

which finishes proving (4.1) and hence ends the proof of Lemma 4.1 when f belongs to M(K) or
Mu(D). Next, when f belongs toMc(E) we have a similar proof, writing corresponding counting
fonctions TR(r, .) instead of T (r, .), ZR(r, .) instead of Z(r, .), NR(r, .) instead of N(r, .), etc...

Proof of Theorem 2.1: By Lemma 4.1, for every subset {i1, ..., i5} of {1, ..., q} such that 1 ≤
i1 < ... < i5 ≤ q, we have

2T (r, f) ≤
5∑
s=1

Z(r, f − his) + S(r, f),

(resp.

2T (r, f) ≤
5∑
s=1

Z(r, f − his) + S(r, f),

resp.

2TR(r, f) ≤
5∑
s=1

ZR(r, f − his) + S(r, f)).

The number of such inequalities is C5
q . Summing up over all subsets {i1, ..., i5} of {1, ..., q}, we

can get
2C5

qT (r, f)

≤
∑

{i1,...,i5}⊂{1,...,q}
1≤i1<...<i5≤q

(
Z(r, f − hi1) + Z(r, hi2) + Z(r, hi3) + Z(r, hi4) + Z(r, hi5)

)
+ S(r, f)
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(resp.
2C5

qT (r, f)

≤
∑

{i1,...,i5}⊂{1,...,q}
1≤i1<...<i5≤q

(
Z(r, f − hi1) + Z(r, hi2) + Z(r, hi3) + Z(r, hi4) + Z(r, hi5)

)
+ S(r, f),

resp.
2C5

qTR(r, f)

≤
∑

{i1,...,i5}⊂{1,...,q}
1≤i1<...<i5≤q

(
ZR(r, f − hi1) + ZR(r, hi2) + Z(R(r, hi3) + ZR(r, hi4) + ZR(r, hi5)

)
+ S(r, f)).

In each one of the last inequalities, we can check that for each index ik, the term Z(r, f − hik)
(resp. Z(r, f − hik), resp ZR(r, f − hik)) intervenes C4

q−1 times. Consequently, we can derive that

2C5
qT (r, f) ≤ C4

q−1

q∑
i=1

Z(r, f − hi) + S(r, f),

(resp.

2C5
qT (r, f) ≤ C4

q−1

q∑
i=1

Z(r, f − hi) + S(r, f),

resp.

2C5
qTR(r, f) ≤ C4

q−1

q∑
i=1

ZR(r, f − hi) + S(r, f)).

Consequently, it follows that

2q
5
T (r, f) ≤

q∑
i=1

Z(r, f − hi) + S(r, f),

(resp.
2q
5
T (r, f) ≤

q∑
i=1

Z(r, f − hi) + S(r, f),

resp.
2q
5
TR(r, f) ≤

q∑
i=1

ZR(r, f − hi) + S(r, f)).

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2: Let f ∈ M(K) be transcendental and let fj , 1 ≤ j ≤ 5 be archi-
branched small functions with respect to f . Let us apply Theorem 2.1:

(1) 5T (r, f) ≤ 5
2

( 5∑
j=1

Z(r, f − hj)
)

+ o(T (r, f)).

But for each j = 1, ..., 5, we have

Z(r, f − hj) ≤
Z(r, f − hj)

3
+ o(T (r, f)) ≤ T (r, f)

3
+ o(T (r, f))
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hence
∑5
j=1 Z(r, f − hj) ≤ T (r, f) + o(T (r, f)), therefore by (1):

5T (r, f) ≤
(5

2

)5T (r, f)
3

+ o(T (r, f)),

which is absurd and finishes the proof in the general case when f ∈ M(K). The proof is similar
when f ∈Mu(D) and when f ∈Mc(E).

Supose now f, h1, h2 have finitely many poles. By Corollary 3.6 we have

T (r, f) ≤ Z(r, f − h1) + Z(r, f − h2) + o(T (r, f))

hence

T (r, f) ≤ Z(r, f − h1) + Z(r, f − h2)
3

+ o(T (r, f)) ≤ 2T (r, f)
3

+ o(T (r, f))

which is absurd. Similar proofs when f ∈Mu(D) and when f ∈Mc(E).

5 Proof of Theorem 2.3.

We first need to establish the following Lemma 5.1.

Lemma 5.1: Let f, g be distinct and belong to M(K), (resp. to Mu(D), resp. to Mc(E))
sharing q distinct small functions ignoring multiplicity: h1, ..., hq with q ≥ 5. Then, for every
subset {i1, i2, i3, i4} of {1, ..., q}, we have∑

j∈{1,...,q}\{i1,..,i4}

Z(r, f − hj) + Z(r, g − hj) ≤ S(r, f) + S(r, g).

(resp. ∑
j∈{1,...,q}\{i1,..,i4}

Z(r, f − hj) + Z(r, g − hj) ≤ S(r, f) + S(r, g),

resp. ∑
j∈{1,...,q}\{i1,..,i4}

ZR(r, f − hj) + ZR(r, g − hj) ≤ S(r, f) + S(r, g)).

Proof: Let us first suppose f, g ∈M(K), or f, g ∈Mu(D). Clearly, we only have to prove that

q∑
j=5

Z(r, f − hj) ≤ S(r, f) + S(r, g).

Thus, we assume that
q∑
j=5

Z(r, f − hj) 6= S(r, f) + S(r, g).

Given any meromorphic function w ∈M(K), (resp. in Mu(D)) we put

L(w) =
(w − h1)(h3 − h2)
(w − h2)(h3 − h4)
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and F = L(f), G = L(g).
Without loss of generality, we may assume that h1 = ∞, h2 = 0, h3 = 1 and we put h = h4.

Now, we set

B =
f ′(h′g − hg′)(f − g)
f(f − 1)(g − h)

− g′(h′f − hf ′)(f − g)
g(g − 1)(f − h)

.

Now, let
Q = f ′(h′g − hg′)(f − h)(g − 1)− g′(h′f − hf ′)(g − h)(f − 1)

= h′ff ′g2 − h′f ′g − h(h− 1)ff ′g′ − hh′f ′g2 + hh′f ′g

−h′f2gg′ + h′fgg′ + h(h− 1)f ′gg′ + hh′f2g′ − hh′fg′.

Then

B =
(f − g)Q

f(f − 1)g(g − 1)
.

Suppose first that B is identically zero. Then we have

(5.1)
f ′(h′g − hg′)(f − g)
f(f − 1)(g − h)

=
g′(h′f − hf ′)(f − g)
g(g − 1)(f − h)

.

If h is a constant, then f = g which contradicts our hypothesis. Hence h is not a constant and
then, by (5.1) we have

(f − 1)(g − h)
g − 1)(f − h)

− 1 =
f ′(h′g − hg′)
g′(h′f − hf ′)

− 1

therefore
(f − g)(g − h)
(g − 1)(f − h)

=
h′(f ′ − g′)g − (f − g)g′

g′(h′f − hf ′)
and hence

(5.2)
f ′ − g′

f − g
=

(1− h)g′(h′f − hf ′)
h′g(g − 1)(f − h)

+
g′

g
.

Let us fix j ≥ 5, j ≤ q. By (5.1), there exists a common zero α ∈ K (resp. α ∈ D, resp.
α ∈ E) of f − hj and g − hj which is not a zero or a pole of h, h′, hj − 1, hj − h. Then, α must be
a pole of the left hand side of (5.2) but cannot be a pole of the right hand side of (5.2). This is a
contradiction showing that B cannot be identically zero.

Now, let us fix j ≥ 5 such that j ≤ q and suppose that β is a common zero of f −hj and g−hj
but is not a zero or a pole of h, hj , hj − 1, hj − h. Then it is a zero of f − g and it is not a pole of

Q

f(f − 1)(f − h)g(g − 1)(g − h)
,

and hence it is a zero of B.
Now, since f and g share each hj ignoring multiplicity, we have

5∑
j=1

Z(r, g − hj) =
5∑
j=1

Z(r, f − hj) ≤ Z(r,B) + S(r, f) + S(r, g)
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(5.3) ≤ T (r,B) + S(r, f) + S(r, g) = m(r,B) +N(r,B) + S(r, f) + S(r, g).

We will estimate m(r,B). By computation, B can be written

B =
f ′(h′g − hg′)

(f − 1)g(g − h)
−
( f ′

f − 1
− f ′

f

)(h′g − hg′
g − h

)
+

g′(h′f − hf ′)
(g − 1)f(f − h)

−
( g′

g − 1
− g′

g

)(h′f − hf ′
f − h

)
=
( f ′

f − 1

)(g′
g
− g′ − h′

g − h

)
−
( f ′

f − 1
− f ′

f

)(
h′ − h(g′ − h′)

g − h

)
+
( g′

g − 1

)(f ′
f
− f ′ − h′

f − h

)
−
( g′

g − 1
− g′

g

)(
h′ − h(f ′ − h′)

f − h

)
In this last relation we have a sum of logarithmic derivative and hence, by Lemma 3.7, we can see
that

(5.4) m(r,B) = S(r, f) + S(r, g).

Next, we will estimate N(r,B). Clearly, the poles of B can only occur at the zeros of f, g, f −
1, g − 1, f − h, g − h and at the poles of f, g, h.

Let A be the set of all zeros, 1-points and poles of h. Then we will first estimate the counting
function of poles of B when we are in A. Recall that f and g share the constants 0, 1 and ∞.

Let γ be a zero of h. Then we can check that B has no pole at γ.
Let γ be a 1-value of h. If B had a pole, then f − 1 would have a zero of order s, g − 1 would

have a zero of order t, f − g whould have a zero and Q would have a zero of order s+ t, hence B
would have a zero, not a pole.

Now, let γ be a pole of h of order n.
If f(γ) = 1, then g(γ) = 1 because f and g share h3, hence B has no pole at γ.
If f has a pole of order s at γ then g also has a pole of order t because f and g share h1. We

can assume s ≥ t, then B has a pole of order at most n+ 2, hence the counting function of poles
of B when γ is a pole of f , g and h and hence is a pole of B of order n+ 2, is bounded by thrice
the counting function of the poles of h and hence is of the form S(r, f) + S(r, g).

Next, suppose that f(γ) 6= 1,∞, hence g(γ) 6= 1,∞. If f and g have no zero at γ, it is clear that
B has at most a pole of order n, hence the counting function of poles of B when f(γ) 6= 0, 1,∞,
(hence g(γ) 6= 0, 1,∞) is of the form S(r, f) + S(r, g). Finally, if f(γ) = 0, then g(γ) = 0 because
f and g share h2 and then we can check that B may admits a pole at γ of order at most 2n + 2.
Consequently the couting function of poles of B when γ lies in A and is a pole of h is bounded by
thrice the counting function of the poles of h and hence is of the form S(r, f) + S(r, g).

Thus, the counting function of poles of B when γ lies in A is of the form S(r, f) + S(r, g).

Consider now the poles of B when γ /∈ A.
Let γ /∈ A be a common pole of f and g of order s1 and t1 respectively. Then, γ is a pole of

Q of order at most 2s1 + 2t1 + 1. Next, γ is a pole of f − g of order max(s1, t1). Hence from the
definition of B, γ is a pole of the numerator of B of order at most 2s1 + 2t1 + 1 + max(s1, t1) and
on the other hand, it is a pole of the denominator of B of order 3s1 + 3t1. But since

2s1 + 2t1 + 1 + max(s1, t1)− 3(s1 + t1) = 1 + max(s1, t1)− s1 − t1 ≤ 0,
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it follows that γ is not a pole of B.
Let γ /∈ A be a common zero of f and g of order s2 and t2 respectively. We can check that γ is

a zero of Q of order at least s2 + t2 +1 and that γ is a zero of f−g of order at least min(s2, t2). On
the other hand, we can check that the denominator of B has a zero at γ of order at most s2 + t2.
Consequently, B has no pole at γ.

Suppose now that γ /∈ A is a common zero of f − h and g − h. Then γ is a zero of f − g. On

the other hand, γ is a pole of order 1 of
f ′

f − h
and

g′

g − h
. Consequently, by the definition of B

we can check that γ is not a pole of B. Similarly, when γ is a common zero of f − 1 and g − 1, γ
is not a pole of B.

Suppose now that γ /∈ A is a pole of f but is not a pole of g and is not a zero of g, g − 1, and
g − h. Since f and g share h0, that situation does not occur.

Suppose now that γ /∈ A is a zero of f but is not a pole of g and is not a zero of g. Since f and
g share h0, that situation does not occur.

Suppose now that γ /∈ A is a zero of f − hi with i = 3, 4 but is not a pole of g and is not a
zero of g, g − 1 and g − h. Then γ is a pole of B of order at most 1. Similarly, if γ is a zero of
g−hi with i = 3, 4 but is not a pole of f and is not a zero of f, f − 1 and f −h. Then γ is a pole
of B of order at most 1. However, since f and g share h3 and h4, such a situation does not occur.

Suppose now that γ /∈ A is a common zero of f−hi and g−hj for some 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4
with i 6= j and i 6= 2, j 6= 2. Then γ is a pole of B of order at most 2. However, in such a situation,
since f and g share hi, then γ is a zero of hi − hj . But since hi and hj are small with respect to
f and g, the counting function of points γ that are common zeros of f − hi and g − hj for some
1 ≤ i ≤ 4 and 1 ≤ j ≤ 4 with i 6= j and i 6= 2, j 6= 2, is bounded by S(r, f) + S(r, g).

Finally, suppose that γ /∈ A is a zero of f − hi and a pole of g for some i = 2, 3, 4 or a zero of
g − hi and a pole of f for some i = 2, 3, 4. But since f and g share h2, h3, h4, such a situation is
impossible.

In conclusion, we have
N(r,B) ≤ S(r, f) + S(r, g)

and therefore, by (5.3) and (5.4) that completes the proof of Lemma 5.1 when f, g ∈ M(K), or
f, g ∈Mu(D). Now, when f, g ∈Mc(E), the proof is similar.

Corollary 5.2: Let f, g be distinct and belong to M(K), (resp. to Mu(D), resp. to Mc(E))
sharing q distinct small functions ignoring multiplicity: h1, ..., hq (with q ≥ 5). Then, for every
subset {i1, i2, i3, i4} of {1, ..., q}, we have

Z(r, f − hj) + Z(r, g − hj) ≤ S(r, f) + S(r, g) ∀j = 1, ..., q.

(resp.

Z(r, f − hj) + Z(r, g − hj) ≤ S(r, f) + S(r, g) ∀j = 1, ..., q

resp.
ZR(r, f − hj) + ZR(r, g − hj) ≤ S(r, f) + S(r, g) ∀j = 1, ..., q.)

Proof of Theorem 2.3: Suppose first that f, g ∈M(K) or f, g ∈Mu(D). Suppose that f and
g are not identic. Applying Corollary 5.2 with q = 5, we have Z(r, f − hj) = S(r, f) + S(r, g) and
Z(r, g − hj) = S(r, f) + S(r, g) for every j ∈ {1, ..., 5}. Therefore:
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(5.5)
5∑
j=1

Z(r, f − hj) + Z(r, g − hj) = S(r, f) + S(r, g).

Now, by Theorem 2.1, we have

2(T (r, f) + T (r, g)) ≤
5∑
j=1

Z(r, f − hj) + Z(r, g − hj) + S(r, f) + S(r, g)

hence, by (5.5): 2(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g), which is absurd and proves that f = g.

Suppose now that f, g ∈ Mc(E). Replacing each symbol T (r, .) by TR(r, .) and Z(r, .) by
ZR(r, .) we can make the same reasoning and conclude in the same way f = g.

The conclusion concerning meromorphic functions f, g having finitely many poles comes from
[7] and from [8], Theorem C.9.18 and Theorem C.9.16.

Remark: After obtaining Relation (5.5), by Theorem A, we could state that

5
3

(T (r, f) + T (r, g)) ≤
5∑
j=1

Z(r, f − hj) + Z(r, g − hj) + S(r, f) + S(r, g),

which could also let us conclude.

Acknowledgement: I am grateful to the anonymous referee who pointed out to me several
misprints.
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