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Let IK be a complete ultrametric algebraically closed field of characteristic 0. According to the p-adic Hayman conjecture applied to transcendental meromorphic function f in IK or an "unbounded" meromorphic function inside an open disk, for each n ∈ IN * , f n f takes every value b = 0 infinitely many times. That was proved for n ≥ 3 by J. Ojeda and next, by herself and the author for meromorphic function in IK, for n = 2. Here we recall these proofs and generalize them to meromorphic functions out of a hole whenever n ≥ 3. We also recall the proof of this theorem: given a meromorphic function f , there exists at most one small function w such that f -w have finitely many zeros.

.

Introduction and main results

Let IK be a complete ultrametric algebraically closed field of characteristic 0. Given a ∈ IK and r > 0, we denote by d(a, r) the disk {x ∈ IK | |x-a| ≤ r} and by d(a, r -) the disk {x ∈ IK | |x-a| < r}. Given a ∈ IK, r > 0, s > r, we denote by ∆(a, r, s) the set {x ∈ IK r ≤ |x -a| ≤ s}. We denote by A(IK) the IK-algebra of entire functions in IK and by M(IK) the field of meromorphic functions in IK, i.e. the field of fractions of A(IK). We denote by A(d(a, r -) the IK-algebra of analytic funtions in d(a, r -), by A b (d(a, r -)) the IK-algebra of bounded analytic funtions in d(a, r -) and we put A u (d(a, r -)) = A(d(a, r -)) \ A b (d(a, r -)). We denote by M(d(a, r -)) the field of fractions of A(d(a, r -)), by M b (d(a, r -)) the field of fractions of A b (d(a, r -)), and we put M u (d(a, r -)) = M(d(a, r -)) \ M b (d(a, r -)). Finally, given R > 0, we denote by S the disk d(0, R -), by D the set IK \ d(0, R -), by A(D) the IK-algebra of analytic functions in D i.e. the set of Laurent series converging in D, by M(D) the field of fractions of A(D) and by M c (D) the set of f ∈ M(D) having infinitely many zeros or poles in D. Let f be a transcendental meromorphic function in IK, i.e. f ∈ M(IK) \ IK(x) (resp. let R > 0 and let f ∈ M u (d(0, R -)), resp. let f ∈ M c (D)) and let b ∈ IK. Similarly to classical definitions in complex analysis [18], b is called an exceptional value for f or a Picard value for f if f -b has no zero in IK (resp. in d(0, R -), resp. in D) and b is called a quasi-exceptional value for f if f -b has finitely many zeros in IK (resp. in d(0, R -), resp. in D) [5], [6], [7], [13]. By classical results [11], [12], [16], [19], [25], we know that f has at most one quasi-exceptional value and if f ∈ A(IK), (resp. if f ∈ A u (d(a, R -), resp. if f ∈ A c (D)) then f has no quasi-exceptional value. On l C, considering a transcendental meromorphic function f in the whole field, W. Hayman showed that for every n ≥ 3, the function f n f has no quasi-exceptional value different from 0 0 2000

1 and he conjectured that the statement remains true for n = 2 and n = 1 [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF]. That was proved for n = 2 by E.Mues [START_REF] Mues | Uber ein Problem von Hayman[END_REF] and for n = 1 by W. Bergweiler and Eremenko [START_REF] Bergweiler | On the singularities of the inverse to a meromorphic function of finite order[END_REF] and separately by H. Chen and M. Fang [START_REF] Chen | On the value distribution of f n f[END_REF].

On the field IK, the same question makes sens too and similarly, J. Ojeda proved that for every n ≥ 3, f n f has no quasi-exceptional value different from 0 [START_REF] Ojeda | On Hayman's Conjecture over a p-adic field[END_REF]. For n = 2 and n = 1, several particular solutions were given concerning subclasses of meromorphic functions [START_REF] Bezivin | Zeros of the derivative of a p-adic meromorphic function[END_REF], [START_REF] Boussaf | Zeros of the derivative of a p-adic meromorphic function and applications Bull[END_REF], [START_REF] Escassut | Exceptional values of p-adic analytic functions and derivatives[END_REF], [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF] and the general solution was given in [START_REF] Escassut | The p-adic Hayman conjecture when n = 2[END_REF] for meromorphic functions in IK. However, here we give more precisions on the proof of this very delicate problem in the case n = 2. The principal method used in the complex study was the classical Nevanlinna Theory [START_REF] Nevanlinna | Le théorème de Picard-Borel et la théorie des fonctions méromorphes[END_REF] and similarly, here in the p-adic Nevanlinna Theory [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Boutabaa | Applications of the p-adic Nevanlinna theory to functional equations[END_REF].

We mean to recall results already obtained. The same problem is posed both in M( IK) and in a M u (d(a, R -)) (a ∈ IK, R > 0) and also in M c (D) where it was never published yet.

Small functions are defined among complex meromorphic functions and find the same meaning among meromorphic functions in an ultrametric field, the notion (recalled above) being defined with help of the Nevanlinna characteristic functions. Let us recall that given a meromorphic function f ∈ M(K) or f ∈ M u (d(a, R -)), or f ∈ M c (D), there is at most one small function w such that f -w admit finitely many zeros (the proof here is new concerning the case f ∈ M c (D)) Thus, we can now state our main results: The definition of small functions being recalled below, we have the following Theorem D:

Theorem D: Let a ∈ IK and r > 0. Let f ∈ M( IK) \ IK(x), (resp. f ∈ M u (d(a, R -)), resp. f ∈ M c (D)). There exists at most one function w ∈ M f ( IK), (resp. w ∈ M f (d(a, R -)), resp. w ∈ M f (D)) such that f -w have finitely many zeros. Moreover, if f belongs to A( IK) \ IK[x] (resp. to A u (d(a, R -)), resp. to A c ( IK)) then there exists no function w ∈ M f ( IK) \ IK(x), (resp. w ∈ M f (d(a, R -)), resp. w ∈ M f (D)) ) such that f -w have finitely many zeros.

Generalities

The proofs of these theorems require many technical results and the 2nd Main Theorem of the Nevanlinna Theory in the three situations that we will examine. Lemma 1 is immediate. Notation: Let f ∈ M( IK) (resp. let f ∈ M(d(0, R -)), R > 0, resp. f ∈ M(D)) and let r ∈ IR + (resp. let r ∈]0, R[, resp. let r > R). We denote by ν + (f, µ) the right-side derivative of the function Ψ at µ and by ν -(f, µ) the left-side derivative of the function Ψ at µ. When ν + (f, µ) = ν -(f, µ) we just write ν(f, µ).

Lemma 3: Let f ∈ M( IK) (resp. let f ∈ M(d(0, R -)), R > 0, suppose that f admits infinitely many zeros in IK (resp. in d(0, R -)) and suppose that there exists a sequence of non-empty intervals [r n , r n ] such that lim 

ν + (f + f m , log r) = ν + (f m , log r), ν -(f + f m , log r) = ν -(f m , log r) ∀r ∈ J.
Consequently, in each disk d(0, r) with r ∈ J, f and f + f m have the same difference between the number of zeros and poles (taking multiplicity into account). Now, if m ≥ 3 the poles of f + f m and f m are the same taking multiplicity into account. And when m = 1, each pole of f is a pole of f + f with a strictly greater order. Consequently, for each r ∈ J, the number of zeros of f + f m in d(0, r) is superior or equal to this of f m (taking multiplicity into account). Now, for each n ∈ IN, let s n be the number of distinct zeros of f in d(0, r n ). Since f has infinitely many zeros, the sequence s n is increasing and tends to +∞. On the other hand, for each zero α of order u of f , either α is not a zero of f + f m (when u = 1), or it is a zero of order u -1. Consequently, the difference between the sum of multiplicities of the number of zeros of f + f m in d(0, r n ) and the number of distinct zeros of f in d(0, r n ) is at least s n and hence the number of zeros of f + f m in d(0, r n ) which are not zeros of f in d(0, r n ) is at least s n . Thus, we have proved that f + f m has infinitely many zeros that are not zeros of f . 

ν + (f + f m , log r) = ν + (f m , log r), ν -(f + f m , log r) = ν -(f m , log r) ∀r ∈ J.
Consequently, in each annulus ∆(0, r n , r), with r n ≤ r ≤ r n , f and f + f m have the same difference between the number of zeros and poles (taking multiplicity into account). Now, if m ≥ 3 the poles of f + f m and f m in ∆(0, R, r n ) are the same taking multiplicity into account. And when m = 1, each pole of f is a pole of f + f with a strictly greater order. Consequently, for each r ∈ J, the number of zeros of f + f m in ∆(0, r n , r) is superior or equal to this of f m . Now, for each n ∈ IN, let s n be the number of distinct zeros of f in the set Λ n = n j=1 ∆(0, r j , r j ).

Since f has infinitely many zeros in Λ, the sequence s n is increasing and tends to +∞. On the other hand, for each zero α of f of order u in n j=1 ∆(0, r j , r j ), either α is not a zero of f + f m (when u = 1), or it is a zero of order u -1. Consequently, the difference between the sum of multiplicities of the number of zeros of f + f m in Λ n and the number of distinct zeros of f in Λ n is at least s n . Therefore, as in Lemma 2, the number of zeros of f + f m in Λ n which are not zeros of f is at least s n . Thus, we have proved that f + f m has infinitely many zeros that are not zeros of f in Λ. 

that |f |(r) ≥ M ∀r ∈ [s, +∞[∩J, therefore |f |(r) m ≥ |f |(r)M m-1 ≥ r|f |(r)M m-1 .
Next, when r is big enough, rM m-1 is greater than 1, hence (|f |(r)) m > |f |(r). Thus there exists t ≥ s such that (|f

|(r)) m > |f |(r) ∀r ∈ J ∩ [t, +∞[. Let J = J ∩ [t, +∞[. So we have |f + f m |(r) = |f m |(r) ∀r ∈ J .
Suppose now that we assume the hypothesis of Lemma 7. We have 

|f |(r) ≤ |f |(r) r ≤ |f |(r) R . Set B = 1 R . Then we have |f |(r) m ≥ B|f |(r)(|f |(r)) m-1 . Now, when r is close enough to R, r ∈ J, B|f (x)| m-
+ f m |(r) = |f m |(r) ∀r ∈ J .
We can now conclude the proofs of Lemmas 5 and 7. For each n ∈ IN, let q n be the number of zeros of f in d(0, r n ). Suppose the sequence (q n ) n∈ IN is bounded. Then, f has finitely many zeros, hence it is of the form

P h with P ∈ IK[x] and h ∈ A( IK) (resp. h ∈ A u (d(0, R -))).
Consequently, we have lim

r→+∞ |f |(r) = 0 (resp. lim r→R -|f |(r) = 0
), a contradiction to the hypothesis in both theorems. Therefore, the sequence (q n ) n∈ IN that is increasing by definition, tends to +∞. Now, in each Lemmas 5 and 7, we may apply Lemma 2 showing that f + f m has infinitely many zeros that are not zeros of f . Proof. (Lemma 6 ). Without loss of generality, we can assume b = 1. By hypothesis, there exists a sequence of intervals [r n , r n ] such that R < r 1 , r n < r n+1 and lim 

|f |(r) m ≥ |f |(r)M m-1 ≥ r|f |(r)M m-1 .
Next, when r is big enough, rM m-1 is greater than 1, hence (|f

|(r)) m > |f |(r). Thus there exists t ≥ s such that (|f |(r)) m > |f |(r) ∀r ∈ J ∩ [t, +∞[. Let J = J ∩ [t, +∞[. So we have |f + f m |(r) = |f m |(r) ∀r ∈ J .
Consequently, we can apply Lemma 4 and conclude as in Lemmas 5 and 7.

Nevanlinna Theory

The Nevanlinna theory was made by Rolf Nevanlinna on complex functions [START_REF] Nevanlinna | Le théorème de Picard-Borel et la théorie des fonctions méromorphes[END_REF]. It consists of defining counting functions of zeros and poles of a meromorphic function f and giving an upper bound for multiple zeros and poles of various functions f -b, b ∈ l C. A similar theory for functions in a p-adic field was constructed and correctly proved by A. Boutabaa [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] in the field IK, after some previous work by Ha Huy Khoai [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF]. The theory was also described in [START_REF] Yang | On the value distribution of a transcendental meromorphic functions and its derivatives[END_REF] with a nice description of the theorem on small functions. In [START_REF] Boutabaa | Applications of the p-adic Nevanlinna theory to functional equations[END_REF] the theory was extended to functions in M(d(0, R -)) by taking into account Lazard's problem. A new extension to functions out of a hole was made in [START_REF] Escassut | An New Applications of the p-Adic Nevanlinna Theory p-Adic Numbers[END_REF], see also [START_REF] Escassut | p-adic Analytic Functions[END_REF].

Notations: Recall that given three functions φ, ψ, ζ defined in an interval J =]a, +∞[ (resp. Throughout the next paragraphs, we will denote by I the interval [t, +∞[ and by J an interval of the form [t, R[ with t > 0.

We have to introduce the counting function of zeros and poles of a meromorphic function f , counting or not multiplicity. Here we will choose a presentation that avoids assuming that all functions we consider admit no zero and no pole at the origin.

Definitions: Let f ∈ M(d(0, R -) and let r ∈]0, R[. We denote by Z(r, f ) the counting function of zeros of f in d(0, r) in the following way.

Let (a n ), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0

< |a n | ≤ r, of respective order s n . We set Z(r, f ) = max(ω 0 (f ), 0) log r + σ(r) n=1 s n (log r -log |a n |) and so, Z(r, f ) is called the count- ing function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f without multiplicity, we put

ω 0 (f ) = 0 if ω 0 (f ) ≤ 0 and ω 0 (f ) = 1 if ω 0 (f ) ≥ 1.
Now, we denote by Z(r, f ) the counting function of zeros of f without multiplicity:

Z(r, f ) = ω 0 (f ) log r + σ(r) n=1
(log r -log |a n |) and so, Z(r, f ) is called the counting function of zeros of f in d(0, r) ignoring multiplicity.

In the same way, considering the finite sequence (b n ), 1 ≤ n ≤ τ (r) of poles of f such that 0 < |b n | ≤ r, with respective multiplicity order t n , we put

N (r, f ) = max(-ω 0 (f ), 0) log r + τ (r) n=1 t n (log r -log |b n |) and then N (r, f ) is called the counting function of the poles of f , counting multiplicity.
Next, in order to define the counting function of poles of f without multiplicity, we put

ω 0 (f ) = 0 if ω 0 (f ) ≥ 0 and ω 0 (f ) = 1 if ω 0 (f ) ≤ -1 and we set N (r, f ) = ω 0 (f ) log r + τ (r) n=1 (log r -log |b n |) and then N (r, f ) is called the counting function of the poles of f , ignoring multiplicity.
Now we can define the Nevanlinna function T (r, f ) in I or J as

T (r, f ) = max(Z(r, f ), N (r, f ))
and the function

T (r, f ) is called characteristic function of f or Nevanlinna function of f .
Finally, if S is a subset of IK we will denote by Z S 0 (r, f ) the counting function of zeros of f , excluding those which are zeros of f -a for any a ∈ S.

Remark: If we change the origin, the functions Z, N, T are not changed, up to an additive constant.

By Corollary B.13.2 in [START_REF] Escassut | p-adic Analytic Functions[END_REF], Lemma 8 is easy.

Lemma 8: Let IK be a complete algebraically closed extension of IK whose absolute value extends that of IK and let

f ∈ M( IK) (resp. let f ∈ M(d(0, R -))). Let d(0, R) = {x ∈ IK | |x| < R}.
The meromorphic function f defined by f in d(0, R -) has the same Nevanlinna functions as f .

In a p-adic field such as IK, the first Main theorem is almost immediate and is an immediate consequence of Corollary B.13.27.in [START_REF] Escassut | p-adic Analytic Functions[END_REF].

Proposition 1 (C.4.2 in [16]): Let f ∈ M( IK) (resp. f ∈ M(d(0, R -))) have no zero and no pole at 0. Then log(|f |(r)) = log(|f (0)|) + Z(r, f ) -N (r, f ). Lemma 9 (C.4.4 in [16]): Let α 1 , • • • , α n ∈ IK be pairwise distinct, let P (u) = n i=1 (u -α i ) and let f ∈ M(d(0, R -)). Then Z(r, P (f )) = n i=1 Z(r, f -α i ) and Z(r, P (f )) = n i=1 Z(r, f -α i ).
We can now deduce Proposition 2 (C.4.5 in [START_REF] Escassut | p-adic Analytic Functions[END_REF]):

Proposition 2: Let f ∈ M( IK). Then f belongs to IK(x) if and only if T (r, f ) = O(log r).
Applying Lemma 8 and Theorem C.2.10 in [START_REF] Escassut | p-adic Analytic Functions[END_REF] to f f , up to a change of origin, we can derive Corollary 1.

Corollary 1: Let f ∈ M( IK) (resp. f ∈ M(d(0, R -))). Then Z(r, f f ) -N (r, f f ) ≤ -log r + O(1). Proposition 3: Let f ∈ A( IK) (resp. f ∈ A(d(0, R -))) and let b ∈ IK. Then Z(r, f ) = Z(r, f -b) + O(1) r ∈ I (resp. r ∈ J).
The following Proposition 4 gathers a lot of properties owned by ultrametric meromorphic functions, some of them corresponding to the First Main Theorem in complex analysis.

Propostion 4: Let f, g ∈ M( IK) (resp. let f, g ∈ M(d(0, R -))). Then T (r, f + g) ≤ T (r, f ) + T (r, g)+O(1), T (r, f +b) = T (r, f )+O(1). Let h be a Moebius function. Then T (r, f ) = T (r, h•f )+ O(1). Let P (x) ∈ IK[x]. Then T (r, P (f )) = deg(P )T (r, f ) + O(1) and T (r, f P (f ) ≥ T (r, P (f )). Suppose now f, g ∈ A( IK) (resp. f, g ∈ A(d(0, R -))). Then Z(r, f g) = Z(r, f )+Z(r, g), T (r, f ) = Z(r, f )), T (r, f g) = T (r, f ) + T (r, g) + O(1), and T (r, f + g) ≤ max(T (r, f ), T (r, g)). Moreover, if lim r→+∞ T (r, f ) -T (r, g) = +∞ then T (r, f + g) = T (r, f ) when r is big enough. Proposition 5: Let f ∈ M( IK) (resp. f ∈ M(d(0, R -))). There exists φ, ψ ∈ A( IK) (resp. φ, ψ ∈ A(d(0, R -))) such that f = φ ψ and max(T (r, φ), T (r, ψ)) ≤ T (r, f ) + O(1), r ∈ I (resp.
(r ∈ J)).

Proposition 6: Let f ∈ M(d(0, R -)). Then f belongs to M b (d(0, R -)) if and only if T (r, f ) is bounded in [0, R[. Corollary 2: Let f ∈ M u (d(a, R -)) and let h ∈ M b (d(a, R -)), h = 0. Then f h belongs to M u (d(a, R -)).
By Propositions 4 and 6, we can also derive Corollary 3.

Corollary 3: Let f ∈ M(d(a, R -)) and let P ∈ IK[x]. Then P (f ) belongs to M b (d(a, R -)) if
and only if so does f .

Lemma 10 is classical and easily checked. Lemma 10: Let α 1 , ..., α q ∈ IK be pairwise distinct, let S = {α 1 , ..., α q } and let P

(x) = q j=1 (x- α j ). Let f ∈ M( IK) (resp. f ∈ M(d(0, R -))). Then n j=1 Z(r, f -α j ) = Z(r, P (f )), n j=1 Z(r, f -α j ) = Z(r, P (f )) ∀r ∈ I (resp. ∀r ∈ J). Moreover, we have n j=1 Z(r, f -α j ) -Z(r, f -α j ) = Z(r, f ) -Z S 0 (r, f ) ∀r ∈ I (resp. ∀r ∈ J). Proposition 7: Let f ∈ M( IK) (resp. f ∈ M(d(0, R -))). Then Z(r, f ) -N (r, f ) ≤ Z(r, f ) - N (r, f )-log r+O(1), r ∈ I (resp. r ∈ J). Moreover, N (r, f (k) ) = N (r, f )+kN (r, f )+O(1), r ∈ I and Z(r, f (k) ) ≤ Z(r, f ) + kN (r, f ) -k log r + O(1), r ∈ I (resp. r ∈ J). Corollary 4: Let f ∈ M( IK) (resp. f ∈ M(d(0, R -))). Then T (r, f (k) ) ≤ (k + 1)T (r, f ) + O(1) (r ∈ I) (resp. r ∈ J). Proposition 8: Let f ∈ M( IK) (resp. f ∈ M(d(0, R -))). Then, T (r, f ) -Z(r, f ) ≤ T (r, f ) - Z(r, f )+O(1). Further, given α ∈ M(d(0, R -)), we have T (r, αf )-Z(r, αf ) ≤ T (r, f )-Z(r, f )+ T (r, α).
Lemma 11 is an immediate consequence of Corollary B.13.27 and Theorem C.2.10 in [START_REF] Escassut | p-adic Analytic Functions[END_REF].

Lemma 11: Let f ∈ M( IK) (resp. f ∈ M(d(0, R -))) and let G = f f . Then, G satisfies Z(r, G) ≤ N (r, G) -log r + O(1) r ∈ I (resp. (r ∈ J).
We can now prove the Second Main theorem under different forms. Lemma 12 is essential and directly leads to the theorems.

Lemma 12:

Let

f ∈ M( IK) (resp. f ∈ M u (d(0, R -))). Suppose that there exists ξ ∈ IK (resp. ξ ∈ M b (d(0, R -))) and a sequence of intervals I n = [u n , v n ] such that u n < v n < u n+1 , lim n→+∞ u n = +∞ (resp. lim n→+∞ u n = R) and lim n→+∞ inf r∈In T (r, f ) -Z(r, f -ξ) = +∞ (resp. lim n→+∞ inf r∈In T (r, f ) -Z(r, f -ξ) = +∞). Let τ ∈ IK (resp. let τ ∈ M b (d(0, R -))), τ = ξ. Then Z(r, f -τ ) = T (r, f ) + O(1) ∀r ∈ I n when n is big enough.
Now we can state a technical proposition that implies the famous 2nd Main Theorem.

Proposition 9: Let f ∈ M( IK) and let a 1 , ..., a q ∈ IK be distinct. Then

(q -1)T (r, f ) ≤ max 1≤k≤q q j=1,j =k Z(r, f -a j ) + O(1).
Corollary 5: Let f ∈ M( IK) and let a 1 , ..., a q ∈ IK be distinct. Then

(q -1)T (r, f ) ≤ q j=1 Z(r, f -a j ) + O(1). Proposition 10: Let f ∈ M(d(0, R -)) and let τ 1 , ..., τ q ∈ M b (d(0, R -)) be distinct. Then (q -1)T (r, f ) ≤ max 1≤k≤q q j=1,j =k Z(r, f -τ j ) + O(1). Corollary 6: Let f ∈ M(d(0, R -)) and let τ 1 , ..., τ q ∈ M b (d(0, R -)) be distinct. Then (q -1)T (r, f ) ≤ q j=1 Z(r, f -τ j ) + O(1).
Remark: Proposition 9 does not hold in complex analysis. Indeed, let f be a meromorphic function in l C omitting two values a and b, such as f (x) = e x e x -1

. Then Z(r, f -a)+Z(r, f -b) = 0.

Proposition 11:

Let α 1 , ..., α q ∈ IK, with q ≥ 2, let S = {α 1 , ..., α q }, and let f ∈ M( IK)

(resp. f ∈ M(d(0, R -))). Then (q -1)T (r, f ) ≤ q j=1 Z(r, f -α j ) + Z(r, f ) -Z S 0 (r, f ) + O(1) ∀r ∈ I (resp. ∀r ∈ J). Moreover, if f belongs to f ∈ A( IK) (resp. A(d(0, R -))), then qT (r, f ) ≤ q j=1 Z(r, f -α j ) + Z(r, f ) -Z S 0 (r, f ) + O(1) ∀r ∈ I (resp. ∀r ∈ J).
Proposition 12 (Second Main Theorem): Let α 1 , ..., α q ∈ IK, with q ≥ 2, let S = {α 1 , ..., α q } and let

f ∈ M( IK) (resp. f ∈ M u (d(0, R -))). Then (q -1)T (r, f ) ≤ q j=1 Z(r, f -α j ) + N (r, f ) -Z S 0 (r, f ) -log r + O(1) ∀r ∈ I (resp. ∀r ∈ J).
Remark: In Proposition 10, in the hypothesis f ∈ M(d(0, R -)), the term -log r has no veritable meaning since r is bounded.

Corollary 7: Let α 1 , ..., α q ∈ IK, with q ≥ 2, let S = {α 1 , ..., α q } and let f ∈ M( IK) (resp. f ∈ M(d(0, R -))). Then q j=1 Z(r, f -α j ) -Z(r, f -α j ) ≤ T (r, f ) + N (r, f ) -Z S 0 (r, f ) -log r + O(1) ∀r ∈ I (resp.
∀r ∈ J).

Meromorphic Functions out of a Hole

We will now describe the behaviour of meromorphic functions out of a hole. We denote by . the norm of uniform convergence on bounded functions f ∈ M c (D).

Proposition 13 (E. Motzkin's Theorem): [START_REF] Boussaf | Motzkin factorization in algebras of analytic elements[END_REF], [START_REF] Motzkin | La décomposition d'un élément analytique en facteurs singuliers[END_REF] Let f ∈ M(D). There exist h ∈ H(D)

such that h -1 < 1, lim |x|→+∞ h(x) = 1, λ ∈ IK and q ∈ Z Z such f (x) = λx q h(x).

Definitions and notations :

According to the factorization due to f Motzkin's Theorem, h is called the Motzkin factor of f with respect to the hole T and q is called the Motzkin index with respect to the hole T and is denoted by m(f, T ).

We denote by S the disk d(0, R -). Let f ∈ M(D). Then f admits a unique factorization in the form f 0 f [START_REF] Boussaf | Motzkin factorization in algebras of analytic elements[END_REF], [START_REF] Motzkin | La décomposition d'un élément analytique en facteurs singuliers[END_REF].

We denote by H 0 (D) the IK-vector space of analytic elements f in D such that lim

|x|→∞ f (x) = 0.
Given f ∈ M(D), for r > R, here we will denote by Z R (r, f ) the counting function of zeros of f between R and r, i.e., if α 1 , ..., α m are the distinct zeros of f in ∆(0, R, r), with respective multi-

plicity u j , 1 ≤ j ≤ m, then Z R (r, f ) = m j=1 u j (log(r) -log(|α j |))
. Similarly, we denote by N R (r, f ) the counting function of poles of f between R and r, i.e., if β 1 , ..., β n are the distinct poles of f in

∆(0, R, r), with respective multiplicity v j , 1 ≤ j ≤ m, then N R (r, f ) = n j=1 v j (log(r) -log(|β j |))
.

Finally, we put T R (r, f ) = max Z R (r, f ), N R (r, f ) [15].
Next, we denote by Z R (r, f ) the counting function of zeros without counting multiplicity: if α 1 , ..., α m are the distinct zeros of f in ∆(0, R, r), then we put

Z R (r, f ) = m j=1 log(r) -log(|α j |).
Similarly, we denote by N R (r, f ) the counting function of poles without counting multiplicity: if β 1 , ..., β n are the distinct poles of f in ∆(0, R, r), then we put

N R (r, f ) = n j=1 log(r) -log(|β j |).
Finally, taking W = {a 1 , ..., a q ∈ IK}, we denote by Z W R (r, f ) the counting function of zeros of f on points x where f (x) / ∈ W .

Given two functions defined in an interval I = [b, +∞[, we will write φ(r) = ψ(r) 

+ O(log(r)) (resp. φ(r) ≤ ψ(r) + O(log(r))) if there exists a constant B > 0 such that |φ(r) -ψ(r)| ∞ ≤ B log(r), r ∈ I (resp. φ(r) -ψ(r) ≤ B log(r), r ∈ I). We will write φ(r) = o(ψ(r)), r ∈ I if lim r→+∞ φ(r) ψ(r) = 0. Lemma 13: Let f ∈ M(D). Then log(|f |(r))-log(|f |(R)) = Z R (r, f )-N R (r, f )+m(f, S)(log r- log R) (r ∈ I).
Then Z R (r, f + φ) = Z R (r, f ) + O(log(r)) (r ∈ I).
Proof. Indeed, since φ is bounded and tends to zero at infinite, we have log |f |(r) = log |f + φ|(r) when r is big enough.

Corollary 11: Let f, g ∈ A(D) satisfy log(|f |(r)) ≤ log(|g|(r)) ∀r ≥ R (r ∈ I). Then Z R (r, f ) ≤ Z R (r, g) + (m(g, S) -m(f, S))(log(r) -log(R)), (r ∈ I). Lemma 14: Let f ∈ A(D). Then Z R (r, f ) ≤ Z R (r, f ) + O(log(r)) (r ∈ I).
Proof. Indeed, by Theorem B.9.2 in [START_REF] Escassut | p-adic Analytic Functions[END_REF] we have |f |(r) ≤ |f |(r) r . Therefore, the conclusion comes from Lemma 13.

We can now characterize the set M c (D):

Proposition 14: Let f ∈ M(D).
The following three statements are equivalent: Consequently, if a function f ∈ M c (D) has infinitely many zeros (resp. infinitely many poles in D),

(i) lim r→+∞ T R (r, f ) log(r) = +∞ (r ∈ I), (ii) 
then lim n→+∞ Z R (r, f ) log(r) = +∞ (resp. lim n→+∞ N R (r, f ) log(r) = +∞), hence in both cases, lim n→+∞ T R (r, f ) log(r) = +∞.
Conversely, if f has finitely many zeros and finitely many poles in D, then we check that lim n→+∞ T R (r, f ) log(r) < +∞. Thus, the equivalence of the three statements is clear.

Operations on M(D) work almost like for meromorphic functions in the whole field , thanks to the use of Motzkin factors.

Proposition 15 (First Main Theorem out of a hole) [START_REF] Escassut | An New Applications of the p-Adic Nevanlinna Theory p-Adic Numbers[END_REF] : Let f, g ∈ M(D). Then for every b ∈ IK, we have

T R (r, f +b) = T R (r, f )+O(log(r)), (r ∈ I) T R (r, f.g) ≤ T R (r, f )+T R (r, g)+ O(log(r)) (r ∈ I), T R (r, 1 f ) = T R (r, f )), T R (r, f +g) ≤ T R (r, f )+T R (r, g)+O(log(r)) (r ∈ I) and T R (r, f n ) = nT R (r, f ). Let h be a Moebius function. Then T R (r, h • f ) = T R (r, f ) + O(log(r)) (r ∈ I).
Moreover, if both f and g belong to A(D), then

T R (r, f + g) ≤ max(T R (r, f ), T R (r, g)) + O(log(r)) (r ∈ I) and T R (r, f g) = T R (r, f ) + T R (r, g), (r ∈ I). Particularly, if f ∈ A c (D), then T R (r, f + b) = T R (r, f ) + O(1) (r ∈ I). Given a polynomial P (X) ∈ IK[X], then T R (r, P • f ) = qT R (r, f ) + O(log(r)).
Corollary 12 Let h 1 , h 2 ∈ A(D), let g be a Motzkin factor. Then

T R (r, gh 1 + gh 2 ) ≤ max(T R (r, h 1 ), T R (r, h 2 )) + O(log(r)).
Similarly to Proposition 7 here we have the following Proposition

Proposition 16: Let f ∈ M(D). Then N R (r, f (k) ) = N R (r, f ) + kN R (r, f ), (r ∈ I) and Z R (r, f (k) ) ≤ Z R (r, f ) + kN R (r, f ) + O(log(r)), (r ∈ I).
The following Lemma 15 will be necessary in the proof of Proposition 17.

Lemma 15 [START_REF] Escassut | p-adic Analytic Functions[END_REF]: Let f ∈ M(D). Suppose that there exists ξ ∈ IK and a sequence of intervals

J n = [u n , v n ] such that u n < v n < u n+1 , lim n→+∞ u n = +∞, and 
lim n→+∞ inf r∈Jn T R (r, f ) -Z R (r, f -ξ) log(r) = +∞. Let ζ ∈ IK ζ = ξ. Then Z R (r, f -ζ) = T R (r, f ) + O(log(r)
)) ∀r ∈ J n when n is big enough.

Proof. Without loss of generality, we can obviously suppose that ξ = 0. By Lemma 13, f is of the form f S f 0 and f 0 is of the form g h with g, h ∈ A(D), having no zero in S. Set w = f S . Thus we have

lim n→+∞ inf r∈Jn Z R (r, h) -Z R (r, g) log(r) = +∞.
Consequently, by Lemma 13, Proposition 17: Let f ∈ M(D) and let a 1 , ..., a q ∈ IK be distinct. Then

(q -1)T R (r, f ) ≤ max 1≤k≤q q j=1,j =k Z R (r, f -a j ) + O(log(r)) (r ∈ I).
Proof. Suppose Proposition 17 is wrong. Thus, there exists f ∈ M(D) and a 1 , ..., a q ∈ IK such that (q -1)T R (r, f ) -max 1≤k≤q q j=1,j =k Z R (r, f -a j ) admits no superior bound in ]0, +∞[. So, there exists a sequence of intervals J s = [w s , y s ] such that w s < y s < w s+1 , lim s→+∞ w s = +∞ and two distinct indices m ≤ q and t ≤ q such that lim

s→+∞ inf r∈Js T R (r, f ) -Z R (r, f -a m ) log(r) = +∞ and lim s→+∞ inf r∈Js T R (r, f ) -Z R (r, f -a t ) log(r) = +∞.
But by Lemma 15, that is impossible.

We can now state and prove the Second Main Theorem for M(D).

Propostion 18 (Second Main Theorem out of a hole): Let f ∈ M(D), let α 1 , ..., α q ∈ IK, with q ≥ 2 and let W = {α 1 , ..., α q }. Then

(q -1)T R (r, f ) ≤ q j=1 Z R (r, f -α j ) + N R (r, f ) -Z W R (r, f ) + O(log(r)) (r ∈ I).
Proof. By Proposition 17 there exists a constant B > 0 and for each r > R there exists k(r) ∈ IN, k(r) ≤ q, such that

(q -1)T R (r, f ) ≤ q j=1,j =k(r) Z R (r, f -a j ) + B log(r), i.e., (q -1)T R (r, f ) ≤ q j=1 Z R (r, f -a j ) -Z R (r, a k(r) + O(log(r)). Now, q j=1 Z R (r, f -a j ) = q j=1 Z R (r, f -a j ) + Z R (r, f ) -Z W R (r, f ) + B log(r). Consequently, ( 9 
) (q -1)T R (r, f ) ≤ q j=1 Z R (r, f -a j , , , , ) + Z R (r, f ) -Z W R (r, f ) -Z R (r, f -a k(r) ) + O(log(r)) Particularly, if f ∈ A(D) then we have Z R (r, f -a j ) = T R (r, f -a j ) = T R (r, f )+O(log(r)) ∀j = 1, ..., q, hence Z R (r, f -a k(r) ) = T R (r, f ) + O(log(r)) and therefore qT R (r, f ) ≤ q j=1 Z R (r, f -a j ) + Z R (r, f ) -Z W R (r, f ) + O(log(r)),
By Proposition 7, for each j = 1, ..., q, there exists a constant

B j > 0 such that Z R (r, f ) ≤ Z R (r, f -a j ) + N R (r, f -a j ) + B j log(r)). Consequently, there exists a constant C > 0 such that Z R (r, f ) ≤ Z R (r, f -a k(r) ) + N R (r, f -a k(r) ) + C log(r) ∀r > R.
Therefore, by Relation ( 9) that remains true in Proposition 18, we can derive

(q -1)T R (r, f ) ≤ q j=1 Z R (r, f -α j ) + N R (r, f ) -Z W R (r, f ) + O(log(r)) ∀r ∈ I.

Small Functions

Small functions with respect to a meromorphic functions are well known in the general theory of complex functions. Particularly, one knows the Nevanlinna theorem on 3 small functions. Here we will construct a similar theory.

Definitions and notation: Throughout the chapter we set a ∈ K and R ∈]0, +∞[ and we still denote by D the set IK \ d(0, R -). For each

f ∈ M( IK) (resp. f ∈ M(d(a, R -)), resp. f ∈ M(D)) we denote by M f ( IK), (resp. M f (d(a, R -)), resp. M f (D)) the set of functions h ∈ M( IK), (resp. h ∈ M(d(a, R -)), resp. M(D)) such that T (r, h) = o(T (r, f
)) when r tends to +∞ (resp. when r tends to R, resp. when r tends to +∞). Similarly, if f ∈ A( IK) (resp.

f ∈ A(d(a, R -)), f ∈ A(D)) we shall denote by A f ( IK) (resp. A f (d(a, R -)), resp. A f (D)) the set M f ( IK) ∩ A( IK), (resp. M f (d(a, R -)) ∩ A(d(a, R -)), resp. M f (D) ∩ A(D)). The elements of M f ( IK) (resp. M f (d(a, R -)), resp. M f (D)) are called small meromor- phic functions with respect to f , small functions in brief. Similarly, if f ∈ A( IK) (resp. f ∈ A(d(a, R -)), resp. f ∈ A(D)) the elements of A f ( IK) (resp. A f (d(a, R -)), resp. A f (D)
) are called small analytic functions with respect to f small functions in brief. 

. A f ( IK) is a IK-subalgebra of A( IK), A f (d(a, R -)) is a IK-subalgebra of A(d(a, R -)), A f (D) is a IK-subalgebra of A(D), M f ( IK) is a subfield field of M( IK), M f (d(a, R -)) is a subfield of field of M(a, R -)) and M f (D) is a subfield field of M(D). Moreover, A b (d(a, R -) is a sub-algebra of A f (d(a, R -) and M b (d(a, R -) is a subfield of M f (d(a, R -).
Proposition 20:

Let f ∈ M( IK), (resp.f ∈ M(d(0, R -)), resp. f ∈ M(D)) and let g ∈ M f ( IK), (resp. g ∈ M f (d(0, R -)), resp. g ∈ M f (D)). Then T (r, f g) = T (r, f ) + o(T (r, f )) and T (r, f g ) = T (r, f ) + o(T (r, f )), (resp. T (r, f g) = T (r, f ) + o(T (r, f )) and T (r, f g ) = T (r, f ) + o(T (r, f )), resp. T R (r, f g) = T R (r, f ) + o(T R (r, f )) and T R (r, f g ) = T R (r, f ) + o(T R (r, f ))).
Proposition 21 is known as Second Main Theorem on Three Small Functions. It holds as well as in complex analysis, where it was showed first [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF]. Notice that this theorem was generalized to any finite set of small functions by K. Yamanoi in complex analysis [START_REF] Yamanoi | The second main theorem for small functions and related problems[END_REF], through methods that have no equivalent on a p-adic field. The Second Main Theorem on Three Small Functions holds in p-adic analysis as well as in Complex analysis and is proven particularly in [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF] (see also [START_REF] Escassut | p-adic Analytic Functions[END_REF]). The most precise form is given in [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF].

Proposition 21: Let f ∈ M( IK) (resp. f ∈ M u (d(0, R -)), resp. f ∈ M c (D)) and let w 1 , w 2 , w 3 ∈ M f ( IK) (resp. w 1 , w 2 , w 3 ∈ M f (d(0, R -)), resp. w 1 , w 2 , w 3 ∈ M f (D)
) be pairwaise distinct and let S(r) = max(T (r, w 1 ), T (r; w 2 ), T (r; w 3 )), r > 0, (resp. S(r) = max(T (r, w 1 ), T (r, w 2 ), T (r, w 3 )), r < R, resp. S(r) = max(T R (r, w 1 )), T R (r, w 2 ), T R (r, w 3 ), r ≥ R).

Then T (r, f ) ≤

3 j=1 Z(r, f -w j ) + O(S(r)), (resp T (r, f ) ≤ 3 j=1 Z(r, f -w j ) + 13S(r), resp. T R (r, f ) ≤ 3 j=1 Z R (r, f -w j ) + 13S(r)). Proposition 22: Let f ∈ M( IK) (resp. f ∈ M u (d(0, R -)), resp. f ∈ M c (D)) and let w 1 , w 2 ∈ M f ( IK) (resp. w 1 , w 2 ∈ M f (d(0, R -)), resp. w 1 , w 2 ∈ M f (D)
) be distinct and let and let S(r) = max(T (r, w 1 ), T (r, w 2 )), r > 0, (resp. S(r) = max(T (r, w 1 ), T (r, w 2 )), r < R, resp.

S(r) = max(T R (r, w 1 ), T R (r, w 2 )), r ≥ R). Then T (r, f ) ≤ Z(r, f -w 1 ) + Z(r, f -w 2 ) + N (r, f ) + 13S(r) + O(1), (resp. T (r, f ) ≤ Z(r, f -w 1 ) + Z(r, f -w 2 ) + N (r, f ) + 13S(r) + O(1), resp. T R (r, f ) ≤ Z R (r, f -w 1 ) + Z R (r, f -w 2 ) + N R (r, f ) + 13S(r) + O(1)).
Next, by setting g = f -w 1 and w = w 1 + w 2 , we can write Corollary 13:

Corollary 13: Let g ∈ M( IK) (resp. g ∈ M u (d(0, R -)), resp. g ∈ M c (D)) and let w ∈ M g ( IK) (resp. w ∈ M g (d(0, R -)), resp. w ∈ M g (D)
). and let S(r) = T (r, w) r > 0, (resp.

S(r) = T (r, w) r < R, resp. S(r) = T R (r, w) r ≥ R). Then T (r, g) ≤ Z(r, g) + Z(r, g -w) + N (r, g) + 13S(r) + O(1), (resp. T (r, g) ≤ Z(r, g) + Z(r, g -w) + N (r, g) + 13S(r) + O(1), resp. T R (r, g) ≤ Z R (r, g) + Z R (r, g -w) + N R (r, g) + 13S(r) + O(1)). Corollary 14: Let f ∈ A( IK) (resp. f ∈ A u (d(0, R -)), resp. f ∈ A c (D)) and let w 1 , w 2 ∈ A f ( IK) (resp. w 1 , w 2 ∈ A f (d(0, R -)), resp. w 1 , w 2 ∈ A f (D)) be distinct and let S(r) = max(T (r, w 1 ), T (r, w 2 )) r > 0, (resp. S(r) = max(T (r, w 1 ), T (r, w 2 )) r < R, resp. S(r) = max(T R (r, w 1 ), T R (w 2 )) r ≥ R). Then T (r, f ) ≤ Z(r, f -w 1 ) + Z(r, f -w 2 ) + 13S(r + O(1)), (resp. T (r, f ) ≤ Z(r, f -w 1 ) + Z(r, f -w 2 ) + 13S(r)+O(1)), resp. T R (r, f ) ≤ Z R (r, f -w 1 ) + Z R (r, f -w 2 ) + 13S(r)+O(1)).
And similarly to Corollary 13, we get Corollary 15:

Corollary 15: Let f ∈ A( IK) (resp. f ∈ A u (d(0, R -)), resp. f ∈ A c (D) ) and let w ∈ A f ( IK) (resp. w ∈ A f (d(0, R -)), resp. w ∈ A f (D)). Let S(r) = T (r, w), r ∈]0, +∞[, (resp. S(r) = T (r, w), r < R, resp. S(r) = T R (r, w), r ≥ R). Then T (r, f ) ≤ Z(r, f ) + Z(r, f -w) + 13S(r) + O(1), (resp. T (r, f ) ≤ Z(r, f ) + Z(r, f -w) + 13S(r) + O(1), resp. T R (r, f ) ≤ Z R (r, f ) + Z R (r, f -w) + 13S(r) + O(1)). Lemma 16: Let f ∈ M( IK), (resp. let f ∈ M(d(0, R -)), R > 0, (resp. let f ∈ M c (D))),
suppose that f admits infinitely many zeros and suppose that there exists a sequence of intervals [r n , r n ] such that lim n→+∞ r n = +∞ (resp.

lim n→+∞ r n = lim n→+∞ r n = R, resp. lim n→+∞ r n = +∞, R ≤ r 1 ) and such that |(f + f m )|(r) = |f m |(r) ∀r ∈ n∈ IN [r n , r n ]. Let m ∈ IN * be = 2. Then f + f m
has infinitely many zeros that are not zeros of f .

Proof. Let J = n∈ IN [r n , r n ]
. By Corollary B.13.6 we have

ν + (f + f m , log r) = ν + (f m , log r), ν -(f + f m , log r) = ν -(f m , log r) ∀r ∈ J.
Consequently, in each circle C(0, r) with r ∈ J, f and f + f m have the same difference between the number of zeros and poles. Now, if m ≥ 3 the poles of f + f m and f m are the same taking multiplicity into account. And when m = 1, each pole of f is a pole of f + f with a strictly greater order. Consequently, for each r ∈ J, the number of zeros of f + f m in C(0, r) is superior or equal to this of f m . Now, for each n ∈ IN, let s n be the number of distinct zeros of f in n j=1 ∆(r 1 , r n ). Since f has infinitely many zeros, the sequence s n is increasing and tends to +∞. On the other hand, for each zero α of order u of f , either α is not a zero of f + f m (when u = 1), or it is a zero of order u -1). Consequently, the number of zeros of f + f m in n j=1 ∆(r 1 , r n ) which are not zeros of f is at least s n . Thus we have proved that f + f m has infinitely many zeros that are not zeros of f . |f |(r)

Proofs of the Theorems

m ≥ |f |(r)M m-1 ≥ r|f |(r)M m-1 .
Next, when r is big enough, rM m-1 is greater than 1, hence (|f

|(r)) m > |f |(r). Thus there exists t ≥ s such that (|f |(r)) m > |f |(r) ∀r ∈ J ∩ [t, +∞[. Let J = J ∩ [t, +∞[. So we have |f + f m |(r) = |f m |(r) ∀r ∈ J .
Suppose now that we assume the hypothesis of Proposition 24. We have Proof. Concerning claims on M u (d(a, R -)) we can obviously assume a = 0. Suppose that there exist two distinct functions w 1 , w 2 ∈ M f ( IK), (resp. w 1 , w 2 ∈ M f (d(0, R -))) such that f -w k has finitely many zeros. So, there exist P 1 , P 2 ∈ IK[x] and h 1 , h 2 ∈ A( IK) (resp.

|f |(r) ≤ |f |(r) r ≤ |f |(r) R . Set B = 1 R . Then we have |f |(r) m ≥ B|f |(r)(|f |(r)) m-1 . Now, when r is close enough to R, r ∈ J, B|f (x)| m-
h 1 , h 2 ∈ A(d(0, R -))) such that f -w k = P k h k , k = 1, 2 and hence we notice that (1) T (r, f ) = T (r, P k h k ) + o(T (r, f )) = T (r, h k ) + o(T (r, f )) k = 1, 2.
Consequently, putting w = q 2 -w 1 , we have

P 1 h 1 = P 2 h 2 + w
and by Proposition 19, w belongs to M f ( IK) (resp. to M f (d(0, R -))). Therefore P 1 h 2 -P 2 h 1 = gh 1 h 2 and hence

(2) T (r, P 1 h 2 -P 2 h 1 ) = T (r, gh 1 h 2 ). Now, by Proposition 8 we have T (r, P 1 h 2 -P 2 h 1 ) ≤ max(T (r, P 1 h 2 ), T (r, P 2 h 1 )) ≤ max(T (r, h 1 ), T (r, h 2 )) + o(T (r, f ))

and hence by (1), we obtain

(3) T (r, P 1 h 2 -P 2 h 1 ) ≤ T (r, f ) + o(T (r, f )).

On the other hand, by Proposition 20, we have

T (r, wh 1 h 2 ) = T (r, h 1 h 2 ) + o(T (r, h 1 h 2 )) = 2T (r, f ) + o(T (r, f )),
which by (2), contradicts [START_REF] Bezivin | Survey and additional properties on zeros of the derivative of a p-adic meromorphic function[END_REF]. Suppose now that f belongs to M c (D). Suppose that there exist two distinct functions w 1 , w 2 ∈ M c f (D), such that f -w k has finitely many zeros. So, there exist

P 1 , P 2 ∈ IK[x] and h 1 , h 2 ∈ A c (D) such that f -w k = w 0 k P k h k
, k = 1, 2 and hence we notice that

(1bis) T R (r, f ) ≤ T R (w 0 k ) + T R (r, P k h k ) + o(T (r, f )) = T R (w 0 k ) + T (r, h k ) + o(T R (r, f )) k = 1, 2.
Consequently, putting w = w 2 -w 1 , we have

w 0 1 P 1 h 1 = w 0 2 P 2 h 2 + w
and by Proposition 19, w belongs to M f (D). Therefore w 0 1 P 1 h 2 -w 0 2 P 2 h 1 = wh 1 h 2 and hence

T R (r, w 0 1 P 1 h 2 -w 0 2 P 2 h 1 ) = T R (r, gh 1 h 2 )
and hence by Corollary 12 (2bis) T R (r, gh 1 h 2 ) ≤ max(T R (r, P 1 h 2 ), T R (r, P 2 h 1 )) + O(log(r) ≤ T R (r, f ) + o(T R (r, f )).

On the other hand, by Propostion 20, we have

T R (r, gh 1 h 2 ) = T R (r, h 1 h 2 ) + o(T R (r, h 1 h 2 )) = 2T R (r, f ) + o(T R (r, f )),
which contradicts (2bis).

Suppose now that f belongs to A( IK) \ IK[x] and that there exists a function w ∈ M f ( IK) such that f -w has finitely many zeros.

Set w = l t where l and t belong to A f ( IK) and have no common zeros. Thus, f -w = tf -l t and each zero of tf -l cannot be a zero of t hence is zero of f -w. Consequently, since f -w has finitely many zeros, tf -l has finitely many zeros and hence is a polynomial. But since l belongs to A f ( IK), when r is big enough we have |f |(r) > |l|(r) and hence |tf |(r) > |l|(r), therefore |tf -l|(r) = |tf |(r). And since f is transcendental, by Corollary B.13.23 in [START_REF] Escassut | p-adic Analytic Functions[END_REF] for every fixed q ∈ IN, |f |(r) > r q when r is big enough. Similarly, |tf -l|(r) > r q when r is big enough. Consequently, by Corollary B.13.23 in [START_REF] Escassut | p-adic Analytic Functions[END_REF], tf -l is not a polynomial, which proves that w does not exist.

Suppose now that f belongs to A u (d(0, R -)) and that there exists a function w ∈ M f (d(0, R -)) such that f -w has finitely many zeros. Without loss of generality, we can assume that the field IK is spherically complete because both f and w have continuation to an algebraically closed spherically complete extension of IK where their zeros are the same as in IK. Consequently, we can write w = l t where l and t have no common zeros. Now, the zeros of f -w are those of tf -l, hence tf -l has finitely many zeros and hence, is bounded in d(0, R -). But since w belongs to M f (d(0, R -)), so does l and hence |tf |(r) > |l|(r) when r tends to R. Consequently, |tf -l|(r) = |tf |(r) is not bounded in d(0, R -), a contradiction proving again that w does not exist. Suppose finally that f belongs to A c ( IK) and that there exists a function w ∈ M f (D) such that f -w has finitely many zeros. Thus, f -w = (f -w) 0 tf -l t where both tf -l and l belong to A( IK) and have noi zero in S.

Then each zero of tf -l cannot be a zero of t, hence is zero of f -w. Consequently, since f -w has finitely many zeros, tf -l has finitely many zeros and hence is a polynomial. But since l belongs to A f ( IK), when r is big enough we have |f |(r) > |l|(r) and hence |tf |(r) > |l|(r), therefore |tf -l|(r) = |tf |(r). And since f is transcendental, by Corollary B.13.23 in [START_REF] Escassut | p-adic Analytic Functions[END_REF] for every fixed q ∈ IN, |f |(r) > r q when r is big enough. Similarly, |tf -l|(r) > r q when r is big enough. Consequently, by Corollary B.13.23 in [START_REF] Escassut | p-adic Analytic Functions[END_REF], tf -l is not a polynomial, which proves that w does not exist. Suppose now that f has finitely many zeros. Then f has infinitely many poles c n of respective order t n . Since IK has characteristic zero, f admits each c n as a pole of order t n + 1 and similarly, f + f also admits each c n as a pole of order t n + 1. Thus, we have N

(r, f + f ) = N (r, f ) + N (r, f ). But since |f + f |(r) = |f |(r) holds in I, we have ν(f + f, log r) = ν(f, log r) ∀r ∈ I and hence Z(r, f + f ) -N (r, f + f ) = Z(r, f ) -N (r, f ), therefore Z(r, f + f ) -(N (r, f ) + N (r, f )) = Z(r, f ) -N (r, f ) and hence Z(r, f + f ) = Z(r, f ) + N (r, f
). Since we have supposed that f has finitely many zeros and since f has infinitely many poles, f + f has infinitely many zeros and all but finitely many are not zeros of f . Concerning functions f + bf 2 , we can obtain a first conclusion when f is analytic.

Theorem E: Let a ∈ IK, let R ∈]0, +∞[ and let f ∈ A u (da(, R -)), (resp. f ∈ A c (D) ).
For each b ∈ IK * , f + bf 2 has infinitely many zeros that are not zeros of f . Proof. Without loss of generality, we can assume b = 1 and a = 0. Clearly, when r is big enough, in ]0, +∞[ (resp. in ]0, R[), we have |f + f 2 |(r) = |f 2 |(r) therefore, by Corollary B.13.6 in [START_REF] Escassut | p-adic Analytic Functions[END_REF], f 2 and f + f 2 have the same number of zeros in C(0, r) (taking multiplicity into account). Let α ∈ C(0, r) be a zero of f of order q. When r is big enough, it is a zero of order 2q for f 2 and it is a zero of order q -1 for f + f 2 . Consequently, by Corollary B.13.6 in [START_REF] Escassut | p-adic Analytic Functions[END_REF], f + f 2 has at least q + 1 zero in C(0, r) that are not zeros of f (taking multiplicity into account). This is true for every such zeros of f and hence f + f 2 has infinitely many zeros that are not zeros of f . Then if f has infinitely many multiple zeros or poles, then f + bf 4 has infinitely many zeros that are not zeros of f .

We will now thoroughly examine the situation when m = 4, i.e., n = 2, as made in [START_REF] Escassut | The p-adic Hayman conjecture when n = 2[END_REF]. This requires several basic lemmas.

Lemma 13: Let f ∈ M( IK) be transcendental and such that f has finitely many multiple zeros.

Then

f f (f ) 2 has no quasi-exceptional value.

Proof. Let g = f f . A pole of g is a zero of f , hence by hypothesis, g has finitely many multiple poles. Consequently, by Theorem C.8.7 in [START_REF] Escassut | p-adic Analytic Functions[END_REF], g has no quasi-exceptional value. And hence neither has 1 -g . But g = (f ) 2 -f f (f ) 2 = 1 -f f (f ) 2 . Therefore, f f (f ) 2 has no quasi-exceptional value.

Lemma 14: Let f ∈ M( IK) be transcendental and have finitely many multiple zeros. Then f f + 2(f ) 2 has infinitely many zeros that are not zeros of f . Proof. Suppose first that f has infinitely many multiple zeros. Since f has finitely many multiple zeros, the zeros of f are not zeros of f except at most finitely many. Hence, f has infinitely many multiple zeros that are not zeros of f . And then, they are zeros of f , hence of f f + 2(f ) 2 , which proves the statement.

So we are now led to assume that f has finitely many multiple zeros. By Lemma 13 f f + 2(f ) 2 (f ) 2 has infinitely many zeros. Let c ∈ IK be a pole of order q of f . Without loss of generality, we can suppose c = 0. The beginning of the Laurent development of f at 0 is of the form a -q x q + ϕ(x) x q-1, whereas ϕ ∈ M( IK) has no pole at 0. Consequently, f f + 2(f ) 2 (f ) 2 is of the form (a -q ) 2 (3q 2 + q) + xφ(x), (a -q ) 2 (q 2 ) + xψ(x) whereas φ, ψ ∈ M( IK) have no pole at 0. So, the function f f + 2(f ) 2 (f ) 2 has no zero at 0. Therefore, each zero of f f + 2(f ) 2 (f ) 2 is a zero of f f + 2(f ) 2 and hence f f + 2(f ) 2 has infinitely many zeros. Now, let us show that the zeros of f f + 2(f ) 2 are not zeros of f , except maybe finitely many. Let c be a zero of f f + 2(f ) 2 and suppose that c is a zero of f . Then, it is a zero of f and hence it is a multiple zero of f . But by hypotheses, f has finitely many multiple zeros, hence the zeros of f f + 2(f ) 2 are not zeros of f , except at most finitely many. That finishes proving the claim. Theorem A was published in [START_REF] Escassut | The p-adic Hayman conjecture when n = 2[END_REF]. Here we will add some precisions in the proof. 

Theorem A :

 : Let f ∈ M(IK) be transcendental. Then for every n ∈ IN, n ≥ 2, f f n -b has infinitely many zeros. Theorem B: Let f ∈ M( IK) \ IK(x). For each b ∈ IK * , f + bf has infinitely many zeros that are not zeros of f . Theorem C: Let a ∈ IK, R > 0 and let f ∈ M u (( . a, R -)) (resp. let f ∈ M c (D)). For every n ∈ IN, n ≥ 3, for every b ∈ IK * , f f n -b has infinitely many zeros.

Lemma 1 :

 1 Let g ∈ M( IK) (resp. let g ∈ M(d(a, R -)), a ∈ IK, R > 0, (resp. g ∈ M(D)), set f = 1 g and let n ∈ IN * . Then g g n admits a quasi-exceptional value b ∈ IK * if and only if f + bf n+2 has finitely many zeros that are not zeros of f . Notation: Given a ∈ IK and r > 0, wer denote by C(a, r) the circle {x ∈ IK | |x -a| = r}, by log the Neperian logarithm and by e the number such that log(e) = 1. Next we put exp(s) = e s , x ∈ IR. Lemma 2 [16]: Let f ∈ M( IK) (resp. let f ∈ M(d(0, R -)), R > 0, resp. f ∈ M(D)) and let r ∈ IR + (resp. let r ∈]0, R[, resp. let r > R). Then |f (x)| is constant in all disks d(a, r -) of C(0, r) where f has no zero and no pole and is noted |f |(r). Moreover, the function Ψ in µ defined as Ψ(µ) = log(|f |(exp(µ)) is continuous and piecewise affine in IR (resp. in ] -∞, log(R)[, resp. in [log(R), +∞[).

  n→+∞ r n = +∞ (resp. lim n→+∞ r n = lim n→+∞ r n = R) and such that |(f + f m )|(r) = |f m |(r) ∀r ∈ n∈ IN [r n , r n ]. Let m ∈ IN * be = 2. Then f + f m has infinitely many zeros that are not zeros of f . Proof. Let J = n∈ IN [r n , r n ]. By Corollary B.13.6 in [16], we have

Lemma 4 :

 4 Let f ∈ M c (D). Suppose that there exists a sequence of intervals [r n , r n ] such that lim n→+∞ r n = +∞, R < r 1 and such that |(f +f m )|(r) = |f m |(r) ∀r ∈ n∈ IN [r n , r n ] and that f admits infinitely many zeros in the set Λ = ∞ n=1 ∆(0, r n , r n ). Let m ∈ IN * be = 2. Then f + f m has infinitely many zeros in Λ that are not zeros of f . Proof. Let J = n∈ IN [r n , r n ]. By Corollary B.13.6 in [16], we have

Lemma 5 : 3 .Lemma 6 :Lemma 7 : 3 .

 53673 Let f ∈ M( IK) \ IK(x) satisfy lim sup r→∞ |f |(r) > 0 and let b ∈ IK * . Let m ∈ IN * be ≥ Then f + bf m has infinitely many zeros that are not zeros of f . Let f ∈ M c (D) satisfy lim sup r→∞ |f |(r) > 0 and let b ∈ IK * . Let m ∈ IN * be ≥ 3. Then f + bf m has infinitely many zeros that are not zeros of f . Let f ∈ M u (d(a, R -)) satisfy lim sup r→R - |f |(r) = +∞ and let b ∈ IK * . Let m ∈ IN * be ≥ Then f + bf m has infinitely many zeros that are not zeros of f . Proof. (Lemmas 5 and 7). Without loss of generality, we can assume b = 1 and when f ∈ M(d(a, R -)), we may assume a = 0. By hypotheses, there exists a sequence of intervals [r n , r n ] such that lim n→+∞ r n = +∞ (resp. lim n→+∞ r n = lim n→+∞ r n = R) and such that, putting J = n∈ IN [r n , r n ], we have lim sup r→∞, r∈J |f |(r) > 0 (resp. lim r→R -r∈J |f |(r) = +∞). Suppose first we assume the hypothesis of Lemma 5. Let M = lim sup r→+∞ |f |(r) 2 . We will prove that there exists t > 0 such that |f + f m |(r) = |f m |(r) ∀r ∈ J ∩ [t, +∞[. By Theorem C.2.10 in [16], we have |f |(r) ≤ |f |(r) r . Consequently, when r lies in J, there exists s > 0 such

  , r n ], then we have lim sup r→∞, r∈J |f |(r) > 0. Let M = lim sup r→+∞ |f |(r) 2 . We will prove that there exists t > 0 such that |f + f m |(r) = |f m |(r) ∀r ∈ J ∩ [t, +∞[. By Theorem C.2.10 in [16], we have |f |(r) ≤ |f |(r) r . Consequently, when r lies in J, there exists s > 0 such that |f |(r) ≥ M ∀r ∈ [s, +∞[∩J therefore

  J =]a, R[), with values in [0, +∞[, we shall write φ(r) ≤ ψ(r) + O(ζ(r)) if there exists a constant b ∈ IR such that φ(r) ≤ ψ(r) + bζ(r). We shall write φ(r) = ψ(r) + O(ζ(r)) if |ψ(r) -φ(r)| is bounded by a function of the form bζ(r). Similarly, we shall write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a function h from J =]a, +∞[ (resp. from J =]a, R[) to IR such that lim r→+∞ and such that φ(r) ≤ ψ(r) + h(r). And we shall write φ(r) = ψ(r) + o(ζ(r)) if there exists a function h from J =]a, +∞[ (resp. from J =]a, R[) to IR such that lim r→+∞ that φ(r) = ψ(r) + h(r).

Proof.Corollary 8 :Corollary 9 :Corollary 10 :

 8910 By Theorem C.3.6 in[START_REF] Escassut | p-adic Analytic Functions[END_REF], we have f = f S f 0 . Since f S has no zero and no pole in D, by Theorem C.3.3 in[START_REF] Escassut | p-adic Analytic Functions[END_REF] it satisfies |f S |(r)) = r m(f,S) ∀r ∈ I, hence log(|f S |(r)) -log(|f S |(R)) = m(f, S)(log r -log R) (r ∈ I).Next, since f 0 has no zero and no pole in S, we have log(|f 0 |(r))log(|f 0 |(R)) = Z R (r, f 0 ) -N R (r, f 0 ) (r ∈ I), therefore the statement is clear. Let f ∈ M(D). Then T R (r, f) is identically zero if and only if f is a Motzkin factor. Let f ∈ M(D). Then T R (r, f 0 ) = O(log(r)). Let f ∈ A(D) and let φ ∈ H 0 (D).

  T R (r, f ) log(r) is unbounded, and (iii) f belongs to M c (D). Proof. Consider an increasing sequence (u n ) n∈ IN in IR + such that lim n→+∞ u n = +∞ and let (k n ) n∈ IN be a sequence of IN * . Clearly, we have lim r→+∞ un≤r k n (log(r) -log(u n )) log(r) = +∞.

Z

  now f -ζ. We have f -ζ = wg -ζh h , hence log(|f |(r)) = log |wg -ζh|(r) -log(|h|(r)). But by (7), we have log(|ζh|(r)) > log(|wg|(r)) because log(|w|(r) = O(log(r)), therefore log |wg -ζh|(r) = log(|ζh|(r)) ∀r ∈ J n when n is big enough and hence (8) lim n→+∞ sup r∈Jn log(|ζh -wg|(r) -log(|h|(r) log(r) = 0.Consequently, by[START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF] and by Lemma 13,lim n→+∞ sup r∈Jn Z R (r, ζh -wg) -Z R (r, h) R (r, f -ζ) -T R (r, f ) log(r) = 0,which proves the claim.

Propositions 19 and 20

 20 are immediate consequences of Proposition 8: Proposition 19: Let a ∈ IK and r > 0

Proposition 23 :

 23 Let f ∈ M( IK)\ IK(x) satisfy lim sup r→∞ |f |(r) > 0 and let b ∈ IK * . Let m ∈ IN * be ≥ 3. Then f + bf m has infinitely many zeros that are not zeros of f . Proposition 24: Let f ∈ M u (d(a, R -)) satisfy lim sup r→R |f |(r) = +∞ and let b ∈ IK * . Let m ∈ IN * be ≥ 3. Then f + bf m has infinitely many zeros that are not zeros of f . Proof. (Propositions 23 and 24). Without loss of generality, we can assume b = 1 and when f ∈ M(d(a, R -)), we may assume a = 0. By hypotheses, there exists a sequence of intervals [r n , r n ] such that lim n→+∞ r n = +∞ (resp. lim n→+∞ r n = lim n→+∞ r n = R) and such that, putting J = n∈ IN [r n , r n ], we have lim sup r→∞, r∈J |f |(r) > 0 (resp. lim r→R -r∈J |f |(r) = +∞). Suppose first we assume the hypothesis of Proposition 23. Let M = lim sup r→+∞ |f |(r) 2 . We will prove that there exists t > 0 such that |f + f m |(r) = |f m |(r) ∀r ∈ J ∩ [t, +∞[. By Theorem C.2.10 in [16], we have |f |(r) ≤ |f |(r) r . Consequently, when r lies in J, there exists s > 0 such that |f |(r) ≥ M ∀r ∈ [s, +∞[∩J.

  Theorem D : let a ∈ IK and r > 0.Let f ∈ M( IK) \ IK(x), (resp. f ∈ M u (d(a, R -)), resp. f ∈ M c (D))).There exists at most one function w ∈ M f ( IK), (resp. w ∈ M f (d(a, R -)), resp. w ∈ M f (D)) such that f -w have finitely many zeros. Moreover, if f belongs to A( IK) \ IK[x] (resp. to A u (d(a, R -)), resp. to A c ( IK)) then there exists no function w ∈ M f ( IK) \ IK(x), (resp. w ∈ M f (d(a, R -)), resp. w ∈ M f (D)) such that f -w have finitely many zeros.

  Theorem B: Let f ∈ M( IK) \ IK(x). For each b ∈ IK * , f + bf has infinitely many zeros that are not zeros of f . Proof. Without loss of generality, we can assume again b = 1. By Theorem C.2.10 in [16], we have |f |(r) < |f |(r) when r is big enough and hence |f + f |(r) = |f |(r) in an interval I = [s, +∞[. Suppose first that f has infinitely many zeros. We can then apply Lemma 4 and get the conclusion.

Corollary 16 :

 16 Let m ∈ IN be ≥ 2, let a ∈ IK, let R ∈]0, +∞[, and let f ∈ A u (d(a, R -)), (resp. f ∈ A c (D)). For each b ∈ IK * , f + bf m has infinitely many zeros that are not zeros of f . This finishes the proof of Theorem C. Now, consider the hypothesis f ∈ M( IK). By Proposition 23, if lim inf r→+∞ |f |(r) > 0, i.e., if lim inf r→+∞ Z(r, f ) -N (r, f ) > -∞ the claim is proved. Consequently, since we suppose that the claim is not true, we can assume lim inf r→+∞ Z(r, f ) -N (r, f ) = -∞, i.e., (5) lim sup r→+∞ Z(r, l) -Z(r, h) = +∞. We notice that Relation (4) holds again. Since f is transcendental, by (4) we notice that l is transcendental. Consequently, (2) is impossible whenever n ≥ 3, i.e., m ≥ 5. Now, suppose m = 4, i.e., n = 2. More precisely, Z(r, l) ≤ Z(r, l) -s log r 2 and Z(r, h) ≤ Z(r, h) -t log r 2 . Then, by Corollary 15 and by Relation (1) we have Z(r, F ) = Z(r, h l -hl ) + 2Z(l) ≤ Z(r, h l -l h) + Z(r, l) + Z(r, F -P ) + 13T (r, P ) + O(1) = Z(r, h l -l h) + verlineZ(r, l) + Z(r, h) + 13T (r, P ) + O(1). Therefore 2Z(r, l) ≤ Z(r, l) + Z(r, h) + +13T (r, P ) + O(1) ≤ Z(r, l) + Z(r, h) -s + t 2 log(r) + +13T (r, P ) + O(1). Now, T (r, P ) ≤ q log(r), therefore Z(r, l) ≤ Z(r, h) + (13 -s + t 2 ) log(r) + O(1).

( 6 )Corollary 17 :

 617 Z(r, l) ≤ Z(r, h) + (13 -s + t 2 ) log(r) + O(1). Now, Relation (4) implies 13q-s + t 2 > 0 and hence f f n admits a number of zeros strictly superior to s + t 26 . Let f ∈ M( IK) \ IK(x) have finitely multiple zeros and finitely multiple poles. Let b ∈ IK * .

Lemma 15 :

 15 Let f ∈ M( IK) be transcendental and let b ∈ IK * be such that f 2 f -b has finitely many zeros. Then, N (r, f ) ≤ Z(r, f ) + O(1).Proof. Let F = f 2 f . Since F -b is transcendental and has finitely many zeros, it is of theform P (x) h(x) with h ∈ A( IK) \ IK[x]. Consequently, |F |(r) is a constantwhen r is big enough and therefore, by Proposition 1 we have Z(r, F ) = N (r, F ) + O(1) when r is big enough. Now, Z(r, F ) = 2Z(r, f ) + Z(r, f ) and, by Proposition 7 Z(r, f ) ≤ Z(r, f ) + N (r, f ) -log r + O(1). On the other hand, by Proposition 7 again, we have N (r, F ) = 3N (r, f ) + N (r, f ). Consequently, 3N (r, f ) + N (r, f ) ≤ 3Z(r, f ) + N (r, f ) -log r + O(1), which proves the claim.

Theorem A :

 : Let f ∈ M( IK) \ IK(x). Then for each b ∈ IK * , f f 2 -b has infinitely many zeros.

  1 is strictly greater than 1, hence (|f |(r)) m > |f |(r). Thus, there exists t > 0 such that (|f|(r)) m > |f |(r) ∀r ∈ [t, +∞[∩J. We can set again J = J ∩ [t, R[ and then we have |f + f m |(r) = |f m |(r) ∀r ∈ J .We can now conclude Propositions 23 and 24. For each n ∈ IN, let q n be the number of zeros of f in d(0, r n ). Suppose the sequence (q n ) n∈ IN is bounded. Then, f has finitely many zeros, hence = 0), a contradiction to the hypothesis in both theorems. Therefore, the sequence (q n ) n∈ IN that is increasing by definition, tends to +∞. Now, in each Propositions 23 and 24, we may applyLemma 16 showing that f + f m has infinitely many zeros that are not zeros of f .

	it is of the form have lim r→+∞ |f |(r) = 0 (resp. lim P with P ∈ IK[x] and h ∈ A( IK) (resp. h ∈ A u (d(0, R -))). Consequently, we h r→R -|f |(r)

Acknowledgement: We are grateful to Jean-Paul Bézivin for many comments.

Proposition 25 was published in [START_REF] Boussaf | Zeros of the derivative of a p-adic meromorphic function and applications Bull[END_REF] and partially in [START_REF] Nevanlinna | Le théorème de Picard-Borel et la théorie des fonctions méromorphes[END_REF]. In its proof, we will get the proof of Theorem C.

Proposition 25: Let f ∈ M( IK) \ IK(x) (resp. let a ∈ IK and R ∈ IR * + and let f ∈ M u (d(a, R -)), resp. let f ∈ M c (R) ) and let m ∈ IN. If m ≥ 5, then for each b ∈ IK * , f + bf m has infinitely many zeros that are not zeros of f . If m = 4, if f ∈ M( IK) \ IK(x), and if f admits at least s multiple zeros and at least t multiple poles, then f + bf 4 admits a number of zeros that are not zeros of f (taken account of multiplicity), which is superior or equal to to s + t 26 .

Proof. By Corollary B.13.2 in [START_REF] Escassut | p-adic Analytic Functions[END_REF], the zeros of f + bf m in IK are the same as in a spherically complete algebraically closed extension IK of IK. So, for simplicity, we can suppose that the field IK is spherically complete without loss of generality. We can also suppose that b = 1 and a = 0.

, having no common zeros and if f ∈ M(d(0, R -)), since IK is spherically complete, we can write f = h l with h, l ∈ A(d(0, R -)), having no common zeros again.

Let g = 1 f and let n = m -2. So, by Lemma 1, the problem is reduced to show that g g n -1

has infinitely many zeros. So we suppose that the lemma is wrong and hence, g g n -1 has q zeros (counting multiplicity).

Then,

and since h, l have no common zeros, this is of the form P h n+2 where P is a polynomial of degree q. Now, set

Then, assuming that f ∈ M( IK) or f ∈ M(d(0, R -), by Corollary 15, T (r, F ) = Z(r, F ) + O(1) ≤ Z(r, F ) + Z(r, F -P ) + 13(T (r, P )) hence (1) Z(r, F ) ≤ Z(r, F ) + Z(r, F -P ) + 13(T (r, P )), hence Z(r, l h -h l) + nZ(r, l) ≤ Z(r, l h -h l) + Z(r, l) + Z(F -P ) + 13T (r, P ) + O(1)). Actually, Z(r, F -P ) = Z(r, h), hence nZ(r, l) ≤ Z(r, l)+Z(r, h)+13T (r, P )+O(1)) and hence (n-1)Z(r, l) ≤ Z(r, h) + 13(T (r, P )) + O(1) and then (2) (n -1)Z(r, l) ≤ Z(r, h) + 13T (r, P ) + O(1)).

Similarly, when f ∈ M c (D), we have

the claim is proved. Consequently, since the claim is not true, we can assume lim inf

But by (2), we see that ( 4) is impossible whenever n ≥ 3, i.e., m ≥ 5.

And now, suppose f ∈ M c (R). By Proposition 24, if lim

then the claim is proved again. Consequently, since the claim is not true, we can assume lim inf

and then by (3), the conclusion is the same.

Proof. Let b ∈ IK * and suppose that the claim is wrong, i.e., f 2 f -b has q zeros, taking multiplicity into account. By Proposition 25, we may assume that f has finitely many multiple zeros and finitely multiple poles. Set F = f 2 f . Then F = f (f f +2(f ) 2 ). By Lemma 14, f f +2(f ) 2 has infinitely many zeros that are not zeros of f . Consequently, F admits for zeros: the zeros of f and the zeros of f f + 2(f ) 2 . And by Lemma 14, there exists a sequence of zeros of f f + 2(f ) 2 that are not zeros of f . Let S = {0, b} and let Z S 0 (r, F ) be the counting function of zeros of F when F (x) is different from 0 and b. Since F -b has finitely many zeros, the zeros c of F , which are not zeros of f, cannot satisfy F (c) = b except at most finitely many. Consequently, there are infinitely many zeros of F counted by the counting function Z S 0 (r, F ) and hence for every fixed integer M ∈ IN, we have

Let us apply Theorem C.4.24 in [START_REF] Escassut | p-adic Analytic Functions[END_REF] to F . We have

and since the number of zeros of F -b is q, taking multiplicity into account, then:

(5) Z(r, F -b) ≤ s log r + O(1).

Consequently, by (2), (3), (4), and ( 5) we obtain (6) T (r, F ) ≤ Z(r, f ) + Z(r, f ) + N (r, f ) -Z S 0 (r, F ) + (q -1) log r + O(1).

On the other hand, by construction, T (r, F ) ≥ Z(r, F ) = 2Z(r, f ) + Z(r, f ), hence by [START_REF] Boussaf | Value distribution of p-adic meromorphic functions[END_REF] we obtain [START_REF] Boussaf | Zeros of the derivative of a p-adic meromorphic function and applications Bull[END_REF] (7) Z(r, f ) ≤ N (r, f ) -Z S 0 (r, F ) + (q -1) log r + O(1). Now, by Lemma 15, we have N (r, f ) ≤ Z(r, f )+O(1), hence by [START_REF] Boussaf | Zeros of the derivative of a p-adic meromorphic function and applications Bull[END_REF] we obtain 0 ≤ (s-1) log r -Z S 0 (r, F )+O(1) and hence by (1), fixing M > q -1 we can derive 0 ≤ (q -1) log r -M log r +O(1), a contradiction. This finishes the proof of Theorem A.