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Abstract Box-TDI polyhedra are polyhedra described by systems which yield
strong min-max relations. We characterize them in several ways, involving the
notions of principal box-integer polyhedra and equimodular matrices.

A polyhedron is box-integer if its intersection with any integer box {` ≤ x ≤
u} is integer. We define principally box-integer polyhedra to be the polyhedra P
such that kP is box-integer whenever kP is integer. A rational r × n matrix
is equimodular if it has full row rank and its nonzero r × r determinants all
have the same absolute value. A face-defining matrix is a full row rank matrix
describing the affine hull of a face of the polyhedron. Our main result is that
the following statements are equivalent.

• The polyhedron P is box-TDI.
• The polyhedron P is principally box-integer.
• Every face-defining matrix of P is equimodular.
• Every face of P has an equimodular face-defining matrix.
• Every face of P has a totally unimodular face-defining matrix.
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Université du Luxembourg, RMATH, Maison du Nombre, 6 avenue de la Fonte, L-4365
Esch-sur-Alzette, Luxembourg
E-mail: louis-hadrien.robert@unige.ch
E-mail: louis-hadrien.robert@uni.lu



2 Patrick Chervet et al.

• For every face F of P , lin(F ) has a totally unimodular basis.

Along our proof, we show that a polyhedral cone is box-TDI if and only if it
is box-integer, and that these properties are carried over to its polar.

We illustrate these charaterizations by reviewing well known results about
box-TDI polyhedra. We also provide several applications. The first one is a
new perspective on the equivalence between two results about binary clutters.
Secondly, we refute a conjecture of Ding, Zang, and Zhao about box-perfect
graphs. Thirdly, we discuss connections with an abstract class of polyhedra
having the Integer Carathéodory Property. Finally, we characterize the box-
TDIness of the cone of conservative functions of a graph and provide a corre-
sponding box-TDI system.

Keywords Box-integer polyhedron · Polyhedral cone · Equimodular matrix ·
Box-TDI polyhedron · Box-perfect graph

Mathematics Subject Classification (2000) 90C27 · 52B12 · 90C05

1 Introduction

Box-totally dual integral systems are systems which yield strong min-max
relations. These systems are useful to prove strong min-max combinatorial
theorems and are known to be difficult to handle. A polyhedron that can
be described by a box-totally dual integral system is called a box-totally dual
integral polyhedron [14]. In this paper, we characterize box-totally dual integral
polyhedra in several new ways. The key idea is to introduce and study the
abstract class of principally box-integer polyhedra—see Definition 1 below.
Indeed, the completely geometric nature of principally box-integer polyhedra
makes them easier to be studied, and it turns out that this class coincides with
that of box-totally dual integral polyhedra.

We characterize principally box-integer polyhedra in several ways. In this
regard, some matrices play an important role. They generalize unimodular
matrices and we call them equimodular matrices—see Definition 2 below. We
show that the notion of principal box-integrality is strongly intertwined with
that of equimodularity: equimodular matrices are characterized using principal
box-integrality and, in turn, principally box-integer polyhedra are character-
ized by the equimodularity of a family of matrices. This sheds new lights on
fundamental results in combinatorial optimization and integer programming.
For instance, the classical characterization of unimodular matrices by Veinott
and Dantzig [45] and that of totally unimodular matrices due to Hoffman and
Kruskal [31] can be reformulated and extended using these notions.

More importantly, these notions bring a geometric and matricial perspec-
tive about box-totally dual integral polyhedra. Since the class of principally
box-integer polyhedra coincides with that of box-totally integral polyhedra,
our results provide several new characterizations of the latter. We believe that



Box-Total Dual Integrality, Box-Integrality, and Equimodular Matrices 3

these characterizations fill in “the lack of a proper tool for establishing box-
total dual integrality”—to quote Ding, Tan, and Zang [17]—and we illustrate
their use.

Main definitions. Before going deeper into the details of our contributions, let
us give the main definitions relevant to this paper.

A polyhedron P = {x : Ax ≤ b} of Rn is integer if each of its faces contains
an integer point and box-integer if P ∩ {` ≤ x ≤ u} is integer for all `, u ∈ Zn.
For k ∈ Z>0, the kth dilation of P is kP = {kx : x ∈ P} = {x : Ax ≤ kb}.

Definition 1 A polyhedron P is principally box-integer if kP is box-integer
for all k ∈ Z>0 such that kP is integer.

A full row rank r×nmatrix is unimodular if it is integer and its nonzero r×r
determinants have value 1 or −1 [38, Page 267]. There is a strong connection
between principally box-integer polyhedra and the following generalization of
unimodular matrices. Note that equimodular matrices are studied under the
name of matrices with the Dantzig property in [29] or as unimodular sets of
vectors in [28].

Definition 2 A rational r × n matrix is equimodular if it has full row rank
and its nonzero r × r determinants all have the same absolute value.

A linear system Ax ≤ b is totally dual integral (TDI ) if the minimum in
the linear programming duality equation max{w>x : Ax ≤ b} = min{b>y :
A>y = w, y ≥ 0} has an integer optimal solution for all integer vectors w
for which the optimum is finite. Every polyhedron can be described by a TDI
system [38, Theorem 22.6]. Moreover, the right hand side of such a TDI system
can be chosen integer if and only if the polyhedron is integer [22]. A linear
system Ax ≤ b is a box-TDI system if Ax ≤ b, ` ≤ x ≤ u is TDI for each pair
of rational vectors ` and u. In other words, Ax ≤ b is box-TDI if

min{b>y + u>r − `>s : A>y + r − s = w, y ≥ 0, r, s ≥ 0} (1)

has an integer solution for all integer vectors w and all rational vectors `, u
for which the optimum is finite. It is well-known that box-TDI systems are
TDI [38, Theorem 22.7]. General properties of such systems can be found
in [14], [39, Chap. 5.20] and [38, Chap. 22.4]. Though not every polyhedron
can be described by a box-TDI system, the result of Cook [14] below proves
that being box-TDI is a property of the polyhedron.

Theorem 1 (Cook [14, Corollary 2.5]) If a system is box-TDI, then any
TDI system describing the same polyhedron is also box-TDI.

This theorem justifies the following definition [14].

Definition 3 A polyhedron that can be described by a box-TDI system is
called a box-TDI polyhedron.

Let us now review results from the literature related to these notions.



4 Patrick Chervet et al.

Unimodular matrices. The notion of unimodularity dates back to Smith [43]
and ensures that a linear system has an integral solution for each integer
right-hand side. Hoffman and Kruskal [31] proved that integral solutions still
exist under the weaker condition that (*) the gcd of the r × r determinants
equals 1. Condition (*) and equimodularity are complementary generalizations
of unimodularity, in the sense that if an integer matrix is equimodular and
satisfies (*), then it is unimodular. Hoffman and Oppenheim [30] introduced
variants of unimodularity, which were afterward studied by Truemper [44].
In [7,28], it is proved that equimodular matrices ensure that all basic solutions
are integer, provided that one of them is—see also Barnett [5, Chap. 7].

The stronger notion of total unimodularity plays a central role in combi-
natorial optimization. A matrix is totally unimodular when all its subdetermi-
nants have value in {0,±1}. Examples of such matrices are network matrices
and incidence matrices of bipartite graphs. Hoffman and Kruskal [31] charac-
terized totally unimodular matrices to be the matrices for which the associated
polyhedra are all box-integer. Several other characterizations were obtained
since then—see e.g. [10] and [25]. Totally unimodular matrices are now well
understood due to the decomposition theorem of Seymour [40]. For a survey of
related results, we refer to [38, Chap. 4 and 19]. More recently, Appa [2] and
Appa and Kotnyek [3] generalized total unimodularity to rational matrices,
their goal being to ensure the integrality of the associated family of polyhedra
for a specified set of right-hand sides, such as those with only even coordinates.
In another direction, Lee [33] generalized totally unimodular matrices by con-
sidering the associated linear spaces. The connections between his results and
the previous ones are discussed in Kotnyek’s thesis [32, Chap. 11].

We will see how principal box-integrality fits within the characterization
of unimodular matrices by Veinott and Dantzig [45] and that of totally uni-
modular matrices due to Hoffman and Kruskal [31]. Then, these results are
naturally extended to characterize equimodular matrices. Also, a new gener-
alization of totally unimodular matrices appears in Section 4.1, the notion of
totally equimodular matrices, which still have nice polyhedral properties.

Box-integrality. In combinatorial optimization and integer programming, a de-
sirable property for polyhedra is to be integer, as then the vertices can be seen
as combinatorial objects. Henceforth, many results in those fields are devoted
to the study of properties and descriptions of integer polyhedra. The stronger
property of being box-integer is far less studied. Nevertheless, some important
classes of polyhedra are known to be box-integer, such as polymatroids [21],
and more generally box-totally dual integer polyhedra [38]. Box-integrality
plays some role for polyhedra to have the Integer Carathéodory Property
in [27]. Binary clutters being 1

k -box-integer for all k ∈ Z>0 are characterized
in [24].

Actually, all these examples of box-integer polyhedra are principally box-
integer. Our characterizations then yield new insights towards their properties.
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Box-total dual integrality. Box-total dual integral (box-TDI) systems and poly-
hedra received a lot of attention from the combinatorial optimization com-
munity around the 80s. These systems yield strong combinatorial min-max
relations with a geometric interpretation. A renewed interest appeared in the
last decade and since then many deep results appeared involving such systems.
The famous MaxFlow-MinCut theorem of Ford and Fulkerson [23] is a typical
example of min-max relation implied by the box-TDIness of a system. Other
examples of fundamental box-TDI systems appear for polymatroids and for
systems with a totally unimodular matrix of constraints.

Originally, box-TDI systems were closely related to totally unimodular
matrices. Indeed, any system with a totally unimodular matrix of constraint is
box-TDI. Actually, until recently, the vast majority of known box-TDI systems
were defined by a totally unimodular matrix, see [39] for examples. When the
constraint matrix is not totally unimodular, proving that a given system is
box-TDI can be quite a challenge: one has to prove its TDIness, and then
to deal with the addition of box-contraints that perturb the combinatorial
interpretation of the underlying min-max relation. Ding, Feng, and Zang prove
in [16] that it is NP-hard to recognize box-TDI systems.

Based on an idea of Ding and Zang [18], Chen, Chen, and Zang provide
in [11] a sufficient condition for some systems to be box-TDI, namely the
ESP property. Due to its purely combinatorial nature, the ESP property is
successfully used to characterize: box-Mengerian matroid ports in [11], the
box-TDIness of the matching polytope in [17], subclasses of box-perfect graphs
in [19]. Prior to the development of the ESP property, the main tool to prove
box-TDIness was [38, Theorem 22.9] of Cook. Its pratical application turns
out to be quite technical as one has to combine polyhedral and combinatorial
considerations, such as in [13] where the box-TDIness of a system describing
the 2-edge-connected spanning subgraph polytope on series-parallel graphs is
proved. In [15], Cornaz, Grappe, and Lacroix prove that a number of standard
systems are box-TDI if and only if the graph is series-parallel.

Contributions. Our results provide a framework within which the notions of
equimodularity, principal box-integrality, and box-TDIness are all connected.
The point of view obtained from principally box-integer polyhedra unveils new
properties and simplifies the approach.

We now state our main result. A face-defining matrix for a polyhedron is a
full row rank matrix describing the affine hull of a face of the polyhedron—see
Section 4.2 for more details.

Theorem 2 For a polyhedron P , the following statements are equivalent.

1. The polyhedron P is box-TDI.
2. The polyhedron P is principally box-integer.
3. Every face-defining matrix of P is equimodular.
4. Every face of P has an equimodular face-defining matrix.
5. Every face of P has a totally unimodular face-defining matrix.
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Along our proof, we show that a polyhedral cone is box-TDI if and only
if it is box-integer, and that these properties are carried over to its polar. We
use this to derive a polar version of Theorem 2—see Corollary 6.

These new results allow us to prove the box-TDIness of systems by making
full use of Theorem 1: find a TDI system describing the polyhedron on the one
hand, and, on the other hand, apply one of the characterizations of principally
box-integer polyhedra to prove the box-TDIness of the polyhedron. In partic-
ular, when a TDI system that describes the polyhedron is already known, our
characterizations allow us to pick whichever system—TDI or not—describing
the polyhedron, and to use algebraic tools to prove the “box” part. The draw-
back of our characterization is that it does not provide a box-TDI system
describing the polyhedron. Nevertheless, one of our characterizations gives an
easy way to disprove box-TDIness: it is enough to exhibit a face-defining ma-
trix having two maximal nonzero determinants of different absolute values. In
particular, this provides a simple co-NP certificate for the box-TDIness of a
polyhedron.

We show how known results on box-TDI polyhedra are simple consequences
of our characterizations—see Section 5.2. We also explain how our results are
connected with Schrijver’s sufficient condition [39, Theorem 5.35] and Cook’s
characterization [14], [38, Theorem 22.9].

We illustrate the use of our characterizations on several examples—see
Section 6. First, we explain the equivalence between the main result of Gerards
and Laurent [24] and that of Chen, Ding, and Zang [12] about binary clutters.
As a second application, we disprove a conjecture of Ding, Zang, and Zhao [19]
about box-perfect graphs. Then, we discuss Gijswijt and Regts [27]’s abstract
class of polyhedra having the Integer Carathéodory Property and possible
connections between principal box-integrality and the integer decomposition
property. Finally, we prove that the cone of conservative functions of a graph
is box-TDI if and only if the graph is series-parallel and we provide a box-TDI
system describing it.

Outline. Section 2 contains standard definitions. In Section 3, we study general
properties of principally box-integer polyhedra. Section 4 shows how equimod-
ularity and principal box-integrality are intertwined: each notion is character-
ized using the other one. In Section 5, we first prove that a polyhedron is
box-TDI if and only if it is principally box-integer, and then discuss the con-
nections between our characterizations and existing results about box-TDI
polyhedra. In Section 6, we illustrate the use of our characterizations on sev-
eral examples.

2 Definitions

Matrices. Throughout the paper, all entries will be rational. The ith unit
vector of Rn will be denoted by χi. For I ⊆ {1, . . . , n}, let χI =

∑
i∈I χ

i. An
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element A of Rm×n will be thought of as a matrix with m rows and n columns,
and an element b of Rm as a column vector. When all their entries belong to
Z, we will call them integer. The row vectors of A will be denoted by a>i , the
column vectors of A by Ai. When rank(A) = m, we say that A has full row
rank. A matrix is totally unimodular, or TU, if the determinants of its square
submatrices are equal to −1, 0 or 1.

Lattices. The lattice generated by a set V of vectors of Qn is the set of integer
combinations of these vectors, and is denoted by lattice(V ) = {

∑
v∈V λvv :

λv ∈ Z for all v ∈ V }. The lattice generated by the column vectors of a ma-
trix A is denoted by lattice(A).

Polyhedra. Given A ∈ Qm×n and b ∈ Qm, the set P = {x ∈ Rn : Ax ≤ b} =
{x ∈ Rn : a>i x ≤ bi, i = 1, . . . ,m} is a polyhedron. We will often simply write
P = {x : Ax ≤ b}. The matrix A is the constraint matrix of P . The translation
of P by w ∈ Rn is P + w = {x+ w : x ∈ P}.

A face of P is a nonempty1 set obtained by imposing equality on some
inequalities in the description of P , that is, a nonempty set of the form F =
{x : a>i x = bi, i ∈ I} ∩ P where I ⊆ {1, . . . ,m}. A row a>i or an inequality
a>i x ≤ bi with F ⊆ {x : a>i x = bi} is tight for F , and AFx ≤ bF will
denote the inequalities from Ax ≤ b that are tight for F . The set of points
contained in F and in no face F ′ ⊂ F forms the relative interior of F . Let
lin(F ) = {x : AFx = 0} and aff(F ) = {x : AFx = bF }. The dimension dim(F )
of a face F is the dimension of its affine hull aff(F ). A facet is a face that is
inclusionwise maximal among all faces distinct from P . A face is minimal if it
contains no other face of P . Minimal faces are affine spaces. A minimal face
of dimension 0 is called a vertex. Note that a polyhedron is integer if and if
each of its minimal faces contains an integer point.

Cones. A polyhedral cone is a polyhedron of the form C = {x : Ax ≤ 0}. Since
all the cones involved in this paper are polyhedral, we simply write cone. A
cone C can also be described as the set of nonnegative combinations of a finite
set of vectors R ⊆ Rn, and we say that C = cone(R) is generated by R. A
conic polyhedron is a rational translation of a cone, that is, a set of the form
t+ {x : Ax ≤ 0} for some t ∈ Qn.

The polar cone of a cone C = {x : Ax ≤ 0} is the cone C∗ = {x : z>x ≤
0 for all z ∈ C}. Equivalently, C∗ is the cone generated by the columns of A>.
Note that C∗∗ = C.

Given a face F of a polyhedron P = {x : Ax ≤ b}, the tangent cone
associated to F is the conic polyhedron CF = {x : AFx ≤ bF }. When F is a
minimal face of P , its associated tangent cone is a minimal tangent cone of P .
The cone of Rn generated by the columns of A>F is the normal cone associated
to F . Note that the normal cone associated to F is the polar of {x : AFx ≤ 0}.

For more details, we refer the reader to Schrijver’s book [38].

1 In the standard definition, the emptyset is a face. It is not the case in this paper in
order to lighten the statements.
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3 Generalities on Principally Box-Integer Polyhedra

This section is devoted to the basic properties of box-integer and principally
box-integer polyhedra. In particular, we study the behavior of these notions
with respect to dilation and translation.

3.1 Box-Integer Polyhedra

Recall that a polyhedron P is box-integer if P ∩ {` ≤ x ≤ u} is integer for all
`, u ∈ Zn. Frequently, the following characterization will be more convenient
to use than the definition.

Lemma 1 A polyhedron P is box-integer if and only if for each face F of P ,
I ⊆ {1, . . . , n}, and p ∈ ZI such that aff(F )∩ {xi = pi, i ∈ I} is a singleton v,
if v belongs to F then v is integer.

Proof. Let P = {x ∈ Rn : Ax ≤ b}. Suppose that P is not box-integer.
Then, P ∩ {` ≤ x ≤ u} has a noninteger vertex v for some `, u ∈ Zn. In
particular, v belongs to P ∩ {` ≤ x ≤ u} and is the unique solution of a
nonsingular system ajx = bj , j ∈ J, xi = pi, i ∈ I where pi ∈ {`i, ui}. Now,
F = {x : ajx = bj , j ∈ J}∩P is a face of P , and {v} = aff(F )∩{xi = pi, i ∈ I}
is not integer.

Conversely, suppose that {v} = aff(F ) ∩ {xi = pi, i ∈ I} belongs to F and
is not integer, for some p ∈ ZI . Define ` and u as follows: `i = ui = pi for
i ∈ I, and `i = bvic and ui = dvie otherwise. Then, v is a noninteger vertex of
P ∩ {` ≤ x ≤ u} and P is not box-integer.

ut

Note that, if I is such that the set aff(F ) ∩ {xi = pi, i ∈ I} is a singleton
for some p ∈ RI , then this set is either empty or a singleton for all p ∈ RI . If
I is moreover assumed inclusionwise minimal, then aff(F )∩ {xi = pi, i ∈ I} is
a singleton for all p ∈ RI .

The following two results seem to be known in the literature, we provide a
proof for the sake of completeness.

Corollary 1 If a polyhedron P is box-integer, then P is integer.

Proof. Let F be a minimal face of P . There exists an inclusionwise minimal
set I as above, hence setting {xi = pi, i ∈ I} for some p ∈ ZI yields a singleton
in aff(F ). Since aff(F ) = F , this singleton is integer by Lemma 1, and thus F
contains an integer point. ut

Corollary 2 Let P be a polyhedron of Rn. The following statements are equiv-
alent.

1. P is box-integer.
2. P ∩ {x ≥ `} is integer for all ` ∈ Zn.
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3. P ∩ {` ≤ x ≤ u} is integer for all `, u ∈ Z ∪ {−∞,+∞}n.

Proof. Statement 3 immediately implies statement 2. Statement 2 implies
statement 1 by Lemma 1, as if aff(F ) ∩ {xi = pi, i ∈ I} is a singleton v ∈ F ,
then v is a vertex of P ∩ {x ≥ bvc}. Statement 1 implies statement 3 because
if P is box-integer, then for all `, u ∈ Z ∪ {−∞,+∞}n, P ∩ {` ≤ x ≤ u} is
box-integer—and hence integer by Corollary 1. ut

The following lemma shows two operations which preserve box-integrality.
The second one will be used in Section 5.

Lemma 2 Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron.

1. P is box-integer if and only if P̃ = {(y, z) ∈ Rn × Rn : A(y + z) ≤ b} is
box-integer.

2. P is box-integer if and only if P± = {(y, z) ∈ Rn×Rn : A(y−z) ≤ b, y, z ≥
0} is box-integer.

Proof. To establish the “only if” part of statement 1, suppose that P̃ is box-
integer. Then, so is P̃ ∩ {z = 0}. Since P is obtained from P̃ ∩ {z = 0} by
deleting the z’s coordinates, P is box-integer. To establish the “if” part of
statement 1, we use Lemma 1. Let F be a face of P̃ , of affine space aff(F ) =
{(y, z) ∈ Rn × Rn : aj(y + z) = bj , j ∈ J}, and let p and q be integer vectors
such that S = aff(F ) ∩ {yi = pi, i ∈ Iy, zi = qi, i ∈ Iz} is a singleton (ȳ, z̄)
which belongs to F . Let us show that (ȳ, z̄) is integer. By Lemma 1, this

implies that P̃ is box-integer.
We denote by G the face of P of affine space {x ∈ Rn : ajx = bj , j ∈ J}.

Then aff(G) ∩ {xi = pi + qi, i ∈ Iy ∩ Iz} is the singleton x̄ = ȳ + z̄. Indeed, if
it contained an other point x̄′, we could set ȳ′i = pi, i ∈ Iy, z̄′i = qi, i ∈ Iz and
then build (ȳ′, z̄′) in S such that ȳ′ + z̄′ = x̄′ 6= ȳ + z̄, a contradiction. P is
box-integer and ȳ + z̄ belongs to P , thus ȳ + z̄ is integer by Lemma 1. Since
S is a singleton, no (ȳ + χi, z̄ − χi) belongs to S, and for all i, we have either
yi = pi or zi = qi. Since p, q, and ȳ + z̄ are integer, (ȳ, z̄) is integer.

To establish the “only if” part of statement 2, suppose that P is box-
integer. Then, so is P± by statement 1 and because P± is obtained from P̃ ∩
{y ≥ 0, z ≤ 0} by replacing z by −z. To establish the “if” part of statement 2,
suppose now that P± is box-integer. For t ∈ Rn, define t+ = max{0, t} and
t− = max{0,−t}. For `, u ∈ Zn, we have u = u+ − u−, ` = `+ − `−, and
u+, u−, `+, `− ≥ 0, hence P ∩ {` ≤ x ≤ u} is the projection onto x = y − z
of P± ∩ {`+ ≤ y ≤ u+,−`− ≤ −z ≤ −u−}. Since the latter is integer, this
implies the integrality of P ∩ {` ≤ x ≤ u}.

ut

3.2 Dilations of Box-Integer Polyhedra

In this section we investigate how the box-integrality of a polyhedron behaves
with respect to dilation. As a preliminary, the following observation describes
the behaviour of integrality with respect to dilation.
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Proposition 1 Let P be a polyhedron. There exists d ∈ Z>0 such that {k ∈
Z>0 : kP is integer} = dZ>0.

Proof. When P has vertices, it is enough to choose d as the smallest positive
integer d such dv is integer for every vertex v of P . To treat the general case,
we prove that if kP and k′P are integer polyhedra, then gcd(k, k′)P is an
integer polyhedron too. Then, the smallest positive integer k such that kP is
integer divides all the others, and as any dilation of an integer polyhedron is
an integer polyhedron too, this proves the observation.

Let P = {x : Ax ≤ b}, i = gcd(k, k′), k = k/i, k′ = k′/i, and F be a
minimal face of iP . Since F is a minimal face, F is the affine space F = {x :
AFx = ibF }. Note that kF and k′F are minimal faces, respectively of kP
and k′P , thus contain an integer point, respectively xk and xk′ . By Bézout’s
lemma, there exist λ and µ in Z such that λk+µk′ = i. Then AF (λxk+µxk′) =
ibF , hence F contains an integer point. Therefore, gcd(k, k′)P is an integer
polyhedron. ut

One of the arguments in the previous proof is the fact that the dilations
of an integer polyhedron are also integer polyhedra. This does not hold for
box-integrality, intuitively because any 0/1 polytope is box-integer, though its
dilations have no reasons to be. Actually, an example of box-integer polyhedron
having non box-integer dilations will be provided at the end of this section. For
now we prove the following lemma in order to determine, given a polyhedron P ,
the structure of the set of positive integers k such that kP is box-integer.

Lemma 3 Let P be a polyhedron and k ∈ Z>0 such that kP is integer but not
box-integer. Then, no dilation k′P with k′ ≥ k is box-integer.

Proof. Let k′ ≥ k. Assume k′P integer, as otherwise k′P would not be box-
integer. By Lemma 1, there exist a face F of kP and an integer vector p such
that aff(F )∩{xi = pi, i ∈ I} is a noninteger singleton v ∈ F . By Proposition 1,
kP and k′P are both dilations of an integer polyhedron dP . In particular, there
exists an integer point z in F such that z′ = k′

k z is an integer point contained

in the face F ′ = k′

k F of k′P . Since k′ ≥ k, we have F − z ⊆ F ′ − z′, thus in
particular v − z is in F ′ − z′, which implies that v′ = (z′ − z) + v is in F ′.
Moreover, aff(F ′) ∩ {xi = (z′i − zi) + pi, i ∈ I} is the singleton v′ of F ′, which
is not integer, hence k′P is not box-integer by Lemma 1. ut

A polyhedron P is fully box-integer if kP is box-integer for all k ∈ Z>0. In
other words, P is fully box-integer if and only if P is principally box-integer
and integer.

Proposition 2 For a polyhedron P , the following statements are equivalent.

1. P is principally box-integer.
2. There exists d ∈ Z>0 such that {k ∈ Z>0 : kP is box-integer} = dZ>0.
3. P has a fully box-integer dilation.
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Proof. The definition of principal box-integrality and Proposition 1 give (1)⇒(2).
To get (2)⇒(3), just note that dP is a fully box-integer polyhedron. To prove
(3)⇒(1), suppose that P is not principally box-integer, that is, there exists a
positive integer k such that kP is integer but not box-integer. By Lemma 3,
this is not compatible with the existence of a fully box-integer dilation of P .

ut

We mention that relaxing k ∈ Z>0 to k ∈ Z in Definition 1 yields an
equivalent definition. Then, the set arising in statement 2 of Proposition 2 is
dZ, which is a principal ideal of Z. This explains why we called these polyhedra
principally box-integer. The next proposition shows what can happen when a
polyhedron is not principally box-integer.

Proposition 3 For a polyhedron P , exactly one of the following situations
holds.

1. P is principally box-integer.
2. No dilation of P is a box-integer polyhedron.
3. There exist d, q ∈ Z>0 such that kP is box-integer if and only if k ∈
{d, 2d, . . . , qd}.

Proof. If P has a box-integer dilation but is not principally box-integer, then
there is a smallest q in Z>0 such that (q + 1)P is a polyhedron which is
integer but not box-integer. By Lemma 3, no kP with k > q is box-integer.
Now, if d is chosen as in Proposition 1, the minimality of q gives {k ∈ Z>0 :
kP is box-integer} = {d, 2d, . . . , qd}. ut

Note that the following property, which holds for integrality, also holds for
box-integrality: if kP and k′P are box-integer polyhedra, then so is gcd(k, k′)P .

Remark 1 Though we only considered dilations with positive integer coeffi-
cients, all these results can readily be adapted to dilations with rational coef-
ficients.

We conclude this section with an example of polyhedron whose box-integrality
is not preserved by dilation.

As P = conv (0, (1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (1, 1, 1, 1, 1)) is a 0/1
polytope, it is box-integer. However, it can be checked that (2, 1, 1, 1, 1/2) is
a fractional vertex of 2P ∩ {x2 = x3 = x4 = 1}. In particular, P illustrates
statement 3 of Proposition 3.

3.3 Translations of Principally Box-Integer Polyhedra

Box-integrality is clearly preserved under integer translation. So are principal
and full box-integrality.

Observation 1 Box-integrality, principal box-integrality and full box-integrality
are all preserved by integer translation.
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Proof. The translation Q = t + P of a box-integer polyhedron P by t in Zn

is also box-integer because Q ∩ {` ≤ x ≤ u} = t + (P ∩ {` − t ≤ x ≤ u − t})
for all `, u ∈ Zn. Moreover, since kQ = kt + kP and kt ∈ Zn for all k ∈ Z>0,
principal box-integrality and full box-integrality are also preserved by integer
translation. ut

Conic polyhedra play an important role in the next sections. One of the
reasons is that, up to translation, every dilation of a conic polyhedron is the
conic polyhedron itself. Since box-integrality is preserved by integer transla-
tion, this has the following consequences.

Observation 2 Let D = t+ C be a conic polyhedron for some cone C of Rn

and some t ∈ Qn.

1. For C, the three properties of being box-integer, fully box-integer, or prin-
cipally box-integer are equivalent.

2. D is fully box-integer if and only if it is box-integer.
3. D is principally box-integer if and only if C is box-integer.

Proof. The fact that kC = C for all k ∈ Z>0 proves statement 1. When D is
box-integer, its minimal face contains an integer point, hence t can be chosen
to be an integer. Since kD = (k − 1)t + D for all k ∈ Z>0, and since integer
translation preserves box-integrality, statement 2 follows. When t ∈ Qn, take
k large enough such that kt is integer. Now, kD = kt+C is a fully box-integer
dilation of D if and only if C is box-integer, which proves statement 3. ut

4 Principally Box-Integer Polyhedra and Equimodular Matrices

In this section, we show how equimodularity and principal box-integrality are
intertwined. First, we characterize equimodular matrices using principal box-
integrality. Then, principally box-integer polyhedra are characterized by the
equimodularity of a family of matrices.

4.1 Characterizations of Equimodular Matrices

In this section, we extend to equimodular matrices two classical results about
unimodular matrices. We first state the results of Heller [28] about unimodular
sets in terms of equimodular matrices—see also [38, Theorem 19.5].

Theorem 3 (Heller [28]) For a full row rank r× n matrix A, the following
statements are equivalent.

1. A is equimodular.
2. For each nonsingular r × r submatrix D of A, lattice(D) = lattice(A).
3. For each nonsingular r × r submatrix D of A, D−1A is integer.
4. For each nonsingular r × r submatrix D of A, D−1A is in {0,±1}r×n.
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5. For each nonsingular r×r submatrix D of A, D−1A is totally unimodular.
6. There exists a nonsingular r × r submatrix D of A such that D−1A is

totally unimodular.

Veinott and Dantzig [45] proved that an integer r×n matrix A of full row
rank is unimodular if and only if the polyhedron {x : Ax = b, x ≥ 0} is integer
for all b ∈ Zr. Observe that statement 2 of Corollary 2 allows us to reformulate
their result as follows, since {x : Ax = kb}∩{x ≥ `} = `+{x : Ax = b′, x ≥ 0},
where b′ = kb+ kA` ∈ Zr.

Theorem 4 (Veinott and Dantzig [45]) Let A be a full row rank matrix
of Zr×n. Then, A is unimodular if and only if {x : Ax = b} is fully box-integer
for all b ∈ Zr.

It turns out that this result can be extended to characterize equimodular
matrices.

Theorem 5 Let A be a full row rank matrix of Qr×n. Then, A is equimodular
if and only if {x : Ax = b} is principally box-integer for all b ∈ Qr.

Proof. Suppose that A is equimodular and let b ∈ Qr, k ∈ Z>0 be such that
H = {x : Ax = kb} is integer. Then b′ = kb belongs to lattice(A). Let D be a
nonsingular r × r submatrix D of A. By statement 2 of Theorem 3, we have
lattice(D) = lattice(A), hence D−1b′ is in Zr. Since A has full row rank, by
statement 5 of Theorem 3, D−1A is unimodular. By Theorem 4, we get that
{x : D−1Ax = D−1b′} is fully box-integer. In particular, H is box-integer.

Conversely, suppose that A is not equimodular. Then, possibly reordering
the columns, we may assume that the first r columns of A are linearly inde-
pendent, and, by statement 3 of Theorem 3, that the (r + 1)th column Ar+1

of A is a noninteger combination of those. Let H = {x : Ax = Ar+1}. Then,
{x : Ax = Ar+1} ∩ {xj = 0, j ≥ r + 1} has no integer solution, hence H is
not box-integer. However, H is integer as it contains χr+1 as an integer point.
Therefore, H is not principally box-integer. ut

Veinott and Dantzig [45] devised Theorem 4 in order to get a simpler
proof of a characterization of totally unimodular matrices due to Hoffman and
Kruskal [31]. This characterization states that an integer matrix A is totally
unimodular if and only if {x : Ax ≤ b} is box-integer for all b ∈ Zm. In our
context, this can be reformulated as follows.

Theorem 6 (Hoffman and Kruskal [31]) A matrix A of Zm×n is totally
unimodular if and only if {x : Ax ≤ b} is fully box-integer for all b ∈ Zm.

An equivalent definition of total unimodularity is to ask for every set of lin-
early independent rows to be unimodular. In this light, it is natural to define
totally equimodular matrices as those for which all sets of linearly indepen-
dent rows form an equimodular matrix. Theorem 6 then extends to totally
equimodular matrices as follows.
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Theorem 7 A matrix A of Qm×n is totally equimodular if and only if {x :
Ax ≤ b} is principally box-integer for all b ∈ Qm.

Proof. Suppose A totally equimodular and b ∈ Qm, and let us prove that
P = {x : Ax ≤ b} is principally box-integer. Let k ∈ Z>0 be such that kP
is an integer polyhedron, and let us prove that kP is box-integer. Let F be a
face of kP and p be an integer vector such that aff(F ) ∩ {xi = pi, i ∈ I} is a
singleton x̄ in F . By Lemma 1, it remains to show that x̄ is integer. There exists
a full row rank subset L of rows of A such that aff(F ) = {x : ALx = kbL}.
Since A is totally equimodular, AL is equimodular. By Theorem 5, aff(F ) is
principally box-integer. Now, since kP is integer, so is aff(F ). Hence, aff(F ) is
box-integer and x̄ is integer.

Suppose now that A is not equimodular, that is, there exists a full row
rank submatrix AL of size r × n of A which is not equimodular. Then, we
may assume that the first r columns of AL are linearly independent, and that
the (r+ 1)th column of AL is a noninteger combination of those. Let x̄ be the
unique solution of ALx = 0, xr+1 = −1, xj = 0, j > r+1. Then, x̄ /∈ Zn. Define
bL = 0 and bj = 1 if j /∈ L, and let us show that P = {x : Ax ≤ b} is not
principally box-integer. There exists k ∈ Z>0 large enough such that x̄ ∈ kP ,
and such that kP is integer. Then, kP ∩ {xr+1 = −1, xj = 0, j > r + 1}
contains x̄ as a vertex because x̄ satisfies to equality n linearly independent
inequalities. Therefore, kP is not box-integer. ut

Since deciding whether a given matrix is totally unimodular can be done in
polynomial time, see e.g. [38, Chapter 20], statement 5 of Theorem 3 implies
that deciding whether a given matrix is equimodular can be done in polyno-
mial time. However, for totally equimodular matrices, the recognition problem
remains open.

Open Problem 1 Can totally equimodular matrices be recognized in polyno-
mial time?

As we shall see later, totally equimodular matrices are precisely the matrices
whose associated polyhedra are all box-TDI—see Corollary 8. Interestingly,
it is enough to study totally equimodular matrices with 0, ±1 coefficients.
Indeed, in a totally equimodular matrix, the nonzero coefficients of a given
row all have the same absolute value. Thus, such a matrix can be scaled row
by row into a 0, ±1 matrix. This scaling preserves total equimodularity and
do not change the family of associated polyhedra.

Remark 2 The full row rank hypothesis made throughout this section is con-
venient, but not really necessary, provided the notions of unimodularity and
equimodularity are correctly extended. Hoffman and Kruskal [31] extend the
notion of unimodularity to not necessarily full row rank matrices, and Theo-
rem 4 still holds for those matrices [38, Page 301]. The correct extension of
equimodularity to general matrices is to require, for a matrix A of rank r, that
each set of r linearly independent rows of A forms an equimodular matrix.
Properties of such matrices are studied in [28]. We mention that none of the



Box-Total Dual Integrality, Box-Integrality, and Equimodular Matrices 15

definitions and results of this paper are affected if these extended definitions
are adopted and the full row rank hypothesis removed.

4.2 Affine Spaces and Face-Defining Matrices

Affine spaces being special cases of conic polyhedra, by statement 3 Obser-
vation 2, {x : Ax = b} is principally box-integer for all b if and only if
{x : Ax = 0} is fully box-integer. In particular, one can drop the quantifi-
cation over all b ∈ Qn from Theorem 5 as follows.

Corollary 3 Let A be a full row rank matrix of Qr×n and b ∈ Qn. Then,
A is equimodular if and only if the affine space {x : Ax = b} is principally
box-integer.

An affine space {x : Ax = b} being integer if and only if b belongs to
lattice(A), the previous result has the following immediate consequence.

Corollary 4 Let A be a full row rank matrix of Qr×n and b ∈ Qn. The affine
space {x : Ax = b} is fully box-integer if and only if A is equimodular and
b ∈ lattice(A).

Corollary 3 yields a correspondence between equimodular matrices and
principally box-integer affine spaces. We shall see in the next section that this
correspondence, when applied to the faces of a polyhedron, provides a char-
acterization of principally box-integer polyhedra. This motivates the following
definition.

Face-defining matrices. Let P = {x : Ax ≤ b} be a polyhedron of Rn and
F be a face of P . A full row rank matrix M such that aff(F ) can be written
{x : Mx = d} for some d is face-defining for F . Such matrices are called face-
defining matrices of P 1. Note that face-defining matrices need not correspond
to valid inequalities for the polyhedron. A face-defining matrix for a facet of
P is called facet-defining.

Affine spaces are polyhedra whose only face is themselves. The following ob-
servation characterizes their principal box-integrality in terms of face-defining
matrices.

Observation 3 For an affine space H, the following statements are equiva-
lent.

1. H is principally box-integer.
2. H has an equimodular face-defining matrix.
3. Every face-defining matrix of H is equimodular.

1 When we write that a face F has a face-defining matrix M , we mean that M is face-
defining for the face F , which is more restrictive than being a face-defining matrix of the
polyhedron F .
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4. H has a totally unimodular face-defining matrix.

Proof. The equivalence among statements 1, 2, and 3 follows from Corollary 3.
The equivalence between statements 2 and 4 follows from statement 5 of The-
orem 3, because if A ∈ Qr×n is face-defining for H, then so is D−1A for each
nonsingular r × r submatrix D of A. ut

Note that, when P is full-dimensional, facet-defining matrices are composed
of a single row and are uniquely determined, up to multiplying by a scalar. In
general, the number of rows of a face-defining matrix for a face F is n−dim(F ).
More precisely, the following immediate observation characterizes face-defining
matrices.

Observation 4 A full row rank matrix M ∈ Qk×n is face-defining for a
face F of a polyhedron P ⊆ Rn if and only if there exist a vector d ∈ Qk

and a family H ⊆ F ∩{x : Mx = d} of dim(F ) + 1 affinely independent points
such that |H|+ k = n+ 1.

4.3 Characterizations of Principally Box-Integer Polyhedra

In this section, we provide several characterizations of principally box-integer
polyhedra, the starting point being the following lemma.

Lemma 4 A polyhedron P is principally box-integer if and only if aff(F ) is
principally box-integer for each face F of P .

Proof. Let P be a polyhedron such that the affine spaces generated by its faces
are all principally box-integer. Then, when k ∈ Z>0 is such that kP is integer,
all the affine spaces generated by the faces of kP are box-integer. Therefore,
by Lemma 1, if F is a face of such a kP and p is an integer vector such that
aff(F )∩{xi = pi, i ∈ I} is a singleton in F , then this singleton is integer. Then,
by the other direction of Lemma 1, kP is box-integer, thus P is principally
box-integer.

Conversely, let P be a principally box-integer polyhedron and F be a face of
P . If F is a singleton, then aff(F ) = F is a singleton, thus obviously principally
box-integer. Otherwise, let t be a rational point in the relative interior of F , let
G = F − t and Q = P − t. By statement 3 of Observation 2, it suffices to show
that aff(G) is box-integer. Let p be an integer vector such that aff(G)∩ {xi =
pi, i ∈ I} is a singleton x̄ in aff(G). Since t was chosen in the relative interior
of F , there exists k ∈ Z>0 such that x̄ ∈ kQ. Moreover, such a k can be chosen
so that kt is integer and kP is an integer polyhedron. Since P is principally
box-integer, kP is box-integer and so is kQ = kP − kt by Observation 1.
Applying Lemma 1 to the face kG of kQ yields x̄ integer. By applying the
other direction of Lemma 1 to the unique face aff(G) of aff(G), we obtain that
aff(G) is box-integer. ut

Theorem 8 For a polyhedron P , the following statements are equivalent.
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1. The polyhedron P is principally box-integer.
2. Every minimal tangent cone of P is principally box-integer.
3. Every face of P has an equimodular face-defining matrix.

Proof. Each face of P is contained in a face of some minimal tangent cone
of P having the same affine hull. Conversely, each face of a minimal tangent
cone of P contains some face of P having the same affine hull. Therefore,
Lemma 4 gives the equivalence between statement 1 and statement 2. The
equivalence between statement 1 and statement 3 is immediate by Corollary 3
and Lemma 4. ut

The minimal faces of a polyhedron being affine spaces, Lemma 4 has a
fully box-integer counterpart. Moreover, by statement 2 of Observation 2, so
does the equivalence between statement 1 and statement 3 of Theorem 8. This
gives the following corollary.

Corollary 5 For a polyhedron P , the following statements are equivalent.

1. The polyhedron P is fully box-integer.
2. Every minimal tangent cone of P is box-integer.
3. For each face F of P , aff(F ) is fully box-integer.

5 Box-Totally Dual Integral Polyhedra

5.1 New Characterizations of Box-TDI Polyhedra

The main result of this section is that the notions of principal box-integrality
and box-TDIness coincide—see Theorem 9 below. Combined with Theorem 8,
this provides several new characterizations of box-TDI polyhedra.

Theorem 9 A polyhedron is box-TDI if and only if it is principally box-
integer.

Proof. The proof relies on Lemmas 5 and 6, which are proven below.
Lemma 5 states that a polyhedron is box-TDI if and only if all its minimal

tangent cones ares box-TDI. By Theorem 8, a polyhedron is principally box-
integer if and only if all its minimal tangent cones are principally box-integer.
Hence it is enough to prove Theorem 9 for conic polyhedra.

Lemma 6 states that a cone is box-TDI if and only if it is box-integer.
Then, by statement 3 of Observation 2, and since box-TDIness is preserved
under rational translation, a conic polyhedron is box-TDI if and only if it is
principally box-integer. ut

The following lemma seems somewhat implicitely known in the literature,
but is not stated explicitely to the best of our knowledge. For the sake of
completeness, we provide a proof which relies only on the definitions. It can
also be shown using known characterizations of box-TDI polyhedra, such as
the one by Cook [38, Theorem 22.9].
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Lemma 5 A polyhedron is box-TDI if and only if all its minimal tangent
cones are.

Proof. Let P = {x : Ax ≤ b} be a polyhedron of Rn and w ∈ Zn. We will
denote (P`,u) = max{wx : Ax ≤ b, ` ≤ x ≤ u} and (PF

`,u) = max{wx : AIx ≤
bI , ` ≤ x ≤ u} for a minimal face F of P where I is the index set of the tight
rows for F .

To establish the “only if” part of the statement, suppose that the system
Ax ≤ b is box-TDI. Let F be a minimal face of P , v ∈ F and let x? be an
optimal solution of (PF

`,u). Since aiv < bi for all i /∈ I, there exists λ > 0
such that y? = v + λ(x? − v) belongs to P and aiy

? < bi for all i /∈ I. Let
`′ = v+λ(`−v) and u′ = v+λ(u−v). Then, y? is an optimal solution of (P`′,u′),
as otherwise x? would not be an optimal solution of (PF

`,u). Let (z?, r?, s?) be
an integer optimal solution of the dual of (P`′,u′). By complementary slackness,
denoting by z?I the vector obtained from z? by deleting the coordinates not
in I, without loss of generality we have z? = (z?I ,0). Now, since w>y? =
b>z? + u′>r? − `′>s?, one can check that w>x? = b>I z

?
I + u>r? − `>s?, by

applying the definition of y?, u′ and `′, b>z? = b>I z
?
I , w = A>z? + r? − s?,

A>z? = A>I z
?
I , and AIv = bI . Therefore, (z?I , r

?, s?) is an integer optimal
solution of the dual min{b>I z + u>r − `>s : A>I zI + r − s = w, zI , r, s ≥ 0}
of (PF

`,u).
To establish the “if” part of the statement, let H be the face of P composed

of all the optimal solutions of (P`,u) = max{wx : Ax ≤ b, ` ≤ x ≤ u} and let
F be a minimal face of P contained in H whose tight rows are indexed by I.
Let (z?I , r

?, s?) be an integer optimal solution of the dual of (PF
`,u). Then, one

can check that extending z?I to a vector z? = (z?I ,0) of Rm yields an integer
optimal solution (z?, r?, s?) of the dual of (P`,u). ut

The following result reveals that cones behave nicely with respect to box-
TDIness. It is already known that a box-TDI cone is box-integer [39, Equa-
tion (5.82)]. Suprisingly, the converse holds and these properties are carried
oved to the polar.

Lemma 6 For a cone C, the following statements are equivalent.

1. C is box-TDI,
2. C is box-integer,
3. C∗ is box-TDI,
4. C∗ is box-integer.

Proof. Let C = {x : Ax ≤ 0} be a cone of Rn. By [38, Theorem 22.6(i)], the
system Ax ≤ 0 can be chosen to be TDI.

Suppose that C is box-TDI. By Theorem 1, the system Ax ≤ 0 is box-TDI.
Hence, for all `, u ∈ Zn, the system Ax ≤ 0, ` ≤ x ≤ u is TDI. As ` and u
are integer, this system defines an integer polyhedron by [38, Corollary 22.1c].
Therefore, C is box-integer, and we get (1)⇒(2). This also gives (3)⇒(4).

All that remains to prove is (4)⇒(1). Indeed, applying this implication to
the cone C∗ and using that C∗∗ = C yields (2)⇒(3).
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Suppose that C∗ is box-integer and let us prove that the dual (D) of the
linear program (P ) below has an integer solution for all w ∈ Zn and `, u ∈ Qn

such that the optimum is finite.

(P )

max w>x
Ax ≤ 0
x ≤ u
−x ≤ −`

(D)

min u>r − `>s
A>z + r − s = w
z , r , s ≥ 0

The projection of the set of points (z, r, s) satisfying the constraints of (D)
onto the variables r and s is the polyhedron Q = {r, s ≥ 0 : v>(s− r + w) ≤
0, for all v ∈ K}, where K is the projection cone K = {v ∈ Rn : v>A> ≤ 0}.
That is K = C and therefore Q = (C∗ − w)±.

Since integer translations of box-integer polyhedra are box-integer, C∗ −
w is box-integer. Thus, by statement 2 of Lemma 2, Q is box-integer. In
particular, Q is integer.

Since the optimum of (D) is finite, so is min{u>r− `>s : (r, s) ∈ Q}. Since
Q is an integer polyhedron, this minimum is achieved by an integer (r̄, s̄) ∈ Q.
Let w̄ = w − r̄ + s̄. As (r̄, s̄) belongs to Q, there exists a feasible solution z̄ of
the dual of max{w̄>x : Ax ≤ 0}. Recall that Ax ≤ 0 has been chosen to be
TDI. Hence, since w̄ is integer, such a z̄ can be chosen to be an integer. Then,
(z̄, r̄, s̄) is an integer optimal solution of (D). ut

We are now ready to prove our main result, Theorem 2.
Proof. (of Theorem 2) Statements 2 and 1 are equivalent by Theorem 9.

Statements 2 and 4 are equivalent by the equivalence between statements 1
and 3 of Theorem 8. Finally, the equivalence among statements 3, 4, and 5
comes from Observation 3. ut

We now apply polarity to derive additional characterizations of box-TDI
polyhedra.

Corollary 6 For a polyhedron P , the following statements are equivalent.

1. The polyhedron P is box-TDI.
2. For every face F of P , every basis of lin(F ) is the transpose of an equimod-

ular matrix.
3. For every face F of P , some basis of lin(F ) is the transpose of an equimod-

ular matrix.
4. For every face F of P , some basis of lin(F ) is a totally unimodular matrix.

Proof. Let F be a face of P . By Corollary 3, F has an equimodular face-
defining matrix if and only if aff(F ) is principally box-integer. Equivalently,
by Observation 2, lin(F ) is box-integer. By Lemma 6, lin(F ) is box-integer
if and only lin(F )∗ is. By Corollary 3, lin(F )∗ is box-integer if and only if
lin(F )∗ has an equimodular face-defining matrix M . Note that the columns
of M> form a basis of lin(F ), therefore F has an equimodular face-defining
matrix if and only if some basis of lin(F ) is the transpose of an equimodular
matrix.
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Since, by Theorem 2, the polyhedron P is box-TDI if and only if each of its
faces F has an equimodular face-defining matrix, this proves the equivalence
between statements 1 and 3. The equivalence with the two others statements
follows from Observation 3. ut

Recall that a cone C = {x : Ax ≤ 0} can also be defined as C = cone(R)
for some set R of generators. Moreover, by Lemma 6, a cone is box-TDI if and
only if it is box-integer. Corollary 6 then allows us to check whether cones are
box-integer by looking at their generators.

Corollary 7 A cone C = cone(R) is box-integer if and only if S> is equimod-
ular for each linearly independent subset S of R generating a face of C.

Consequently, the recognition of box-integer cones might have a different
complexity status than the following related problems, which are all co-NP-
complete: deciding whether a given polytope is integer [37], deciding whether
a given system is TDI or box-TDI [16], deciding whether a given conic system
is TDI [36].

Open Problem 2 What is the complexity of deciding whether a given cone
is box-integer?

We mention that polarity preserves box-integrality only for cones, and does
not extend to polyhedra. For instance, the polyhedron conv ((2,−1), (−2,−1), (0, 1))
is fully box-integer, and its polar conv ((1, 1), (−1, 1), (0,−1)) is integer but not
box-integer.

5.2 Connections with Existing Results

In this section, we investigate the connections of our results with those from
the literature about box-TDI polyhedra. We first derive known results about
box-TDI polyhedra from our characterizations. Then, we show how Cook’s
characterization [38, Theorem 22.9] is connected to ours. Finally, we discuss
Schrijver’s sufficient condition [39, Theorem 5.35].

5.2.1 Consequences

Here, we review several known results about box-TDI polyhedra which can be
derived from our results. The dominant of a polyhedron P of Rn is dom(P ) =
P + Rn

+.

Consequence 1 ([14, Theorem 3.6] or [38, Theorem 22.11]) The dom-
inant of a box-TDI polyhedron is box-TDI.

Proof. A face of dom(P ) is the sum of a face of P and a cone generated by unit
vectors. By statement 4 of Corollary 6, and since adding unit vectors preserves
total unimodularity, the dominant of a box-TDI polyhedron is box-TDI. ut
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Consequence 2 ([38, Remark 2.21]) If P is a box-TDI polyhedron, then
aff(P ) = {x : Cx = d} for some totally unimodular matrix C.

Proof. If P is a box-TDI polyhedron, then by statement 5 of Theorem 2, since
P is a face of P , its affine hull can be described using a totally unimodular
matrix. ut

Consequence 3 ([38, Remark 2.22]) Each edge and each extremal ray of
a pointed box-TDI polyhedron is in the direction of a {0,±1}-vector.

Proof. This is statement 4 of Corollary 6 applied to the faces of dimension one
of the polyhedron. ut

By polarity, the above proof shows that every full-dimensional box-TDI
polyhedron can be described using a {0,±1}-matrix. Edmonds and Giles prove
in [22] that it is still true without the full-dimensional hypothesis.

Consequence 4 ([22, Theorem 2.16]) If P is a box-TDI polyhedron, then
P = {x : Ax ≤ b} for some {0,±1}-matrix A and some vector b.

Proof. Let P be a box-TDI polyhedron. By Consequence 2, we have aff(P ) =
{x : Cx = d} for some full row rank totally unimodular matrix C. By state-
ment 5 of Theorem 2, for each facet F of P , there exists a totally unimodular
matrix DF such that aff(F ) = {x : DFx = dF }. Then, one of the rows
aFx = bF of DFx = dF does not contain aff(P ). Possibly multiplying by −1,
we may assume that aFx ≤ bF is valid for P because F is a facet of P . Then,
the matrix A whose rows are those of C and every aF yields a description of
P as desired. ut

5.2.2 Cook’s Characterization [14], [38, Theorem 22.9]

In order to get a geometric characterization of box-TDI polyhedra, Cook [14]
introduced the so-called box property. Schrijver [38, Theorem 22.9] states
Cook’s characterization with the following equivalent form of the box prop-
erty: a cone C of Rn has the box property if for all c ∈ C there exists c̃ ∈ C∩Zn

such that bcc ≤ c̃ ≤ dce. To hightlight the connections with our results, we
reformulate Schrijver’s version as follows.

• A polyhedron is box-TDI if and only if the normal cones of its faces all
have the box property (Cook [38, Theorem 22.9]).

The parallel with our work is clear with the following reformulation of one of
our characterizations.

• A polyhedron P is box-TDI if and only if every minimal tangent cone of
P is box-integer, up to translation (Observation 2 and Theorems 8 and 9).
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The first difference between these two results is that the first one involves the
normal cones, whereas the second one involves the tangent cones. Recall that
the tangent cones are the polars of the normal cones, up to translation. This
polarity connection between the two statements is not surprising in light of
the polarity result of Lemma 6. The second difference is that the first result
involves the box property, whereas the second involves the notion of box-
integrality. It is easy to see that box-integer cones have the box property. The
converse does not hold. In fact, the lemma below shows that the box property is
a local property when the box-integrality is a global one. The third difference
is a consequence of this local/global aspect: the first result involves all the
normal cones, whereas the second involves only the minimal tangent cones.

To sum up, the first result is a polar local characterization of box-TDI
polyhedra, and the second is a primal global characterization.

Proposition 4 A cone is box-integer if and only if all its faces have the box
property.

The following lemma proves the proposition, since a cone C is box-integer if
and only if aff(F ) is box-integer for all faces F of C.

Lemma 7 Let C = {x : Ax ≤ 0} and let F = {x : AFx ≤ 0} be a face of C.

• If C is box-integer, then F has the box property.
• If F has the box property, then aff(F ) is box-integer.

Proof. Suppose that C is box-integer and let c ∈ F . Since c belongs to P =
F ∩ {bcc ≤ x ≤ dce}, the latter is nonempty. Since C is box-integer, so is F ,
hence P has only integer vertices, and any of them forms a suitable c̃ which
shows that F has the box property.

Suppose now that F has the box property. Let p ∈ ZI be such that aff(F )∩
{xi = pi, i ∈ I} is a singleton c in aff(F ). There exists t ∈ Zn be such that
c′ = c + t ∈ F . By the box property of F , there exists c̃ ∈ F ∩ Zn such that
t+bcc = bc′c ≤ c̃ ≤ dc′e = dce+t. Now, c̃−t belongs to aff(F )∩{xi = pi, i ∈ I},
hence c = c̃− t is integer. By Lemma 1, aff(F ) is box-integer. ut

In a way, the above lemma shows that the box property of a cone is sand-
wiched between the box-integrality of the cone and that of its underlying
affine space—an even more local property. This, up to polarity again, further
compares Cook’s characterization and ours, as the latter property appears in
Lemma 4.

The following picture illustrates some differences between the three prop-
erties.

The notion of box-integrality of cones and affine spaces sheds a better
light on box-TDI polyhedra by providing insights of how their local, global,
and polar properties are connected. Both are preserved by polarity, the global
notion yields a global geometric characterization of box-TDI polyhedra, and
the most local one allows us to derive matricial counterparts.



Box-Total Dual Integrality, Box-Integrality, and Equimodular Matrices 23

Fig. 1 The cone C = cone{(2, 1), (1, 0)} has the box property but is not box-integer. The
cone C′ = cone{(2, 1), (3, 1)} does not have the box property, yet aff(C′) = R2 is box-integer.
The cone C′′ = cone{(2, 1)} does not have the box property, yet its polar does.

5.2.3 Schrijver’s Sufficient Condition [39, Theorem 5.35]

In this section, we compare our results on box-TDI polyhedra with known
results on box-TDI systems. It appears that our results in some sense allow
us to split the “box-” from the “-TDI”: to prove that a given system is box-
TDI, prove that it is TDI on the one hand, and prove that the polyhedron is
box-TDI with Theorem 2 on the other hand.

As noticed by Schrijver [38, Page 318], Hoffman and Kruskal’s result [31]
implies that a matrix A is totally unimodular if and only if the system Ax ≤ b
is box-TDI for each vector b. Then, by Theorem 7 and Theorem 9, the parallel
with totally equimodular matrices can be thought as relaxing the box-TDIness
of those systems to that of the associated polyhedra.

Corollary 8 A matrix A of Qm×n is totally equimodular if and only if the
polyhedron {x : Ax ≤ b} is box-TDI for all b ∈ Qm.

Totally unimodular matrices being totally equimodular, the following well-
known result is a special case of the above corollary.

Consequence 5 A polyhedron whose constraint matrix is totally unimodular
is box-TDI.

We mention that there exist box-TDI systems which are not defined by a
totally unimodular matrix. By Corollary 8 and Theorem 1, any TDI system
defined with a totally equimodular matrix is box-TDI. Therefore, to find a
box-TDI system for a polyhedron described by a totally equimodular matrix,
there only remains to find a TDI system describing this polyhedron.

Another interesting parallel can be observed with Schrijver’s Sufficient
Condition. Schrijver proves in [39, Theorem 5.35] that the following weakening
of A being totally unimodular already suffices to obtain the box-TDIness of
the system Ax ≤ b.

Theorem 10 ([39, Theorem 5.35]) Let Ax ≤ b be a system of linear
inequalities, with A an m × n matrix. Suppose that (?) for each c ∈ Rn,
max{c>x : Ax ≤ b} has (if finite) an optimum dual solution y ∈ Rm

+ such
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that the rows of A corresponding to positive components of y form a totally
unimodular submatrix of A. Then Ax ≤ b is box-TDI.

Note that the property (?) is equivalent to the condition that for every
face F of {x : Ax ≤ b}, the system Ax ≤ b contains a totally unimodular face-
defining matrix for F . Theorem 2 contains a polyhedral version: a polyhedron
is box-TDI if and only if each of its faces has a totally unimodular face-defining
matrix. This latter condition is weaker than (?), hence does not ensure the box-
TDIness of the system. Nevertheless, when satisfied, all that remains to do is
to find a TDI system describing the same polyhedron.

In light of our characterizations, one could wonder whether Theorem 10
can be turned into an equivalence, that is: can every box-TDI polyhedron
be described by a box-TDI system satisfying (?)? Unfortunately, the answer
to this question is negative. Indeed, systems satisfying (?) can be assumed
{0,±1}, and there exist box-TDI polyhedra for which no TDI description is
{0,±1}—see [38, Page 325].

6 Illustrations

In this section, we provide illustrations of our results. The first one is a new
perspective on the equivalence between two results about binary clutters. Sec-
ondly, we refute a conjecture of Ding, Zang, and Zhao [19] about box-perfect
graphs. Thirdly, we discuss connections with an abstract class of polyhedra
introduced in [27]. Finally, we characterize the box-TDIness of the cone of
conservative functions of a graph.

6.1 Box-Mengerian Clutters

We briefly introduce the definitions we need about clutters. A collection C of
subsets of a set E is a clutter if none of its sets contains another one. We denote
by AC the C × E incidence matrix of C and by PC = {x ∈ RE : ACx ≥ 1, x ≥
0} the associated covering polyhedron. A clutter C is binary if the symetric
difference of any three elements of C contains an element of C. A clutter C is box-
1
d -integral if for all `, u ∈ 1

dZ
E , each vertex of PC∩{` ≤ x ≤ u} belongs to 1

dZ
E .

A matrix A ∈ {0, 1}m×n is called (box-)Mengerian if the system Ax ≥ 1, x ≥ 0
is (box-)TDI. A clutter C is (box-)Mengerian if AC is (box-)Mengerian. Deleting
an element e ∈ E means replacing C by C \ e = {X ∈ C : e /∈ X} and
contracting an element e ∈ E means replacing C by C/e which is composed
of the inclusionwise minimal members of {X \ {e} : X ∈ C}. The minors
of a clutter are the clutters obtained by repeatedly deleting and contracting
elements of E. The clutter Q6 is defined on the set E4 of the edges of the
complete graph K4, and its elements are the triangles of K4—see Figure 2.
The clutter Q7 is defined on E4∪e where e /∈ E4, and its elements are X ∪{e}
for each triangle or perfect matching X of K4.
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In 1995, Gerards and Laurent [24] characterized the binary clutters that
are box- 1d -integral for all d ∈ Z>0 by forbidding minors.

Theorem 11 ([24, Theorem 1.2]) A binary clutter is box- 1d -integral for all
d ∈ Z>0 if and only if neither Q6 nor Q7 is its minor.

In 2008, Chen, Ding, and Zang [12] characterized box-Mengerian binary
clutters by forbidding minors. In [11], Chen, Chen, and Zang provide a simpler
proof of this characterization, based on the so called ESP property. We mention
that none of the proofs of Theorem 12 rely on Theorem 11.

Theorem 12 ([12, Corollary 1.2]) A binary clutter is box-Mengerian if and
only if neither Q6 nor Q7 is its minor.

The combination of Theorems 11 and 12 implies that a binary clutter is
box-Mengerian if and only if it is box- 1d -integral for all d ∈ Z>0. We show in
the following how this equivalence is actually a special case of Theorem 9.

By definition, a clutter C is box- 1d -integral if and only if dPC is box-integer,
which implies the following reformulation of the class of polyhedra character-
ized in Theorem 11.

A clutter C is box- 1d -integral for all d ∈ Z>0 if and only if PC is fully
box-integer.

Recall that a system is box-TDI if and only if it is TDI and defines a box-
TDI polyhedron. Then, by Theorem 9, a clutter is box-Mengerian if and only
if it is Mengerian and PC is principally box-integer. Since C being Mengerian
implies the integrality of PC , we get the following reformulation for the systems
involved in Theorem 12.

A clutter C is box-Mengerian if and only if it is Mengerian and PC is fully
box-integer.

Therefore, to prove the announced equivalence it is enough to show the
following statement.

If C is binary and PC is fully box-integer, then C is Mengerian.

We apply Seymour’s characterization [41]: a binary clutter is Mengerian if
and only if it has no Q6 minor. The property of PC being fully box-integer is
closed under taking minors since PC/e and PC\e are respectively obtained from
PC ∩ {xe = 0} and PC ∩ {xe = 1} by deleting e’s coordinate. Furthermore,
PQ6

is not fully box-integer by statement 3 of Theorem 8. Indeed, the first
three rows of the matrix AQ6

of Figure 2 form a nonequimodular matrix M ,
as the determinant of the three first columns equals 2 and that of the three last
columns equals 1. Moreover, M is face-defining for PQ6 , by Observation 4 and
because χ1 +χ6, χ2 +χ5, χ3 +χ4, and χ4 +χ5 +χ6 are affinely independent,
belong to PQ6

, and satisfy Mx = 1. Therefore, if C is binary and PC is fully
box-integer, then C has no Q6 minor.
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AQ6
=


1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1


Fig. 2 The matrix representation of the clutter Q6.

6.2 On Box-Perfect Graphs

In this section, we provide a construction which preserves non box-perfection,
and use it to refute a conjecture of Ding, Zang, and Zhao [19].

In a graph, a clique is a set of pairwise adjacent vertices, and a stable set
is the complement of a clique. The stable set polytope of a graph is the convex
hull of the incidence vectors of its stable sets. Perfect graphs are known to be
those whose stable set polytope is described by the system composed of the
clique inequalities and the nonnegativity constraints:

x(C) ≤ 1 for all cliques C,
x ≥ 0.

A box-perfect graph is a graph for which this system is box-TDI. Since this
system is known to be TDI if and only if the graph is perfect [34], a graph is
box-perfect if and only if it is perfect and its stable set polytope is box-TDI.
The characterization of box-perfect graphs is a long standing open question
raised by Cameron and Edmonds in 1982 [8]. Recent progress has been made on
this topic by Ding, Zang, and Zhao [19]. They exhibit several new subclasses
of perfect graphs, and in particular prove the conjecture of Cameron and
Edmonds [8] that parity graphs are box-perfect. They also propose a conjecture
for the characterization of box-perfect graphs.

To state their conjecture, they introduce the class of graphs R, built as
follows. Let G = (U, V,E) be a bipartite graph whose biadjacency matrix is
minimally non-TU. Add a set of edges F between vertices of V such that the
neighborhood NG′(u) of u in G′ = (U ∪ V,E ∪ F ) is a clique for all u ∈ U . If
there exists u ∈ U such that NG′(u) = V , then G′ \ {u} is in R, otherwise G′

is in R.

Conjecture 1 (Ding, Zang, and Zhao [19]) A perfect graph is box-perfect if
and only if it contains no graph from R as an induced subgraph.

We introduce the operation of unfolding a vertex v ∈ V in G = (V,E). Take
a vertex v ∈ V and two sets of vertices X and Y such that X ∪ Y = NG(v)
and no edge connects X \ Y and Y \ X. Delete v and add two new vertices
x and y such that the neighborhoods of x and y are respectively X and Y .
Finally, add another vertex z adjacent only to x and y.

We mention that unfolding a vertex might not preserved perfection. Nev-
ertheless, if the starting graph is perfect but not box-perfect, then the graph
obtained by unfolding is not box-perfect.
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Lemma 8 Unfolding any vertex in a perfect but not box-perfect graph yields
a non box-perfect graph.

Proof. We show that if the stable set polytope of a graph has a nonequimod-
ular face-defining matrix, then so does any graph obtained by unfolding. By
Theorem 2, this proves the Lemma.

Let G = (V,E) be a graph which is perfect but not box-perfect, let v be
a vertex of G, let H be obtained from G by unfolding v, and x, y, z be the
new vertices. Let n = |V |. Since G is not box-prefect, its stable set polytope
has a nonequimodular face-defining matrix M ∈ Qk×n for a face F . Since G
is perfect, we may assume that the rows of M are the incidence vectors of
a set K of cliques of G. Indeed, it can be checked that removing the rows
corresponding to nonnegativity constraints yields a smaller nonequimodular
face-defining matrix. By Observation 4, there exists a family S of affinely
independent stable sets of F with |S| = n− dim(F ) + 1. Build a family T of
stable sets of H from S as follows: if S ∈ S contains v, then S \ {v} ∪ {x, y} ∈
T , otherwise S ∪ {z} ∈ T . All these sets are stable sets and are affinely
independent. Build a family L of k+2 cliques of H as follows. For each K ∈ K,

• If v /∈ K, then K ∈ L.
• If v ∈ K, the fact that X ∪ Y = NG(v) and no edge connects X \ Y and
Y \ X ensures that at least one of K \ {v} ∪ {x} and K \ {v} ∪ {y} is a
clique of H. If both are cliques, then add one of them to L, otherwise add
the clique.

• Add {x, z} and {y, z} to L.

Let N denote the (k+2)× (n+2) matrix whose rows are the incidence vectors
of the cliques of L. The matrix N has full row rank and each stable set T of
T satisfies |T ∩L| = 1 for all L ∈ L, hence N is face-defining for the stable set
polytope of H by Observation 4. There only remains to show that N is not
equimodular. To prove this, we show that each k × k submatrix of M gives
rise to a (k+ 2)× (k+ 2) submatrix of N having the same determinant. Since
M is not equimodular, neither is N .

Let A be a k × k submatrix of M . If A does not contains v’s column Mv,
then add two rows of zeros and then the two columns Ny and Nz. Note that
the determinant has not changed: first develop with respect to {x, z}’s row,
and then with respect to {y, z}’s row, to obtain the starting matrix. If A
contains v’s column Mv, then delete it, add two rows of zeros and finally add
the three columns Nx, Ny, and Nz. Let A′ denote this new matrix. We obtain
det(A′) = det(A) as follows: first replace the column Ax by Ax + Ay − Az,
then develop with respect to {x, z}’s row, and finally with respect to {y, z}’s
row. The resulting matrix is precisely A. ut

Unfolding a vertex in S3 as shown in Figure 3 yields a graph which is
perfect but not box-perfect, and contains no induced subgraphs from R. This
disproves Conjecture 1—see Proposition 5.
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G = S3

a b d

c v

e

Gv

a b d

c y

zxe

Fig. 3 A non box-perfect graph obtained by unfolding the vertex v in S3, with X = {b, c, e}
and Y = {b, c, d}.

It is well known that the graph S3 in Figure 3 is not box-perfect [9]. It can
also be seen because the nonequimodular matrix M below is face-defining for
the stable set polytope of S3.

M =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1


Indeed, up to reordering the vertices, the rows of M correspond to the three ex-
ternal triangles, and the four affinely independent stable sets {a, v}, {b, e}, {c, d}, {a, d, e}
belong to the corresponding face. By Observation 4 and Theorem 2, S3 is not
box-perfect.

Proposition 5 The graph G of Figure 3 is perfect but not box-perfect and
none of its induced subgraphs belongs to R.

Proof. Note that the graphs G and Gv are perfect. By Lemma 8, Gv is not
box-perfect. The graph Gv \ {z} is box-perfect, as one can check that the
constraint matrix of its stable set polytope is totally unimodular. Hence, if Gv

contains an induced subgraph H ∈ R, then z ∈ V (H). As no graph in R has
a vertex of degree one, this contradicts the claim below.

If H ∈ R has a vertex z with only two neighbors x and y, then xy is an edge
of H.

Recall that vertices of H are partitioned into sets U and V such that the
neighborhood of every vertex of U is a clique of V , and the biadjacency matrix
M of the edges between U and V is either minimally non-TU or obtained from
such a matrix by removing a row. In particular, every column of M contains
at least a one, and every row of M contains at least two ones.

If z ∈ U , then xy is an edge of H. Suppose now z ∈ V . The z-column of
M contains a one, so a neighbor of z, say x, belongs to U . The x-row of M
contains two ones, so x has an other neighbor in V , which is connected to z.
Therefore, this neighbor is y, and xy is an edge of H. ut

Note that chosingX = {c, e} and Y = {b, c, d} when unfolding v in Figure 3
yields another perfect but not box-perfect graph with no graph from R as an
induced subgraph.
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6.3 Integer Decomposition Property

In this section, we discuss possible connections between full box-integrality
and the integer decomposition property. This property arises in various fields
such as integer programming, algebraic geometry, combinatorial commutative
algebra. Several classes of polyhedra are known to have the integer decom-
position property, as for instance: projections of polyhedra defined by totally
unimodular matrices [40], polyhedra defined by nearly totally unimodular ma-
trices [26], certain polyhedra defined by k-balanced matrices [46], the stable
set polytope of claw-free t-perfect graphs and h-perfect line-graphs [6].

A polyhedron P has the integer decomposition property, if for any natu-
ral number k and any integer vector x ∈ kP , there exist k integer vectors
x1, . . . , xk ∈ P with x1 + · · ·+ xk = x. A stronger property is when the poly-
hedron P has the Integer Carathéodory Property, that is, if for every positive
integer k and every integer vector x ∈ kP , there exist n1, . . . , nt ∈ Z≥0 and
affinely independent x1, . . . , xt ∈ P ∩ Zn such that n1 + · · · + nt = k and
x =

∑
i nixi.

In [27], Gijswijt and Regts introduce a class P of polyhedra and show that
they have the Integer Carathéodory Property. They define P to be the set
of polyhedra P such that for any k ∈ Z≥0, r ∈ {0, . . . , k}, and w ∈ Zn the
intersection rP ∩ (w − (k − r)P ) is box-integer. They also show [27, Proposi-
tion 4] that every P ∈ P is box-integer. Given the definition of P, note that if
a polyhedron is in P, then so are all its dilations. Therefore, every P in P is
fully box-integer. By Theorem 9, this has the following consequence.

Corollary 9 Every P ∈ P is box-TDI.

The converse of Corollary 9 does not hold. We show below that polyhedra
in P satisfy the stronger property that not only the affine hulls of their faces
are principally box-integer, but also the intersection of the affine hulls of any
two faces. In terms of matrices, this is phrased as follows.

Proposition 6 If P ∈ P, then aff(F ) ∩ aff(G) has an equimodular face-
defining matrix for all faces F and G of P .

Proof. Let F and G be faces of P , and let xF and xG be rational points in
their respective relative interior. There exists k ∈ Z>0 such that both kxF and
kxG are integer. Let w = k(xF + xG), and Q = kP ∩ (w− kP ) = k(P ∩ (xF +
xG − P )). Since P ∈ P, note that rQ is box-integer for all r ∈ Z>0, that is,
Q is fully box-integer. By the choice of xF and xG, the minimal face H of
Q containing kxF satisfies aff(H) = k (aff(F ) ∩ −(xF + xG + aff(G))). Thus,
the latter is a translation of aff(F ) ∩ −aff(G). Since Q is fully box-integer,
aff(H) has an equimodular face-defining matrix by Theorem 8, hence so has
aff(F )∩−aff(G) by translation. Since aff(F )∩aff(G) can be described using the
matrix of constraints of aff(F ) ∩ aff(G) and multiplying by −1 the right-hand
sides corresponding to aff(G), we get an equimodular face-defining matrix for
aff(F ) ∩ aff(G). ut
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Fully box-integer polyhedra do not inherit the Integer Carathéodory Prop-
erty. Actually, they do not even inherit the integer decomposition property, as
the classical example of polytope without the integer decomposition property
P = conv ((0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)) is fully box-integer. To see that
P is fully box-integer, note that in the minimal linear description of P given
below, the matrix of constraints is totally equimodular. Since P is also integer,
this implies that P is fully box-integer by Theorem 7. The point (1, 1, 1) is in
2P and cannot be writen as an integer combination of the integer points of P ,
hence P does not have the integer decomposition property.

P =

x ∈ R3 :


1 −1 −1
−1 1 −1
−1 −1 1

1 1 1

x ≤


0
0
0
2




Nevertheless, given the strong integrality properties of fully box-integer poly-
hedra and as the above large subclass P has the Integer Carathéodory Prop-
erty, it might be that many of them have the integer decomposition property.
In this area, a long standing open question is known as Oda’s question [35]: is
it true that every smooth polytope has the integer decomposition property?
A full-dimensional polytope of Rn is simple if every vertex has n neighbors. A
simple integer polytope is smooth if for every vertex v the generators of the
associated minimal tangent cone form a basis of the lattice Zn.

The polyhedron of the example above is not smooth, and the following
special case of Oda’s question is a reasonable first step to determine which
fully box-integer polyhedra have the integer decomposition property.

Open Problem 3 Do smooth fully box-integer polyhedra have the integer de-
composition property?

6.4 Box-TDIness for Conservative Functions

In [15], the authors prove that the standard system describing the circuit cone
is box-TDI if and only if the graph is series-parallel. We illustrate that polarity
preserves the box-TDIness of cones by providing a box-TDI system for the cone
of conservative function—polar of the circuit cone.

Let G = (V,E) be an undirected graph. The set of edges connecting a given
set of vertices and its complement is called a cut. A cut containing no other
nonempty cut is called a bond. A set of edges is called a circuit if it induces
a connected subgraph where every vertex has degree two. The minors of a
graph are the graphs obtained by repeatedly contracting edges and deleting
edges and isolated vertices. Given e ∈ E, the graphs obtained from G by
respectively deleting and contracting e are denoted by G\e and G/e. A graph
is series-parallel if and only if contains no K4 minor [20].

The circuit cone Ccircuit(G) = cone{χC for all circuits C of G} is the cone
generated by the incidence vectors of the circuits of G. Seymour [42] proved
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that Ccircuit(G) = {x ∈ RE : x ≥ 0, x(D\e) ≥ xe for all cuts D of G and e ∈ D}.
A function f : E → R is conservative if f(C) ≥ 0 for each circuit C of G.
These functions form the cone of conservative functions Ccons(G) = {x ∈ RE :
x(C) ≥ 0 for all circuits C of G}. By polarity [39, Corollary 29.2h], we have
Ccons(G) = −Ccircuit(G)? = cone{χe for all e ∈ E,χD\e−χe for all cuts D of G and e ∈ D}.

We show that box-TDI systems describing Ccons(G) only exist when G is
series-parallel. In this case, we provide such a system in the following propo-
sition.

Proposition 7 For a graph G = (V,E), the following statements are equiva-
lent.

1. The graph G is series-parallel.
2. The cone of conservative functions of G is box-TDI.
3. The system 1

2x(C) ≥ 0 for all circuits C of G is box-TDI.

Proof. Since the cone of conservative functions of G is decribed by 1
2x(C) ≥ 0

for all circuits C of G, statement 3 implies statement 2.
To prove that statement 1 implies statement 3, suppose that G is series-

parallel. Then, [15, Theorem 1] asserts that the system x ≥ 0, x(D \ e) ≥ x(e)
for all cuts D of G and e ∈ C is box-TDI. Hence the circuit cone of G is a box-
TDI cone. By Lemma 6, Ccons(G) = −Ccircuit(G)? is box-TDI. By Theorem 1,
it remains to show that the system 1

2x(C) ≥ 0 for all circuits C of G is TDI.
[38, Corollary 22.5a] states that a system Ax ≤ 0 is TDI if and only if the
rows of A form a Hilbert basis. In other words, it remains to show that any
integer vector z in the circuit cone of G is a nonnegative integer combination
of vectors of H = { 12χ

C : C is a circuit of G}. [1, Theorem 1] asserts that, in
graphs with no Petersen minors, if p is an integer vector of the circuit cone
such that p(C) is even for all cuts C of G, then p is a sum of circuits. Since
the Petersen graph contains a K4 minor, [1, Theorem 1] applies to G. Since
2z satisfies the conditions, 2z =

∑
C∈C χ

C for some family C of circuits of G.
Therefore, z =

∑
C∈C

1
2χ

C .
To prove that statement 2 implies statement 1, we show that if the graph G

is not series-parallel, then its cone of conservative functions is not box-TDI. For
e ∈ E, one can see that Ccons(G \ e) and Ccons(G/e) are respectively obtained
by deleting e’s coordinate in Ccons(G)∩ {xe = +∞} and Ccons(G)∩ {xe = 0}.
Hence, taking minors preserves the box-TDIness of the cone of conservative
functions. It remains to prove that Ccons(K4) is not box-TDI. Let us apply
Theorem 2.

The nonequimodular matrix M of Figure 4 is the constraint matrix ob-
tained by considering the inequalities associated with the three circuits formed
by the three internal triangles of K4. By Observation 4, M is face-defining
for Ccons(K4) because 0 and the three conservative functions χ4 + χ5 − χ1,
χ4+χ6−χ2 and χ5+χ6−χ3 are affinely independent, belong to Ccons(K4) and
satisfy Mx = 0. Therefore, by statement 3 of Theorem 2, the cone Ccons(K4)
is not box-TDI.

ut
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32

54

6

M =

 1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1



Fig. 4 The graph K4 and a face-defining matrix M of Ccons(K4).

Note that the coefficients of the system in Proposition 7 are half-integral.
We leave open the question1 of finding a box-TDI system with integer coeffi-
cients, which exists by [38, Theorem 22.6(i)] and Theorem 1.

By planar duality, there is a correspondance between the circuits of a planar
graph and the bonds of its planar dual. This is used in [15] to obtain the box-
TDIness of the standard system describing the cut cone of a series-parallel
graph. Applying planar duality to Proposition 7 provides the following: if the
graph is series-parallel, then 1

2x(B) ≥ 0 for all bonds B is a box-TDI system
describing the polar of the cut cone. This is in fact an equivalence as one
can check that the box-TDIness of the corresponding cone is preserved under
taking minors and that the matrix of Figure 4 is face-defining when G = K4.
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