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EXCEPTIONAL VALUES OF p-ADIC DERIVATIVES A SURVEY WITH SOME IMPROVEMENTS

Let K be a complete ultrametric algebraically closed field of characteristic 0 and let f be a meromorphic function in K admitting primitives. We show that f has no value taken finitely many times provided an additional hypothesis is satisfied: either f has finitely many poles of order ≥ 3, or f has two perfectly branched values, or the logarithm of the number of poles in the disk of center 0 and diameter r is bounded by O(Log(r)) (r > 1). We make the conjecture: all additional hypotheses are superfluous.

INTRODUCTION AND MAIN RESULTS

Let f be a complex transcendental meromorphic function that admits primitives. Thanks to the Nevanlinna theory, it is known that for f there exists at most one value b taken finitely many times [START_REF] Hayman | Meromorphic Functions[END_REF]. Consider now a transcendental meromorphic function f in an algebraically closed complete ultrametric field K of characteristic 0 [START_REF] Amice | Les nombres p-adiques[END_REF], [START_REF] Krasner | Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres[END_REF]. It is well known that a transcendental meromorphic function f can admit at most one value b taken finitely many times [START_REF] Escassut | p-adic Analytic Functions[END_REF]. But suppose now that f admits primitives. In this survey, we recall two hypotheses proving that f admits no value b taken finitely many times. In both hypotheses, we assume that f admits primitives. This suggests that if a transcendental meromorphic function f in the field K admits primitives, then f has no value taken finitely many times.

Many important results are due to Jean-Paul Bézivin [START_REF] Bézivin | Wronskien et équations differentielles p-adiques[END_REF], [START_REF] Bézivin | Zeros of the derivative of a p-adic meromorphic function[END_REF], [START_REF] Ibézivin | Some old and new results on zeros of the derivative of a p-adic mermorphic function[END_REF].

Notation and definitions: We denote by A(K) the K-algebra of analytic functions in K and by M (K) the field of meromorphic functions in K (i.e. the field of functions of the form f g

, with f , g ∈ A(K)).

Given two meromorphic functions f , g ∈ M (K) we will denote by W ( f , g) the Wronskian of f and g: f gf g .

Given f ∈ M (K) and b ∈ K, b is called an exceptional value for f if fb has no zero in K and a quasi-exceptional value for f if fb has finitely many zeros in K.

Here, Log is the Neperian logarithm and we denote by e the number such that Log(e) = 1 and Exp is the Archimedean exponential function.

The following theorem is well known [START_REF] Escassut | p-adic Analytic Functions[END_REF]:

Theorem 0: Let f ∈ M (K).
Then f has at most one quasi-exceptional value in K. Moreover, if f ∈ A(K), then f has no quasi-exceptional value.

The following theorem 1 is esential to prove the main results that follow.

Theorem 1 [START_REF] Bézivin | Wronskien et équations differentielles p-adiques[END_REF]: Let f , g ∈ A(K) be such that W ( f , g) is a non-identically zero polynomial. Then both f , g are polynomials.

Remark: In Archimedean analysis, Theorem 1 does not hold. For example, take Notation: Let f ∈ M (d(0, R -)). For each r ∈]0, R[, we denote by s(r, f ) the number of zeros of f in d(0, r), each counted with its multiplicity and we set t(r, f ) = s(r, 1 f ).

f (x) = Exp(x), g(x) = Exp(-x). Then W ( f , g) = 2. We can also consider f (x) = xExp(x), g(x) = Exp(-x). Then W ( f , g) = 2x + 1. Theorem 2: Let f ∈ M (K)\ K(x)
Let f ∈ A(K). We can factor f in the form f f where the zeros of f are the distinct zeros of f each with order 1. Moreover, if f (0) = 0 we can take f (0) = 1 and if f (0) = 0, we can take f so that ( f ) (0) = 1. 

Theorem 4: Let f ∈ M (K) \ K(x)
P(x) ∈ K[x]. Let f (x) = P(x) (h(x)) 2 . Then f has no primitive. Indeed, suppose that f has a primitive F = U V
where U and V lie in A(K) and have no common zeros. Since the zeros of h are of order 1, it is seen that all zeros of V are of order 1 and are all the zeros of h. Consequently, V = 1, V = V and

F = U V -UV V 2
admits no simplification. Therefore U V -UV = P. But then, by Theorem 1, U and V are polynomials and V 2 = h 2 , a contradiction to the hypothesis

h ∈ A(K) \ K[x].
Remark: In Example 3, the function f certainly has residues different from 0 because if all residues were null, the function then would have primitives [START_REF] Escassut | p-adic Analytic Functions[END_REF]. Now, by Theorems 2 , 3 and 4 the following conjecture appears likely:

Conjecture: A transcendental meromorphic function in K admitting primitives has no quasi-exceptional value.

THE PROOFS

Notation: Let f ∈ M (K), let a ∈ K and let r > 0. Then | f (x)| has a limit when |x -a| tends to r (while remaining different from r) which is denoted by ϕ a,r ( f ).

Particularly, if a = 0 we put lim

|x|→r |x| =r | f (x)| = | f |(r).
The following proposition 1 is well known in ultrametric analysis [START_REF] Escassut | p-adic Analytic Functions[END_REF].

Proposition 1: Let f ∈ M (K).
For each n ∈ N and for all r ∈]0, R[, we have

| f (n) |(r) ≤ |n!| | f |(r) r n . Proposition 2: Let h, l ∈ A(K) be such that h l -hl = c ∈ K, with h non-affine. Then c = 0 and h l is a constant. Suppose c = 0. If h(a) = 0, then l(a) = 0. Next, h and l satisfy h h = l l (1) 
Remark first that since h is not affine, h is not identically zero. Next, every zero of h or l of order ≥ 2 is a trivial zero of h lhl , which contradicts c = 0. So we can assume that all zeros of h and l are of order 1. Now suppose that a zero a of h is not a zero of h . Since a is a zero of h of order 1, h h has a pole of order 1 at a and so does l l , hence l(a) = 0, a contradiction.

Consequently, each zero of h is a zero of order 1 of h and is a zero of h and hence, h h is an element φ of M (K) that has no pole in K. Therefore φ lies in A(K).

The same holds for l and so, l is of the form ψl with ψ ∈ A(K). But since

h h = l l , we have φ = ψ. Now, suppose h, l belong to A(K). Since h is of the form φh with φ ∈ A(K), we have |h |(r) = |φ|(r)|h|(r).
But by Proposition 1, we know that |h |(r) ≤ 1 r 2 |h|(r), a contradiction when r tends to +∞. Consequently, c = 0. But then h lhl = 0 implies that the derivative of h l is identically zero, hence h l is constant, which ends the proof.

Corollary 2.a : Let h, l ∈ A(K) with coefficients in Q, also be entire functions in C, with h non-affine. If h lhl is a constant c, then c = 0. Proposition 3: Let ψ ∈ M (K) and let (E) be the differential equations y (n) -ψy = 0. Let E be the sub-vector space of M (K) of the solutions of (E).

If n = 1, then the dimension of E is at most 1.

If ψ belongs to A(K), then E = {0}.

Proof. In each case, we assume that (E) admits a non-identically zero solution h. Then h (n) may not be identically zero.

Suppose first that

n = 1. Suppose that g ∈ E. Let u = h g . Since h = ψh we have u g + ug = ψug therefore u g g = uψ = u + u g g and hence u = 0 i.e. u is a constant. Consequently, E is at most of dimension 1. Suppose now that ψ lies in A(K). Then |ψ|(r) = |h (n) |(r) |h|(r) is an increasing function in r in ]0, +∞[, a contradiction to the inequality |h (n) |(r) |h|(r) ≤ 1 r n coming from Proposition 1.

Proof of Theorem 1 [2]

First, by Proposition 2 we check that the claim is satisfied when W ( f , g) is a polynomial of degree 0. Now, suppose the claim holds when W ( f , g) is a polyno-mial of certain degree n. We will show it for n + 1. Let f , g ∈ A(K) be such that W ( f , g) is a non-identically zero polynomial P of degree n + 1 Thus, by the hypothesis, we have f gf g = P, hence f "gf g" = P . We can extract g and get g = ( f g-P) f . Now consider the function Q = f "gf g" and replace g by what we just found: we can get

Q = f ( ( f "g-f g") f ) -P f "
f . Now, we can replace f "gf g" by P and obtain Q = ( f P -P f ") f . Thus, in that

expression of Q, we can write |Q|(R) ≤ | f |(R)|P|(R) R 2 | f |(R) , hence |Q|(R) ≤ |P|(R) R 2 ∀R > 0. But by definition, Q belongs to A(K). Consequently, Q is a polynomial of degree t ≤ n -1. Now, suppose Q is not identically zero. Since Q = W ( f , g
) and since deg(Q) < n, by the induction hypothesis f and g are polynomials and so are f , g. Finally, suppose Q = 0. Then P f -P f " = 0 and therefore f , P are two solutions of the differential equation of order 1 for meromorphic functions in K : (E) y = ψy with ψ = P P , whereas y belongs to A(K). By Proposition 3, the space of solutions of (E) is of dimension 0 or 1. Consequently, there exists λ ∈ K such that f = λP, hence f is a polynomial. The same holds for g. This ends the proof of Theorem 1.

Proposition 4: Let U,V ∈ A(K) have no common zero and let f = U V
. If f has finitely many zeros, there exists a polynomial P ∈ K[x] such that U V -UV = P V .

Proof. If V is a constant, the statement is obvious. So, we assume that V is not a constant. Now V divides V and hence V factorizes in the way V = VY with Y ∈ A(K). Then no zero of Y can be a zero of V . Consequently, we have

f (x) = U V -UV V 2 = U V -UY V 2 V .
The two functions U V -UY and V

2

V have no common zero since neither have U and V . So, the zeros of f are those of U V -UY which therefore has finitely many zeros and consequently is a polynomial P, hence U V -UV = P V .

Proof of Theorem 2:

Proof. Suppose that f admits a quasi-exceptional value. Without loss of generality, we can assume that this value is 0. Let F be a primitive of f and let F = U V , with U, V ∈ A(K), having no common zero. By Proposition 4, there exists a polynomial P such that U V -UV = P V . But since f has finitely many poles of order ≥ 3, F has finitely many poles of order ≥ 2 hence V has finitely many zeros, hence it is a polynomial. But then P V is a polynomial and then, by Theorem 1, both U, V are polynomials, therefore F ∈ K(x) a contradiction.

Notation: Given r > 0, we denote by d(0, r) the disk {x ∈ K | |x| ≤ r}. Given f ∈ M (K), we denote by Z(r, f ) the counting function of the zeros of f in the disk d(0, r), counting multiplicity, and by Z(r, f ) the counting function of the zeros of f in the disk d(0, r), ignoring multiplicity. Next we put N(r, f

) = Z(r, 1 f ), T (r, f ) = max(Z(r, f ), N(r, f )) and N(r, f ) = Z(r, 1 f 
).

Let us now recall a simplified version of the Second Main Theorem [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Escassut | p-adic Analytic Functions[END_REF]:

Second Main Theorem: Let f ∈ M (K) and let α 1 , ..., α q ∈ K, with q ≥ 2. Then

(q -1)T (r, f ) ≤ q ∑ j=1 Z(r, f -α j ) + N(r, f ) -log r + O(1) ∀r ∈ I.
Proof of Theorem 3 Suppose that f has two perfectly branched values a and b and a quasi-exceptional value c. Since f admits primitives, N(r, f

) satisfies N(r, f ) ≤ N(r, f ) 2 + o(T (r, f ))
hence by the second Main Theorem, we have

2T (r, f ) ≤ (Z(r, f -a) + Z(r, f -b) + N(r, f )) 2 + o(T (r, f )) hence 2T (r, f ) ≤ 3T (r, f ) 2 + o(T (r, f
)), a contradiction. Suppose now that f has one totally branched values a and an exceptional value c. Since f admits primitives, by the second Main Theorem, now we have 1), a contradiction.

T (r, f ) ≤ Z(r, f -a) + N(r, f ) 2 -log(r) + O(1) hence T (r, f ) ≤ 2T (r, f ) 2 -log(r) + O(
Notation: For each n ∈ N * , we set λ n = max{ 1 |k| , 1 ≤ k ≤ n}. Given positive integers n, q, we denote by C q n the binomial coefficient n! q!(nq)! .

Remark: For every n ∈ N * , we have λ n ≤ n because k|k| ≥ 1 ∀k ∈ N. The equality holds for all n of the form p h .

Proposition 5: Let U, V ∈ A(d(0,R -)).
Then for all r ∈]0, R[ and n ≥ 1 we have

|U (n) V -UV (n) |(r) ≤ |n!|λ n |U V -UV |(r) r n-1 .
More generally, given j, l ∈ N, we have

|U ( j) V (l) -U (l) V ( j) |(r) ≤ |( j!)(l!)|λ j+l |U V -UV |(r) r j+l-1 .
Proof. Set g = U V and f = g . Applying Proposition 1 to f for k -1, we obtain

|g (k) |(r) = | f (k-1) |(r) ≤ |(k -1)!| | f |(r) r k-1 = |(k -1)!| |U V -UV |(r) |V 2 |(r)r k-1 .
As in the proof of Proposition 1, we set U = V U V . By Leibniz formula again, now we can obtain

U (n) = n ∑ q=1 C q n V (n-q) U V (q) +V (n) U V hence U (n) -V (n) U V = n ∑ q=1 C q n V (n-q) U V (q) 
.

(1)

Now we have U V (q) (r) = |g (q) |(r) ≤ |(q -1)!| |U V -UV |(r) |V 2 |(r)r q-1
and

|V (n-q) |(r) ≤ |(n -q)!| |V |(r)
r n-q . Consequently, the general term in (1) is upper bounded as

C q n V (n-q) U V (q) (r) ≤ |(n!)((n -q)!)((q -1)!)| |(q!)((n -q)!)| |U V -UV |(r) |V |(r)r n-1 ≤ λ n |n!||U V -UV |(r) |V |(r)r n-1 .
Therefore by (1) we obtain

U (n) -V (n) U V (r) ≤ |n!|λ n |U V -UV |(r) |V |(r)r n-1 and finally U (n) V -V (n) U (r) ≤ |n!|λ n |U V -UV |(r) r n-1 .
We can now generalize the first statement. Set P j = U ( j) V -UV ( j) . By induction, we can show the following equality that already holds for l ≤ j:

U ( j) V (l) -U (l) V ( j) = l ∑ h=0 C h l (-1) h P (l-h) j+h .
Then, the second statement follows by applying the first.

Proposition 6: Let U,V ∈ A(K) and let r, R ∈]0, +∞[ satisfy r < R. For all

x, y ∈ K with |x| ≤ R and |y| ≤ r, we have the inequality:

|U(x + y)V (x) -U(x)V (x + y)| ≤ R|U V -UV |(R) e(LogR -Logr) .
Proof. By Taylor's formula at the point x, we have

U(x + y)V (x) -U(x)V (x + y) = ∑ n≥0 U (n) (x)V (x) -U(x)V (n) (x) n! y n .
Now, by Proposition 5, we have

U (n) (x)V (x) -U(x)V (n) (x) n! y n ≤ λ n |U V -UV |(R) R n-1 r n = λ n R|U V -UV |(R)( r R ) n .
As remarked above, we have λ n ≤ n. Hence one has

lim n→+∞ λ n r R n = 0.
Consequently, on one hand lim Given f ∈ M (K) and r > 0, we denote by s(r, f ) the number of zeros of f in the disk d(0, r), each counted with its multiplicity and we put t(r, f ) = s(r, 1 f

n→+∞ U (n) (x)V (x) -U(x)V (n (x) n! y n = 0,
).

Finally we denote by β(r, f ) the number of multiple poles of f , each counted with its multiplicity.

Schwarz Lemma [START_REF] Escassut | Branched values and quasi-exceptional values for p-adic meromorphic functions[END_REF] Let D = d(a, s) and let f be a power series converging in the disk d(a, s) and having at least (resp. at most) q zeros in d(a, r) with q > 0 and 0 < r < s. Then we have

ϕ a,s ( f ) ϕ a,r ( f ) ≥ s r q , (resp. ϕ a,s ( f ) ϕ a,r ( f ) ≤ s r q ).
Schwarz Corollary: Let f ∈ A(K). The following two statements are equivalent:

f is a polynomial of degree q, there exists q ∈ N such that | f |(r) r q has a finite limit when r tends to +∞.

Proposition 7: Let f ∈ M (K) be such that for some c, q ∈]0, +∞[, t(r, f ) satisfies t(r, f ) ≤ cr q in [1, +∞[. If f has finitely many zeros, then f ∈ K(x) .

Proof. Suppose f has finitely many zeros and set f = U V . If V is a constant, the statement is immediate. So, we suppose V is not a constant and hence it admits at least one zero a. By Proposition 4, there exists a polynomial P ∈ K[x] such that U V -UV = P V . Next, we take r, R ∈ [1, +∞[ such that |a| < r < R and x ∈ d(0, R), y ∈ d(0, r). By Proposition 5 we have

|U(x + y)V (x) -U(x)V (x + y)| ≤ R|U V -UV |(R) e(LogR -Logr) .
Notice that U(a) = 0 because U and V have no common zero. Now set l = max(1, |a|) and take r ≥ l. Putting c 1 = 1 e|U(a)| , we have

|V (a + y)| ≤ c 1 R|P|(R)| V |(R) LogR -Logr .
Then taking the supremum of |V (a + y)| inside the disk d(0, r), we can derive

|V |(r) ≤ c 1 R|P|(R)| V |(R) LogR -Logr . (1) 
Let us apply Schwarz Lemma, by taking R = r + 1 r q , after noticing that the number of zeros of V (R) is bounded by s(r,V ). So, we have

| V |(R) ≤ 1 + 1 r q+1 β((r+ 1 r q ),V ) | V |(r). (2) 
Now, due to the hypothesis: Corollary 7.a: Let f be a meromorphic function on K such that, for some c, q ∈ ]0, +∞[, t(r, f ) satisfies t(r, f ) ≤ cr q in [1, +∞[. If for some b ∈ K fb has finitely many zeros, then f is a rational function.

s(r,V ) = t(r, f ) ≤ cr q in [1, +∞[, we have 1 + 1 r q+1 β((r+ 1 r q ),V ) ≤ 1 + 1 r q+1 [c(r+ 1 r q ) m ] = (3) Exp c(r + 1 r q ) q Log(1 + 1 r q+1 ) . The function h(r) = c(r + 1 r m ) m Log(1 + 1 r m+1 ) is continuous on ]0,
Proof. Suppose fb has finitely many zeros. Then fbx satisfies the same hypothesis as f , hence it is a rational function and so is f . Theorem 4 is now a simple corollary of Corollary 7.a:

Proof of Theorem 4

Proof. Indeed, since f admits primitives, all poles are multiple, and given a primitive F of f , we have t(r, F) ≤ t(r, f ). Consequently, by the hypothesis we have Log(t(r, F)) ≤ O(Log(r)) and hence, thanks to Corollary 7.a, F has no quasiexceptional value.

Theorem 3 :

 3 have finitely many poles of order ≥ 3 and admit primitives. Then f has no quasi-exceptional value. Corollary: Let F ∈ M (K) \ K(x) have finitely many multiple poles. Then F has no quasi-exceptional value. Definition: Let f ∈ M (K) and b ∈ K. Then b is called a perfectly branched value of f if all zeros of fb are multiple except maybe finitely many. Moreover, b is called a totally branched value of f [6] if all zeros of fb are multiple, without exception. Let f ∈ M (K) admit primitives. If f has two perfectly branched values then, f has no quasi-exceptional value. Moreover, if f has one totally branched value, then f has no exceptional value.

  on the other hand, we can define B = max n≥1 {λ n r R n }R|U V -UV |(R) and we have |U(x + y)V (x) -U(x)V (x + y)| ≤ B. Now, we can check that the function h defined in ]0, +∞[ as h(t) = t r R t reaches its maximum at the point u = 1 e(LogR -Logr) . Consequently, B ≤ 1 e(LogR -Logr) and therefore |U(x + y)V (x) -U(x)V (x + y)| ≤ R|U V -UV |(R) e(LogR -Logr) . Notation: Let D = d(a, s) and let H(D) be the K-algebra of analytic elements on d(a, s), i.e. the K-Banach space of converging power series converging in d(a, s) [9]. Given b ∈ d(a, s) and r ∈]0, s], then | f (x)| has a limit whenever |x -b| tends to r, with |x -b| = r and we denote by ϕ b,r ( f ) the number lim |x-b|tor, |x-b| =r | f (x)| [6], [7].

  +∞[ and equivalent to c r when r tends to +∞. Consequently, it is bounded on [l, +∞[. Therefore, by (2) and (3) there exists a constant M > 0 such that, for all r ∈ [l, +∞[ by (3) we obtain| V |(r + 1 r q ) ≤ M| V |(r). in [l, +∞[ with c 2 > 0.Moreover, we can obviously find positive constants c 3 , c 4 such that (r + 1 r q )|P| r + 1 r q ≤ c 3 r c 4 . Consequently, by (1) and (4) we can find positive constants c 5 ,c 6 such that |V |(r) ≤ c 5 r c 6 | V |(r) ∀r ∈ [l, +∞[. Thus, writing again V = V V , we have |V |(r)| V |(r) ≤ c 5 r c 6 | V |(r) and hence|V |(r) ≤ c 5 r c 6 ∀r ∈ [l, +∞[. Consequently, by Schwarz Corollary V is a polynomial of degree ≤ c 6 and hence it has finitely many zeros and so does V . But then, by Theorem 2, f must be a rational function.

  Let (a n ) n∈N be a sequence in K such that |a n | ≤ |a n+1 | and lim Let (a n ) n∈N be a sequence in K such that |a n | < |a n+1 | and lim
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