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The p-adic Hayman conjecture
A survey with some generalizations

by Alain Escassut

In memory of Professor Wolfgang Tutschke

Abstract

Let IK be a complete ultrametric algebraically closed field of characteristic 0. According to
the p-adic Hayman conjecture applied to transcendental meromorphic function f in IK or an
”unbounded” meromorphic function inside an open disk, for each n ∈ IN∗, fnf ′ takes every
value b 6= 0 infinitely many times. That was proved for n ≥ 3 by J. Ojeda and next, by herself
and the author for meromorphic function in IK, for n = 2. Here we recall these proofs and
generalize them to meromorphic functions out of a hole whenever n ≥ 3. We also recall the
proof of this theorem: given a meromorphic function f , there exists at most one small function
w such that f − w have finitely many zeros.

.

1 Introduction and main results

Let IK be a complete ultrametric algebraically closed field of characteristic 0. Given a ∈ IK and r >
0, we denote by d(a, r) the disk {x ∈ IK | |x−a| ≤ r} and by d(a, r−) the disk {x ∈ IK | |x−a| < r}.
Given a ∈ IK, r > 0, s > r, we denote by ∆(a, r, s) the set {x ∈ IK r ≤ |x− a| ≤ s}.

We denote by A(IK) the IK-algebra of entire functions in IK and byM(IK) the field of meromor-
phic functions in IK, i.e. the field of fractions of A(IK). We denote by A(d(a, r−) the IK-algebra
of analytic funtions in d(a, r−), by Ab(d(a, r−)) the IK-algebra of bounded analytic funtions in
d(a, r−) and we put Au(d(a, r−)) = A(d(a, r−)) \ Ab(d(a, r−)). We denote by M(d(a, r−)) the
field of fractions of A(d(a, r−)), by Mb(d(a, r−)) the field of fractions of Ab(d(a, r−)), and we put
Mu(d(a, r−)) =M(d(a, r−)) \Mb(d(a, r−)).

Finally, given R > 0, we denote by S the disk d(0, R−), by D the set IK \ d(0, R−), by A(D)
the IK-algebra of analytic functions in D i.e. the set of Laurent series converging in D, by M(D)
the field of fractions of A(D) and by Mc(D) the set of f ∈M(D) having infinitely many zeros or
poles in D.

Let f be a transcendental meromorphic function in IK, i.e. f ∈M(IK) \ IK(x) (resp. let R > 0
and let f ∈ Mu(d(0, R−)), resp. let f ∈ Mc(D)) and let b ∈ IK. Similarly to classical definitions
in complex analysis [18], b is called an exceptional value for f or a Picard value for f if f − b has
no zero in IK (resp. in d(0, R−), resp. in D) and b is called a quasi-exceptional value for f if f − b
has finitely many zeros in IK (resp. in d(0, R−), resp. in D) [5], [6], [7], [13]. By classical results

[11], [12], [16], [19], [25], we know that f has at most one quasi-exceptional value and if f ∈ A(IK),
(resp. if f ∈ Au(d(a,R−), resp. if f ∈ Ac(D)) then f has no quasi-exceptional value.

On lC, considering a transcendental meromorphic function f in the whole field, W. Hayman
showed that for every n ≥ 3, the function fnf ′ has no quasi-exceptional value different from 0
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and he conjectured that the statement remains true for n = 2 and n = 1 [18]. That was proved
for n = 2 by E.Mues [21] and for n = 1 by W. Bergweiler and Eremenko [1] and separately by H.
Chen and M. Fang [10].

On the field IK, the same question makes sens too and similarly, J. Ojeda proved that for every
n ≥ 3, fnf ′ has no quasi-exceptional value different from 0 [23]. For n = 2 and n = 1, several
particular solutions were given concerning subclasses of meromorphic functions [2], [7], [13], [18]
and the general solution was given in [14] for meromorphic functions in IK. However, here we
give more precisions on the proof of this very delicate problem in the case n = 2. The principal
method used in the complex study was the classical Nevanlinna Theory [22] and similarly, here in
the p-adic Nevanlinna Theory [8], [9].

We mean to recall results already obtained. The same problem is posed both in M( IK) and
in a Mu(d(a,R−)) (a ∈ IK, R > 0) and also in Mc(D) where it was never published yet.

Small functions are defined among complex meromorphic functions and find the same meaning
among meromorphic functions in an ultrametric field, the notion (recalled above) being defined
with help of the Nevanlinna characteristic functions. Let us recall that given a meromorphic
function f ∈ M(K) or f ∈ Mu(d(a,R−)), or f ∈ Mc(D), there is at most one small function w
such that f −w admit finitely many zeros (the proof here is new concerning the case f ∈Mc(D))

Thus, we can now state our main results:

Theorem A: Let f ∈ M(IK) be transcendental. Then for every n ∈ IN, n ≥ 2, f ′fn − b has
infinitely many zeros.

Theorem B: Let f ∈M( IK) \ IK(x). For each b ∈ IK∗, f ′ + bf has infinitely many zeros that
are not zeros of f .

Theorem C: Let a ∈ IK, R > 0 and let f ∈ Mu((.a,R
−)) (resp. let f ∈ Mc(D)). For every

n ∈ IN, n ≥ 3, for every b ∈ IK∗, f ′fn − b has infinitely many zeros.

The definition of small functions being recalled below, we have the following Theorem D:

Theorem D: Let a ∈ IK and r > 0. Let f ∈ M( IK) \ IK(x), (resp. f ∈ Mu(d(a,R−)), resp.
f ∈ Mc(D)). There exists at most one function w ∈ Mf ( IK), (resp. w ∈ Mf (d(a,R−)), resp.
w ∈ Mf (D)) such that f − w have finitely many zeros. Moreover, if f belongs to A( IK) \ IK[x]
(resp. to Au(d(a,R−)), resp. to Ac( IK)) then there exists no function w ∈ Mf ( IK) \ IK(x),
(resp. w ∈Mf (d(a,R−)), resp. w ∈Mf (D)) ) such that f − w have finitely many zeros.

2 Generalities

The proofs of these theorems require many technical results and the 2nd Main Theorem of the
Nevanlinna Theory in the three situations that we will examine.

Lemma 1 is immediate.

Lemma 1: Let g ∈ M( IK) (resp. let g ∈ M(d(a,R−)), a ∈ IK, R > 0, (resp. g ∈ M(D)),

set f =
1
g

and let n ∈ IN∗. Then g′gn admits a quasi-exceptional value b ∈ IK∗ if and only if

f ′ + bfn+2 has finitely many zeros that are not zeros of f .
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Notation: Given a ∈ IK and r > 0, wer denote by C(a, r) the circle {x ∈ IK | |x − a| = r},
by log the Neperian logarithm and by e the number such that log(e) = 1. Next we put exp(s) =
es, x ∈ IR.

Lemma 2 [16]: Let f ∈ M( IK) (resp. let f ∈ M(d(0, R−)), R > 0, resp. f ∈ M(D)) and
let r ∈ IR+ (resp. let r ∈]0, R[, resp. let r > R). Then |f(x)| is constant in all disks d(a, r−) of
C(0, r) where f has no zero and no pole and is noted |f |(r). Moreover, the function Ψ in µ defined
as Ψ(µ) = log(|f |(exp(µ)) is continuous and piecewise affine in IR (resp. in ]−∞, log(R)[, resp.
in [log(R),+∞[).

Notation: Let f ∈ M( IK) (resp. let f ∈ M(d(0, R−)), R > 0, resp. f ∈ M(D)) and let
r ∈ IR+ (resp. let r ∈]0, R[, resp. let r > R). We denote by ν+(f, µ) the right-side derivative
of the function Ψ at µ and by ν−(f, µ) the left-side derivative of the function Ψ at µ. When
ν+(f, µ) = ν−(f, µ) we just write ν(f, µ).

Lemma 3: Let f ∈M( IK) (resp. let f ∈M(d(0, R−)), R > 0, suppose that f admits infinitely
many zeros in IK (resp. in d(0, R−)) and suppose that there exists a sequence of non-empty
intervals [r′n, r

′′
n] such that lim

n→+∞
r′n = +∞ (resp. lim

n→+∞
r′n = lim

n→+∞
r′′n = R) and such that |(f ′ +

fm)|(r) = |fm|(r) ∀r ∈
⋃
n∈ IN

[r′n, r
′′
n]. Let m ∈ IN∗ be 6= 2. Then f ′+ fm has infinitely many zeros

that are not zeros of f .

Proof. Let J =
⋃
n∈ IN

[r′n, r
′′
n]. By Corollary B.13.6 in [16], we have

ν+(f ′ + fm, log r) = ν+(fm, log r), ν−(f ′ + fm, log r) = ν−(fm, log r) ∀r ∈ J.

Consequently, in each disk d(0, r) with r ∈ J , f and f ′+ fm have the same difference between the
number of zeros and poles (taking multiplicity into account). Now, if m ≥ 3 the poles of f ′ + fm

and fm are the same taking multiplicity into account. And when m = 1, each pole of f is a pole of
f ′ + f with a strictly greater order. Consequently, for each r ∈ J , the number of zeros of f ′ + fm

in d(0, r) is superior or equal to this of fm (taking multiplicity into account).
Now, for each n ∈ IN, let sn be the number of distinct zeros of f in d(0, r′′n). Since f has

infinitely many zeros, the sequence sn is increasing and tends to +∞. On the other hand, for each
zero α of order u of f , either α is not a zero of f ′+ fm (when u = 1), or it is a zero of order u− 1.
Consequently, the difference between the sum of multiplicities of the number of zeros of f ′ + fm

in d(0, r′′n) and the number of distinct zeros of f in d(0, r′′n) is at least sn and hence the number
of zeros of f ′ + fm in d(0, r′′n) which are not zeros of f in d(0, r′′n) is at least sn. Thus, we have
proved that f ′ + fm has infinitely many zeros that are not zeros of f .

Lemma 4: Let f ∈ Mc(D). Suppose that there exists a sequence of intervals [r′n, r
′′
n] such that

lim
n→+∞

r′n = +∞, R < r′1 and such that |(f ′+fm)|(r) = |fm|(r) ∀r ∈
⋃
n∈ IN

[r′n, r
′′
n] and that f admits

infinitely many zeros in the set Λ =
∞⋃
n=1

∆(0, r′n, r
′′
n). Let m ∈ IN∗ be 6= 2. Then f ′ + fm has

infinitely many zeros in Λ that are not zeros of f .
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Proof. Let J =
⋃
n∈ IN

[r′n, r
′′
n]. By Corollary B.13.6 in [16], we have

ν+(f ′ + fm, log r) = ν+(fm, log r), ν−(f ′ + fm, log r) = ν−(fm, log r) ∀r ∈ J.

Consequently, in each annulus ∆(0, r′n, r), with r′n ≤ r ≤ r′′n , f and f ′ + fm have the same
difference between the number of zeros and poles (taking multiplicity into account).

Now, if m ≥ 3 the poles of f ′ + fm and fm in ∆(0, R, r′′n) are the same taking multiplicity
into account. And when m = 1, each pole of f is a pole of f ′ + f with a strictly greater order.
Consequently, for each r ∈ J , the number of zeros of f ′ + fm in ∆(0, r′n, r) is superior or equal to
this of fm.

Now, for each n ∈ IN, let sn be the number of distinct zeros of f in the set Λn =
n⋃
j=1

∆(0, r′j , r
′′
j ).

Since f has infinitely many zeros in Λ, the sequence sn is increasing and tends to +∞. On the

other hand, for each zero α of f of order u in
n⋃
j=1

∆(0, r′j , r
′′
j ), either α is not a zero of f ′ + fm

(when u = 1), or it is a zero of order u − 1. Consequently, the difference between the sum of
multiplicities of the number of zeros of f ′ + fm in Λn and the number of distinct zeros of f in Λn
is at least sn. Therefore, as in Lemma 2, the number of zeros of f ′+ fm in Λn which are not zeros
of f is at least sn. Thus, we have proved that f ′+ fm has infinitely many zeros that are not zeros
of f in Λ.

Lemma 5: Let f ∈ M( IK) \ IK(x) satisfy lim sup
r→∞

|f |(r) > 0 and let b ∈ IK∗. Let m ∈ IN∗ be

≥ 3. Then f ′ + bfm has infinitely many zeros that are not zeros of f .

Lemma 6: Let f ∈ Mc(D) satisfy lim sup
r→∞

|f |(r) > 0 and let b ∈ IK∗. Let m ∈ IN∗ be ≥ 3.

Then f ′ + bfm has infinitely many zeros that are not zeros of f .

Lemma 7: Let f ∈Mu(d(a,R−)) satisfy lim sup
r→R−

|f |(r) = +∞ and let b ∈ IK∗. Let m ∈ IN∗ be

≥ 3. Then f ′ + bfm has infinitely many zeros that are not zeros of f .

Proof. (Lemmas 5 and 7). Without loss of generality, we can assume b = 1 and when f ∈
M(d(a,R−)), we may assume a = 0. By hypotheses, there exists a sequence of intervals [r′n, r

′′
n] such

that lim
n→+∞

r′n = +∞ (resp. lim
n→+∞

r′n = lim
n→+∞

r′′n = R) and such that, putting J =
⋃
n∈ IN

[r′n, r
′′
n],

we have lim sup
r→∞,

r∈J

|f |(r) > 0 (resp. lim
r→R−

r∈J

|f |(r) = +∞).

Suppose first we assume the hypothesis of Lemma 5. Let M =
lim supr→+∞ |f |(r)

2
. We will

prove that there exists t > 0 such that |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ∩ [t,+∞[. By Theorem

C.2.10 in [16], we have |f ′|(r) ≤ |f |(r)
r

. Consequently, when r lies in J , there exists s > 0 such

that |f |(r) ≥M ∀r ∈ [s,+∞[∩J , therefore(
|f |(r)

)m ≥ |f |(r)Mm−1 ≥ r|f ′|(r)Mm−1.

4



Next, when r is big enough, rMm−1 is greater than 1, hence (|f |(r))m > |f ′|(r). Thus there
exists t ≥ s such that (|f |(r))m > |f ′|(r) ∀r ∈ J ∩ [t,+∞[. Let J ′ = J ∩ [t,+∞[. So we have
|f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′.

Suppose now that we assume the hypothesis of Lemma 7. We have

|f ′|(r) ≤ |f |(r)
r
≤ |f |(r)

R
. Set B =

1
R

. Then we have

(
|f |(r)

)m ≥ B|f ′|(r)(|f |(r))m−1.

Now, when r is close enough to R, r ∈ J , B|f(x)|m−1 is strictly greater than 1, hence (|f |(r))m >
|f ′|(r). Thus, there exists t > 0 such that (|f |(r))m > |f ′|(r) ∀r ∈ [t,+∞[∩J . We can set again
J ′ = J ∩ [t, R[ and then we have |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′.

We can now conclude the proofs of Lemmas 5 and 7. For each n ∈ IN, let qn be the number
of zeros of f in d(0, r′′n). Suppose the sequence (qn)n∈ IN is bounded. Then, f has finitely many

zeros, hence it is of the form
P

h
with P ∈ IK[x] and h ∈ A( IK) (resp. h ∈ Au(d(0, R−))).

Consequently, we have lim
r→+∞

|f |(r) = 0 (resp. lim
r→R−

|f |(r) = 0), a contradiction to the hypothesis

in both theorems. Therefore, the sequence (qn)n∈ IN that is increasing by definition, tends to +∞.
Now, in each Lemmas 5 and 7, we may apply Lemma 2 showing that f ′ + fm has infinitely many
zeros that are not zeros of f .

Proof. (Lemma 6 ). Without loss of generality, we can assume b = 1. By hypothesis, there exists
a sequence of intervals [r′n, r

′′
n] such that R < r1, r

′′
n < r′n+1 and lim

n→+∞
r′n = +∞ and such that

lim inf
n→∞

( inf
r′n≤r≤r′′n

|f |(r)) > 0.

Putting J =
⋃
n∈ IN

[r′n, r
′′
n], then we have lim sup

r→∞,
r∈J

|f |(r) > 0. Let M =
lim supr→+∞ |f |(r)

2
. We

will prove that there exists t > 0 such that |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ∩ [t,+∞[. By Theorem

C.2.10 in [16], we have |f ′|(r) ≤ |f |(r)
r

. Consequently, when r lies in J , there exists s > 0 such

that |f |(r) ≥M ∀r ∈ [s,+∞[∩J therefore(
|f |(r)

)m ≥ |f |(r)Mm−1 ≥ r|f ′|(r)Mm−1.

Next, when r is big enough, rMm−1 is greater than 1, hence (|f |(r))m > |f ′|(r). Thus there
exists t ≥ s such that (|f |(r))m > |f ′|(r) ∀r ∈ J ∩ [t,+∞[. Let J ′ = J ∩ [t,+∞[. So we have
|f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′.

Consequently, we can apply Lemma 4 and conclude as in Lemmas 5 and 7.

3 Nevanlinna Theory

The Nevanlinna theory was made by Rolf Nevanlinna on complex functions [22]. It consists of
defining counting functions of zeros and poles of a meromorphic function f and giving an upper
bound for multiple zeros and poles of various functions f − b, b ∈ lC.

A similar theory for functions in a p-adic field was constructed and correctly proved by A.
Boutabaa [8] in the field IK, after some previous work by Ha Huy Khoai [18]. The theory was also
described in [25] with a nice description of the theorem on small functions. In [9] the theory was
extended to functions in M(d(0, R−)) by taking into account Lazard’s problem. A new extension
to functions out of a hole was made in [15], see also [16].
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Notations: Recall that given three functions φ, ψ, ζ defined in an interval J =]a,+∞[ (resp.
J =]a,R[), with values in [0,+∞[, we shall write φ(r) ≤ ψ(r) + O(ζ(r)) if there exists a constant
b ∈ IR such that φ(r) ≤ ψ(r) + bζ(r). We shall write φ(r) = ψ(r) + O(ζ(r)) if |ψ(r) − φ(r)| is
bounded by a function of the form bζ(r).

Similarly, we shall write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a function h from J =]a,+∞[

(resp. from J =]a,R[) to IR such that lim
r→+∞

h(r)
ζ(r)

= 0 (resp. lim
r→R

h(r)
ζ(r)

= 0) and such that

φ(r) ≤ ψ(r) + h(r). And we shall write φ(r) = ψ(r) + o(ζ(r)) if there exists a function h from

J =]a,+∞[ (resp. from J =]a,R[) to IR such that lim
r→+∞

h(r)
ζ(r)

= 0, resp. lim
r→R

h(r)
ζ(r)

= 0) and such

that φ(r) = ψ(r) + h(r).

Throughout the next paragraphs, we will denote by I the interval [t,+∞[ and by J an interval
of the form [t, R[ with t > 0.

We have to introduce the counting function of zeros and poles of a meromorphic function f ,
counting or not multiplicity. Here we will choose a presentation that avoids assuming that all
functions we consider admit no zero and no pole at the origin.

Definitions: Let f ∈M(d(0, R−) and let r ∈]0, R[. We denote by Z(r, f) the counting function
of zeros of f in d(0, r) in the following way.

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0 < |an| ≤ r, of respective
order sn.

We set Z(r, f) = max(ω0(f), 0) log r+
σ(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f) is called the count-

ing function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f without multiplicity, we put ω0(f) = 0 if

ω0(f) ≤ 0 and ω0(f) = 1 if ω0(f) ≥ 1.
Now, we denote by Z(r, f) the counting function of zeros of f without multiplicity:

Z(r, f) = ω0(f) log r +
σ(r)∑
n=1

(log r − log |an|) and so, Z(r, f) is called the counting function of zeros

of f in d(0, r) ignoring multiplicity.

In the same way, considering the finite sequence (bn), 1 ≤ n ≤ τ(r) of poles of f such that
0 < |bn| ≤ r, with respective multiplicity order tn, we put

N(r, f) = max(−ω0(f), 0) log r +
τ(r)∑
n=1

tn(log r − log |bn|) and then N(r, f) is called the counting

function of the poles of f , counting multiplicity.
Next, in order to define the counting function of poles of f without multiplicity, we put ω0(f) =

0 if ω0(f) ≥ 0 and ω0(f) = 1 if ω0(f) ≤ −1 and we set

N(r, f) = ω0(f) log r +
τ(r)∑
n=1

(log r − log |bn|) and then N(r, f) is called the counting function of the

poles of f , ignoring multiplicity.
Now we can define the Nevanlinna function T (r, f) in I or J as

T (r, f) = max(Z(r, f), N(r, f))

and the function T (r, f) is called characteristic function of f or Nevanlinna function of f .
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Finally, if S is a subset of IK we will denote by ZS0 (r, f ′) the counting function of zeros of f ′,
excluding those which are zeros of f − a for any a ∈ S.

Remark: If we change the origin, the functions Z, N, T are not changed, up to an additive
constant.

By Corollary B.13.2 in [16], Lemma 8 is easy.

Lemma 8: Let ÎK be a complete algebraically closed extension of IK whose absolute value extends
that of IK and let f ∈ M( IK) (resp. let f ∈ M(d(0, R−))). Let d̂(0, R) = {x ∈ ÎK | |x| < R}.
The meromorphic function f̂ defined by f in d̂(0, R−) has the same Nevanlinna functions as f .

In a p-adic field such as IK, the first Main theorem is almost immediate and is an immediate
consequence of Corollary B.13.27.in [16].

Proposition 1 (C.4.2 in [16]): Let f ∈M( IK) (resp. f ∈M(d(0, R−))) have no zero and no
pole at 0. Then log(|f |(r)) = log(|f(0)|) + Z(r, f)−N(r, f).

Lemma 9 (C.4.4 in [16]): Let α1, · · · , αn ∈ IK be pairwise distinct, let P (u) =
n∏
i=1

(u−αi) and

let f ∈M(d(0, R−)). Then Z(r, P (f)) =
n∑
i=1

Z(r, f − αi) and Z(r, P (f)) =
n∑
i=1

Z(r, f − αi).

We can now deduce Proposition 2 (C.4.5 in [16]):

Proposition 2: Let f ∈M( IK). Then f belongs to IK(x) if and only if T (r, f) = O(log r).

Applying Lemma 8 and Theorem C.2.10 in [16] to
f ′

f
, up to a change of origin, we can derive

Corollary 1.

Corollary 1: Let f ∈M( IK) (resp. f ∈M(d(0, R−))). Then

Z(r,
f ′

f
)−N(r,

f ′

f
) ≤ − log r +O(1).

Proposition 3: Let f ∈ A( IK) (resp. f ∈ A(d(0, R−))) and let b ∈ IK. Then Z(r, f) =
Z(r, f − b) +O(1) r ∈ I (resp. r ∈ J).

The following Proposition 4 gathers a lot of properties owned by ultrametric meromorphic
functions, some of them corresponding to the First Main Theorem in complex analysis.

Propostion 4: Let f, g ∈M( IK) (resp. let f, g ∈M(d(0, R−))). Then T (r, f + g) ≤ T (r, f) +
T (r, g)+O(1), T (r, f+b) = T (r, f)+O(1). Let h be a Moebius function. Then T (r, f) = T (r, h◦f)+
O(1). Let P (x) ∈ IK[x]. Then T (r, P (f)) = deg(P )T (r, f) +O(1) and T (r, f ′P (f) ≥ T (r, P (f)).

Suppose now f, g ∈ A( IK) (resp. f, g ∈ A(d(0, R−))). Then Z(r, fg) = Z(r, f)+Z(r, g), T (r, f) =
Z(r, f)), T (r, fg) = T (r, f) + T (r, g) +O(1), and T (r, f + g) ≤ max(T (r, f), T (r, g)). Moreover, if

lim
r→+∞

T (r, f)− T (r, g) = +∞ then T (r, f + g) = T (r, f) when r is big enough.
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Proposition 5: Let f ∈ M( IK) (resp. f ∈ M(d(0, R−))). There exists φ, ψ ∈ A( IK) (resp.

φ, ψ ∈ A(d(0, R−))) such that f =
φ

ψ
and max(T (r, φ), T (r, ψ)) ≤ T (r, f) + O(1), r ∈ I (resp.

(r ∈ J)).

Proposition 6: Let f ∈M(d(0, R−)). Then f belongs to Mb(d(0, R−)) if and only if T (r, f) is
bounded in [0, R[.

Corollary 2: Let f ∈ Mu(d(a,R−)) and let h ∈ Mb(d(a,R−)), h 6= 0. Then fh belongs to
Mu(d(a,R−)).

By Propositions 4 and 6, we can also derive Corollary 3.

Corollary 3: Let f ∈ M(d(a,R−)) and let P ∈ IK[x]. Then P (f) belongs to Mb(d(a,R−)) if
and only if so does f .

Lemma 10 is classical and easily checked.
Lemma 10: Let α1, ..., αq ∈ IK be pairwise distinct, let S = {α1, ..., αq} and let P (x) =

∏q
j=1(x−

αj). Let f ∈M( IK) (resp. f ∈M(d(0, R−))). Then

n∑
j=1

Z(r, f − αj) = Z(r, P (f)),
n∑
j=1

Z(r, f − αj) = Z(r, P (f)) ∀r ∈ I

(resp. ∀r ∈ J). Moreover, we have
n∑
j=1

(
Z(r, f − αj)− Z(r, f − αj)

)
= Z(r, f ′)− ZS0 (r, f ′) ∀r ∈ I (resp. ∀r ∈ J).

Proposition 7: Let f ∈M( IK) (resp. f ∈M(d(0, R−))). Then Z(r, f ′)−N(r, f ′) ≤ Z(r, f)−
N(r, f)−log r+O(1), r ∈ I (resp. r ∈ J). Moreover, N(r, f (k)) = N(r, f)+kN(r, f)+O(1), r ∈ I
and Z(r, f (k)) ≤ Z(r, f) + kN(r, f)− k log r +O(1), r ∈ I (resp. r ∈ J).

Corollary 4: Let f ∈ M( IK) (resp. f ∈ M(d(0, R−))). Then T (r, f (k)) ≤ (k + 1)T (r, f) +
O(1) (r ∈ I) (resp. r ∈ J).

Proposition 8: Let f ∈ M( IK) (resp. f ∈ M(d(0, R−))). Then, T (r, f)− Z(r, f) ≤ T (r, f ′)−
Z(r, f ′)+O(1). Further, given α ∈M(d(0, R−)), we have T (r, αf)−Z(r, αf) ≤ T (r, f)−Z(r, f)+
T (r, α).

Lemma 11 is an immediate consequence of Corollary B.13.27 and Theorem C.2.10 in [16].

Lemma 11: Let f ∈ M( IK) (resp. f ∈ M(d(0, R−))) and let G =
f ′

f
. Then, G satisfies

Z(r,G) ≤ N(r,G)− log r +O(1) r ∈ I (resp. (r ∈ J).

We can now prove the Second Main theorem under different forms. Lemma 12 is essential and
directly leads to the theorems.

Lemma 12: Let f ∈ M( IK) (resp. f ∈ Mu(d(0, R−))). Suppose that there exists ξ ∈ IK
(resp. ξ ∈ Mb(d(0, R−))) and a sequence of intervals In = [un, vn] such that un < vn < un+1,
limn→+∞ un = +∞ (resp. limn→+∞ un = R) and
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lim
n→+∞

(
inf
r∈In

T (r, f)− Z(r, f − ξ)
)

= +∞

(resp. lim
n→+∞

(
inf
r∈In

T (r, f)− Z(r, f − ξ)
)

= +∞).

Let τ ∈ IK (resp. let τ ∈ Mb(d(0, R−))), τ 6= ξ. Then Z(r, f − τ) = T (r, f) + O(1) ∀r ∈ In
when n is big enough.

Now we can state a technical proposition that implies the famous 2nd Main Theorem.

Proposition 9: Let f ∈M( IK) and let a1, ..., aq ∈ IK be distinct. Then

(q − 1)T (r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

Z(r, f − aj)
)

+O(1).

Corollary 5: Let f ∈M( IK) and let a1, ..., aq ∈ IK be distinct. Then
(q − 1)T (r, f) ≤

∑q
j=1 Z(r, f − aj) +O(1).

Proposition 10: Let f ∈M(d(0, R−)) and let τ1, ..., τq ∈Mb(d(0, R−)) be distinct. Then

(q − 1)T (r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

Z(r, f − τj)
)

+O(1).

Corollary 6: Let f ∈M(d(0, R−)) and let τ1, ..., τq ∈Mb(d(0, R−)) be distinct. Then
(q − 1)T (r, f) ≤

∑q
j=1 Z(r, f − τj) +O(1).

Remark: Proposition 9 does not hold in complex analysis. Indeed, let f be a meromorphic

function in lC omitting two values a and b, such as f(x) =
ex

ex − 1
. Then Z(r, f−a)+Z(r, f−b) = 0.

Proposition 11: Let α1, ..., αq ∈ IK, with q ≥ 2, let S = {α1, ..., αq}, and let f ∈ M( IK)
(resp. f ∈M(d(0, R−))). Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − αj) + Z(r, f ′)− ZS0 (r, f ′) +O(1) ∀r ∈ I (resp. ∀r ∈ J).

Moreover, if f belongs to f ∈ A( IK) (resp. A(d(0, R−))), then

qT (r, f) ≤
q∑
j=1

Z(r, f − αj) + Z(r, f ′)− ZS0 (r, f ′) +O(1) ∀r ∈ I (resp. ∀r ∈ J).

Proposition 12 (Second Main Theorem): Let α1, ..., αq ∈ IK, with q ≥ 2, let S = {α1, ..., αq}
and let f ∈M( IK) (resp. f ∈Mu(d(0, R−))). Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − αj) +N(r, f)− ZS0 (r, f ′)− log r +O(1) ∀r ∈ I (resp. ∀r ∈ J).

Remark: In Proposition 10, in the hypothesis f ∈M(d(0, R−)), the term − log r has no veritable
meaning since r is bounded.

Corollary 7: Let α1, ..., αq ∈ IK, with q ≥ 2, let S = {α1, ..., αq} and let f ∈ M( IK) (resp.
f ∈M(d(0, R−))). Then
q∑
j=1

(
Z(r, f − αj) − Z(r, f − αj)

)
≤ T (r, f) + N(r, f) − ZS0 (r, f ′) − log r + O(1) ∀r ∈ I (resp.

∀r ∈ J).
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4 Meromorphic Functions out of a Hole

We will now describe the behaviour of meromorphic functions out of a hole. We denote by ‖ . ‖
the norm of uniform convergence on bounded functions f ∈Mc(D).

Proposition 13 (E. Motzkin’s Theorem): [4], [20] Let f ∈M(D). There exist h ∈ H(D)
such that ‖h− 1‖ < 1, lim

|x|→+∞
h(x) = 1, λ ∈ IK and q ∈ ZZ such f(x) = λxqh(x).

Definitions and notations : According to the factorization due to f Motzkin’s Theorem, h
is called the Motzkin factor of f with respect to the hole T and q is called the Motzkin index with
respect to the hole T and is denoted by m(f, T ).

We denote by S the disk d(0, R−). Let f ∈ M(D). Then f admits a unique factorization in
the form f0f [4], [20].

We denote by H0(D) the IK-vector space of analytic elements f in D such that lim
|x|→∞

f(x) = 0.

Given f ∈ M(D), for r > R, here we will denote by ZR(r, f) the counting function of zeros of f
between R and r, i.e., if α1, ..., αm are the distinct zeros of f in ∆(0, R, r), with respective multi-

plicity uj , 1 ≤ j ≤ m, then ZR(r, f) =
m∑
j=1

uj(log(r)− log(|αj |)). Similarly, we denote by NR(r, f)

the counting function of poles of f between R and r, i.e., if β1, ..., βn are the distinct poles of f in

∆(0, R, r), with respective multiplicity vj , 1 ≤ j ≤ m, then NR(r, f) =
n∑
j=1

vj(log(r)− log(|βj |)).

Finally, we put TR(r, f) = max
(
ZR(r, f), NR(r, f)

)
[15].

Next, we denote by ZR(r, f) the counting function of zeros without counting multiplicity: if
α1, ..., αm are the distinct zeros of f in ∆(0, R, r), then we put

ZR(r, f) =
m∑
j=1

log(r)− log(|αj |).

Similarly, we denote by NR(r, f) the counting function of poles without counting multiplicity:
if β1, ..., βn are the distinct poles of f in ∆(0, R, r), then we put

NR(r, f) =
n∑
j=1

log(r)− log(|βj |).

Finally, taking W = {a1, ..., aq ∈ IK}, we denote by ZWR (r, f ′) the counting function of zeros
of f ′ on points x where f(x) /∈W .

Given two functions defined in an interval I = [b,+∞[, we will write φ(r) = ψ(r) + O(log(r))
(resp. φ(r) ≤ ψ(r) + O(log(r))) if there exists a constant B > 0 such that |φ(r) − ψ(r)|∞ ≤
B log(r), r ∈ I (resp. φ(r)− ψ(r) ≤ B log(r), r ∈ I).

We will write φ(r) = o(ψ(r)), r ∈ I if lim
r→+∞

φ(r)
ψ(r)

= 0.

Lemma 13: Let f ∈M(D). Then log(|f |(r))−log(|f |(R)) = ZR(r, f)−NR(r, f)+m(f, S)(log r−
logR) (r ∈ I).

Proof. By Theorem C.3.6 in [16], we have f = fSf0. Since fS has no zero and no pole in D,
by Theorem C.3.3 in [16] it satisfies |fS |(r)) = rm(f,S) ∀r ∈ I, hence log(|fS |(r))− log(|fS |(R)) =
m(f, S)(log r− logR) (r ∈ I). Next, since f0 has no zero and no pole in S, we have log(|f0|(r))−
log(|f0|(R)) = ZR(r, f0)−NR(r, f0) (r ∈ I), therefore the statement is clear.
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Corollary 8: Let f ∈ M(D). Then TR(r, f) is identically zero if and only if f is a Motzkin
factor.

Corollary 9: Let f ∈M(D). Then TR(r, f0) = O(log(r)).

Corollary 10: Let f ∈ A(D) and let φ ∈ H0(D). Then ZR(r, f +φ) = ZR(r, f) +O(log(r)) (r ∈
I).

Proof. Indeed, since φ is bounded and tends to zero at infinite, we have log |f |(r) = log |f+φ|(r)
when r is big enough.

Corollary 11: Let f, g ∈ A(D) satisfy log(|f |(r)) ≤ log(|g|(r)) ∀r ≥ R (r ∈ I). Then ZR(r, f) ≤
ZR(r, g) + (m(g, S)−m(f, S))(log(r)− log(R)), (r ∈ I).

Lemma 14: Let f ∈ A(D). Then ZR(r, f ′) ≤ ZR(r, f) +O(log(r)) (r ∈ I).

Proof. Indeed, by Theorem B.9.2 in [16] we have |f ′|(r) ≤ |f |(r)
r

. Therefore, the conclusion
comes from Lemma 13.

We can now characterize the set Mc(D):

Proposition 14: Let f ∈M(D). The following three statements are equivalent:

(i) lim
r→+∞

TR(r, f)
log(r)

= +∞ (r ∈ I),

(ii)
TR(r, f)
log(r)

is unbounded, and

(iii) f belongs to Mc(D).

Proof. Consider an increasing sequence (un)n∈ IN in IR+ such that lim
n→+∞

un = +∞ and let

(kn)n∈ IN be a sequence of IN∗. Clearly, we have

lim
r→+∞

∑
un≤r kn(log(r)− log(un))

log(r)
= +∞.

Consequently, if a function f ∈Mc(D) has infinitely many zeros (resp. infinitely many poles in D),

then lim
n→+∞

ZR(r, f)
log(r)

= +∞ (resp. lim
n→+∞

NR(r, f)
log(r)

= +∞), hence in both cases, lim
n→+∞

TR(r, f)
log(r)

= +∞.

Conversely, if f has finitely many zeros and finitely many poles in D, then we check that

lim
n→+∞

TR(r, f)
log(r)

< +∞. Thus, the equivalence of the three statements is clear.

Operations on M(D) work almost like for meromorphic functions in the whole field , thanks
to the use of Motzkin factors.

Proposition 15 (First Main Theorem out of a hole) [15] : Let f, g ∈ M(D). Then for
every b ∈ IK, we have TR(r, f+b) = TR(r, f)+O(log(r)), (r ∈ I) TR(r, f.g) ≤ TR(r, f)+TR(r, g)+
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O(log(r)) (r ∈ I), TR(r,
1
f

) = TR(r, f)), TR(r, f+g) ≤ TR(r, f)+TR(r, g)+O(log(r)) (r ∈ I) and

TR(r, fn) = nTR(r, f). Let h be a Moebius function. Then TR(r, h ◦ f) = TR(r, f) +O(log(r)) (r ∈
I).

Moreover, if both f and g belong to A(D), then

TR(r, f + g) ≤ max(TR(r, f), TR(r, g)) +O(log(r)) (r ∈ I)

and TR(r, fg) = TR(r, f) + TR(r, g), (r ∈ I). Particularly, if f ∈ Ac(D), then TR(r, f + b) =
TR(r, f) + O(1) (r ∈ I). Given a polynomial P (X) ∈ IK[X], then TR(r, P ◦ f) = qTR(r, f) +
O(log(r)).

Corollary 12 Let h1, h2 ∈ A(D), let g be a Motzkin factor. Then

TR(r, gh1 + gh2) ≤ max(TR(r, h1), TR(r, h2)) +O(log(r)).

Similarly to Proposition 7 here we have the following Proposition

Proposition 16: Let f ∈ M(D). Then NR(r, f (k)) = NR(r, f) + kNR(r, f), (r ∈ I) and
ZR(r, f (k)) ≤ ZR(r, f) + kNR(r, f) +O(log(r)), (r ∈ I).

The following Lemma 15 will be necessary in the proof of Proposition 17.

Lemma 15 [16]: Let f ∈ M(D). Suppose that there exists ξ ∈ IK and a sequence of intervals
Jn = [un, vn] such that un < vn < un+1, limn→+∞ un = +∞, and

lim
n→+∞

[
inf
r∈Jn

TR(r, f)− ZR(r, f − ξ)
log(r)

]
= +∞.

Let ζ ∈ IK ζ 6= ξ. Then ZR(r, f − ζ) = TR(r, f) +O(log(r))) ∀r ∈ Jn when n is big enough.

Proof. Without loss of generality, we can obviously suppose that ξ = 0. By Lemma 13, f is of
the form fSf0 and f0 is of the form

g

h
with g, h ∈ A(D), having no zero in S. Set w = fS . Thus

we have

lim
n→+∞

[
inf
r∈Jn

ZR(r, h)− ZR(r, g)
log(r)

]
= +∞.

Consequently, by Lemma 13,

(7) lim
n→+∞

[
inf
r∈Jn

log(|h|(r)− log(|g|(r)
log(r)

]
= +∞.

Consider now f − ζ. We have f − ζ =
wg − ζh

h
, hence

log(|f |(r)) = log
(
|wg − ζh|(r)− log(|h|(r)).

But by (7), we have log(|ζh|(r)) > log(|wg|(r)) because log(|w|(r) = O(log(r)), therefore log
(
|wg−

ζh|(r)
)

= log(|ζh|(r)) ∀r ∈ Jn when n is big enough and hence

(8) lim
n→+∞

[
sup
r∈Jn

log(|ζh− wg|(r)− log(|h|(r)
log(r)

]
= 0.
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Consequently, by (8) and by Lemma 13,

lim
n→+∞

[
sup
r∈Jn

ZR(r, ζh− wg)− ZR(r, h)
log(r)

]
= 0,

i.e.,

lim
n→+∞

[
sup
r∈Jn

ZR(r, f − ζ)− TR(r, f)
log(r)

]
= 0,

which proves the claim.

Proposition 17: Let f ∈M(D) and let a1, ..., aq ∈ IK be distinct. Then

(q − 1)TR(r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

ZR(r, f − aj)
)

+O(log(r)) (r ∈ I).

Proof. Suppose Proposition 17 is wrong. Thus, there exists f ∈ M(D) and a1, ..., aq ∈ IK

such that (q − 1)TR(r, f)− max
1≤k≤q

( q∑
j=1,j 6=k

ZR(r, f − aj)
)

admits no superior bound in ]0,+∞[.

So, there exists a sequence of intervals Js = [ws, ys] such that ws < ys < ws+1, lims→+∞ ws = +∞
and two distinct indices m ≤ q and t ≤ q such that

lim
s→+∞

[
inf
r∈Js

(
TR(r, f)− ZR(r, f − am)

)
log(r)

]
= +∞

and

lim
s→+∞

[
inf
r∈Js

(
TR(r, f)− ZR(r, f − at)

)
log(r)

]
= +∞.

But by Lemma 15, that is impossible.

We can now state and prove the Second Main Theorem for M(D).

Propostion 18 (Second Main Theorem out of a hole): Let f ∈M(D), let α1, ..., αq ∈ IK,
with q ≥ 2 and let W = {α1, ..., αq}. Then

(q − 1)TR(r, f) ≤
q∑
j=1

ZR(r, f − αj) +NR(r, f)− ZWR (r, f ′) +O(log(r)) (r ∈ I).

Proof. By Proposition 17 there exists a constant B > 0 and for each r > R there exists k(r) ∈ IN,
k(r) ≤ q, such that

(q − 1)TR(r, f) ≤
q∑

j=1,j 6=k(r)

ZR(r, f − aj) +B log(r),

i.e., (q − 1)TR(r, f) ≤
∑q
j=1 ZR(r, f − aj)− ZR(r, ak(r) +O(log(r)). Now,

q∑
j=1

ZR(r, f − aj) =
q∑
j=1

ZR(r, f − aj) + ZR(r, f ′)− ZWR (r, f ′) +B log(r).
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Consequently,

(9) (q− 1)TR(r, f) ≤
q∑
j=1

ZR(r, f − aj , , , , ) +ZR(r, f ′)−ZWR (r, f ′)−ZR(r, f − ak(r)) +O(log(r))

Particularly, if f ∈ A(D) then we have ZR(r, f−aj) = TR(r, f−aj) = TR(r, f)+O(log(r)) ∀j =
1, ..., q, hence ZR(r, f − ak(r)) = TR(r, f) +O(log(r)) and therefore

qTR(r, f) ≤
q∑
j=1

ZR(r, f − aj) + ZR(r, f ′)− ZWR (r, f ′) +O(log(r)),

By Proposition 7, for each j = 1, ..., q, there exists a constant Bj > 0 such that ZR(r, f ′) ≤
ZR(r, f − aj) +NR(r, f − aj) +Bj log(r)). Consequently, there exists a constant C > 0 such that
ZR(r, f ′) ≤ ZR(r, f − ak(r)) +NR(r, f − ak(r)) + C log(r) ∀r > R.

Therefore, by Relation (9) that remains true in Proposition 18, we can derive

(q − 1)TR(r, f) ≤
q∑
j=1

ZR(r, f − αj) +NR(r, f)− ZWR (r, f ′) +O(log(r)) ∀r ∈ I.

5 Small Functions

Small functions with respect to a meromorphic functions are well known in the general theory of
complex functions. Particularly, one knows the Nevanlinna theorem on 3 small functions. Here we
will construct a similar theory.

Definitions and notation: Throughout the chapter we set a ∈ K and R ∈]0,+∞[ and we
still denote by D the set IK \ d(0, R−). For each f ∈ M( IK) (resp. f ∈ M(d(a,R−)), resp.
f ∈ M(D)) we denote by Mf ( IK), (resp. Mf (d(a,R−)), resp. Mf (D)) the set of functions
h ∈ M( IK), (resp. h ∈ M(d(a,R−)), resp. M(D)) such that T (r, h) = o(T (r, f)) when r tends
to +∞ (resp. when r tends to R, resp. when r tends to +∞). Similarly, if f ∈ A( IK) (resp.
f ∈ A(d(a,R−)), f ∈ A(D)) we shall denote by Af ( IK) (resp. Af (d(a,R−)), resp. Af (D)) the
set Mf ( IK) ∩ A( IK), (resp. Mf (d(a,R−)) ∩ A(d(a,R−)), resp. Mf (D) ∩ A(D)).

The elements of Mf ( IK) (resp. Mf (d(a,R−)), resp. Mf (D)) are called small meromor-
phic functions with respect to f , small functions in brief. Similarly, if f ∈ A( IK) (resp.
f ∈ A(d(a,R−)), resp. f ∈ A(D)) the elements of Af ( IK) (resp. Af (d(a,R−)), resp. Af (D)) are
called small analytic functions with respect to f small functions in brief.

Propositions 19 and 20 are immediate consequences of Proposition 8:
Proposition 19: Let a ∈ IK and r > 0. Af ( IK) is a IK-subalgebra of A( IK), Af (d(a,R−))
is a IK-subalgebra of A(d(a,R−)), Af (D) is a IK-subalgebra of A(D), Mf ( IK) is a subfield field
of M( IK), Mf (d(a,R−)) is a subfield of field of M(a,R−)) and Mf (D) is a subfield field of
M(D). Moreover, Ab(d(a,R−) is a sub-algebra of Af (d(a,R−) and Mb(d(a,R−) is a subfield of
Mf (d(a,R−).
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Proposition 20: Let f ∈ M( IK), (resp.f ∈ M(d(0, R−)), resp. f ∈ M(D)) and let g ∈
Mf ( IK), (resp. g ∈ Mf (d(0, R−)), resp. g ∈ Mf (D)). Then T (r, fg) = T (r, f) + o(T (r, f))

and T (r,
f

g
) = T (r, f) + o(T (r, f)), (resp. T (r, fg) = T (r, f) + o(T (r, f)) and T (r,

f

g
) = T (r, f) +

o(T (r, f)), resp. TR(r, fg) = TR(r, f) + o(TR(r, f)) and TR(r,
f

g
) = TR(r, f) + o(TR(r, f))).

Proposition 21 is known as Second Main Theorem on Three Small Functions. It holds as well
as in complex analysis, where it was showed first [18]. Notice that this theorem was generalized
to any finite set of small functions by K. Yamanoi in complex analysis [24], through methods that
have no equivalent on a p-adic field. The Second Main Theorem on Three Small Functions holds
in p-adic analysis as well as in Complex analysis and is proven particularly in [18] (see also [16]).
The most precise form is given in [18].

Proposition 21: Let f ∈ M( IK) (resp. f ∈ Mu(d(0, R−)), resp. f ∈ Mc(D)) and let
w1, w2, w3 ∈ Mf ( IK) (resp. w1, w2, w3 ∈ Mf (d(0, R−)), resp. w1, w2, w3 ∈ Mf (D)) be
pairwaise distinct and let S(r) = max(T (r, w1), T (r;w2), T (r;w3)), r > 0, (resp. S(r) =
max(T (r, w1), T (r, w2), T (r, w3)), r < R, resp. S(r) = max(TR(r, w1)), TR(r, w2), TR(r, w3), r ≥
R).

Then T (r, f) ≤
∑3
j=1 Z(r, f −wj)+O(S(r)), (resp T (r, f) ≤

∑3
j=1 Z(r, f −wj)+13S(r), resp.

TR(r, f) ≤
∑3
j=1 ZR(r, f − wj) + 13S(r)).

Proposition 22: Let f ∈M( IK) (resp. f ∈Mu(d(0, R−)), resp. f ∈Mc(D)) and let w1, w2 ∈
Mf ( IK) (resp. w1, w2 ∈ Mf (d(0, R−)), resp. w1, w2 ∈ Mf (D)) be distinct and let and let
S(r) = max(T (r, w1), T (r, w2)), r > 0, (resp. S(r) = max(T (r, w1), T (r, w2)), r < R, resp.
S(r) = max(TR(r, w1), TR(r, w2)), r ≥ R). Then T (r, f) ≤ Z(r, f −w1)+Z(r, f −w2)+N(r, f)+
13S(r) + O(1), (resp. T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + N(r, f) + 13S(r) + O(1), resp.
TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +NR(r, f) + 13S(r) +O(1)).

Next, by setting g = f − w1 and w = w1 + w2, we can write Corollary 13:

Corollary 13: Let g ∈ M( IK) (resp. g ∈ Mu(d(0, R−)), resp. g ∈ Mc(D)) and let w ∈
Mg( IK) (resp. w ∈ Mg(d(0, R−)), resp. w ∈ Mg(D)). and let S(r) = T (r, w) r > 0, (resp.
S(r) = T (r, w) r < R, resp. S(r) = TR(r, w) r ≥ R). Then T (r, g) ≤ Z(r, g) + Z(r, g − w) +
N(r, g) + 13S(r) + O(1), (resp. T (r, g) ≤ Z(r, g) + Z(r, g − w) + N(r, g) + 13S(r) + O(1), resp.
TR(r, g) ≤ ZR(r, g) + ZR(r, g − w) +NR(r, g) + 13S(r) +O(1)).

Corollary 14: Let f ∈ A( IK) (resp. f ∈ Au(d(0, R−)), resp. f ∈ Ac(D)) and let w1, w2 ∈
Af ( IK) (resp. w1, w2 ∈ Af (d(0, R−)), resp. w1, w2 ∈ Af (D)) be distinct and let S(r) =
max(T (r, w1), T (r, w2)) r > 0, (resp. S(r) = max(T (r, w1), T (r, w2)) r < R, resp. S(r) =
max(TR(r, w1), TR(w2)) r ≥ R). Then T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + 13S(r + O(1)),
(resp. T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + 13S(r)+O(1)), resp. TR(r, f) ≤ ZR(r, f − w1) +
ZR(r, f − w2) + 13S(r)+O(1)).

And similarly to Corollary 13, we get Corollary 15:

Corollary 15: Let f ∈ A( IK) (resp. f ∈ Au(d(0, R−)), resp. f ∈ Ac(D) ) and let w ∈ Af ( IK)
(resp. w ∈ Af (d(0, R−)), resp. w ∈ Af (D)). Let S(r) = T (r, w), r ∈]0,+∞[, (resp. S(r) =
T (r, w), r < R, resp. S(r) = TR(r, w), r ≥ R).
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Then T (r, f) ≤ Z(r, f) +Z(r, f −w) + 13S(r) +O(1), (resp. T (r, f) ≤ Z(r, f) +Z(r, f −w) +
13S(r) +O(1), resp. TR(r, f) ≤ ZR(r, f) + ZR(r, f − w) + 13S(r) +O(1)).

Lemma 16: Let f ∈ M( IK), (resp. let f ∈ M(d(0, R−)), R > 0, (resp. let f ∈ Mc(D))),
suppose that f admits infinitely many zeros and suppose that there exists a sequence of intervals
[r′n, r

′′
n] such that lim

n→+∞
r′n = +∞ (resp. lim

n→+∞
r′n = lim

n→+∞
r′′n = R, resp. lim

n→+∞
r′n = +∞, R ≤

r1) and such that |(f ′ + fm)|(r) = |fm|(r) ∀r ∈
⋃
n∈ IN

[r′n, r
′′
n]. Let m ∈ IN∗ be 6= 2. Then f ′ + fm

has infinitely many zeros that are not zeros of f .

Proof. Let J =
⋃
n∈ IN

[r′n, r
′′
n]. By Corollary B.13.6 we have

ν+(f ′ + fm, log r) = ν+(fm, log r), ν−(f ′ + fm, log r) = ν−(fm, log r) ∀r ∈ J.

Consequently, in each circle C(0, r) with r ∈ J , f and f ′ + fm have the same difference between
the number of zeros and poles. Now, if m ≥ 3 the poles of f ′ + fm and fm are the same taking
multiplicity into account. And when m = 1, each pole of f is a pole of f ′+f with a strictly greater
order. Consequently, for each r ∈ J , the number of zeros of f ′ + fm in C(0, r) is superior or equal
to this of fm.

Now, for each n ∈ IN, let sn be the number of distinct zeros of f in
⋃n
j=1 ∆(r′1, r

′′
n). Since f

has infinitely many zeros, the sequence sn is increasing and tends to +∞. On the other hand, for
each zero α of order u of f , either α is not a zero of f ′ + fm (when u = 1), or it is a zero of order
u − 1). Consequently, the number of zeros of f ′ + fm in

⋃n
j=1 ∆(r′1, r

′′
n) which are not zeros of f

is at least sn. Thus we have proved that f ′ + fm has infinitely many zeros that are not zeros of
f .

6 Proofs of the Theorems

Proposition 23: Let f ∈M( IK)\ IK(x) satisfy lim sup
r→∞

|f |(r) > 0 and let b ∈ IK∗. Let m ∈ IN∗

be ≥ 3. Then f ′ + bfm has infinitely many zeros that are not zeros of f .

Proposition 24: Let f ∈ Mu(d(a,R−)) satisfy lim sup
r→R

|f |(r) = +∞ and let b ∈ IK∗. Let m ∈

IN∗ be ≥ 3. Then f ′ + bfm has infinitely many zeros that are not zeros of f .

Proof. (Propositions 23 and 24). Without loss of generality, we can assume b = 1 and when
f ∈ M(d(a,R−)), we may assume a = 0. By hypotheses, there exists a sequence of intervals
[r′n, r

′′
n] such that lim

n→+∞
r′n = +∞ (resp. lim

n→+∞
r′n = lim

n→+∞
r′′n = R) and such that, putting J =⋃

n∈ IN

[r′n, r
′′
n], we have lim sup

r→∞,
r∈J

|f |(r) > 0 (resp. lim
r→R−

r∈J

|f |(r) = +∞).

Suppose first we assume the hypothesis of Proposition 23. Let M =
lim supr→+∞ |f |(r)

2
. We

will prove that there exists t > 0 such that |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ∩ [t,+∞[. By Theorem

C.2.10 in [16], we have |f ′|(r) ≤ |f |(r)
r

. Consequently, when r lies in J , there exists s > 0 such

that |f |(r) ≥M ∀r ∈ [s,+∞[∩J .
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(
|f |(r)

)m ≥ |f |(r)Mm−1 ≥ r|f ′|(r)Mm−1.

Next, when r is big enough, rMm−1 is greater than 1, hence (|f |(r))m > |f ′|(r). Thus there
exists t ≥ s such that (|f |(r))m > |f ′|(r) ∀r ∈ J ∩ [t,+∞[. Let J ′ = J ∩ [t,+∞[. So we have
|f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′.

Suppose now that we assume the hypothesis of Proposition 24. We have

|f ′|(r) ≤ |f |(r)
r
≤ |f |(r)

R
. Set B =

1
R

. Then we have(
|f |(r)

)m ≥ B|f ′|(r)(|f |(r))m−1.

Now, when r is close enough to R, r ∈ J , B|f(x)|m−1 is strictly greater than 1, hence (|f |(r))m >
|f ′|(r). Thus, there exists t > 0 such that (|f |(r))m > |f ′|(r) ∀r ∈ [t,+∞[∩J . We can set again
J ′ = J ∩ [t, R[ and then we have |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′.

We can now conclude Propositions 23 and 24. For each n ∈ IN, let qn be the number of zeros of
f in d(0, r′′n). Suppose the sequence (qn)n∈ IN is bounded. Then, f has finitely many zeros, hence

it is of the form
P

h
with P ∈ IK[x] and h ∈ A( IK) (resp. h ∈ Au(d(0, R−))). Consequently, we

have lim
r→+∞

|f |(r) = 0 (resp. lim
r→R−

|f |(r) = 0), a contradiction to the hypothesis in both theorems.

Therefore, the sequence (qn)n∈ IN that is increasing by definition, tends to +∞. Now, in each
Propositions 23 and 24, we may apply Lemma 16 showing that f ′ + fm has infinitely many zeros
that are not zeros of f .

Theorem D : let a ∈ IK and r > 0. Let f ∈ M( IK) \ IK(x), (resp. f ∈ Mu(d(a,R−)), resp.
f ∈ Mc(D))). There exists at most one function w ∈ Mf ( IK), (resp. w ∈ Mf (d(a,R−)), resp.
w ∈ Mf (D)) such that f − w have finitely many zeros. Moreover, if f belongs to A( IK) \ IK[x]
(resp. to Au(d(a,R−)), resp. to Ac( IK)) then there exists no function w ∈ Mf ( IK) \ IK(x),
(resp. w ∈Mf (d(a,R−)), resp. w ∈Mf (D)) such that f − w have finitely many zeros.

Proof. Concerning claims on Mu(d(a,R−)) we can obviously assume a = 0. Suppose that
there exist two distinct functions w1, w2 ∈ Mf ( IK), (resp. w1, w2 ∈ Mf (d(0, R−))) such that
f − wk has finitely many zeros. So, there exist P1, P2 ∈ IK[x] and h1, h2 ∈ A( IK) (resp.

h1, h2 ∈ A(d(0, R−))) such that f − wk =
Pk
hk
, k = 1, 2 and hence we notice that

(1) T (r, f) = T (r,
Pk
hk

) + o(T (r, f)) = T (r, hk) + o(T (r, f)) k = 1, 2.

Consequently, putting w = q2 − w1, we have

P1

h1
=
P2

h2
+ w

and by Proposition 19, w belongs to Mf ( IK) (resp. to Mf (d(0, R−))). Therefore P1h2 − P2h1 =
gh1h2 and hence

(2) T (r, P1h2 − P2h1) = T (r, gh1h2).

Now, by Proposition 8 we have

T (r, P1h2 − P2h1) ≤ max(T (r, P1h2), T (r, P2h1)) ≤ max(T (r, h1), T (r, h2)) + o(T (r, f))
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and hence by (1), we obtain

(3) T (r, P1h2 − P2h1) ≤ T (r, f) + o(T (r, f)).

On the other hand, by Proposition 20, we have

T (r, wh1h2) = T (r, h1h2) + o(T (r, h1h2)) = 2T (r, f) + o(T (r, f)),

which by (2), contradicts (3).
Suppose now that f belongs toMc(D). Suppose that there exist two distinct functions w1, w2 ∈

Mc
f (D), such that f − wk has finitely many zeros. So, there exist P1, P2 ∈ IK[x] and h1, h2 ∈

Ac(D) such that f − wk = w0
k

Pk
hk
, k = 1, 2 and hence we notice that

(1bis) TR(r, f) ≤ TR(w0
k) + TR(r,

Pk
hk

) + o(T (r, f)) = TR(w0
k) + T (r, hk) + o(TR(r, f)) k = 1, 2.

Consequently, putting w = w2 − w1, we have

w0
1P1

h1
=
w0

2P2

h2
+ w

and by Proposition 19, w belongs to Mf (D). Therefore w0
1P1h2 − w0

2P2h1 = wh1h2 and hence

TR(r, w0
1P1h2 − w0

2P2h1) = TR(r, gh1h2)

and hence by Corollary 12

(2bis) TR(r, gh1h2) ≤ max(TR(r, P1h2), TR(r, P2h1)) +O(log(r) ≤ TR(r, f) + o(TR(r, f)).

On the other hand, by Propostion 20, we have

TR(r, gh1h2) = TR(r, h1h2) + o(TR(r, h1h2)) = 2TR(r, f) + o(TR(r, f)),

which contradicts (2bis).

Suppose now that f belongs to A( IK) \ IK[x] and that there exists a function w ∈ Mf ( IK)
such that f − w has finitely many zeros.

Set w =
l

t
where l and t belong to Af ( IK) and have no common zeros. Thus, f − w =

tf − l
t

and each zero of tf − l cannot be a zero of t hence is zero of f −w. Consequently, since f −w has
finitely many zeros, tf − l has finitely many zeros and hence is a polynomial. But since l belongs
to Af ( IK), when r is big enough we have |f |(r) > |l|(r) and hence |tf |(r) > |l|(r), therefore
|tf − l|(r) = |tf |(r). And since f is transcendental, by Corollary B.13.23 in [16] for every fixed
q ∈ IN, |f |(r) > rq when r is big enough. Similarly, |tf − l|(r) > rq when r is big enough.
Consequently, by Corollary B.13.23 in [16], tf − l is not a polynomial, which proves that w does
not exist.

Suppose now that f belongs to Au(d(0, R−)) and that there exists a function w ∈Mf (d(0, R−))
such that f − w has finitely many zeros. Without loss of generality, we can assume that the field
IK is spherically complete because both f and w have continuation to an algebraically closed

spherically complete extension of IK where their zeros are the same as in IK. Consequently,
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we can write w =
l

t
where l and t have no common zeros. Now, the zeros of f − w are those

of tf − l, hence tf − l has finitely many zeros and hence, is bounded in d(0, R−). But since w
belongs to Mf (d(0, R−)), so does l and hence |tf |(r) > |l|(r) when r tends to R. Consequently,
|tf − l|(r) = |tf |(r) is not bounded in d(0, R−), a contradiction proving again that w does not
exist.

Suppose finally that f belongs to Ac( IK) and that there exists a function w ∈ Mf (D) such

that f −w has finitely many zeros. Thus, f −w = (f −w)0
( tf − l

t

)
where both tf − l and l belong

to A( IK) and have noi zero in S.
Then each zero of tf − l cannot be a zero of t, hence is zero of f − w. Consequently, since

f − w has finitely many zeros, tf − l has finitely many zeros and hence is a polynomial. But
since l belongs to Af ( IK), when r is big enough we have |f |(r) > |l|(r) and hence |tf |(r) > |l|(r),
therefore |tf − l|(r) = |tf |(r). And since f is transcendental, by Corollary B.13.23 in [16] for every
fixed q ∈ IN, |f |(r) > rq when r is big enough. Similarly, |tf − l|(r) > rq when r is big enough.
Consequently, by Corollary B.13.23 in [16], tf − l is not a polynomial, which proves that w does
not exist.

Theorem B: Let f ∈M( IK) \ IK(x). For each b ∈ IK∗, f ′ + bf has infinitely many zeros that
are not zeros of f .

Proof. Without loss of generality, we can assume again b = 1. By Theorem C.2.10 in [16], we have
|f ′|(r) < |f |(r) when r is big enough and hence |f ′ + f |(r) = |f |(r) in an interval I = [s,+∞[.
Suppose first that f has infinitely many zeros. We can then apply Lemma 4 and get the conclusion.

Suppose now that f has finitely many zeros. Then f has infinitely many poles cn of respective
order tn. Since IK has characteristic zero, f ′ admits each cn as a pole of order tn+1 and similarly,
f ′+f also admits each cn as a pole of order tn+1. Thus, we have N(r, f ′+f) = N(r, f)+N(r, f).
But since |f ′ + f |(r) = |f |(r) holds in I, we have ν(f ′ + f, log r) = ν(f, log r) ∀r ∈ I and hence
Z(r, f ′ + f) − N(r, f ′ + f) = Z(r, f) − N(r, f), therefore Z(r, f ′ + f) − (N(r, f) + N(r, f)) =
Z(r, f) −N(r, f) and hence Z(r, f ′ + f) = Z(r, f) + N(r, f). Since we have supposed that f has
finitely many zeros and since f has infinitely many poles, f ′ + f has infinitely many zeros and all
but finitely many are not zeros of f .

Concerning functions f ′ + bf2, we can obtain a first conclusion when f is analytic.

Theorem E: Let a ∈ IK, let R ∈]0,+∞[ and let f ∈ Au(da(, R−)), (resp. f ∈ Ac(D) ). For
each b ∈ IK∗, f ′ + bf2 has infinitely many zeros that are not zeros of f .

Proof. Without loss of generality, we can assume b = 1 and a = 0. Clearly, when r is big enough,
in ]0,+∞[ (resp. in ]0, R[), we have |f ′ + f2|(r) = |f2|(r) therefore, by Corollary B.13.6 in [16],
f2 and f ′ + f2 have the same number of zeros in C(0, r) (taking multiplicity into account). Let
α ∈ C(0, r) be a zero of f of order q. When r is big enough, it is a zero of order 2q for f2 and
it is a zero of order q − 1 for f ′ + f2. Consequently, by Corollary B.13.6 in [16], f ′ + f2 has at
least q + 1 zero in C(0, r) that are not zeros of f (taking multiplicity into account). This is true
for every such zeros of f and hence f ′ + f2 has infinitely many zeros that are not zeros of f .

Corollary 16: Let m ∈ IN be ≥ 2, let a ∈ IK, let R ∈]0,+∞[, and let f ∈ Au(d(a,R−)), (resp.
f ∈ Ac(D)). For each b ∈ IK∗, f ′ + bfm has infinitely many zeros that are not zeros of f .
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Proposition 25 was published in [7] and partially in [22]. In its proof, we will get the proof of
Theorem C.

Proposition 25: Let f ∈ M( IK) \ IK(x) (resp. let a ∈ IK and R ∈ IR∗+ and let f ∈
Mu(d(a,R−)), resp. let f ∈ Mc(R) ) and let m ∈ IN. If m ≥ 5, then for each b ∈ IK∗,
f ′ + bfm has infinitely many zeros that are not zeros of f . If m = 4, if f ∈ M( IK) \ IK(x), and
if f admits at least s multiple zeros and at least t multiple poles, then f ′+ bf4 admits a number of

zeros that are not zeros of f (taken account of multiplicity), which is superior or equal to to
s+ t

26
.

Proof. By Corollary B.13.2 in [16], the zeros of f ′ + bfm in IK are the same as in a spherically
complete algebraically closed extension ÎK of IK. So, for simplicity, we can suppose that the field
IK is spherically complete without loss of generality. We can also suppose that b = 1 and a = 0.

Then if f ∈M( IK)\ IK(x), (resp. if f ∈Mc(R)) we can obviously write f =
h

l
with h, l ∈ A( IK)

(resp. h, l ∈ A(R)), having no common zeros and if f ∈ M(d(0, R−)), since IK is spherically

complete, we can write f =
h

l
with h, l ∈ A(d(0, R−)), having no common zeros again.

Let g =
1
f

and let n = m− 2. So, by Lemma 1, the problem is reduced to show that g′gn − 1

has infinitely many zeros. So we suppose that the lemma is wrong and hence, g′gn − 1 has q zeros
(counting multiplicity).

Then, g′gn− 1 =
(l′h− h′l)ln − hn+2

hn+2
and since h, l have no common zeros, this is of the form

P

hn+2
where P is a polynomial of degree q. Now, set F = (l′h− h′l)ln.

Then, assuming that f ∈M( IK) or f ∈M(d(0, R−), by Corollary 15,
T (r, F ) = Z(r, F ) +O(1) ≤ Z(r, F ) + Z(r, F − P ) + 13(T (r, P )) hence

(1) Z(r, F ) ≤ Z(r, F ) + Z(r, F − P ) + 13(T (r, P )),
hence
Z(r, l′h − h′l) + nZ(r, l) ≤ Z(r, l′h − h′l) + Z(r, l) + Z(F − P ) + 13T (r, P ) + O(1)). Actually,
Z(r, F−P ) = Z(r, h), hence nZ(r, l) ≤ Z(r, l)+Z(r, h)+13T (r, P )+O(1)) and hence (n−1)Z(r, l) ≤
Z(r, h) + 13(T (r, P )) +O(1) and then
(2) (n− 1)Z(r, l) ≤ Z(r, h) + 13T (r, P ) +O(1)).

Similarly, when f ∈Mc(D), we have
(3) (n− 1)ZR(r, l) ≤ ZR(r, h) + 13T (r, P ) +O(1)).

Now, suppose that f ∈ Mu(d(0, R−)). By Proposition 24, if lim
r→R−

|f |(r) = +∞, i.e., if

lim inf
r→R−

Z(r, f)−N(r, f) = +∞, the claim is proved. Consequently, since the claim is not true,

we can assume lim inf
r→R−

Z(r, f)−N(r, f) < +∞, hence we have

(4) lim inf
r→R−

Z(r, h)− Z(r, l) < +∞. But by (2), we see that (4) is impossible whenever n ≥ 3,

i.e., m ≥ 5.

And now, suppose f ∈Mc(R). By Proposition 24, if lim
r→+∞

|f |(r) = +∞, i.e.,

if lim inf
r→+∞

ZR(r, f)−NR(r, f) = +∞, then the claim is proved again. Consequently, since the claim

is not true, we can assume lim inf
r→+∞

ZR(r, f)−NR(r, f) < +∞ and get

lim inf
r→+∞

ZR(r, h)− ZR(r, l) < +∞
and then by (3), the conclusion is the same.
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This finishes the proof of Theorem C.

Now, consider the hypothesis f ∈ M( IK). By Proposition 23, if lim inf
r→+∞

|f |(r) > 0, i.e., if

lim inf
r→+∞

Z(r, f)−N(r, f) > −∞ the claim is proved. Consequently, since we suppose that the claim

is not true, we can assume lim inf
r→+∞

Z(r, f)−N(r, f) = −∞, i.e.,

(5) lim sup
r→+∞

Z(r, l)− Z(r, h) = +∞.

We notice that Relation (4) holds again. Since f is transcendental, by (4) we notice that l is
transcendental. Consequently, (2) is impossible whenever n ≥ 3, i.e., m ≥ 5.

Now, suppose m = 4, i.e., n = 2. More precisely, Z(r, l) ≤ Z(r, l) − s log r
2

and Z(r, h) ≤

Z(r, h)− t log r
2

. Then, by Corollary 15 and by Relation (1) we have

Z(r, F ) = Z(r, h′l − hl′) + 2Z(l) ≤ Z(r, h′l − l′h) + Z(r, l) + Z(r, F − P ) + 13T (r, P ) +O(1)

= Z(r, h′l − l′h) + verlineZ(r, l) + Z(r, h) + 13T (r, P ) +O(1).

Therefore

2Z(r, l) ≤ Z(r, l) + Z(r, h) + +13T (r, P ) +O(1)

≤ Z(r, l) + Z(r, h)− s+ t

2
log(r) + +13T (r, P ) +O(1).

Now, T (r, P ) ≤ q log(r), therefore

Z(r, l) ≤ Z(r, h) + (13− s+ t

2
) log(r) +O(1).

(6) Z(r, l) ≤ Z(r, h) + (13− s+ t

2
) log(r) +O(1).

Now, Relation (4) implies 13q− s+ t

2
> 0 and hence f ′fn admits a number of zeros strictly superior

to
s+ t

26
.

Corollary 17: Let f ∈ M( IK) \ IK(x) have finitely multiple zeros and finitely multiple poles.
Let b ∈ IK∗. Then if f has infinitely many multiple zeros or poles, then f ′ + bf4 has infinitely
many zeros that are not zeros of f .

We will now thoroughly examine the situation when m = 4, i.e., n = 2, as made in [14]. This
requires several basic lemmas.

Lemma 13: Let f ∈M( IK) be transcendental and such that f ′ has finitely many multiple zeros.

Then
f ′′f

(f ′)2
has no quasi-exceptional value.

Proof. Let g =
f

f ′
. A pole of g is a zero of f ′, hence by hypothesis, g has finitely many multiple

poles. Consequently, by Theorem C.8.7 in [16], g′ has no quasi-exceptional value. And hence
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neither has 1 − g′. But g′ =
(f ′)2 − f ′′f

(f ′)2
= 1− f ′′f

(f ′)2
. Therefore,

f ′′f

(f ′)2
has no quasi-exceptional

value.

Lemma 14: Let f ∈ M( IK) be transcendental and have finitely many multiple zeros. Then
f ′′f + 2(f ′)2 has infinitely many zeros that are not zeros of f .

Proof. Suppose first that f ′ has infinitely many multiple zeros. Since f has finitely many multiple
zeros, the zeros of f ′ are not zeros of f except at most finitely many. Hence, f ′ has infinitely many
multiple zeros that are not zeros of f . And then, they are zeros of f ′′, hence of f ′′f +2(f ′)2, which
proves the statement.

So we are now led to assume that f ′ has finitely many multiple zeros. By Lemma 13
f ′′f + 2(f ′)2

(f ′)2
has infinitely many zeros. Let c ∈ IK be a pole of order q of f . Without loss of generality, we can

suppose c = 0. The beginning of the Laurent development of f at 0 is of the form
a−q
xq

+
ϕ(x)
xq−1,

whereas ϕ ∈M( IK) has no pole at 0. Consequently,
f ′′f + 2(f ′)2

(f ′)2
is of the form

(a−q)2(3q2 + q) + xφ(x),
(a−q)2(q2) + xψ(x)

whereas φ, ψ ∈ M( IK) have no pole at 0. So, the function
f ′′f + 2(f ′)2

(f ′)2
has no zero at 0.

Therefore, each zero of
f ′′f + 2(f ′)2

(f ′)2
is a zero of f ′′f +2(f ′)2 and hence f ′′f +2(f ′)2 has infinitely

many zeros.
Now, let us show that the zeros of f ′′f + 2(f ′)2 are not zeros of f , except maybe finitely many.

Let c be a zero of f ′′f + 2(f ′)2 and suppose that c is a zero of f . Then, it is a zero of f ′ and hence
it is a multiple zero of f . But by hypotheses, f has finitely many multiple zeros, hence the zeros of
f ′′f + 2(f ′)2 are not zeros of f , except at most finitely many. That finishes proving the claim.

Lemma 15: Let f ∈M( IK) be transcendental and let b ∈ IK∗ be such that f2f ′ − b has finitely
many zeros. Then, N(r, f) ≤ Z(r, f) +O(1).

Proof. Let F = f2f ′. Since F − b is transcendental and has finitely many zeros, it is of the

form
P (x)
h(x)

with h ∈ A( IK) \ IK[x]. Consequently, |F |(r) is a constant when r is big enough

and therefore, by Proposition 1 we have Z(r, F ) = N(r, F ) + O(1) when r is big enough. Now,
Z(r, F ) = 2Z(r, f) + Z(r, f ′) and, by Proposition 7 Z(r, f ′) ≤ Z(r, f) + N(r, f) − log r + O(1).
On the other hand, by Proposition 7 again, we have N(r, F ) = 3N(r, f) +N(r, f). Consequently,
3N(r, f) +N(r, f) ≤ 3Z(r, f) +N(r, f)− log r +O(1), which proves the claim.

Theorem A was published in [14]. Here we will add some precisions in the proof.

Theorem A: Let f ∈ M( IK) \ IK(x). Then for each b ∈ IK∗, f ′f2 − b has infinitely many
zeros.
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Proof. Let b ∈ IK∗ and suppose that the claim is wrong, i.e., f2f ′−b has q zeros, taking multiplicity
into account. By Proposition 25, we may assume that f has finitely many multiple zeros and finitely
multiple poles. Set F = f2f ′. Then F ′ = f(f ′′f+2(f ′)2). By Lemma 14, f ′′f+2(f ′)2 has infinitely
many zeros that are not zeros of f . Consequently, F ′ admits for zeros: the zeros of f and the zeros
of f ′′f + 2(f ′)2. And by Lemma 14, there exists a sequence of zeros of f ′′f + 2(f ′)2 that are not
zeros of f .

Let S = {0, b} and let ZS0 (r, F ′) be the counting function of zeros of F ′ when F (x) is different
from 0 and b. Since F −b has finitely many zeros, the zeros c of F ′, which are not zeros of f, cannot
satisfy F (c) = b except at most finitely many. Consequently, there are infinitely many zeros of F ′

counted by the counting function ZS0 (r, F ′) and hence for every fixed integer M ∈ IN, we have

(1) ZS0 (r, F ′) ≥M log r +O(1).

Let us apply Theorem C.4.24 in [16] to F . We have

(2) T (r, F ) ≤ Z(r, F ) + Z(r, F − b) +N(r, F )− ZS0 (r, F ′)− log(r) +O(1).

Now, we have

(3) Z(r, F ) ≤ Z(r, f) + Z(r, f ′)

(4) N(r, F ) = N(r, f)

and since the number of zeros of F − b is q, taking multiplicity into account, then:

(5) Z(r, F − b) ≤ s log r +O(1).

Consequently, by (2), (3), (4), and (5) we obtain

(6) T (r, F ) ≤ Z(r, f) + Z(r, f ′) +N(r, f)− ZS0 (r, F ′) + (q − 1) log r +O(1).

On the other hand, by construction, T (r, F ) ≥ Z(r, F ) = 2Z(r, f) + Z(r, f ′), hence by (6) we
obtain (7)

(7) Z(r, f) ≤ N(r, f)− ZS0 (r, F ′) + (q − 1) log r +O(1).

Now, by Lemma 15, we have N(r, f) ≤ Z(r, f)+O(1), hence by (7) we obtain 0 ≤ (s−1) log r−
ZS0 (r, F ′)+O(1) and hence by (1), fixing M > q−1 we can derive 0 ≤ (q−1) log r−M log r+O(1),
a contradiction. This finishes the proof of Theorem A.

Acknowledgement: We are grateful to Jean-Paul Bézivin for many comments.
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