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A survey on a few recent papers in p-adic Value Distribution

by Alain Escassut

In memory of Professor Wolfgang Tutschke

In this article, we propose to present several recent results: a new proof of
the p-adic Hermite-Lindemann Theorem, a new proof of the p-adic Gel’fond-
Schneider Theorem, exceptional values of meromorphic functions and derivatives
and the p-adic Nevanlinna theory applied to small functions. We first have to
recall the definitions of the p-adic logarithm and exponential.

1 Logarithm and exponential in a p-adic field

Notations: We denote by Qp the completion of Q with respect to the p-adic
absolute value and by Cp the completion of the algebraic closure of Qp, which is
known to be algebraically closed [7]. In general, we denote by K an algebraically
closed field of characteristic 0 complete with respect to an ultrametric absolute
value, such as Cp. The ultrametric absolute value of K is denoted | . | while the
archimedean absolute value of C is denoted | . |∞.

Let a ∈ K and let R ∈ R+. We denote by d(a,R) the ”closed ” disk
{x ∈ K | |x− a| ≤ R} and by d(a,R−) the ”open” disk {x ∈ K | |x− a| < R}.

We denote by A(K) the algebra of power series converging in all K. Given
a ∈ K and R > 0, we denote by A(d(a,R−)) the algebra of power series
∞∑
j=0

an(x− a)n converging in d(a,R−) and by Ab(d(a,R−)) the subalgebra of

functions f(x) ∈ Ab(d(a,R−)) that are bounded in (d(a,R−)) and we put
Au(d(a,R−)) = A(d(a,R−)) \ Ab(d(a,R−)).

Moreover we denote by H(d(a, r) the algebra of power series
∞∑
j=0

an(x− a)n

converging in d(a,R) called analytic elements in d(a,R). Given an element f
of H(d(0, R)) we put |f |(r) = supx∈d(0,R) |f(x)|.

We will define the p-adic logarithm and the p-adic exponential and will
shortly study them, in connection with the study of the roots of 1. Here, as
in [7], we compute the radius of convergence of the p-adic exponential by using
results on injectivity.

The following lemma 1.a is easy:

Lemma 1.a: K is supposed to have residue characteristic p 6= 0. Let r ∈]0, 1[
and for each n ∈ N, let hn(x) = (1 +x)p

n

. The sequence hn converges to 1 with
respect to the uniform convergence on d(0, r).
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Notations: We denote by log the real logarithm function of base e. Given a

power series
∞∑
j=0

ajx
j converging in d(0, R−) and given a number µ < log(R)

we denote by ν+(f, µ) the biggest integer q such that supj≥0 log(|aj)| + jµ =
log(|aq)|+ qµ.

For each q ∈ N∗ we denote by Rq the positive number such that logp(Rq) =

− 1
pq−1(p− 1)

. We denote by g(x) the series
∞∑
n=1

(−1)n−1x
n

n
.

The following lemma 1.b is well known (Theorem B.13.7 in [7]):

Lemma 1.b: Let f(x) =
∞∑
j=0

ajx
j be converging in d(0, R−) and let r < R.

Then ν+(f, log(r)) is the number of zeros of f in d(0, r), taken multiplicity into
account.

Theorem 1.1: g has a radius of convergence equal to 1. If the residue
characteristic of K is p 6= 0, then g is unbounded in d(0, 1−). If the residue
characteristic is zero, then |g(x)| is bounded by 1 in d(0, 1−). The function

defined in d(1, 1−) as Log(x) = g(x−1) has a derivative equal to
1
x

and satisfies

Log(ab) = Log(a) + Log(b) whenever a, b ∈ d(1, 1−).

Proof. It is clearly seen that the radius of g is 1, because |n| ≥ 1
n

and |n| ≤ 1

for all n ∈ N. As in the Archimedean context, the property Log(ab) = Log(a)+
Log(b) comes from the fact that both Log and the function ha defined as ha(x) =
Log(ax) have the same derivative. The other statements are immediate.

Notation: When K has residue characteristic p 6= 0, we introduce the group
W of the ps-th roots of 1, i.e., the set of the u ∈ K satisfying up

s

= 1 for some
s ∈ N.

Recall that analytic elements were defined by M. Krasner and are defined in
[7].

Theorem 1.2: K is supposed to have residue characteristic p 6= 0 (resp.
0). All zeros of Log are of order 1. The set of zeros of the function Log is
equal to W , (resp. 1 is the only zero of Log). The restriction of Log to the
disk d(1, (R1)−) (resp. d(1, 1−)) is injective and is a bijection from d(1, (R1)−)
onto d(0, (R1)−) ( resp. from d(1, 1−) onto d(0, 1−)).

Proof. It is obvious that the zeros of Log are of order 1 because the derivative
of Log has no zero. First, we suppose K to have residue characteristic p 6= 0.
Each root of 1 in d(1, 1−) is a zero of Log. Moreover, by Theorem A.6.8 of [7],
we know that the only roots of 1 in d(1, 1−) are the pn-th roots. Now we can
check that Log admits no zero other than the roots of 1. Indeed, suppose that
a is a zero of Log but is not a root of 1, and for each n ∈ N, let bn = ap

n

.
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Since bn belongs to d(1, 1−), by Lemma B.16.1 of [7] we have lim
n→∞

bn = 1. But

obviously Log(bn) = 0 for every n ∈ N, hence this contradicts the fact that 1 is
an isolated zero of Log.

Thus, Log has no zero in the disk d(1, (R1)−), except 1 and therefore, by

Lemma 1.b the series f(x) =
∞∑
n=1

(−1)n−1x
n

n
satisfies ν+(f, log r) = 1 for every

r ∈]0, R1[, hence r >
rn

|n|
for all r ∈]0, R1[, for every n ∈ N∗. Therefore, by

Corollary B.14.10 of [7] it is injective in d(0, R−1 ). Then, by Corollary B.13.10
of [7], we see that Log(d(1, R−1 )) = d(0, R−1 ).

Now we suppose that K has residue characteristic zero. Then, the function

f(x) =
∞∑
n=1

(−1)n−1x
n

n
satisfies ν+(f, log r) = 1 for every r ∈]0, 1[, hence r >

rn

n

for all r ∈]0, 1[, for every n ∈ N∗. Therefore, f has no zero different from 1 in
d(0, 1−) and, by Corollary B.14.10 of [7], is injective in d(0, 1−). Then by
Corollary B.13.10 of [7] we see that Log(d(1, 1−)) = d(0, 1−). This ends the
proof.

Corollary 1.A: K is supposed to have residue characteristic 0. There is no
root of 1 in d(1, 1−), except 1.

Proof. Indeed any root of 1 should be a zero of Log in d(1, 1−).

Notations: If K has residue characteristic p 6= 0, we first denote by exp
the inverse (or reciprocal) function of the restriction of Log to d(1, R−1 ), which
obviously is a function defined in d(0, R−1 ), with values in d(1, R−1 ). If K has
residue characteristic 0 we denote by exp the inverse function of Log, which is
obviously defined in d(0, 1−) and takes values in d(1, 1−).

Theorem 1.3: K is supposed to have residue characteristic p 6= 0 (resp.
p = 0). The function exp belongs to Ab(d(0, R−1 )) (resp. Ab(d(0, 1−))), is
a bijection from d(0, R−1 ) onto d(1, R−1 ) (resp. from d(0, 1−) onto d(1, 1−)),

and satisfies exp(x) = exp′(x) =
∞∑
n=0

xn

n!
whenever x ∈ d(0, R−1 ) (resp. x ∈

d(0, 1−)). Moreover, the disk of convergence of its series is equal to d(0, R−1 )
(resp. d(0, 1−)). Further, if p 6= 0, then exp is not an analytic element on
d(0, R−1 ).

Proof. By Corollary B.14.15 of [7] we know that the function exp belongs to
Ab(d(0, R−1 )) (resp. Ab(d(0, 1−))) and is obviously a bijection from d(0, R−1 )
onto d(1, R−1 ) (resp. from d(0, 1−) onto d(1, 1−)). As it is the reciprocal of Log,
it must satisfy exp(x) = exp′(x) for all x ∈ d(0, R−1 ) (resp. x ∈ d(0, 1−)) and,
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therefore, exp(x) =
∞∑
n=0

xn

n!
whenever x ∈ d(0, R−1 ) (resp. x ∈ d(0, 1−)). Thus

the radius of convergence r is at least R1 (resp. 1). If the residue characteristic
is 0, it is obviously seen that the series cannot converge for |x| = 1, hence the
disk of convergence is d(0, 1−).

Now we suppose that the residue characteristic is p 6= 0. Suppose that the
power series of exp converges in d(0, R1). Then exp has continuation to an
analytic element element on d(0, R1). On the other hand, since ν(f, log r) = 1
for all r ∈]0, R1[, we have ν−(f, logR1) = 1 and then by Theorem B.13.9 of [7]
Log(d(1, R1)) is equal to d(0, R1). Hence, we can consider exp(Log(x)) in all
the disk d(0, R1). By Corollary B.3.3 of [7] this is an analytic element element
on d(1, R1). But this element is equal to the identity in all of d(1, R−1 ) and,
therefore, in all of d(1, R1). Of course this contradicts the fact that Log is not
injective in the circle C(1, R1). This finishes proving that the disk of convergence
of exp is just d(0, R−1 ).

Notations: Henceforth, we put ex = exp(x).

Theorem 1.4: K is supposed to have residue characteristic p 6= 0. Let x ∈
d(0, R−1 ). Then ex is algebraic over Qp if and only if so is x. Let u ∈ d(0, 1−).
Then log(1 + u) is algebraic over Qp if and only if so is u.

Proof. By Theorem B.5.24 of [7], if x is algebraic over Qp, so is ex. Similarly,
if u is algebraic over Qp, so is log(1 + u). Consequently, suppose that ex is
algebraic over Qp. Then ex is of the form 1 + t with |t| < 1, hence log(1 + t)
is algebraic over Qp. But then, log(1 + t) = log(ex) = x, hence x is algebraic
over Qp. Now, more generally, suppose log(1 + u) is algebraic over Qp, with
|u| < 1. Take q ∈ N such that |pq log(1 + u)| < R1. We have pq log(1 + u) =
log((1 + u)p

q

). Since |pq log(1 + u)| < R1, we have | log((1 + u)p
q

)| < R1, hence
exp
(

log((1 + u)p
q

)
)

= (1 + u)p
q

. Consequently, (1 + u)p
q

is algebraic over Qp

and hence so is u.

We can show a similar result when p = 0.

Theorem 1.5: K is supposed to have residue characteristic 0. Let x ∈
d(0, 1−). Then ex is algebraic over Qp if and only if so is x. Let u ∈ d(0, 1−).
Then log(1 + u) is algebraic over Qp if and only if so is u.

The following proposition 1.6 will be used in the poof of Theorem 2.3 and is
proven by induction, similarly as (1.4.2) in [16].

Proposition 1.6: Let P1, ..., Pq ∈ K[X] different from 0 and let w1, ..., wq ∈

K be pairwise distinct. Let F (x) =
q∑
j=1

Pj(x)ewjx. Then F is not identically

zero.
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2 Hermite-Lindemann’s and Gel’fond-Schneider’s Theorems in ultra-
metric fields

We will use the following classical notation:

Notation: We will denote by K an algebraically closed complete ultrametric
extension of Q of residue characteristic 0.

We will denote by U the disk d(0, 1) and by D0 the disk d(0, 1−) in the field
K no matter what the residue characteristic.

If the residue characteristic of K is p > 0 we put R1 = p
−1

p−1 and denote by
D1 the disk d(0, R−1 ).

Given an algebraic number a ∈ Cp (resp. a ∈ K) and a1, a2, ..., aq its con-
jugates over Q (with a1 = a), we put |a| = max1≤j≤q |aj | and we denote by
den(a) its smallest denominator, i.e. the smallest positive integer q such that
qa is an algebraic integer. Then we put s(a) = max(log |a|, log(den(a))) and
s(a) is called the size of a. More generaly we call denominator of a number a
all positive integer multiple of its smallest denominator.

Given a polynomial P (X1, ..., Xq) ∈ Z[X1, ..., Xq], we denote by H(P ) the
supremum of the archimedean absolute values of its coefficients.

Given a positive real number a, we denote by [a] the largest integer n such
that n ≤ a.

Hermite-Lindemann’s theorem is well known in complex analysis. The same
holds in p-adic analysis. The first proof was presented in 1930 by K. Malher
[13]. This proof given in [13] is written in German and uses symbols which are
not currently known. Here we present a new proof using classical methods in
transcendental processes that are maybe easier to understand.

We will need Siegel’s Lemma in all the following theorems of this chapter.
We will choose a particular form of this famous lemma [16] whose formulation
is due to M. Mignotte:

Lemma 2.a (Siegel): Let E be a finite extension of Q of degree q and
let λi,j 1 ≤ i ≤ m, 1 ≤ j ≤ n be elements of E integral over Z. Let
M = max(|λi,j | 1 ≤ i ≤ m, | 1 ≤ j ≤ n) and let (S) be the linear system

{
n∑
j=1

λi,jxj = 0, 1 ≤ i ≤ m}. There exists solutions (x1, ..., xn) of (S) such that

xj ∈ Z ∀j = 1, ..., n and

log(|xj |∞) ≤ log(M)
qm

n− qm
+

log(2)
2
∀j = 1, ..., n.

Lemma 2.b will be necessary in the proof of Theorem 2.4 and is easily proven
in [16] since its proof implies no change in the field K since it only concerns
algebraic numbers

Lemma 2.b: Let a1, ..., aq ∈ K be algebraic over Q, let P (X1, ..., Xq) ∈
Z[X1, ..., xq] be such that degXj

(P ) ≤ rj 1 ≤ j ≤ q and let β = P (a1...aq).
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Then β is algebraic over Q, d(a1)r1 ...d(aq)rq is a multiple of den(β) and we have

s(β) ≤ logH(P ) +
q∑
j=1

(rjs(aj) + log(rj) + 1)

Theorem 2.1 (Hermite-Lindemann): Suppose that K has residue charac-
teristic p > 0. Let α ∈ D1 be algebraic. Then eα is transcendental.

Proof. We suppose that α and eα are algebraic. Let h = |α|. Let E be the
field Q[α, eα], let q = [E : Q] and let w be a common denominator of α and eα.
We will construct a sequence of polynomials (PN (X,Y ))N∈N in two variables

such that degX(PN ) = [
N

log(N)
], degY (PN ) = [(logN)3] and such that the

function FN (x) = PN (x, ex) satisfiy further, for every s = 0, ..., N − 1 and for
every j = 0, ..., [log(N)]

ds

dxs
FN (jα) = 0.

According to formal computations in the proof of Hermite Lindemann’s Theo-
rem in the complex context, (Theorem 3.1.1 in [16]) we have
(1)

dMFN (γN )
dxM

=
u1(N)∑
l=0

u2(N)∑
m=0

bl,m,N

u1(N)∑
σ=0

( u1(N)!
σ!(u1(N)− σ)!

)( l!
(u1(N)− σ)!

)
mu1(N)−σ

ju1(N)−σ.(α)u1(N)−σ.(eα)ju2(N).

We put u1(N) = degX(PN ), u2(N) = degY (PN ). We will solve the system

wu1(N)+u2(N) d
s

dxs
FN (jα) = 0, 0 ≤ s ≤ N − 1, j = 0, ..., [log(N)]

where the undeterminates are the coefficients bl,m,N of PN . We then write the
system under the form

u1(N)∑
l=0

u2(N)∑
m=0

bl,m,N

min(s,l)∑
σ=0

( s!
σ!(s− σ)!

)( l!
(l − σ)!

)
ms−σ.jl−σ.

(2) (wα)l−σ(weα)jm.wu1(N)−(l−σ)+u2(N)−jm = 0.

That represents a system of N [log(N)] equations of at least N([log(N)])2 un-
determinates, with coefficients in E, integral over Z.

According to formal computations of Hermite-Lindemann’s Theorem in the
complex context (Theorem 3.1.1 in [16]), it appears that in the system (2), each

factor
( s!
σ!(s− σ)!

)
,
( l!

(l − σ)!

)
,ms−σ, jl−σ, (wα)l−σ, (weα)jm, wu1(N)−(l−σ)+u2(N)−jm
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admits a bounding of the form SN(log(log(N)) when N goes to +∞. On one
hand wu1(N)+u2(N) is a common denominator and we have

log(wu1(N)+u2(N)) ≤ log(ω)
( N

log(N)
+ (log(N)3

)
and hence we have a constant T > 0 such that

(3) log(wu1(N)+u2(N)) ≤ TM

logM
.

Next we notice that

(4) log
( u1(N)!
σ!(u1(N)− σ)!

)
≤ u1(N) log(u1(N)) ≤ N

log(N)
log(

N

log(N)
) ≤ N

and similarly,

(5) log
( l!

(u1(N)− σ)!
)
≤ u1(N) log(u1(N)) ≤ N.

and

(6) log(mu1(N)−σ) ≤ 3N
log(N)

log(log(N)).

Now, we check that

log
(
ju1(N)−σ.(|α|)u1(N)−σ.(|eα|)ju2(N)

)
≤ N+

N

log(N)
log(|α|)+log(N)(log(N))3 log(|eα|)

and hence there exists a constant L > 0 such that

(7) log
(
ju1(N)−σ.(|α|)u1(N)−σ.(|eα|)ju2(N)

)
≤ LN.

Therefore by (2), (3), (4), (5), (6) and (7) we have a constant C > 0 such
that each coefficient a of the system satisfies

(8) s(a) ≤ CN(log(log(N)).

By Siegel’s Lemma 2.a and by (8) there exist integers bl,m,N , 0 ≤ l ≤ u1(N), 0 ≤
m ≤ u2(N) in Z such that
(9)

0 < max
l≤u1(N), m≤u2(N)

log(|bl,m,N |∞) ≤ qN log(N)
N(log(N))2 − qN log(N)

(CN log(log(N))

and such that the function

(10) FN (x) =
u1(N)∑
l=0

u2(N)∑
m=0

bl,m;Nx
lemx
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satisfies

ds

dxs
FN (jα) = 0, 0 ≤ s ≤ N − 1, j = 0, 1, ..., [log(N)].

Now, by (9), we can check that there exists a constant G > 0 such that

(11) max
l≤u1(N), m≤u2(N)

(log(|bl,m,N |∞) ≤ GN log(log(N))
log(N)

.

The function FN defined in (10) belongs to A(D1) and is not identically zero,

hence at least one of the numbers
ds

dxs
FN (0) is not null. Let M be the biggest of

the integers such that
ds

dxs
FN (jα) = 0 ∀s = 0, ...,M −1, j = 0, 1, 2, ..., [log(N)].

Thus we have M ≥ N and there exists j0 ∈ {0, 1, ..., [log(N)]} such that
dM

dxM
FN (j0α) 6= 0. We put γN =

dM

dxM
FN (j0α).

Let us now give an upper bound of s(γN ). On one hand wu1(N)+u2(N) is a
common denominator and by (2) we have a constant T > 0 such that

log(wu1(N)+u2(N)) ≤ TM

logM
.

On the other hand, by (1) we have

dMFN (γN )
dxM

=
u1(N)∑
l=0

u2(N)∑
m=0

bl,m,N

u1(N)∑
σ=0

( u1(N)!
σ!(u1(N)− σ)!

)( l!
(u1(N)− σ)!

)
mu1(N)−σ.

ju1(N)−σ.(α)u1(N)−σ.(eα)ju2(N).

Now, by (2), (3), (6), (7), (8), (10) and taking into account that the number
of terms is bounded by N(logN)2, we can check that there exists a constant B
such that

(12) s(γN ) ≤ BN.

Let us now give an upper bound of |γN |. For convenience, we first suppose

that j0 = 0, hence
dM

dxM
FN (0) 6= 0. Set h = |α|. Then by Theorem B.9.1

of [7] we have |γN | ≤
|FN |(h)
hM

. Moreover, we notice that FN admits at least

M [log(M)] zeros in d(0, h) and therefore by Corollary B.13.30 of [7] we have

|FN |(h) ≤
( h

R1

)M [log(M)]

because |FN |(r) ≤ 1 ∀r < R1. Consequently, |γN | ≤

hM(log(M−1)

(R1)M logM
and hence

log(|γN |) ≤M(log(M)− 1)(log(h))−M log(M)(log(R1))).
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Let λ = log(h)− log(R1). Then λ < 0. And we have log(|γN |) ≤ λM log(M)−
M log(h), therefore there exists a constant A > 0 such that

(13) log(|γN |) ≤ −AM log(M).

Let us now stop assuming that j0 = 0. Putting z = x− jα and g(z) = f(x),
since all points jα belong to d(0, h), it is immediate to go back to the case
j0 = 0, which confirms (13) in the general case. But now, by Lemma A.8.10
in [7], relations (12) and (13) make a contradiction to the relation −2qs(γN ) ≤
log(|γN |) satisfied by algebraic numbers and show that γN is transcendental.
But then, so is eα.

Example: Let Q(x) ∈ Z[x]. Then epQ(p) is transcendental. Moreover, if Q is
monic, and if α is a zero of Q, then |pα| ≤ 1

p because Q is monic and obviously
pα is algebraic, hence epα is transcendental.

In the field of characteristic 0, K such as Levi-Civita’s field [15], we have a
similar version:

Theorem 2.2: Let α ∈ K be algebraic, such that |α| < 1. Then eα is tran-
scendental over Q.

Proof. Everything works in K as in a field of residue characteristic p 6= 0 up
to Relation (8) in the proof of Theorem 2.1. Here we can replace R1 by 1 and
therefore the conclusion is the same as in Theorem 2.1.

Similarly as Hermite-Lindermann’s Theorem, Gelfond-Schneider’s Theorem
is well known in the field C and has an analogue in an ultrametric field.

In the proof of Theorem 2.4 we will need the following theorem:

Theorem 2.3: Let b1, ..., bn ∈ D1 (resp. in D0). the functions x, eb1x, ..., ebnx

are algebraically independant over K (resp. over K) if and only if b1, ..., bn are
Q-linearly independant.

Theorem 2.4 (Gel’fond-Schneider): K is supposed to have residue char-
acteristic p 6= 0. Let ` ∈ D1, ` 6= 0, and let b /∈ Q belong to K be such that
b` ∈ D1. Then at least one of the three numbers a = e`, b, eb` is transcendental.

Proof. A large part of the proof does not involve the topology of the feld K
and hence is similar to the proof in the field C [16] where we can copy many
technical relations. We suppose that a = e`, b and eb` are algebraic over Q. Let
L = Q[e`, b, eb`] and let δ = [L : Q] and let d be a common denominator of
b, e`, eb`.

9



Put S = max(1, |b|), T ∈]S,
R1

|`|
[, σ = log(

T

S
), τ = log T , Λ = d(0, S) and

∆ = d(0, T ). We will consider integers N of the form q2, with q ∈ N and we
will first show that there exists a non-identically zero polynomial PN (X,Y ) ∈
Z[X,Y ] such that degX(PN ) ≤ N

3
2 , and degY (PN ) ≤ 2δN

1
2 such that the

function FN (x) defined in ∆ by FN (x) = PN (x, e`x) satisfy

FN (i+ jb) = 0 ∀i = 1, ..., N, ∀j = 1, ..., N.

In order to find PN , let us write it

N
3
2−1∑
h=0

2δN
1
2−1∑

k=0

Ch,k(N)XhY k

with Ch,k(N) ∈ Z and consider the system of equations where the Ch,k(N) are
the undeterminates:

d(4δ+1)N
3
2 .FN (i+ jb) = 0 (1 ≤ i ≤ N ; 1 ≤ j ≤ N).

Thus, we obtain a system of N2 equations of 2δN2 undeterminates in Z, with
coefficients in L. By Lemma 2.b, these coefficients have size bounded by

N
3
2 log(N) +N

3
2 (8δ + 2) log(d) + log(1 + |b|) + 2δ log(|e`+b`|) ≤ 3

2
N

3
2 log(N).

By Lemma 2.a we can find in Z a family of integers not all equal to zero,
(Ch,k(N), 0 ≤ N 3

2 − 1, 0 ≤ k ≤ 2δN
1
2 − 1) satisfying

log
(

max
h,k
|Ch,k(N)|∞

)
≤ 2N

3
2 logN

( δN2

2δN2 − δN2

)
= 2N

3
2 logN

such that the function FN defined by FN (x) = PN (x, e`x) satisfies FN (i+ jb) =
0 ∀i = 1, ..., N, j = 1, ..., N .

Now we can check the function FN is an analytic element in every disk of
the form d(0, r) such that r|`| < R1 and hence in ∆ = d(0, T ) [7]. Since the
power of x in the various terms is at most N

3
2 and since all coefficients are

integers, we can check that log(|FN |(T )) ≤ τN 3
2 . On the other hand, since the

polynomial PN is not identically zero, by Proposition 1.6 FN is not identically
zero and then, by classical results [7], the function FN has finitely many zeros in
Λ. Particularly, there exists a point of the form i+ jb such that FN (i+ jb) 6= 0.
Consequently there exists M ≥ N such that FN (i + jb) = 0 ∀i ≤ M, ∀j ≤ M
and there exists a point γN of the form i0 + j0b such that FN (γN ) 6= 0 with
M < i0 ≤ M + 1, M < j0 ≤ M + 1. Consequently the number of zeros of FN
in Λ is at least M2. Then by Corollary B.13.30 in [7] we have log(|FN (γN )|) ≤
τN

3
2 − σM2, hence there exists λ > 0 such that

(1) log(|FN (γN )|) ≤ −λM2 ∀N ∈ N.
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By definition neither σ nor τ depend on N , hence neither does λ.
On the other hand, by Lemma 2.b we can check that s

(
FN (γN )

)
satisfies an

inequality of the form s
(
FN (γN )

)
≤ AM 3

2 log(M) which by (1) contradicts the
inequality −2δs

(
FN (γN )

)
≤ log

(
|FN (γN )|

)
and this ends the proof.

Example: Let u = pep and let ` = peu. Let b /∈ Q be such that |b| ≤ 1. Then
at least one of the 3 numbers e`, b, eb` is transcendental. In particular, if b is
algebraic, then one of the numbers e` and eb` is transcendental.

Theorem 2.5 (Gel’fond-Schneider in zero residue characteristic): Let
K be an algebraically closed complete ultrametric field whose residue character-
istic is 0. Let ` ∈ D0, ` 6= 0, and let b /∈ Q belong to K and be such that b` ∈ D0.
Then at least one of the three numbers a = e`, b, eb` is transcendental.

Proof. The proof is identical to the proof of Theorem 2.4 except that T now

belongs to ]S,
1
|`|

[.

3 Nevanlinna Theory in K and in an open disk

Notations: We denote by M(K) the field of meromorphic functions in K
i.e. the field of fractions of A(K). Let d(a,R−) be a disk in K. We denote
by M(d(a,R−)) the field of fractions A(d(a,R−)) and by Mb(d(a,R−)) the
field of fractions Ab(d(a,R−)). Finally we put Mu(d(a,R−)) =M(d(a,R−)) \
Mb(d(a,R−)).

Given two meromorphic functions f, g ∈ M(K) or f, g ∈ M(d(a,R−))
(a ∈ K, R > 0), we will denote by W (f, g) the Wronskian of f and g: f ′g−fg′.

Let f ∈M(K) \K(x) (resp. Let f ∈Mu(d(α,R−))). A value b ∈ K will be
called a quasi-exceptional value for f if f − b has finitely many zeros in K (resp.
in (α,R−))) and it will be called an exceptional value for f if f − b has no zero
in K (resp. in d(α,R−)).

We have the follwing result:
Theorem 3.1: Let f ∈ M(K) (resp.f ∈ Mu(d(a,R−))). Then f amits at
most one quasi-exceptional value. Moreover, if f ∈ A(K) (resp.f ∈ Au(d(a,R−))
then f amits no quasi-exceptional value

The Nevanlinna Theory was made by Rolf Nevanlinna on complex functions
[14], and widely used by many specialists of complex functions, particularly
Walter Hayman [10]. It consists of defining counting functions of zeros and
poles of a meromorphic function f and giving an upper bound for multiple
zeros and poles of various functions f − b, b ∈ C.
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A similar theory for functions in a p-adic field was constructed and correctly
proved by A. Boutabaa [5] in the field K, after some previous work by Ha
Huy Khoai [9]. See also [11]. In [6] the theory was extended to functions in
M(d(0, R−)) by taking into account Lazard’s problem [12]. A new extension
to functions out of a hole was made in [7] but we won’t describe it because
we would miss place. Here we will only give an abstract of the ultrametric
Nevanlinna Theory in order to give the new theorems on q small functions.

Notations: Recall that given three functions φ, ψ, ζ defined in an interval
J =]a,+∞[ (resp. J =]a,R[), with values in [0,+∞[, we shall write φ(r) ≤
ψ(r) + O(ζ(r)) if there exists a constant b ∈ R such that φ(r) ≤ ψ(r) + bζ(r).
We shall write φ(r) = ψ(r) +O(ζ(r)) if |ψ(r)− φ(r)| is bounded by a function
of the form bζ(r).

Similarly, we shall write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a function

h from J =]a,+∞[ (resp. from J =]a,R[) to R such that lim
r→+∞

h(r)
ζ(r)

= 0

(resp. lim
r→R

h(r)
ζ(r)

= 0) and such that φ(r) ≤ ψ(r) + h(r). And we shall write

φ(r) = ψ(r) + o(ζ(r)) if there exists a function h from J =]a,+∞[ (resp. from

J =]a,R[) to R such that lim
r→+∞

h(r)
ζ(r)

= 0 (resp. lim
r→R

h(r)
ζ(r)

= 0) and such that

φ(r) = ψ(r) + h(r).

Throughout the next paragraphs, we will denote by I the interval [t,+∞[
and by J an interval of the form [t, R[ with t > 0.

We have to introduce the counting function of zeros and poles of f , counting
or not multiplicity. Here we will choose a presentation that avoids assuming
that all functions we consider admit no zero and no pole at the origin.

Definitions: Next, let f =
h

l
∈ M(K) (resp. f =

h

l
∈ M(d(a,R−))). The

order of a zero α of f will be denoted by ωα(f). Next, given any point α ∈ K
resp. α ∈ d(a,R−)), the number ωα(h)−ωα(l) does not depend on the functions

h, l chosed to make f =
h

l
. Thus, we can generalize the notation by setting

ωα(f) = ωα(h) − ωα(l). We then denote by Z(r, f) the counting function of
zeros of f in d(0, r) in the following way.

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that
0 < |an| ≤ r, of respective order sn.

We set Z(r, f) = max(ω0(f), 0) log r+
σ(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f)

is called the counting function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f without multiplicity,

we put ω0(f) = 0 if ω0(f) ≤ 0 and ω0(f) = 1 if ω0(f) ≥ 1.
Now, we denote by Z(r, f) the counting function of zeros of f without mul-

tiplicity:
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Z(r, f) = ω0(f) log r+
σ(r)∑
n=1

(log r − log |an|) and so, Z(r, f) is called the counting

function of zeros of f in d(0, r) ignoring multiplicity.

In the same way, considering the finite sequence (bn), 1 ≤ n ≤ τ(r) of poles
of f such that 0 < |bn| ≤ r, with respective multiplicity order tn, we put

N(r, f) = max(−ω0(f), 0) log r +
τ(r)∑
n=1

tn(log r − log |bn|) and then N(r, f) is

called the counting function of the poles of f , counting multiplicity
Next, in order to define the counting function of poles of f without multi-

plicity, we put ω0(f) = 0 if ω0(f) ≥ 0 and ω0(f) = 1 if ω0(f) ≤ −1 and we
set

N(r, f) = ω0(f) log r+
τ(r)∑
n=1

(log r − log |bn|) and then N(r, f) is called the count-

ing function of the poles of f , ignoring multiplicity
Now we can define the the Nevanlinna function T (r, f) in I or J as

T (r, f) = max(Z(r, f), N(r, f)) and the function T (r, f) is called characteristic
function of f or Nevanlinna function of f .

Finally, if S is a subset of K we will denote by ZS0 (r, f ′) the counting function
of zeros of f ′, excluding those which are zeros of f − a for any a ∈ S.

Remark: If we change the origin, the functions Z, N, T are not changed, up
to an additive constant.

In a p-adic field such as K, the first Main Theorem is almost immediate.

Theorem 3.2: Let f ∈ M(K) (resp. f ∈ M(d(0, R−))) have no zero and no
pole at 0. Then log(|f |(r)) = log(|f(0)|) + Z(r, f)−N(r, f).

Then we can derive Theorem 3.3 (Theorem C.4.3 in [7])

Theorem 3.3: Let f, g ∈M(K) (resp. f, g ∈M(d(0, R−))). Then Z(r, fg) ≤
Z(r, f) + Z(r, g), N(r, fg) ≤ N(r, f) + N(r, g), T (r, fg) ≤ T (r, f) + T (r, g),

T (r, f + g) ≤ T (r, f) + T (r, g) + O(1), T (r, cf) = T (r, f) ∀c ∈ K∗, T (r,
1
f

) =

T (r, f)), T (r,
f

g
) ≤ T (r, f)) + T (r, g).

Suppose now f, g ∈ A(K) (resp. f, g ∈ A(d(0, R−))). Then Z(r, fg) =
Z(r, f) + Z(r, g), T (r, f) = Z(r, f)), T (r, fg) = T (r, f) + T (r, g) +O(1) and
T (r, f + g) ≤ max(T (r, f), T (r, g)). Moreover, if lim

r→+∞
T (r, f)− T (r, g) = +∞

then T (r, f + g) = T (r, f) when r is big enough.

Corollary 3.A: Let f ∈M(K) (resp. f ∈M(d(0, R−))). Then

Z(r,
f ′

f
)−N(r,

f ′

f
) ≤ − log r +O(1).
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Thus we have Theorem 3.4 (Theorem C.4.8 in [7])

Theorem 3.4 (First Main Fundamental Theorem): Let f, g ∈ M(K)
(resp. let f, g ∈ M(d(0, R−))). Then T (r, f + b) = T (r, f) + O(1). Let h be a
Moebius function. Then T (r, f) = T (r, h ◦ f) +O(1). Let P (X) ∈ K[X]. Then
T (r, P (f)) = deg(P )T (r, f) +O(1) and T (r, f ′P (f) ≥ T (r, P (f)).

Suppose now f, g ∈ A(K) (resp. f, g ∈ A(d(0, R−))). Then Z(r, fg) =
Z(r, f) + Z(r, g), T (r, f) = Z(r, f)), T (r, fg) = T (r, f) + T (r, g) + O(1) and
T (r, f + g) ≤ max(T (r, f), T (r, g)). Moreover, if lim

r→+∞
T (r, f)− T (r, g) = +∞

then T (r, f + g) = T (r, f) when r is big enough.

The following Theorem 3.5 is a good way to obtain the famous Second Main
Theorem (Theorem C.4.24 in [7]).

Theorem 3.5: Let f ∈M(K) and let a1, ..., aq ∈ K be distinct. Then

(q − 1)T (r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

Z(r, f − aj)
)

+O(1).

Theorem 3.6 (Second Main Theorem, Theorem C.4.24 in [7]): Let
α1, ..., αq ∈ K, with q ≥ 2, let S = {α1, ..., αq} and let f ∈ M(K) (resp.
f ∈Mu(d(0, R−))). Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − αj) + N(r, f) − ZS0 (r, f ′) − log r + O(1) ∀r ∈ I

(resp. ∀r ∈ J).

Now we can easily deduce the following corollaries:

Corollary 3.B: Let a1, a2 ∈ K (a1 6= a2) and let f, g ∈ A(K) satisfy
f−1({ai}) = g−1({ai}) (i = 1, 2). Then f = g.

Remark: Corollary 3.B does not hold in complex analysis. Indeed, let f(z) =
ez, g(z) = e−z, let a1 = 1, a2 = −1. Then f−1({ai}) = g−1({ai}) (i = 1, 2),
though f 6= g.

Corollary 3.C: Let a1, a2, a3 ∈ K (ai 6= aj ∀i 6= j) and let f, g ∈
Au(d(a,R−)) (resp.f, g ∈ Au(D) ) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3).
Then f = g.

Corollary 3.D: Let a1, a2, a3, a4 ∈ K (ai 6= aj ∀i 6= j) and let f, g ∈M(K)
satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3, 4). Then f = g.

Corollary 3.E: Let a1, a2, a3, a4, a5 ∈ K (ai 6= aj ∀i 6= j) and let
f, g ∈ Mu(d(a,R−))) (resp. f, g ∈ Mu(D) satisfy f−1({ai}) = g−1({ai})
(i = 1, 2, 3, 4, 5). Then f = g.
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Remark: Let f(x) =
x

3x− 1
, g(x) =

x2

x2 + 2x− 1
. Let a0 = 0, a1 = 1, a2 =

1
2

. Then we can check that f−1({ai}) = g−1({ai}), i = 1, 2, 3. So, Corollary
3.D is sharp.

4 Exceptional values of meromorphic functions and derivatives

The paragraph is aimed at studying various properties of derivatives of mero-
morphic functions, particularly their sets of zeros [2], [3], [4]. Many important
results are due to Jean-Paul Bézivin [1], [2].

We will first notice a general property concerning quasi-exceptional values
of meromorphic functions and derivatives.

Theorem 4.1: Let f ∈ M(K) \ K(x) (resp. Let f ∈ Mu(d(α,R−))). If f
admits a quasi-exceptional value, then f ′ has no quasi-exceptional value different
from 0.

Proof. Without loss of generality, we may assume α = 0 and that f has no zero
and no pole at 0. Let b ∈ K and suppose that b is a quasi-exceptional value
of f . There exist P ∈ K[x] and l ∈ A(K) \ K[x] (resp. and l ∈ Au(d(0, R−)))

without common zeros, such that f = b+
P

l
.

Let c ∈ K∗. Remark that f ′ − c =
P ′l − Pl′ − cl2

l2
. Let a ∈ K (resp. let

a ∈ d(0, R−)). If a is a pole of f , it is a pole of f ′ − c and we can check that
(1) ωa(P ′l − Pl′ − cl2) = ωa(l′) = ωa(l)− 1
because a is not a zero of P .

Now suppose that a is not a pole of f . Then
(2) ωa(f ′ − c) = ωa(P ′l − Pl′ − cl2)

Consequently, Z(r, f ′ − c) = Z(r, (P ′l − Pl′ − cl2) | l(x) 6= 0). But, by (1)
we have
(3) Z(r, (P ′l − Pl′ − cl2) | l(x) = 0) < Z(r, l).
and therefore by (2) and (3) we obtain
(4) Z(r, f ′−c) = Z(r, (P ′l−Pl′−cl2) | l(x) 6= 0) > Z(r, P ′l−Pl′−cl2)−Z(r, l)

Now, let us examine Z(r, P ′l − Pl′ − cl2). Let r ∈]0,+∞[
(
resp. let r ∈

]0, R[
)
. Since l ∈ A(K) is transcendental (resp. since l ∈ Au(d(0, R−))), we can

check that when r is big enough, we have |Pl′|(r) < |c|
(
|l|(r)

)2 and |Pl|(r) <
|c|
(
|l|(r)

)2, hence clearly |P ′l − Pl′|(r) < |c|
(
|l|(r)

)2 and hence |P ′l − Pl′ −
cl2|(r) = |c|

(
|l|(r)

)2. Consequently, when r is big enough, by Theorem C.4.2 in
[7] we have Z(r, P ′l−Pl′− cl2) = Z(r, l2)+O(1). But Z(r, l2) = 2Z(r, l), hence
Z(r, P ′l− Pl′ − cl2) = 2Z(r, l) +O(1) and therefore by (4) we check that when
r is big enough, we obtain
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(5) Z(r, f ′ − c) > Z(r, l).
Now, if l ∈ A(K), since l is transcendental, by (5), for every q ∈ N, we have

Z(r, f ′ − c) > Z(r, l) > q log r, when r is big enough, hence f ′ − c has infinitely
many zeros in K. And similarly if l ∈ Au(d(0, R−)), then by (5), Z(r, f ′ − c)
is unbounded when r tends to R, hence f ′ − c has infinitely many zeros in
d(0, R−).

We will now notice a property of differential equations of the form y(n)−ψy =
0 that is almost classical.

The problem of a constant Wronskian is involved in several questions.
Theorem 4.2: Let h, l ∈ A(K) (resp. h, l ∈ A(d(α,R−))) and satisfy h′l −

hl′ = c ∈ K, with h non-affine. If h, l belong to A(K), then c = 0 and
h

l
is a

constant. If c 6= 0 and if h, l ∈ A(d(α,R−)), there exists φ ∈ A(d(α,R−)) such
that h′′ = φh, l′′ = φl.

Proof. Suppose c 6= 0. If h(a) = 0, then l(a) 6= 0. Next, h and l satisfy

(1)
h′′

h
=
l′′

l
.

Remark first that since h is not affine, h′′ is not identically zero. Next, every
zero of h or l of order ≥ 2 is a trivial zero of h′l − hl′, which contradicts c 6= 0.
So we can assume that all zeros of h and l are of order 1.

Now suppose that a zero a of h is not a zero of h′′. Since a is a zero of h

of order 1,
h′′

h
has a pole of order 1 at a and so does

l′′

l
, hence l(a) = 0, a

contradiction. Consequently, each zero of h is a zero of order 1 of h and is a

zero of h′′ and hence,
h′′

h
is an element φ of M(K) (resp. of M(d(α,R−))))

that has no pole in K (resp. in d(α,R−)). Therefore φ lies in A(K) (resp. in
A(d(α,R−))).

The same holds for l and so, l′′ is of the form ψl with ψ ∈ A(K) (resp. in

A(d(α,R−))). But since
h′′

h
=
l′′

l
, we have φ = ψ.

Now, suppose h, l belong to A(K). Since h′′ is of the form φh with φ ∈ A(K),
we have |h′′|(r) = |φ|(r)|h|(r). But by Theorem C.2.10 in [7], we know that

|h′′|(r) ≤ 1
r2
|h|(r), a contradiction when r tends to +∞. Consequently, c = 0.

But then h′l− hl′ = 0 implies that the derivative of
h

l
is identically zero, hence

h

l
is constant.

Corollary 4.A : Let h, l ∈ A(K) with coefficients in Q, also be entire func-
tions in C, with h non-affine. If h′l − hl′ is a constant c, then c = 0.
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Theorem 4.3: Let ψ ∈ M(K) (resp. let ψ ∈ Mu(d(α,R−))) and let (E) be
the differential equations y′′ − ψy = 0. Let E be the sub-vector space of A(K)
(resp. of A(d(α,R−))) of the solutions of (E). Then, the dimension of E is 0
or 1.

Proof. Suppose E is not {0}. Let h, l ∈ E be non-identically zero. Then
h′′l − hl′′ = 0 and therefore h′l − hl′ is a constant c. On the other hand, since
h, l are not identically zero, neither are h′′, l′′. Therefore, h, l are not affine
functions.

Suppose ψ belongs toM(K) and that h, l belong to A(K). By Theorem 4..2,

we have c = 0 and hence
h

l
is a constant, which proves that E is of dimension

1.
Suppose now that ψ lies inMu(d(α,R−)) and that h, l belong toA(d(α,R−)).

If ψ lies in A(d(α,R−)), then by Theorem 4.1, E = {0}. Finally, suppose that
ψ lies in Mu(d(α,R−)) \ A(d(α,R−)). If c 6= 0, by Theorem 4.2, there exists
φ ∈ A(d(α,R−)) such that h′′ = φh, l′′ = φl. Consequently, φ = ψ, hence

ψ ∈ A(K) and therefore c = 0. Hence h′l − hl′ = 0 again and hence
h

l
is a

constant. Thus, we see that E is at most of dimension 1.

Remark: The hypothesis ψ unbounded in d(α,R−) is indispensable to show
that the space E is of dimension 0 or 1, as shows the example given again by
the p-adic hyperbolic functions h(x) = cosh(x) and l(x) = sinh(x). The radius
of convergence of both h, l is p

−1
p−1 when K has residue characteristic p and is 1

when K has residue characteristic 0. Of course, both functions are solutions of
y′′ − y = 0 but they are bounded.

The following Theorem 4.4 is an improvement of Theorem 4.2. It follows
previous results [1].

Theorem 4.4 [2]: Let f, g ∈ A(K) be such that W (f, g) is a non-identically
zero polynomial. Then both f, g are polynomials.

Proof. First, by Theorem 4.2 we check that the claim is satisfied when W (f, g)
is a polynomial of degree 0. Now, suppose the claim holds when W (f, g) is a
polynomial of certain degree n. We will show it for n + 1. Let f, g ∈ A(K) be
such that W (f, g) is a non-identically zero polynomial P of degree n+ 1

Thus, by hypothesis, we have f ′g− fg′ = P , hence f”g− fg” = P ′. We can
extract g′ and get g′ = (f ′g−P )

f . Now consider the function Q = f”g′ − f ′g”

and replace g′ by what we just found: we can get Q = f ′( (f”g−fg”)
f )− Pf”

f .

Now, we can replace f”g − fg” by P ′ and obtain Q = (f ′P ′−Pf”)
f . Thus,

in that expression of Q, we can write |Q|(R) ≤ |f |(R)|P |(R)
R2|f |(R)

, hence |Q|(R) ≤
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|P |(R)
R2 ∀R > 0. But by definition, Q belongs to A(K). Consequently, Q is a

polynomial of degree t ≤ n− 1.
Now, suppose Q is not identically zero. Since Q = W (f ′, g′) and since

deg(Q) < n, by the induction hypothesis f ′ and g′ are polynomials and so are
f, g. Finally, suppose Q = 0. Then P ′f ′ − Pf” = 0 and therefore f ′, P are
two solutions of the differential equation of order 1 for meromorphic functions
in K : (E) y′ = ψy with ψ = P ′

P , whereas y belongs to A(K). By Theorem 4.3,
the space of solutions of (E) is of dimension 0 or 1. Consequently, there exists
λ ∈ K such that f ′ = λP , hence f is a polynomial. The same holds for g.

Here we can find again the following result that is known and may be proved
without ultrametric properties:

Let F be an algebraically closed field and let P, Q ∈ F [x] be such that
PQ′ − P ′Q is a constant c, with deg(P ) ≥ 2. Then c = 0.

Notation: Let f ∈ A(K). We can factorize f in the form ff̃ where the zeros
of f are the distinct zeros of f each with order 1. Moreover, if f(0) 6= 0 we will
take f(0) = 1.

Lemma 4.a: Let U, V ∈ A(K) have no common zero and let f =
U

V
. If f ′ has

finitely many zeros, there exists a polynomial P ∈ K[x] such that U ′V −UV ′ =
PṼ

Proof. If V is a constant, the statement is obvious. So, we assume that V is
not a constant. Now Ṽ divides V ′ and hence V ′ factorizes in the way V ′ = Ṽ Y
with Y ∈ A(K). Then no zero of Y can be a zero of V . Consequently, we have

f ′(x) =
U ′V − UV ′

V 2
=
U ′V − UY

V
2
Ṽ

.

The two functions U ′V − UY and V
2
Ṽ have no common zero since neither

have U and V . So, the zeros of f ′ are those of U ′V − UY which therefore has
finitely many zeros and consequently is a polynomial.

Theorem 4.5: Let f ∈ M(K) have finitely many multiple poles, such that
for certain b ∈ K, f ′ − b has finitely many zeros. Then f belongs to K(x).

Proof. Suppose first b = 0. Let us write f =
U

V
with U, V ∈ A(K), having no

common zeros. By Lemma 4.a, there exists a polynomial P ∈ K[x] such that
U ′V −UV ′ = PṼ . Since f has finitely many multiple poles, Ṽ is a polynomial,
hence so is U ′V − UV ′. But then by Theorem 4.4, both U, V are polynomials,
which ends the proof when b = 0. Consider now the general case. f ′ − b is
the derivative of f − bx that satisfies the same hypothesis, so the conclusion is
immediate.
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Notation: For each n ∈ N∗, we set λn = max{ 1
|k| , 1 ≤ k ≤ n}. Given positive

integers n, q, we denote by Cqn the combination
n!

q!(n− q)!
. Let us recall that

log is the Neperian logarithm, we denote by e the number such that log(e) = 1
and Exp is the real exponential function.

Remark: For every n ∈ N∗, we have λn ≤ n because k|k| ≥ 1 ∀k ∈ N. The
equality holds for all n of the form ph.

Lemmas 4.b and 4.c are due to Jean-Paul Bézivin [1]:

Lemma 4.b: Let U, V ∈ A(d(0, R−)). Then for all r ∈]0, R[ and n ≥ 1 we
have

|U (n)V − UV (n)|(r) ≤ |n!|λn
|U ′V − UV ′|(r)

rn−1
.

More generally, given j, l ∈ N, we have

|U (j)V (l) − U (l)V (j)|(r) ≤ |(j!)(l!)|λj+l
|U ′V − UV ′|(r)

rj+l−1

Lemma 4.c: Let U, V ∈ A(K) and let r, R ∈]0,+∞[ satisfy r < R. For all
x, y ∈ K with |x| ≤ R and |y| ≤ r, we have the inequality:

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(logR− log r)

Notation: Let f ∈ M(d(0, R−)). For each r ∈]0, R[, we denote by ζ(r, f)
the number of zeros of f in d(0, r), taking multiplicity into account and set
ξ(r, f) = ζ(r, 1

f ). Similarly, we denote by β(r, f) the number of multiple zeros
of f in d(0, r), each counted with its multiplicity and we set γ(r, f) = β(r, 1

f ).

Theorem 4.6 [2] Let f ∈ M(K) be such that for some c, q ∈]0,+∞[, γ(r, f)
satisfies γ(r, f) ≤ crq in [1,+∞[. If f ′ has finitely many zeros, then f ∈ K(x) .

Proof. Suppose f ′ has finitely many zeros and set f =
U

V
. If V is a constant,

the statement is immediate. So, we suppose V is not a constant and hence it
admits at least one zero a. By Lemma 4.a, there exists a polynomial P ∈ K[x]
such that U ′V −UV ′ = PṼ . Next, we take r,R ∈ [1,+∞[ such that |a| < r < R
and x ∈ d(0, R), y ∈ d(0, r). By Lemma 4.c we have

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(logR− log r)

.

Notice that U(a) 6= 0 because U and V have no common zero. Now set l =

max(1, |a|) and take r ≥ l. Setting c1 =
1

e|U(a)|
, we have

|V (a+ y)| ≤ c1
R|P |(R)|Ṽ |(R)

logR− log r
.
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Then taking the supremum of |V (a+ y)| inside the disk d(0, r), we can derive

(1) |V |(r) ≤ c1
R|P |(R)|Ṽ |(R)

logR− log r
.

Let us apply Corollary B.13.30 in [7], by taking R = r+
1
rq

, after noticing that

the number of zeros of Ṽ (R) is bounded by β(R, V ). So, we have

(2) |Ṽ |(R) ≤
(

1 +
1

rq+1

)β((r+ 1
rq ),V )

|Ṽ |(r).

Now, due to the hypothesis: β(r, V ) = γ(r, f) ≤ crq in [1,+∞[, we have

(3)
(

1 +
1

rq+1

)β((r+ 1
rq ),V )

≤
(

1 +
1

rq+1

)[c(r+ 1
rq )m]

=

Exp
[
c(r +

1
rq

)q log(1 +
1

rq+1
)
]
.

The function h(r) = c(r + 1
rm )m log(1 + 1

rm+1 ) is continuous on ]0,+∞[ and

equivalent to
c

r
when r tends to +∞. Consequently, it is bounded on [l,+∞[.

Therefore, by (2) and (3) there exists a constant M > 0 such that, for all
r ∈ [l,+∞[ by (3) we obtain

(4) |Ṽ |(r +
1
rq

) ≤M |Ṽ |(r).

On the other hand, log
(
r +

1
rq

)
− log r = log

(
1 +

1
rq+1

)
clearly satisfies an

inequality of the form log
(

1 +
1

rq+1

)
≥ c2
rq+1

in [l,+∞[ with c2 > 0. Moreover,

we can find positive constants c3, c4 such that (r +
1
rq

)|P |
(
r +

1
rq

)
≤ c3rc4 .

Consequently, by (1) and (4) we can find positive constants c5, c6 such that
|V |(r) ≤ c5r

c6 |Ṽ |(r) ∀r ∈ [l,+∞[. Thus, writing again V = V Ṽ , we have
|V |(r)|Ṽ |(r) ≤ c5rc6 |Ṽ |(r) and hence |V |(r) ≤ c5rc6 ∀r ∈ [l,+∞[. Consequently,
by Corollary B.13.31 in [7], V is a polynomial of degree ≤ c6 and hence it has
finitely many zeros and so does V . But then, by Theorem 4.5, f must be a
rational function.

Corollary 4.B: Let f be a meromorphic function on K such that, for some
c, q ∈]0,+∞[, γ(r, f) satisfies γ(r, f) ≤ crq in [1,+∞[. If for some b ∈ K f ′− b
has finitely many zeros, then f is a rational function.

Proof. Suppose f ′ − b has finitely many zeros. Then f − bx satisfies the same
hypothesis as f , hence it is a rational function and so is f .
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Corollary 4.C: Let f ∈ M(K) \ K(x) be such that ξ(r, f) ≤ crq in [1,+∞[
for some c, q ∈]0,+∞[. Then for each k ∈ N∗, f (k) has no quasi-exceptional
value.

Proof. Indeed, if k = 1, the statement just comes from Corollary 4.B Now
suppose k ≥ 2. Each pole a of order n of f is a pole of order n+ k of f (k) and
f (k) has no other pole. Consequently, we have γ(r, fk−1) = ξ(r, f (k−1)) ≤ kcrq.
So, we can apply Corollary 4.B to f (k−1) to show the claim.

Theorem 4.6 suggests us the following conjecture:

Conjecture: Let f ∈M(K) be such that f ′ admits finitely many zeros. Then
f ∈ K(x).

In other words, the conjecture suggests that the derivative of a meromorphic
function in K has no quasi-exceptional value, except if it is a rational function.

Remark: Of course, there exist meromorphic functions in K having no zero
but not satisfying the hypotheses of Theorem 4.6, hence such a function cannot
have primitives. For example, consider an entire function f having an infinity
of zeros (an)n∈N of order 2 such that |an| < |an+1| , lim

n→+∞
|an| = +∞ and

2n ≤ |an|. Then the meromorphic function g =
1
f

has no zeros but does not

satisfy the hypotheses of Theorem 4.6 hence it has no primitives.

5 Small functions

Small functions with respect to a meromorphic function are well known in
the general theory of complex functions. Particularly, one knows the Nevanlinna
theorem on 3 small functions. Here we will recall the construction of a similar
theory.

Definitions and notation: Throughout the chapter we set a ∈ K and R ∈
]0,+∞[. For each f ∈ M(K) (resp. f ∈ M(d(a,R−)) we denote by Mf (K),
(resp. Mf (d(a,R−))) the set of functions h ∈M(K), (resp. h ∈M(d(a,R−)))
such that T (r, h) = o(T (r, f)) when r tends to +∞ (resp. when r tends to R).
Similarly, if f ∈ A(K) (resp. f ∈ A(d(a,R−))) we shall denote by Af (K) (resp.
Af (d(a,R−))) the set Mf (K) ∩ A(K), (resp. Mf (d(a,R−)) ∩ A(d(a,R−))).

The elements ofMf (K) (resp. Mf (d(a,R−))) are called small meromorphic
functions with respect to f , (small functions in brief). Similarly, if f ∈ A(K)
(resp. f ∈ A(d(a,R−))) the elements of Af (K) (resp. Af (d(a,R−))) are called
small analytic functions with respect to f , (small functions in brief).

Theorems 5.1 and Theorem 5.2 are immediate consequences of Theorems
C.9.1 and C.9.2 in [7]:
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Theorem 5.1: Let a ∈ K and r > 0. Then Af (K) is a K-subalgebra of
A(K), Af (d(a,R−)) is a K-subalgebra of A(d(a,R−)) Mf (K) is a subfield
field of M(K), Mf (d(a,R−)) is a subfield of field of M(a,R−)). Moreover,
Ab(d(a,R−) is a sub-algebra of Af (d(a,R−) and Mb(d(a,R−) is a subfield of
Mf (d(a,R−).

Theorem 5.2 : Let f ∈ M(K), (resp.f ∈ M(d(0, R−))) and let g ∈
Mf (K), (resp.g ∈ Mf (d(0, R−))). Then T (r, fg) = T (r, f) + o(T (r, f)) and

T (r,
f

g
) = T (r, f) + o(T (r, f)), (resp. T (r, fg) = T (r, f) + o(T (r, f)) and

T (r,
f

g
) = T (r, f) + o(T (r, f))).

Theorem 5.3 is known as Second Main Theorem on Three Small Functions
in p-adic analysis [7] and [10]. It holds as well as in complex analysis, where it
was showed first and it is proven in the same way.

Theorem 5.3: Let f ∈M(K) (resp. f ∈Mu(d(0, R−))) and let w1, w2, w3 ∈
Mf (K) (resp. w1, w2, w3 ∈Mf (d(0, R−))) be pairwaise distinct. Then T (r, f) ≤∑3
j=1 Z(r, f − wj) + o(T (r, f)), resp T (r, f) ≤

∑3
j=1 Z(r, f − wj) + o(T (r, f)),

resp. TR(r, f) ≤
∑3
j=1 ZR(r, f − wj) + o(T (r, f)).

Theorem 5.4: Let f ∈ M(K) (resp. f ∈ Mu(d(0, R−))) and let w1, w2 ∈
Mf (K) (resp. w1, w2 ∈ Mf (d(0, R−))) be distinct. Then T (r, f) ≤ Z(r, f −
w1)+Z(r, f−w2)+N(r, f)+o(T (r, f)), (resp. T (r, f) ≤ Z(r, f−w1)+Z(r, f−
w2) +N(r, f) + o(T (r, f))).

Proof. Suppose first f ∈ M(K) or f ∈ Mu(d(0, R−)). Let g =
1
f
, hj =

1
wj
,

j = 1, 2, h3 = 0. Clearly,

T (r, g) = T (r, f) +O(1), T (r, h) = T (r, wj), j = 1, 2,

so we can apply Theorem 5.3 to g, h1, h2, h3. Thus we have: T (r, g) ≤
Z(r, g − h1) + Z(r, g − h2) + Z(r, g) + o(T (r, g)).

But we notice that Z(r, g − hj) = Z(r, f − wj) for j = 1, 2 and Z(r, g) =
N(r, f). Moreover, we know that o(T (r, g)) = o(T (r, f)). Consequently, the
claim is proved when w1w2 is not identically zero.

Now, suppose that w1 = 0. Let λ ∈ K∗, let l = f + λ and τj = uj + λ, (j =
1, 2, 3). Thus, we have T (r, l) = T (r, f)+O(1), T (r, τj) = T (r, wj)+O(1), (j =
1, 2), N(r, l) = N(r, f). By the claim already proven whenever w1w2 6= 0 we
may write T (r, l) ≤ Z(r, l − τ1) + Z(r, l − τ2) +N(r, l) + o(T (r, l))) hence
T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) +N(r, l) + o(T (r, f))).

Next, by setting g = f − w1 and w = w1 + w2, we can write Corollary 5.A:
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Corollary 5.A: Let g ∈ M(K) (resp. g ∈ Mu(d(0, R−))) and let w ∈
Mg(K). Then T (r, g) ≤ Z(r, g) + Z(r, g − w) + N(r, g) + o(T (r, g)), (resp.
T (r, g) ≤ Z(r, g) + Z(r, g − w) +N(r, g) + o(T (r, g))).

Corollary 5.B: Let f ∈ A(K) (resp. f ∈ Au(d(0, R−))) and let w1, w2 ∈
Af (K) (resp. w1, w2 ∈ Af (d(0, R−))) be distinct. Then T (r, f) ≤ Z(r, f −
w1) + Z(r, f − w2) + o(T (r, f)) (r → +∞), resp.(r → R−).

And similarly to Corollary 5.A, we can get Corollary 5.C:

Corollary 5.C: Let f ∈ A(K) (resp. f ∈ Au(d(0, R−)), resp. f ∈ Ac(D) )
and let w ∈ Af (K)). Then T (r, f) ≤ Z(r, f) + Z(r, f − w) + o(T (r, f)), (resp.
T (r, f) ≤ Z(r, f) + Z(r, f − w) + o(T (r, f))).

We are now able to state a theorem on q small functions that is not as good
as Yamanoi’s Theorem [17] in complex analysis, but seems the best possible in
ultrametric analysis;

Theorem 5.5 [8] (A. Escassut, C.C. Yang): Let f ∈ M(K)be transcen-
dental (resp. f ∈Mu(d(0, R−))) and let wj ∈Mf (K) (j = 1, ..., q)
(resp. wj ∈Mf (d(a,R−)) ) be q distinct small functions other than the constant
∞. Then

qT (r, f) ≤ 3
q∑
j=1

Z(r, f − wj) + o(T (r, f)),

(resp.

qT (r, f) ≤ 3
q∑
j=1

Z(r, f − wj) + o(T (r, f))),

Moreover, if f has finitely many poles in K (resp. in d(0, R−)), then

qT (r, f) ≤ 2
q∑
j=1

Z(r, f − wj) + o(T (r, f)),

(resp.

qT (r, f) ≤ 2
q∑
j=1

Z(r, f − wj) + o(T (r, f)).),

Proof. By Theorem 5.3, for every triplet (i, j, k) such that 1 ≤ i ≤ j ≤ k ≤ q,
we can write

T (r, f) ≤ Z(r, f − wi) + Z(r, f − wj) + Z(r, f − wk) + o(T (r, f)).

The number of such inequalities is C3
q . Summing up, we obtain
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(1)
C3
qT (r, f) ≤

∑
(i,j,k), 1≤i≤j≤k≤q

Z(r, f−wi)+Z(r, f−wj)+Z(r, f−wk)+o(T (r, f)).

In this sum, for each index i, the number of terms Z(r, f − wi) is clearly
C2
q−1. Consequently, by (1) we obtain

C3
qT (r, f) ≤ C2

q−1

q∑
i=1

Z(r, f − wi) + o(T (r, f))

and hence
q

3
T (r, f) ≤

q∑
i=1

Z(r, f − wi) + o(T (r, f)).

Suppose now that f has finitely many poles. By Theorem 5.4, for every pair
(i, j) such that 1 ≤ i ≤ j ≤ q, we have

T (r, f) ≤ Z(r, f − wi) + Z(r, f − wj) + o(T (r, f)).

The number of such inequalities is then C2
q . Summing up we now obtain

(2) C2
qT (r, f) ≤

∑
(i,j, 1≤i≤j≤q

Z(r, f − wi) + Z(r, f − wj) + o(T (r, f)).

In this sum, for each index i, the number of terms Z(r, f − wi) is clearly
C1
q−1 = q − 1. Consequently, by (1) we obtain

C2
qT (r, f) ≤ (q − 1)

q∑
i=1

Z(r, f − wi) + o(T (r, f))

and hence
q

2
T (r, f) ≤

q∑
i=1

Z(r, f − wi) + o(T (r, f)).

Definition: Let f, g ∈ M(K) (resp. f, g ∈ Mu(d(a,R−))). Then f and g
will be to share a small function, I.M. w ∈ M(K) (resp. w ∈ M(d(a,R−))) if
f(x) = w(x) implies g(x) = w(x) and if g(x) = w(x) implies f(x) = w(x).

Theorem 5.6: Let f, g ∈M(K)be transcendental (resp. f, g ∈Mu(d(a,R−)))
be distinct and share q distinct small functions I.M. wj ∈Mf (K)∩Mg(K) (j =
1, ..., q) (resp. wj ∈Mf (d(a,R−))∩Mg(d(a,R−)) (j = 1, ..., q)) other than the
constant ∞. Then

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).
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Proof. Suppose that f and g belong toM(K), are distinct and share q distinct
small functions I.M. wj ∈Mf (K) ∩Mg(K) (j = 1, ..., q).

Lat b be a zero of f − wi for a certain index i. Then it is also a zero of

g − wi. Suppose that b is counted several times in the sum
q∑
j=1

Z(r, f − wj),

which means that it is a zero of another function f − wh for a certain index
h 6= i. Then we have wi(b) = wh(b) and hence b is a zero of the function wi−wh
which belongs to Mf (K). Now, put Z̃(r, f − w1) = Z(r, f − w1) and for each
j > 1, let Z̃(r, f − wj) be the counting function of zeros of f − wj in the disk
d(0, r−) ignoring multiplicity and avoiding the zeros already counted as zeros

of f − wh for some h < j. Consider now the sum
q∑
j=1

Z̃(r, f − wj). Since the

functions wi − wj belong to Mf (K), clearly, we have

q∑
j=1

Z(r, f − wj) =
q∑
j=1

Z̃(r, fwj) = o(T (r, f))

.
It is clear, from the assumption, that f(x)−wj(x) = 0 implies g(x)−wj(x) =

0 and hence f(x)− g(x) = 0. Since f − g is not the identically zero function, it
follows that

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g).

Consequently,

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).

Now, if f and g belong to M(d(0, R−)) the proof is exactly the same.

Theorem 5.7 [8] (A. Escassut, C.C. Yang): Let f, g ∈ M(K) be tran-
scendental (resp. f, g ∈ Mu(d(a,R−)) ) be distinct and share 7 distinct small
functions (other than the constant ∞) I.M. wj ∈Mf (K)∩Mg(K) (j = 1, ..., 7)
(resp. wj ∈ Mf (d(a,R−)) ∩Mg(d(a,R−)), resp. wj ∈ Mf (D) ∩Mg(D) (j =
1, ..., 7), ). Then f = g.

Moreover, if f and g have finitely many poles and share 3 distinct small
functions (other than the constant ∞) I.M. then f = g.

Proof. We put M(r) = max(T (r, f), T (r, g)). Suppose that f and g are dis-
tinct and share q small function I.M. wj , (1 ≤ j ≤ q). By Theorem 5.5, we
have

qT (r, f) ≤ 3
q∑
j=1

Z(r, f − wj) + o(T (r, f)).
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But thanks to Theorem 5.6, we can derive

qT (r, f) ≤ 3T (r, f − g) + o(T (r, f))

and similarly
qT (r, g) ≤ 3T (r, f − g) + o(T (r, g))

hence

(1) qM(r) ≤ 3T (r, f − g) + o(M(r)).

By Theorem C.4.8 in [7], we can derive that

qM(r) ≤ 3(T (r, f) + T (r, g)) + o(M(r)))

and hence qM(r) ≤ 6M(r) + o(M(r)). That applies to the situation when f
and g belong to M(K) as well as when when f and g belong to Mu(d(0, R−)).
Consequently, it is impossible if q ≥ 7 and hence the first statement of Theorem
5.7 is proved.

Suppose now that f and g have finitely many poles. By Theorems C.4.8 in
[7], Relation (1) gives us

qM(r) ≤ 2M(r) + o(M(r))

which is obviously absurd whenever q ≥ 3 and proves that f = g when f and g
belong to M(K) as well as when f and g belong to Mu(d(0, R−)).

Corollary 5.D: Let f, g ∈ A(K) be transcendental (resp. f, g ∈ Au(d(a,R−)))
be distinct and share 3 distinct small functions (other than the constant∞) I.M.
wj ∈ Af (K)∩Ag(K) (j = 1, 2, 3) (resp. wj ∈ Af (d(a,R−))∩Ag(d(a,R−)), (j =
1, 2, 3)). Then f = g.
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