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• We address recent literature and emphasize to the nine main characteristics that methods used 
to cover temporal-based anomalies  

• We present the DITAN, a predictive modeling approach using an encoder-decoder architecture 
and managing temporality in both implicit and explicit ways  

• We propose a regularization scheme as an immune system to our architecture, to allow 
generalization 

• We define a methodology to automatically derive the model’s hyper-parameters, to enable a 
domain-agnostic functionality 

• We provide a two-stage dynamic threshold technique for DITAN to detect anomalies, directly on 
the testing errors sequence 

• We examine the severity of anomalies, characterizing their root cause as well as similarity on 
units space 

• We evaluate DITAN on six multivariate time series contaminated by point, contextual or joint 
anomalous events and show the benefits of our approach compared to baseline 
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Abstract

We present DITAN, a novel unsupervised domain-agnostic framework for detecting and inter-
preting temporal-based anomalies. It is based on an encoder-decoder architecture with both im-
plicit/explicit attention and adjustable layers/units for predicting normality as regular patterns
in sequential data. A two-stage thresholding methodology with built-in pruning is used to detect
anomalies, while root cause and similarities are interpreted in data and units space. Our approach
is designed to intersect the 9 fundamental characteristics extracted from the union of related works.
We demonstrate the DITAN modules on real-world datasets of 6 multivariate time series contam-
inated by point and contextual temporal-based anomalies at a varying duration. Experiments
show a dominant predictability power of DITAN against the originally proposed models. DITAN
is able to determine critical regions and thus identify anomalous events similarly well. Informative
similarities between anomalous records are interpreted, since almost all similarities in units space
are also verified in data space.

Keywords: Multivariate Time Series, Anomaly Detection, Neural Networks, Generic Normality
Feature Learning, Predictability Modeling

1. Introduction

Recent advances in technology, enable data to travel across a sensoring system from our physical
to the digital world in large amount over time. Such data are recorded in an orderly fashion,
correlated in time, constituting a time series1. Each record in a time series is a vector containing the
sensor values at a specific time step, introducing both temporal and features dimensionality. A time
series with more than one sensor is calledmultivariate, otherwise univariate. However, sensors often
capture records that all or some of their values significantly differ from their expected or normal
behavior. These unexpected values are called temporal-based anomalies or simply anomalies. A
temporal-based anomaly has certain temporal (duration) and features (sensors) resolutions. Figure
1 demonstrates the four possible states of a temporal-based anomaly using three sensors, graphically
illustrated on the anomalous exploration space (AES). In this space, each record is illustrated in
three dimensions with depth and width indicating features and temporal resolution respectively,
while height indicates the contamination magnitude of each sensor value.

From the features aspect, a record can either be contaminated to a subset or to the full-set
of its sensor values. The former case is called subspace anomaly with respect to those sensors,
while the latter one is called fullspace anomaly. In Figure 1, full-space anomalies are depicted
on top right and bottom right, while subspace anomalies are proposed on two out of three and
one out of three features, on top left and bottom left respectively. Although sub-space anomalies
are in the scope of interest of this work, spatial anomalies are not. We indeed assume that each
sensor is a one-dimensional signal and we do not deal with pure spatial anomalies. A full-space
anomaly can be characterized both low and high dimensional features space. If sub-space anomalies
often exhibit evident abnormal characteristics in a low-dimensional space, they become hidden and
unnoticeable in high dimensional space. Hence, the detection of sub-space anomalies require a deep
understanding of the underlying features correlation.

1Note that the techniques discussed in this paper only consider regularly sampled time series with the same
temporal granularity in all dimensions
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Figure 1: Temporal-based anomalies on the anomalous exploration space (AES). Normal values are color-coded in
white, and anomalies in red.

From the temporal aspect, point anomaly is a subspace or fullspace anomaly occurring in an
individual record at a specific time instance. In addition, subsequence anomaly is a joint subspace
or fullspace anomalous behavior of consecutive records in time. In other words, a point anomaly
can be seen as a subsequence anomaly of length (width) one. Hence, the detection of subsequence
or point anomalies requires both context and horizon to be determined. The context and horizon
are windows of consecutive records, where context controls the locality of temporal-anomalies
examined in horizon. Thus, the length of horizon and context are related, in a way that a very far
to the future forecast may require a larger context.

The scale of features and temporal resolution can address local and global anomalies. Intuitively,
large scale will allow to observe global anomalies and finer scales will highlight local ones. Local
can also be seen as contextual anomalies, when abnormality has a context related meaning.

From the magnitude point of view, each sensor value of a record is measured by an anomalous
(severity) score obtained using both features and temporal resolution. The higher the score the
more anomalous the value is. Especially when labels are not available, a threshold value is crucial
to transform the regression problem into binary classification; normal vs. anomalous value. Scores
can either be assessed manually from an expert or in an automatic way using an anomaly detection
method as a tool, called detector for short, which is the objective of this work.

Detection Techniques Features Aspect Temporal Aspect

Model-based (Prediction and Estimation) Multi/Univariate Point / subsequence
Density-based Multi/Univariate Point

Histogram-based Multi/Univariate Point
Dissimilarity-based Multi/univariate Point / subsequence

Discord-based Univariate Sub sequence
Frequency-based Univariate Sub sequence

Information-Theory Univariate Sub sequence

Table 1: From temporal-based anomalies to detection techniques.

In a recent survey [4], seven detection techniques were reviewed for detecting point and/or
subspace univariate and/or multivariate anomalies. These techniques are summarized in Table 1,
concerning the aforementioned characteristics of a temporal-based anomaly. Although histogram-
based techniques are applicable on multivariate anomalies, they do not support sub sequence
anomalies. Also, density-based, discord-based, frequency-based and information theory methods
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are only applicable on univariate anomalies and therefore even if applied on a multivariate envi-
ronment they will not consider any dependency between features. On the other hand, model-based
and dissimilarity-based techniques are applicable on point or subsequence multivariate anoma-
lies. Model-based techniques enable to learn the underlying characteristics of normality, and
dissimilarity-based techniques, either apply pairwise comparison to detect point anomalies or use a
reference of normality to detect subsequence anomalies. Yet, a model requires a deep understanding
of the feature dependencies in a multivariate environment, usually composed by both relevant and
irrelevant to the detection process features. Manually covering linear and non-linear dependencies
is proved to be a difficult problem for traditional model-based methods, since they additionally
require a feature-selection-based or a subspace-based technique. To this direction, deep learning
for anomaly detection, deep anomaly detection for short, aims at automatically learning feature
representations specifically tailored for anomaly detection. A recent comparative study [1] stresses
that deep learning methods are better choice when datasets require large training set or contami-
nated by contextual anomalies, while in majority conventional and ML ones considered a similarly
good choice with no significance difference across their evaluated datasets.

Category Sub Categories Model/Scoring

Deep Learning for Feature Extraction - Fully Separated
Learning Feature Representations of Normality Generic/Measure-dependent Coupled
End-to-end Anomaly Score Learning - Fully Joint

Table 2: Model-based deep anomaly detection Frameworks.

Another recent survey [24] shows the efficiency of deep anomaly detection methods, through a
comprehensive review of model-based techniques. Authors reviewed twelve diverse modeling per-
spectives on harnessing deep learning techniques for anomaly detection, categorized under three
principle frameworks as shown in Table 2. In the deep learning for feature extraction category, a
neural network is used as feature extractor and an independent method is used for anomaly scor-
ing. The disjoint behavior between the two modules leads to less interpretable and sub-optimal
scores. In end-to-end anomaly score learning, a neural network aims to learn scalar anomaly scores
simultaneously with feature extraction. However, this framework requires some form of labels
or prior knowledge on anomalies and thus may not be able to generalize. A coupled relation of
feature learning with anomaly scoring, rather than fully separated or fully joint, is implemented
on learning representations of normality in two different ways, measure-dependent or generic. In
measure-dependent, the feature representations are optimized for a particular (limited) type of
anomaly using existing shallow anomaly measurements (e.g. distance-based, cluster-based), while
in generic, the learning process is forced to capture the key underlying data regularities. Although
the generic way is not particularly designed for anomaly detection, the learnt representations sup-
pose to capture the varieties of normality (regularities), resulting interpretable anomaly scores
whose magnitude is driven by the model itself.

In this paper, we present DITAN, a generic framework for normality feature learning. The
main innovative features are the following. (a) It is domain agnostic, applicable on predictable
multivariate time series. (b) Normality in DITAN is expressed as regular patterns stored in a
compressed latent space. (c) Its inference mechanism is armed of both implicit and explicit atten-
tions. (d) It incorporates a dynamic threshold, optimized on the testing errors per sensor. (e) It
provides anomaly interpretation, based on their severity, root cause and similarity aspects. More
specifically the contributions are the following:

• We address recent literature and emphasize to the nine main characteristics that methods
used to cover temporal-based anomalies (Section 2)

• We stress how different pre-processing operations are applied to time series (Section 3.1)

• We present the DITAN, a predictive modeling approach using an encoder-decoder architec-
ture and managing temporality in both implicit and explicit ways (Section 3.2)

• We propose a regularization scheme as an immune system to our architecture, to allow
generalization (Section 3.3)
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• We define a methodology to automatically derive the model’s hyper-parameters, to enable a
domain-agnostic functionality (Section 3.4)

• We provide a two-stage dynamic threshold technique for DITAN to detect anomalies in the
form of critical regions, directly on the testing errors sequence (Section 3.5)

• We examine the severity of anomalies, characterizing their root cause as well as similarity on
units space (Section 3.6)

• We evaluate DITAN on six multivariate time series contaminated by point, contextual or joint
anomalous events and show the benefits of our approach compared to baseline (Section 4)

DITAN is built upon three assumptions. (1) time series data are predictable: although mul-
tivariate time series data are sequentially placed records, the values of these records may come
from a random generator. Such a case is not in the scope of this framework, because records data
are useless to predict future ones and so these data are considered unpredictable ; (2) normality
is identical to regularity, since we are under the generic normality feature learning, and even fur-
ther and ; (3) irregular records are temporally less predictable than regular ones, since we use a
predictability modeling perspective. Benefits and limitations of the main methodological contri-
butions in DITAN are presented in Table 3, where the first column points out sections providing
a detailed description and analysis, and briefly highlighted here: in the training phase, we use
an attention mechanism to better memorize temporal frames across series, at the cost of a higher
number of model parameters. We regularize these parameters to avoid over-fitting, using more
training epochs and a slower convergence. The model parameters and number of epochs are then
optimized faceted to the given series. Detection of variable-length temporal-based anomalies is
supported using critical regions with built-in pruning, at the cost of false negatives in terms of
sub-capturing. The relative similarity of the detected-anomalies between sensors is controled by
the non-costly root cause formula, and an optimization-based one is introduced to interpret these
anomalies from model perspective as well.

.

Section Technique Advantage Disadvantage

3.2 ED with Attention Temporal Information More (hyper) parameters
Time prone

3.3 Regularization Avoid over-fitting More epochs required
(slow converge)

3.4 HP Optimization Dynamic
Domain-agnostic
Structure

Many Iterations (runs)
Time Prone

3.5 Critical Regions Support variable length anomalies Prone to FN in the form
of miss-alignment

3.5 Built-in Pruning Reduce False Negatives (FN) HP Optimization required
Time prone

3.6 Root Cause Relative severity across sensors -
3.6 Internal Similarity Model Perspective Interpretation Optimal Cluster Selection

Table 3: Pros and cons of the core technical choices of DITAN.

The rest of the paper is organized as follows: we first discuss related works and their limitations
(Section 2). We then describe the formal foundations for the discovery and interpretation of
temporal-based anomalies (Section 3). Next, the effectiveness of our approach is exhaustively
evaluated (Section 4). Finally, conclusion and future works are discussed (Section 6).

2. State-of-the-art

The four (deep) model perspectives of the generic normality feature learning framework as pro-
posed in [24] are summarized in Table 4. Auto encoder (AE) and generative adversarial network
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(GAN) use similar paradigms to detect anomalies: they both use a low-dimensional space to re-
construct or generate the input records, so that values of anomalous records cannot be accurately
estimated. In addition, although self-supervised classification (SSC) and predictability modeling
(PM) are both self-supervised perspectives, their semantics are not similar. In predictability mod-
eling, normality is examined through mapping input records to outputs, which are future records.
Values of an upcoming anomaly will deviate from the ones in the predicted normality. In self-
supervised classification, normality is expressed by several classifiers learnt to identify inconsistent
input records. It is also remarkable that predictability modeling is the only perspective at which
temporal aspect is strongly embedded to its mapping (learning) process.

Model Perspective Anomaly Definition

Auto-encoders (AE) hardly to be reconstructed from compressed space
Generative Adversarial Networks (GAN) hardly to be generated from latent feature space

Predictability Modeling (PM) temporally less predictable than normal ones
Self-supervised Classification (SSC) less consistent to classifiers

Table 4: The model perspectives of the generic normality feature learning framework.

The objective, common for all model perspectives, is to learn the feature representations in the
form of general regularities. Since a model is composed of artificial neural networks, regularities
are expressed through weights Θ,W between units. During the learning process, these weights are
learnt by minimizing a loss function:

Θ∗,W ∗ = arg min
Θ,W

∑

c∈C
l(ψW (φΘ(c)), h) (1)

Here, a context c is a sequence of one or more consecutive multivariate records, representing
the input data. A function φΘ, parametrized by weights θ, maps a context c ∈ C from original
space onto a latent representation z ∈ Z. A surrogate learning task ψW , parametrized by weights
W, operates on latent space and is dedicated to enforce the learning of underlying regularities,
mapping the z to a horizon ĥ ∈ H back to original space. A horizon ĥ is a sequence of one or more
consecutive multivariate records, representing the generated output data. Next, a loss function
l relative to the underlying modeling approach compares ĥ to the corresponding actual data h.
Higher weights are supposed to describe one or more normal patterns. However, a model trained
in an unsupervised setting enables the presence of anomalies in the training sequence. This may
force the model to additionally learn irregularities, since anomalous records can also create some
strong weights. To avoid such situations, a good practice is to apply unsupervised settings when
anomaly ratio is up to 5%, otherwise apply semi-supervised settings using pure normal data.

Since a model is forced to learn regularities over a bulk of normal records, the aforementioned
model perspectives can only forecast normality. The forecasting process of this framework utilizes
the trained weights W ∗,Θ∗ along with mapping functions to construct any horizon ĥ given a
context c, i.e ĥ = ψW∗(φΘ∗(c)). The relation of the records between ĥ and c is controlled by the
forecasting protocol, either estimation-based or prediction-based. In estimation-based protocol
(AE, GAN and SSC ), records in ĥ correspond one by one to c, indicating their estimated normal
behavior. In prediction-based protocol (PM ), records in ĥ are all succeeding to the records in c,
indicating the predicted normal behavior of a future sequence. Intuitively, the mapping from c
to ĥ can be seen as the inductive construction of IF-Then rules, where c represents the IF and
ĥ represents the Then conditions. The rules are also called temporal-based, for prediction-based
protocol. Thus, a frequent rule is expected to contain regular patterns addressed by the model to
strong weights.

The goodness of a horizon ĥ is assessed using a scoring function f, i.e. score(h) = f(c, φΘ∗ , ψW∗),
where h is equal to c in estimation-based protocol and equal to succeeding record/s of c in
prediction-based protocol. The emergence of efficient temporal-based multivariate deep anomaly
detection methods has recently led to a large variety of researches, under the aforementioned model
perspectives. These model perspectives are also called meta-networks, because they are armed by
one or more basic, feed-forward, convolutional or recurrent, neural networks.
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2.1. Autoencoders
The Auto Encoder (AE) approach aims to learn some low-dimensional feature representation

space from which the given records can be well reconstructed, assuming that normal records can
be better reconstructed from compressed space than anomalous ones. There is a large family of
reconstruction meta-networks with plenty of recent instantiations (table 5).

Meta Network Type Basic Network References

AE

Multilayer MLP [2]

Recurrent
LSTM [18, 19, 27]
BiLSTM [36]

Conv & Recurrent
CNN, ConvLSTM [35]
CNN, LSTM [33]

Ensemble AE Recurrent LSTM [13]
Denoising AE Recurrent BiLSTM [20]

Variational AE Recurrent
GRU [28]
BiLSTM [26, 25, 34]

Table 5: Recent literature instantiations on AE.

An AE is composed of two identical and symmetrical networks: an encoder E and a decoder
D, trained with a collaborative objective. E learns to map the input data c onto a low-dimensional
feature representation z, while D attempts to find ĥ ≈ h = c from z. Hence, the objective of E
and D is to identically reconstruct the input data with D(E(c)), by minimizing the reconstruction
error (RE ) loss function. Both networks are composed by one or more basic networks. A standard
AE architecture is instantiated in many works (first line in table 5) to reconstruct the records of
a multivariate time series. From these, [2] used only feed forward (MLP, CNN) layers. However,
conventional (feed-forward) neural networks make the assumption that data is independent in time,
which does not hold for sequential data [25] , such as time series. Therefore, recurrent networks
are often used. Specifically, in [13, 18, 19, 27, 36] authors used only recurrent (LSTM, BiLSTM,
GRU) layers to capture the temporal aspect in data. [33, 35] used both feed forward (CNN) and
recurrent (LSTM) layers to capture both spatial and temporal patterns. That is because in some
cases features are all-to-all correlated formulating a spatial terrain (e.g. image pixels). Particularly,
in [35] both encoder and decoder consist of CNN layers, connected through an additive attention
based ConvLSTM layer, to adaptively select relevant hidden states across different time steps.
On the other hand, authors in [33] used two networks connected in sequence through a window
feature sequence layer . Firstly, CNN layers are employed to extract spatial feature maps from
data. Then, these features are reconstructed using LSTM layers in both encoder and decoder,
capturing potential temporal relevance. An ensemble of standard AEs architecture is proposed
in [13], where each AE is trained independently and encourages sparsity in the LSTM layers
by randomly removing some connections. An interesting modification in the learning process is
proposed by [2], where authors replaced the standard learning process with an adversarial one to
increase robustness to small anomalies.

Denoising AE (DAE) learn representations that are robust to small variations, by forcing
the hidden layers to retrieve more robust features and prevent from simply learning the identity.
Authors in [20] used a denoising AE with bidirectional LSTM (BiLSTM) layers to learn robust
temporal patterns in both positive and negative directions of the time axis.

Some authors also suggested a Variational AE (VAE) based approach, introducing a regular-
ization into the representation space by encoding records using a prior parametrized distribution
over the latent space (fourth line in table 5). Basically, these works used only recurrent (GRU and
BiLSTM) layers, from which [25] employed a self-attention mechanism to improve the encoding-
decoding process and [34] presented some interesting customizations. [34] extended VAE architec-
ture to improve modeling capabilities of normal data, accompanied by a loss function which takes
into account these characteristics. BiLSTM layers were used to construct a re-encoder layer after
a VAE network, to enable the extraction of more data features including both original and latent
space. A constraint network was then stacked to limit model’s ability to reconstruct abnormal
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data. Although feed forward layers are not ideal for capturing temporal information, the network
captured multiple local temporal dependencies by applying a series of convolutions (encoder) and
deconvolutions (decoder) with different filter sizes over a windowed time series.The difference in
these models is that VAE instantiations are stochastic generative models that can give calibrated
probabilities, while AE instantiations are deterministic discriminative models that do not have a
probabilistic foundation.

The simplicity of reconstruction forces the vast majority of models to assess an anomaly score
using its reconstruction error over the original feature space, i.e score(h) = ||h − ĥ||. In [35], the
anomaly score is defined as the number of poorly reconstructed pairwise correlations, using a pre-
defined threshold, whereas in [13] it is defined as the median of its N reconstruction errors over an
ensemble architecture. In [19], Maximum Likelihood Estimation is applied to estimate the param-
eters µ and Σ of a Normal distribution. [36] as for them proposed a division relation, considering
both forward ĥ and backward ĉ reconstruction terms, due to their bi-directional architecture:

score(h) =
((||h− ĥ||2 + ||c− ĉ||2)/2− µ)2

2σ2
(2)

In [19], parameters are combined in a multiplicative way;

score(h) = (||h− ĥ|| − µ)>Σ−1(||h− ĥ|| − µ) (3)

Other studies [25] make use the advantages of their variational architecture to assess an anomaly
score based on the reconstruction probability using Sequential Monte Carlo of L iterations:

score(h) = − 1

L

L∑

l=1

log(p(h|µ(l)
h , σ

(l)
h )) (4)

In [26], an anomaly score is assessed using only its (variational) latent representation using a
binary (K-means, Spectral and Hierarchical) clustering on µz as well as the computation of the
median Wasserstein distance in both µz and Σz. If they might share the same mean, the variability
of anomalous records relatively to normal ones is likely to be higher

In [34], an anomaly score is computed as the normalized addition between the original and
latent reconstruction terms, constrained by complementary weights b:

score(h) = norm(b||h− ĥ||1 + (1− b)||z − ẑ||1) (5)

Detecting anomalies by thresholding anomaly scores is a very different issue. Several AE models
use a trivial approach to determine a threshold classifying records into normal or anomalous. A
static threshold is deployed in [34] using a fixed reconstruction error value and in [27] using a fixed
quantile over the reconstruction errors. In [27] the quantile is updated over time during the testing
phase to the anomaly score maximizing the accuracy. A hyperparameter β can also be introduced
into the threshold computation, shifting the median of reconstruction errors [20] or the maximum
of the poorly reconstructed errors in validation set [35]. The Extreme Value Theory (EVT) is used
in [28] to determine a threshold over reconstruction errors. The advantage of EVT is that it makes
no assumption on data distribution when finding extreme values. Similarly, [18] is based on the
central limit theorem over reconstruction losses to construct a threshold. Basically, the notion of
quantile can be extrapolated using EVT, when there is only normal data.

Thresholds can also be computed using performance measures. [19] selected the threshold
maximizing the precision (P) - recall (R) relation over the likelihood values
Some methods do not search for a specific threshold at all. In [26, 25] authors proposed a set
of thresholds according to the AUC of the ROC curve. Similarly, [13] used both AUC-PR and
AUC-ROC to include all possible thresholds. As an alternate to thresholding, anomalies in [36]
(respectively [33]) are detected using a Gaussian Segmentation Model (resp. a softmax classifier).

Apart from scoring and detecting anomalies, only three of the aforementioned instantiations
[28, 35] investigate their characteristics, reporting the root cause of each anomalous record as the
top-k sub scores of its features [35] or as its features reconstruction probabilities in ascending order
[28], assuming that the most anomalous features can provide sufficient clues to understand and
troubleshoot the detected anomaly. Note that [35] additionally reported the severity level as the
duration (length) of subsequence anomalies.
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2.2. GANs
Generative Adversarial Networks (GAN) aim to learn a generative model capturing the nor-

mality of the given records, assuming that normal records can be better generated from the latent
space than anomalous ones. Table 6) gives an overview of some models using GANs.

Meta Network Type Basic Network References
GAN Recurrent LSTM [15]

AE-GAN
Convolutional CNN [37]
Convolutional and Recurrent BiLSTM, CNN [7]
Multilayer MLP [31]

VAE-GAN Recurrent LSTM [23]

AE-E-GAN
Convolutional and Recurrent CNN, ConvLSTM [12]
Convolutional CNN [10]

Table 6: Recent literature instantiations on GAN.

A standard GAN is composed of two networks trained simultaneously using adversarial objec-
tives. A generator G network takes as input a noise vector z randomly selected from a latent space
Z to generate a fixed size subsequence of synthetic records ĥ ≈ h = c. These records are supposed
to be realistic, capturing the actual c data distributions. To this direction, a discriminator D
network takes as input either actual c either synthetic h records to estimate a prediction score.
The objective of G is to fool D that its synthetic records are real, while the objective of D is to
correctly distinguish between synthetic and actual data. Standard GAN architectures are proposed
in [15] to identically generate the records of a multivariate time series. A recent study [14] suggests
that recurrent (LSTM) layers are more suitable for the learning procedure of generative networks
over complex time series data, due to their memory blocks. So [15] used a multivariate model with
only LSTM layers for both generator and discriminator. If standard GANs architectures learn to
generate data from a latent space using the generator, they do not learn the inverse mapping G−1

back to the latent space.
Many works introduced an encoder E that learns G−1. Hence, the generator takes the role of a

decoder, formulating a new network G composed of an encoder GE and decoder GD, interacting to
minimize a reconstruction (a.k.a. apparent) loss, i.e. a distance measure between actual records h
and reconstructed (generated) ones ĥ on the original space. GE and GD are trained simultaneously
or in a post-hoc manner to maintain the training complexity. In [7, 31, 37] the generator is a
standard AE network, to simultaneously map from the latent space to data GD(z) and vice versa
GE(c). In [23], the generator is a variational AE to additionally learn a distribution in the latent
space Z. A more advanced architecture is proposed in [10, 12]. Authors introduced an additional
encoder E’ after a standard AE generator, to enforce similar inputs to lie close to each other
in both original and latent space. This variation introduces a new loss term for G, the latent
loss, representing the distance between z and ẑ, where ẑ is the encoded bottleneck representation
of ĥ. In [10], authors introduced a binary cross entropy term over the prediction scores of the
discriminator on h in the loss function of G.
The one and only task of the discriminator is to distinguish between actual h and generated
ĥ records. If [10, 31, 37] used MLP, [7, 12, 23] retained temporal information. In [23] LSTM
layers are used to implicitly learn temporality, while in [7] BiLSTM (respectively CNN) layers are
defined for G (resp. D), with the aim of capturing local temporal features. In [12], an explicit
attention layer is introduced through the use of a smoothed attention mechanism over an additional
ConvLSTM layer along CNN layers, to jointly capture the spatial patterns and temporality.

A fundamental problem of GAN architectures, namely mode collapse, is that the generator
tends to learn only a small fraction of data variability, such that it cannot perfectly converge to
the actual distribution. This is mainly because the generator is reluctant to produce records that
capture other modes in data beyond the ones which fool the discriminator. To overcome this
limitation, [7, 12] applied Wasserstein loss as the adversarial loss. In this way, the generator is
forced to not only focus on a subset of distribution and thus to theoretically converge to the actual
distribution.
The purpose of GAN is to reconstruct the input time series. However, an adversarial loss alone
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cannot guarantee mapping an individual record to a desired latent space from which will be then
mapped to its reconstruction. To reduce the search space of the mapping function, [7] adapted
a cycle consistency loss to time series reconstruction, introducing two critics Ch and Cz to the
discriminator, where, Ch is an indicator of how real the actual or generated records are, and Cz
measures the goodness of the mapping into a latent space. Interestingly, they concluded that
adding backward consistency loss did not notably improve the performance.

The architecture preferences also affect the anomaly scoring methodology. In standard GAN
architectures, G is fed with a random vector z to generate a horizon ĥ. It is required a series of λ
back propagation steps to update the parameters of G until ĥ is close to the input context. Thus
an anomaly score can only be determined after λ iterations.

In [15], both generator and discrimination losses are considered. The former term measures
the reconstruction error in the original space, while the latter measures the error in a rich feature
space of last intermediate layer f in discriminator:

score(h) = (1− α)||h−G(zλ)||1 + α||f(h)− f(G(zλ))||1 (6)

The addition of an encoder GE in the generator of a GAN architecture is useful also in the
anomaly scoring process. Such an architecture does not require λ back propagation steps. Instead,
GE is handed directly by the context c to estimate a latent representation GE(c), which is then
fed to GD to generate a horizon ĥ = GD(GE(c)). For example, [31] used both terms proposed
in Eq. 6 and introduced scalars nh, nf , κ, where, nh is the number of sensor values of the input
record h, nf is the number of neurons of the f layer and κ is a coefficient to adjust the weights of
the reconstruction and features losses:

score(h) =
κ

nh
||h−GD(GE(c))||2 +

1

nf
||f(h)− f(GD(GE(c)))||2 (7)

[37] only retained the first error term of Eq. 7 to define their loss function.
A relatively low prediction score is expected for the input records which do not conform to the

distribution of normal data. To this direction, reconstruction error along with the prediction score
of discriminator for the actual data were used in [23]:

score(h) = (1− α)||h−GD(GE(c))|| − αD(h) (8)

In [7], authors used reconstruction error along with the critic Ch of their discriminator as an
indicator of how real the actual input record is. Due to the contractive definition of the anomaly
score, they standardized them into z-scores Z. Two scoring functions were used and for example:

score(h) = αZ(||h−GD(GE(h))||)� Z(Ch(h)) (9)

The addition of an encoder E’ after the generator of a GAN architecture is useful also in the
anomaly scoring process. Such an architecture introduces the error between the latent representa-
tion z of h and the reconstructed ẑ of ĥ. For example [10] defined a score taking into account the
reconstruction errors in both original (h, ĥ) and latent (z, ẑ) spaces:

score(h) = α||h−GD(GE(h))||+ (1− α)||GE(h)− E′(GD(GE(h)))||2 (10)

In [12], the anomaly score is defined as the number of poorly reconstructed pairwise correlation,
using a predefined threshold, considering the reconstruction in both original and latent space, to
be less sensitive to severe anomalies.

Detecting anomalous records is usually related to thresholding anomaly scores. A dynamic
thresholding methodology can be proposed, where a sensor value is considered anomalous if its
anomaly score is higher than the prediction score of the discriminator for its actual sensor value.
Static threshold are also proposed, extracted using a fixed quantile over the reconstruction errors
in training sequences [15], using a locally adaptive approach [7], or even optimized [12, 23].

Alternatively, some methods used no threshold at all. Anomaly scores in [31, 37] are reported in
heat maps, where sensor values highlighted over time, rooting experts attention to the anomalous
portions. In [10], authors simply reported the raw anomaly scores, in which the closer to zero the
anomaly score is, the more normal the record is considered.
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A further exploration is examined over the detected anomalies by [7], where authors noticed
that the use of sliding windows may produce many false positives. False positives are mitigated
in [7] by applying an anomaly pruning approach, inspired by [9]. In that approach each window
is first addressed by its maximum anomaly score and then a decrease percent over the descending
scores is computed, re-classifying as normal each window that does not exceed a certain threshold.
Beyond filtering, root causes are examined in [12], where the authors automatically extracted the
number of root causes using an elbow method on the anomaly scores distribution, as opposed to
[35] which fixed the number of root causes in three. With this approach authors aim to find the
point where the amount of errors become very small and close to each other.

2.3. Self Supervised Classification
Few more estimation-based models are proposed using Self Supervised Classification (SSC ).

This approach learns representations of normality by building classification models in a self-
supervised manner and identifies records that are inconsistent to these models as anomalies. In
previous years, shallow methods have been introduced based on cross-feature analysis and fea-
ture models [30], in which each model evaluates a sensor value of a record with respect to the
rest of its sensor values. Hence, the consistency of a record is measured either as the average
prediction results or as the majority voting of binary decisions [30] given the models across all
features. Recently, deep methods [8] focused on capturing spatial information on images and used
transformation-based feature augmentation to build different models. Formally, a context c gets
augmented by T different transformations, parsed through a function φ to result a latent represen-
tation per transformation {z(1), .., z(T )}. The latent representations are then fed to a multi-class
classifier ψ to result the corresponding horizons {ĥ(1), .., ĥ(T )}. A standard cross entropy loss is
then applied over (ĥ(j), h(j)) pairs, where h(j) is a one-hot encoding of the synthetic class for records
augmented using the transformation operation T(j). In [8], the classification scores resulting from
ψ are aggregated using a simple average associated with different T(j) to compute the anomaly
score.

Although the aforementioned models focus on image data, there are some slight variations ap-
plicable on broad type of data [3, 11]. Instead of using geometric or audio-inspired transformations,
[3] used a different feature-level transformations to map data into a finite number of subspaces,
before learning a feature mapping that maximizes the difference between inter-class and intra-
class separations. Fully connected layers and resulting softmax classification scores over subspace
transformations were used to assess anomaly scores. In [11], authors proposed an autoML pipeline
consisting of three key parts: auto representation learning, auto anomaly score calculation and
auto negative sample generation. Here, auto stands for simultaneously Bayesian optimization of
hyper-parameters along with anomaly detection in the latent space using Gaussian Mixture Model
to characterize the level of abnormality.

2.4. Predictability Modeling
There are many natural phenomena that require a prediction algorithm for answering important

questions, such as estimating future population variations, predicting the orbits of astronomical
objects or predicting the occurrence of seismic waves. Predictability Modeling (PM) approach aims
to learn feature representations by predicting output data, succeeding to the input, with a possible
overlapping, assuming that normal records are temporally more predictable than anomalous ones.

To our knowledge, only few such methods were recently introduced [9, 21, 29].
Formally, a context c is given to an encoder E to result a latent representation z, fed to

a decoder D to result a constructed horizon ĥ, where ĥ ≈ h 6= c. So, PM uses an Encoder-
Decoder (ED) architecture to predict a single or a sequence of records using a sequence to point
(S2P) or a sequence to sequence (S2S) learning process respectively. It exhibits a complementary
approach to AE, since AE only captures the case of input data reconstruction at which h = c.
An ED architecture is proposed in [21, 29] using convolutional layers with automatically derived
hyper-parameters via grid-search over a series of extensive experiments [21] or over an augmented
with synthetic anomalies validation set [29]. In [21] authors learnt to predict a current record
using a sequence of previous (prior) records, in S2P manner, by minimizing the regression loss.
In [29] a S2S learning process is employed, learn to predict both current and previous records
from the prior only. Authors in [29] introduced a reconstruction task to the one decoder. This
mapping choice enables to minimize a composite loss function, which takes into account the relative
importance of reconstruction and regression errors. Essentially, only the first part of ĥ is used in
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the reconstruction error, while the entire ĥ is used in the regression error. To this point, against to
the superior performance of LSTM on capturing temporal information, we notice a literature gap
in predictability modeling at employing ED using recurrent (e.g. LSTM, BiLSTM, GRU) layers.
A stand-alone LSTM instantiation with fixed hyper-parameters has been recently proposed in [9],
where spacecraft anomalies are predicted in S2P manner by minimizing the regression loss.

Nonetheless, outside the scope of anomaly detection, there is recent literature under PM which
uses an ED architecture with recurrent layers and an explicit attention mechanism. In [5], a S2S
learning process is developed for multi-step prediction, using BiLSTM layers to encode sequential
input data in both directions, a temporal attention layer and LSTM layers to decode the hidden
representation. Several real-world problems have been addressed using these methods. A common
conclusion of these studies is that an attention mechanism can effectively improve the model per-
formance, since the prediction ability gradually degrades as the length of input data increases.

Once a prediction is made, it is necessary to assess the anomaly score. The actual horizon h is
scored as the L2-norm [21] (or L1-norm [9]) discrepancy from its predicted horizon ĥ, formulating
the regression error. Since h represents a single record, the scores of K consecutive records are
aggregated to assess an anomaly score to a fixed-length subsequence. A statistical approach was
then proposed [9] to score dynamic-length subsequence records:

score(e(i)
seq) =

max(e
(i)
seq)− ε

µ(es) + σ(es)
(11)

where es is a one-dimensional vector appending horizon scores and smoothed using an Ex-
ponentially Weight Moving Average (EWMA), ε = argmax(µ(es) + kσ(es)) is a threshold value,
where k is an ordered set of positive values representing the number of standard deviations over es
and eseq is an arbitrary-length subsequence of consecutive smoothed scores from es which exceed
the ε value. Finally, i refers to the sensor (feature) dimension in a multivariate environment.

A composite approach is proposed in [29], where a reconstruction and a regression error are
defined as metrics for evaluating the degree of anomaly of an actual horizon h. Both metrics use
Frobenius norm to measure the deviation between h and its predicted horizon ĥ. Here, reconstruc-
tion refers to the first p records, while regression addresses all p+q records of h (Eq. 12). Since
h represents a subsequence of records, the average of its Krec and Kreg scores were respectively
used to assess a reconstruction and regression score per record, where K indicates the number of
horizons that the record of interest appears into, as a result of overlapping sliding windows.

scorerec(h) =
∑

0≤i<p
||hik − ĥik||F and scorereg(h) =

∑

0≤i<p+q
||hik − ĥik||F (12)

The detection of an anomalous point or subsequence over the derived anomaly scores is usually
a result of a threshold value. A fixed-value is determined in [21, 29], either empirically [21] or
as the maximum regression error in the training sequence [29]. A dynamic one is determined in
[9], to result a set of anomalous subsequences Eseq from the smoothed scores es. In addition,
authors noticed that the precision of detection heavily depends on the amount of data used to set
a threshold. They thus proposed a pruning mechanism to mitigate False Positives (FP), by re-
examining the abnormality of subsequences in Eseq. To this direction, a vector emax is constructed
as a result of appending the sorted Eseq along with the maximum score in es, where Eseq is sorted
in descending order based on the maximum error of each eseq ∈ Eseq. Then, a vector d is computed
by applying a percent decrease on emax. The anomalous subsequences whose score in d exceeds a
minimum decrease percentage p remain anomalous, and are reclassified as normal otherwise.

2.5. Analysis and Limitations
In this paper, we examine top-notch instantiations under the Generic Normality Feature Learn-

ing framework for detecting anomalies over multivariate time series. Due to the multitude of (deep)
model perspectives, we considered recent studies [4, 14, 24] to ensure our broadness on this topic.
The key concept on the generic nature of this framework is at its objective function, according to
which a model is forced to capture the underlying data regularities. Thus, the only assumption to
empower anomaly detection is that normality is identical to regularity, without the need for prior
knowledge over a particular anomaly measure.

We report the nine characteristics addressed by the aforementioned models to support temporal-
based anomalies. Specifically, these characteristics are aggregated along with their corresponding
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references in two groups, the Temporal Support (table 7) and the Anomaly Support (table 8). Note
that we only consider methods that exhibit at least one temporal characteristic.

2.5.1. Temporal Support
A model requires a forecasting protocol to determine the mapping process from context to

horizon, in the form of implicit IF-Then rules. The vast majority of methods use the estimation-
based protocol to self-map current records, elaborating temporal information limited to the present.
The remaining models use the prediction-based protocol to cross-map the current records to future
records, elaborating an advanced temporal relation along time.

References Prediction-based Implicit Explicit Dynamic
Protocol Attention Attention Structure

[7, 13, 15, 18, 19, 20] 7 3 7 7

[23, 26, 27, 28, 33, 34, 36]
[25] 7 3 3 7

[12, 35] 7 7 3 7

[21, 29] 3 7 7 3

[9] 3 3 7 7

Table 7: The fundamental characteristics of a temporal-based Model

It also requires an architecture that pays both implicit and explicit attention to the temporal
information. An implicit attention is employed using a gating mechanism to control and filter the
temporal information stored in the model. LSTM or GRU recurrent layers are used to learn an
inference relation type from context c to horizon h (i.e. If → Then), or an equivalence relation
type (i.e. If ⇔ Then) taking into account their bi-directional inference. The recurrent layers in
many cases are used to formulate encoders and decoders, learning a compressed representation of
the underlying regularities into a latent space. Many instantiations exhibit an explicit attention
to distribute weights over the encoder results, such that the decoder is enabled to subjectively pay
attention to more informative parts of the encoded information.

The hyper-parameters of an architecture control the goodness of generalization over the un-
derlying regularities and thus the forecasting precision. To this direction, the final architecture
preferences have to be tailored to the problem (domain) features, resulting a model with dynamic
structure. Although the majority of models use manually selected hyper-parameters, few of them
automatically derived them.

2.5.2. Anomaly Support
A trained model, initialized considering Table 7, is then used to detect a temporal-based

anomaly as the records which exhibit an irregular representation with respect to the learnt ones.
The context representation is evaluated using reconstruction error (c = h), and the horizon rep-
resentation using regression error (c 6= h). Both errors measure the severity of irregularity as the
distance between actual and predicted values in a feature space. The vast majority of instantiations
apply distance function on the original feature space (OFS ), while in few cases a latent feature
space (LFS ) is considered to be less sensitive to severe anomalies.

The severity of irregularity is the model’s confidence of how abnormal a sequence of record(s)
is. The higher the error value, the more abnormal it is considered. Since a model learns a general
representation of regularities, it is practically impossible to result zero error, even for records
that exhibit a regular pattern. Hence, several methods proposed a threshold methodology to
determine up to what error value the record(s) are considered normal. Only few of them derives
that in a dynamic manner, considering the forecast statistics (in either training or testing phase)
to calibrate that threshold value as low as possible to avoid False Negatives, reminding that a low
valued threshold may introduce additional False Positives (FP). In this case, an anomaly pruning
methodology can be proposed to mitigate FP.

The interpretation of anomalies is not a strictly defined terminology. In recent methods it
is implemented in terms of root cause and severity level. The former refers to the features that
contributed the most to classify a record as anomalous, while the latter refers to its duration.
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References RecE RegE DynT AnoP AnoI

[13, 18, 19, 23, 25, 33, 36] OFS 7 7 7 7

[28] OFS 7 7 7 3

[7] OFS 7 7 3 7

[20, 27] OFS 7 3 7 7

[35] OFS 7 3 7 3

[15, 34] OFS/LFS 7 7 7 7

[12] OFS/LFS 7 7 7 3

[26] LFS 7 7 7 7

[21] 7 OFS 7 7 7

[9] 7 OFS 3 3 7

[29] OFS OFS 7 7 7

Table 8: Characteristics of a temporal-based anomaly detection (RecE: Reconstruction error ; RegE : Regression
error, DynT : Dynamic threshold, AnoP: Anomaly pruning ; AnoI : Anomaly interpretation)

2.5.3. Limitations
Tables 7 and 8 summarize the limitations of the recent literature. None of the methods is able

to support all the nine characteristics, and we consider as a baseline the work in [9]. Our work,
aims to upgrade old components, by introducing new ones and modifications to the aforementioned
scientific directions. In the major changes is included: (i) an advanced back-bone model, inspired
by [29], to replace the 2-LSTM initial layers ; (ii) the use of Bayes’ theorem to optimize the depth
of LSTM layers along with other hyper-parameters ; (iii) an alternative unsupervised thresholding
methodology, which first allocate critical regions over the testing errors and then robustly determine
the degrees of freedom of normality in them ; (iv) the interpretation of the anomalies from both
data and model features space. These and more are addressed one by one in the following sections,
highlighting their importance and setting up their role.

3. The DITAN Framework

The task of detecting anomalous records can be seen as a many to one forecasting scenario, in
which the sensor values of a record at time t is estimated given a temporal window of records until
time t-1. Hence, both temporal and feature information is crucial. It is required an architecture
which learns a latent representation of normality, through mapping temporal windows to single
records with respect to time. This results a way to build the feature values of a record and compare
them with its actual ones. Since construction is based on the normality that has been lernt, the
higher the deviation between estimated and actual values of a record, the more the record is
considered anomalous.

The high level steps of our framework are graphically illustrated in Figure 2. Section 3.1 stresses
the importance of pre-processing time series data in a favorable format for such an architecture.
Section 3.2 extensively analyzes the memorization mechanism of DITAN. We strongly recommend
in section 3.3 several generalization techniques, that when combined can greatly increase the degrees
of freedom of normality. This section also sheds light on the importance of batch size, proposing
a methodology to properly select the period of updating and resetting weights during the learning
process. Hyper-parameters of this framework as well as the optimizer used to configure them are
presented in section 3.4. Section 3.5, introduces a robust methodology to construct a threshold
allowing the classification of feature values into normal or anomalous. The severity of anomalies
as well as their interpretation are detailed in section 3.6.

3.1. Time series Pre-processing
Preprocessing is an integral step in machine learning. The data quality and the useful informa-

tion that can be derived, directly affect the ability of a model to learn. Therefore, it is important
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Figure 2: An overview of the DITAN Framework

to pre-process data in both temporal and features aspect, before feeding them into a model (Figure
3).

Figure 3: A graphical illustration of the pre-processing steps (red lines: only testing phase ; green lines: only training
phase : black lines: both training and testing phase. TS stands for time series, and P for partition.)

Fix Missing Values. When dealing with time series, missing sensor values are frequent. Han-
dling data incompleteness is the very first pre-processing task, since the architectures in our scope
of interest can not handle them. To this direction, we impute missing values per sensor and/or
remove entire records according to a meta-rule, that takes into account the gap size of missing
values. More precisely, the records of missing values gap larger than context size gets removed,
while the rest of records gets linearly interpolated per sensor (mono-spectral). Although more
advanced (e.g. polynomial) interpolation methods have been introduced, their degree and shape
parameters are not easy tunable.

Data Partitioning. In the training phase, the provided sequence namely train-val is then parti-
tioned with respect to its records temporal order. Particularly, Forward Chaining cross validation
is applied on a copy of it, to result train and val sequences, where the size of train is expanding
while the size of val remains constant. The number of these sequences is conditioned to the train-
val size, in a way that the largest size of train sequences cannot be less than 80% of the train-val
size and the size of val sequences can not be less than 150% of context size. This condition ensures
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that statistical properties between largest train sequence and train-val sequence are similar. Hence,
along with the entire series, we also result a large number of partitions.

Features Decomposition. Time is a fundamental factor in time series data. It introduces three
important statistical properties; trend, seasonality and residuals. The composition type of these
properties, as well as the period of incoming observations determine the sensor itself. Although,
these factors are rarely given, we estimate them to decompose each sensor into residuals or trend,
if requested. That is because, high frequency anomalies are more visible in residuals, while the low
frequency ones can be detected in trend. The period of a sensor is estimated in three steps: (i)
remove the mean signal (a.k.a DC component), (ii) calculate its auto-correlation and, (iii) select
the largest valid peak from its second-order difference. A peak value is valid when enables at least
two cycles. Moreover, the composition type of a sensor is estimated in two steps: (i) compute
simple moving average (SMA) using 5% size non-overlapping windows and then, (ii) estimate the
variance of subtraction as well as division, between its SMA and actual values. We assume that
a sensor is composed in additive way, when the result of subtracting has less fluctuations than
dividing. Otherwise, it is assumed to be composed in multiplicative way. Note that decomposition
is optional, however when selected it is applied independently per partition. The hyper-parameter
that controls the existence of decomposition is called stationarity.

Features Scaling. The main purpose of normalization is to provide a uniform scale for numerical
values. As argued in the past, a model performs better or converges faster when features are on a
relatively similar scale. Any model that computes distance or assumes normality needs to perform
scaling for features before training. However, arbitrary choice of a scaling method is not recom-
mended, due to changes over the statistical properties of a time series such as increasing average,
which is usually caused by the presence of trend. In order to take into account the stationarity of
each feature, we apply Min-Max (-1, 1) normalization when both Augmented Dickey Fuller (ADF)
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) statistical tests agree that the series is strict sta-
tionary. Particularly, in ADF p-value must be ≤ 0.05 (reject) and in KPSS p-value must be > 0.05
(fail to reject), since they use an opposite definition (null hypothesis) of stationarity. Otherwise, we
standardize using the Robust Statistics from its first (Q1) and third (Q3) quartiles, assuming that
changes to the core of its statistics are smoother. Thus, scalers are fitted and transform the train-
ing partitions (train, training-val), while only transform the testing partitions (val, test). A scaler
learns the statistical properties per sensor as the normal behavior during the fitting process, and
uses these statistics to normalize partitions during the transforming process. The sensor scalers of
train-val sequence are then stored for future data. Scalers are saved when the train set is processed.

Forecasting Protocol. Due to the temporal order of records, each partition P has to be analyzed
using an iterative process. To this direction, we utilize the Prediction-based forecasting protocol
to introduce a temporal inference relation between current and next records, formulating a self-
supervised environment of context and horizon windows. Intuitively, context window can be seen
as a set of preconditions to satisfy the horizon, in a way that the more the preconditions the more
complex rules can be learnt. The selection of context size is not an easy task. If the size is too
large, it will increase the computation complexity and time delay by requiring more historical data
for analysis. If it is too small, a time series pattern might be lost. On the other hand, the size of
horizon is fixed. Note that, sensors in context window may differ from the ones in horizon if that
is requested. The union of these sensors called active sensors.

3.2. LSTM Encoder-Decoder with Attention
Modeling such forecasting environment, requires a sequence to point (S2P) architecture to

learn relevant feature patterns with respect to time. The forecasting resolution corresponds to
the context size, since each record is a step in time also known as time step. However, in an S2P
environment the attention is given only on the latest records of the context window. To reveal
relevant information from the entire context, it is required a composite modeling approach that
considers both implicit and explicit attention, memorizing short-term and/or long-term patterns.
The information extracted from latest records of a context is known as short term, while long-
term additionally includes information from the former ones. The proposed model architecture is
graphically illustrated in Figure 4.
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Figure 4: A graphical illustration of the composite Encoder-Decoder with attention. Solid lines represent information
flow while dotted lines regularization on the features (horizontal) and temporal (vertical) axes.

In this work, we employ an Encoder-Decoder architecture, composed of LSTM layers along with
a composite decoder and soft attention mechanisms, to capture short-term and long-term normal
(regular) patterns. Although the number of layers and units in both encoder (left) and decoder
(right) networks are configurable, the number of LSTM cells is fixed. Specifically, the number of
cells in the encoder is equal to the context size while decoder has always one LSTM cell for the
construction of the next time step and context size more to reconstruct. Such a composite decoder
forces the network to stay attentive to all time steps in the encoder, instead of only the last few
ones [29]. Each LSTM cell in the encoder is regularized (Figure 4, dotted lines) in both temporal
and feature axis to introduce generalization on the memorizing process. On the other side, the
first layer of the decoder is initialized by the last memory state of the encoder. Its output is
then passed through cross attention to allow the decoder to selectively access encoder information
during decoding. That is followed by masked self-attention to introduce relevance importance
with respect to time, in terms of probabilities over the hidden states of decoder. Finally, the
last decoded hidden states are passed through a dense layer, to be transformed back into the
original input feature dimensionality. Despite the composite decoding task, we only evaluate the
construction of the next record.

As an example, a context of three records x1, x2, x3 is compressed and decompressed through
our architecture, to construct the features of the horizon x4 along with the reconstruction of the
features in the given context. The compression refers to a linear decay of units over the LSTM
layers in the encoder, while a corresponding decompression is applied on the LSTM layers of the
decoder. This also requires that encoder and decoder LSTM layers must have the same number of
units, which stands due to their symmetric relation. The components of our proposed architecture
are extensively described in the following paragraphs.

Short-term Memory and Implicit attention. To memorize feature patterns with respect to time,
it is recommended to use and maintain memory units. The Long Short Term Memory (LSTM)
cell was introduced to tackle this issue. It uses a gating mechanism that controls the memorizing
process at each time step.

Long-term Memory. LSTM cells can then be connected, formulating an LSTM layer. The
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number of LSTM cells in a layer is fixed and equal to the number of input time steps. These
LSTM cells are connected to each other, from left to right, within their hidden and cell states. The
interconnected cell states between LSTM cells in a layer represent the long-term memory. Hidden
states are connected to iteratively construct predictions. Thus, an LSTM layer is inherently deep
in time, since time steps can be seen as the change over time.

Complex Feature Patterns. LSTM layers can also be connected upwards, to construct a stack of
layers, also known as LSTM network. Since LSTM layers operate on sequential data, the additional
layers recombine the learned representation from prior layers with respect to time. The goal is to
create a more abstract feature representation using the same or different (units) dimensionality.
LSTM layers are stacked in a way that each layer takes as input all the hidden states of its previous
layer. In other words, at each time step we are going deeper in feature space, looking for more
complex feature patterns. However, stacking layers over time is not always an advantage over
a single LSTM layer. It depends on the specificity of the problem and the relationships being
modeled.

Fading Memory. Although LSTM cells use a gating mechanism to tackle both vanishing and
exploding gradients, fading memory is not a closed case. Actually there are two factors that affect
the magnitude of gradients: weights and derivatives of activation functions. If either of these
is smaller than 1, then gradients may vanish over time steps. Due to the derivatives of their
activation functions and the gating mechanism, LSTM may not have an exponential weight decay
factor. Since weights decrease linearly with respect to the length of the input time steps, the model
often pay less attention to the earlier parts of the input sequence when processing its last parts.

Explicit Attention. Fading memory is usually eliminated by controlling the contribution of
time steps though an attention mechanism. Explicit attention can be given to different parts of an
encoder-decoder network, and several types are introduced in literature. Among these mechanisms,
we employ two attention layers. The first one is a cross attention between encoder and decoder, to
map the important and relevant hidden states from encoder to the hidden states in the decoder and
assign higher weights to them. In this configuration all the hidden states of the encoder’s last layer
are considered while calculating attention weights for each hidden state in decoder. The second
one is a masked-self attention over the hidden states on the decoder’s first layer, used to examine
their causal relation with respect to their temporal order. In this configuration, all the prior
hidden states of the decoder are considered while calculating attention weights for each next time
step. Both layers use global attention with a general alignment scoring function [17]. Attention
weights define a probability distribution over the encoder (cross) or decoder (self-masked) states,
to compose a context vector defined with:

ct =
∑

s

atshs [Context vector]

∀s ats =
exp (score(ht, hs))∑
s′ exp (score(ht, hs′))

[Attention weights]

score(ht, hs) = hTt Whs [Luong’s (general) multiplicative style]
hat = tanh (Wc[ct;ht]) [attentional hidden state]

where hs (respectively ht) are the source (resp. target) hidden states of the encoder’s last
layer (cross) or decoder’s first layer (self-masked) and Wc,W are trainable weights. An attentional
hidden state hat is then computed to concatenate the information of ht and ct.

Latent-Space of Normality. LSTM networks are used to represent the encoder and composite
decoder, with decreasing and increasing number of units respectively. The objective is to train both
of them to encapsulate relevant information from the input time steps with respect to the output
ones. In a classic ED architecture, relevant information is stored in a single vector corresponding to
the encoder’s last hidden state (latent space z ). In this work, cross attention enables to maintain
z as a matrix, corresponding to all the hidden states of the encoder’s last layer. Thus, normality
is what z encapsulates as regular patterns, given the training sequence.

3.3. Towards Generalization
The ability of a model to generalize is central to its success. In order to avoid overfitting, we

propose an immune system to our architecture, by stressing out the importance of two regulariza-
tion techniques over feature and time dimension, as well as a learning strategy.

18

                  



Dropout. We build an ensemble of sub-networks by applying Dropout on the output units of
LSTM cells, vertically (feature axis). During the training process, output units are randomly and
uniformly excluded from weights updating, set to zero, with a certain probability. The number of
sub-networks corresponds to the number of epochs, since dropout refresh on every epoch. However,
dropping units over too many LSTM layers may underfit our model due to over regularized sub-
networks. To that reason, dropout is applied only on the LSTM layer(s) in the encoder, regulating
the generalization of the latent space z. The concept is to construct an entire context horizon
using a subset of the memorized features in z per epoch. The probability to drop a unit is a
tunable hyper-parameter. It actually indicates the volume of regularization. Although, there are
horizontal (temporal axis) dropout variations (e.g. recurrent dropout), we do not recommend to
drop memory units arbitrary, because there is already a gating mechanism to maintain memory,
and memory may be damaged through random temporal disconnections.

Regularization. We can also regularize our architecture in the horizontal (temporal) axis using
the recurrent weight, imposing norm constraints (L1 and/or L2) on the recurrent weights within
the LSTM cells of a layer, instead of dropping them randomly and uniformly. This is known to have
the effect of reducing overfitting and improving model performance [16]. We configure recurrent
connections using the Elastic net, which make use both L1 and L2 norms in a linear combination.
L1 forces the network to drop recurrent weights that do not contribute to the predictive power
significantly enough. On the other hand, some weights have strong pairwise correlation coefficients
and therefore dropping them out would lead to information loss from memory. L2 forces the model
to result relatively small weights. In this way, the cell state (memory) units regularized without
dropping them necessarily. Elastic net is applied to the recurrent units of each LSTM layer in
the encoder, during the training process using a regularization term in the form λ(‖.‖1 + ‖.‖2).
Strength λ is a tunable hyper-parameter, common for both L1 and L2.

Learning Scheduler. The learning rate (lr) controls how quickly the model is adapted to the
problem, and therefore highly affects its stability. A model trained using small lr requires more
epochs than in larger lr, since smaller changes of the weights requires more epochs than in rapid
changes. However, when learning rate is too large, model may converge too quickly to a sub-
optimal solution and is prone to oscillations. The lr value as well as the rate of change, known
as scheduler, are tunable hyper-parameters. In this work, the scheduler is responsible to keep lr
value constant or decrease it over step or exponentially along the epochs. Specifically, exponential
decay decreases lr exponentially by a decay d of 10% at every epoch, while step decay drops as for
it lr by 25% after every 4 epochs.

Learning Strategy. A major challenge in training neural networks is setting the number of
epochs. The objective is to train them enough to learn the mapping, but not so long to overfit
and not too little to underfit. In this work, we utilize the early stopping strategy to find an
optimal epoch to stop the learning process. It uses a criterion, which gives a penalty as long as
the delta δ of current c from previous p loss is less than 0.0003. A penalty is formally given, when
lossc > lossp − δ is satisfied. The number of consecutive penalties that has to be given to end
the training process, is a tunable hyper-parameter called patience. The performance of the model
is monitored on the last 20% overlapping partition of the train sequence. This partition is called
internal validation and the loss used for monitoring is called internal loss. The final model weights
correspond to the last epoch, because updates are done in a sequential manner.

Updating Period. Due to recurrent LSTM layers, the model is trained using Back propagation
Through Time (BPTT). Batch size is the amount of records in context-horizon mappings considered
for updating the weights. The impact of different batch size to the partitioning is illustrated in
Figure 5. It also affects the resetting period of memory, since in a (stateless) LSTM layer the
cell state gets cleared at every batch size. In other words, the number of batches is equal to the
number of memory resets. Therefore, batch size impacts the stability as well as the duration of
the learning process. The majority of works uses 32 as a gold standard size. However, an arbitrary
value may end up to an erratic definition of normality. It is well known that decreasing batch size
slows down the learning process, while increasing it produces a lack of change in data over the
epochs and higher memory cost. In this work, batch size is a tunable hyper-parameter in a range of
the aforementioned guidelines. Note that, shuffling across records or batches is not enabled during
the fitting process. For example, in Figure 5 batch B always follows after batch A, etc.
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Figure 5: Epoch and batch sizes, over a partition of four context-horizon mappings

3.4. Hyper-parameter Optimization
The hyper-parameters of our framework are presented in table 9. Many of them are fixed or

manually driven (see column Tuned by). However, in the training phase, some have to be defined
automatically to ensure the adaptability to different scenarios. In this section, we introduce these
hyper-parameters and propose a method to optimize them.

Figure 6: A graphical illustration of the optimization process. In blue we illustrate the corresponding Type of
hyper-parameter from table 9, while data partitions are highlighted in green.

The training phase is composed of three processes (Compile, Fit and Evaluation in Figure 6),
each equipped with hyper-parameters defined in Table 9. During the compile step, the encoder and
decoder LSTM networks have three hyper-parameters which cannot be accurately defined using
prior data knowledge. The number of LSTM layers, the number of units in the first layer and the
units decay which is a ratio of decreasing (encoder) or increasing (decoder) units per layer. Because
encoder and decoder are symmetric networks, it is enough to estimate these hyper-parameters
only for the encoder. From the features axis regularization, dropout is a tunable hyper-parameter,
indicating the probability of dropping input units in each LSTM layer. From the temporal axis
regularization, regularization strength (λ) is a tunable value, common for both L1 and L2 norm in
the elastic net. There are four more tunable hyper-parameters, in the Fit step: the learning rate
(lr), the learning scheduler, the patience and the batch size.
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These nine hyper-parameters are optimized using a Bayesian approach (Figure 6), as it is a
popular approach to deal with the optimisation of expensive black-box functions. Bayesian ap-
proaches, in contrast to random or grid search, keep track of past evaluation results to form a
surrogate function which maps hyper-parameter configurations to a probability value. The idea is
to approximate the objective function using a Gaussian process. It starts by finding a configuration
that maximizes the expected improvement of the surrogate function. Then, it hands this configu-
ration to the objective function for evaluation to retrieve the corresponding score. The surrogate
function is updated along the feedback of the objective function by applying Bayes’ theorem. In
this work, each configuration is evaluated on the forward chaining partitions. Specifically, the
model is trained on the train sequence and evaluated on the val sequence of each partition. Due to
the expanding window size over partitions, the latter the partition the more available the data for
a model to be trained on, and therefore the more reliable evaluation. To this end, the (val) loss of
each window is weighted using the ratio of its size to the size of the larger expanding window. This
weighting method enables to give more importance on the latter windows. Thus, the objective is
to find the configuration Cobj minimizing the weighted average loss over expanding windows EW :

Cobj = Argmin(avgC(lossEW ∗ weightEW )) (13)

Note that we evaluate only the regression part of its loss function.

Hyper-parameter Value (Range) Type Tuned By

Layers [1, 3] Compile Bayes Opt.
Units [32, 128] Compile Bayes Opt.

Units Decay [0.5, 1.0] Compile Bayes Opt.
Dropout [0.0, 0.3] Compile Bayes Opt.

Regularization Strength {0.0; 0.0001; 0.001} Compile Bayes Opt.
Learning Rate {0.001; 0.01} Fit Bayes Opt.

Learning Scheduler {constant; step; exponential} Fit Bayes Opt.
Learning Patience [5, 10] Fit Bayes Opt.

Batch Size {32; 64; 128; 256} Fit Bayes Opt.
Loss Function MSE Compile/Evaluation Fixed

Model Optimizer Nadam Compile Fixed
Activation Function tanh Compile Fixed

Stationarity {residual, trend, no} Pre-processing Manually
Context Size N General Manually

Optimization Runs {0, 20} Bayes Opt. Manually
Global Runs 40 Thresholding Fixed
Local Search True Thresholding Fixed

Table 9: A summary of the hyper-parameters

In addition, there are eight more fixed or manually hyper-parameters determined by a user or
an expert based on the application. Two hyper-parameters are used to compile a model during
the training phase; optimizer and loss function. The former one is selected to be NAdam.Both
training and evaluation process use Mean Squared Error (MSE) as a loss function. MSE is used to
particularly penalize the presence of abnormal values and shows up broaden levels of abnormality.
The tanh activation function is applied on each LSTM layer to introduce non-linearities. In addi-
tion, stationarity determining whether time series need or not to be transformed into stationary
(default is no). A fundamental application-based hyper-parameter is the context size, correspond-
ing to the size of temporal sliding windows. It is recommended to be larger than the maximum
expected anomaly length, to avoid being absorbed from an anomalous event. The number of runs
using Bayes optimizer is determined by optimization runs hyper-parameter, where zero means
no optimization (default is 20 ). Note that, a single run evaluates a configuration setting across
N expanding windows. Last but not least, there are two hyper-parameters corresponding to our
dynamic threshold methodology (see Section 3.5). The global runs (default is 40 ) indicates the
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number of jumps to a different global point to search for an optimal solution. The local search
(default is True), as for it, indicates the need for going deeper into a local space or not.

3.5. Dynamic Threshold with built-in Pruning
A model uses its latent representation of normality to predict the sensor values of a record.

The higher the error over a sensor value the more abnormal it is considered. Yet, due to its gener-
alization in an unsupervised environment, the turning point from normal to abnormal error values
is not well defined. As mentioned in Section 2, an upper-bound threshold of normality per sensor
is usually estimated using statistics from training and/or testing errors sequences. Such approach
is recommended, only when robust statistics are used. Alternatively, arbitrarily selecting an error
(e.g. maximum) value is biased by the presence of rare error values in the form of spikes and there-
fore there is a high chance of introducing False Negatives (FN) 2. A single threshold per sensor is
then expected to miss spikes of varying magnitude across different regions of an error sequence,
introducing FP3 which are usually next to a large in magnitude error due to the use of sliding
windows [7]. In this work, we introduce a two stage thresholding methodology per sensor. First we
generate region proposals using a simple moving average (SMA) across the testing errors sequence,
and then we use a robust pruning methodology optimized to shift a threshold of normality upwards
from the plateau of smoothed errors per region.

Critical Regions. In the first stage, the testing errors sequence is smoothed using SMA using
Parzen type windows of 2 ∗ context size. Basically, we consider the number of observed records
to smooth the (prediction) errors, doubled for more compact error magnitudes. Such windows
are appropriate for centralizing errors along time, formulating Gaussian-like bumps. A simple
comparison of neighboring errors is then applied across the entire SMA to find peak values on
different errors magnitude. However, low height (noisy) peaks located to high frequency bins may
be introduced and thus have to be filtered. To this direction, we discretize the SMA values into an
optimal number of bins, considering the shape (normal or skewed) of the underling distribution.
We assume that the first bin exhibits the mode errors frequency and thus the frequency on the
next bins decreases until magnitude fluctuations are introduced. A bin at position k is said to
be a part of a decreasing trend if it’s frequency is lower than the one at position k+1 or k+2.
The left-bound of the last bin determined the minimum peak height. Peaks under that value are
considered (irrelevant) noise.
A critical region is an expanding window centralized to a peak value. The width of a critical
region increases symmetrically by 2, as long as its average error is significantly greater than the
SMA average, using Mann Whitney test with a significance level 0.05. Critical regions are further
examined for specifying abnormalities, while the errors in non critical regions are considered normal.

Robust Pruning. In the second stage, a batch analysis is applied on the smoothed errors of
each critical region cr independently. We apply the Mean-shift algorithm that works by updating
candidates for centroids to be the mean of the points within a given bandwidth. Since Mean-shift is
extremely sensitive to its bandwidth hyper-parameter, we use dual annealing optimization to tune
an optimal bandwidth using both local and global search space, where the use of local search and
the number of global jumps are configurable (Figure 7). Bandwidth can be seen as the kernel radius
and thus candidate values are bounded in the distances range [min,max](nearest-dist(lossescr)).

The objective is to select a bandwidth which results in compact (low standard deviation) and
heavy (large size) clusters. This is formally achieved by minimizing the maximum standard error
(SE) across clusters:

Bandwidthcr(C) = argmin{max(SE(c),∀ c ∈ Cnormal)}cr. (14)

Mean-shift is then handed by the optimal bandwidth to result the final clustered and orphan
error values. Rare is an error value that is not clustered (orphan) or clustered with one more error,
while Normal are the error values below the minimum rare error. Hence, the threshold of normality
of a critical region is the maximum normal error. By doing this, we reduce both the number of FP
by centralizing critical regions to (minimum height) non-noisy peaks and the number of FN by
controlling their (bandwidth) dynamic length. However, this may re-partition a critical region into

2FN refers to missed anomalous records, since considered as normal
3FP refers to normal records, falsely considered as anomalous
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Figure 7: A robustly driven threshold at a critical region of the testing errors sequence.

smaller ones. To that reason, the final critical regions are only the ones above the (aforementioned)
minimum peak height.
Note that the semantics here are similar to decrease percentage differences applied in [7, 9] to shift
threshold upwards. However, in this work Mean-shift is used as a robust metric.

3.6. Towards Anomalies
Thresholding is a crucial step for the anomaly detection process. It determines how much an

actual value can deviate from the predicted normal value. A threshold value t is then resulted per
record i over a sensor d, equal to 0 (normal) or 1 (anomalous).

Scoring. A severity, or anomaly, score s of a record i over a sensor d is given by:

scored(e
i) =

{
eid, if tid = 1.

0, otherwise
(15)

The score of an anomalous sensor value is equal to its corresponding (original) error value, while
it is set to for normal ones. Therefore, an arbitrary length of consecutive records which maintain
anomaly to at least one common sensor are considered subsequence anomaly, while the individual
ones are point anomalies.

Interpretation. Detected anomalous records can then be characterized by interpreting their root
cause [12, 28, 35] aspect. We assume that the most anomalous sensor values can provide sufficient
clues to understand and troubleshoot the anomaly. We examine the root cause of each anomalous
record si using

RootCaused(s
i) =

{
exp(sid)/sum(exp(si)), ∀sid > 0

0, otherwise
(16)

Particularly, given an anomalous record i, we apply softmax along to its score values and then
report sensor number percentages in descending order, indicating the contribution of each sensor
to the abnormality of the record. In normal records the sensors probability is zero.
We then characterize similar anomalies through their internal decoded representation in the units
space, using the model’s perspective. For each anomalous record i we run its context c through
the model to extract a rich feature representation of its actual feature values, as the output ri =
fD(E(ci)) of the last intermediate (LSTM) layer f in decoder D.

Anomalies r ∈ R are then grouped into an optimal number of clusters Copt, by applying a
Gaussian Mixture Model (GMM) initialized with a general inverse covariance matrix Σ−1

R . The
probability of an anomalous record ri generated by each component Cj , with mixture weights φj ,
of center µj and a common covariance matrix ΣR across all components is given by

p(ri) =

C∑

j=1

φjN (ri|µj ,ΣR) (17)
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Copt is constrained in range [2,min(10, |R|)] and determined as the earlier one with the most
important DB-Index (DBI) score. The importance of a candidate is the number of consecutive
candidates for which their DBI scores are higher than it. However, if all candidate values are equally
important then maximum percentage difference is used. DBI represents the average similarity of
each cluster with a cluster most similar to it, considering its shape using Mahalanobis, instead
of Euclidean, distance. The similarities do not require expensive (pairwise) distance operations
over records, only over centroids, and thus it is considered an efficient metric for large number
of anomalies as well. The covariance matrix ΣR is nevertheless not always invertible, e.g. when
the number of units (features) is higher than the number of anomalous records (samples). Hence,
we use a sparse inverse covariance estimation technique based on the Graphical Lassoestimator.
From an intuitive standpoint, we might expect that the clustering assignment for some records is
more certain than others. Since GMM contains a probabilistic model under hood, instead of only
classifying each record to a cluster, we additionally provide the certainty of its prediction in terms
of probability. Note that, this grouping methodology is applied only to anomalous records, when
more than two are detected.

4. Evaluation and Comparison

We expose here our model to a set of experiments to evaluate its effectiveness on predicting
normality and detecting and interpreting anomalies. We use six multivariate time series of varying
anomalous types from the experiments in [9]. The scope of this evaluation is to show the adeptness
of our model to their environment with similar if not better results. It is not a benchmarking eval-
uation, since as stated in [32] there are plenty of reasons (triviality, unrealistic density, mislabeled
ground truth, etc.) to not to.

Models are trained and executed on a computer with 2 Nvidia TESLA v100 graphics cards of 32
GB each. The entire experiment took approximately 8 hours to be completed. The size of context
and the number of layers of the LSTM networks, mainly affected the mount of time required.

4.1. Datasets
From the datasets used in [9]4, we selected three multivariate time series, or channels, from Soil

Moisture Active Passive Satellite (SMAP) and three more from Curiosity Rover on Mars (MSL),
presented in Table 10. We use both of these datasets due to their difference in the amount of
(records) telemetry values and features. MSL leads on the number of features while SMAP exhibits
consistently more records. These datasets are contaminated by real-world spacecraft anomalies of
varying length, annotated by experts as point or contextual over the test sequence. According
to [9], point anomalies are values that fall within low-density regions of values, while contextual
anomalies do not, yet are anomalous with regard to local values. It is also mentioned that MSL
performs a much wider variety of behaviors than SMAP, with varying regularity some of it not in
the limited training sequences.

Channel ID Spacecraft Features Train-val Test Test Anomalies

P-4 SMAP 25 2609 7783 3x point
E-13 SMAP 25 2880 8640 3x contextual
T-1 SMAP 25 2875 8612 1x point, 1x contextual
D-14 MSL 55 3675 2625 2x point
T-13 MSL 55 1145 2430 2x contextual
C-1 MSL 55 2158 2264 1x point, 1x contextual

Table 10: Synopsis of the six multivariate series used in our experiments

Channels are selected based on their anomaly properties over the test sequence. Particularly,
P-4 and E-13 are selected from SMAP, as well as D-14 and T-13 from MSL, because they exhibit
the maximum available number of point and contextual anomalies respectively. T-1 and C-1
used from SMAP and MSL cover the joint contamination of both anomalous classes to the same

4https://github.com/khundman/telemanom
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test sequence. Specifically, the point anomalies in P-4 (respectively D-14) are subsequences of
length 130, 200 and 100 (resp. 20 and 20) records. Moreover, the contextual anomalies in E-13
(respectively T-13) have lengths 101, 40 (resp. 100 and 150). Finally, the joint contamination in
T-1 (respectively C-1) refers to subsequences of 1499 and 35 (resp. 200 and 110) records.

These datasets are used without any further pre-processing to maintain common conditions.
As a matter of fact, these datasets have no missing values, are not decomposed to stationarity, are
already partitioned into train-val, test sequences and are scaled using min-max(-1, 1) transforma-
tion. These steps could be part of our automatic pre-processings (Section 3.1). We additionally
partition Train-val via forward chaining to construct train and val sequence for Bayes Optimizer.

4.2. Hyper-parameters
Table 11 reports the hyper-parameter values resulting from 20 Optimization Runs per chan-

nel of the Bayes Optimizer. Each run evaluates the same configuration up to 4 expanding win-
dows formulated by the forward chaining process. Hence, the estimated number of models that
trained/validated is (6 * 20 * 4) 480. All channels start from the same initial configuration; lay-
ers=1 (per network), units=80, units decay=1.0, dropout=0.3, reg. strength=0.0, le. rate=0.001,
le. scheduler=constant, le. patience=10, batch size=64, which simulates the one reported in [9].
That is to guarantee that the extracted topology per channel is at least as good as the one pro-
posed. The other hyper-parameter values are shared along channels (table 9). Particularly, context
size is set to 25, instead of 250, training our models to learn to predict a record using 10 times less
of previous records. This is an additional challenge to our models, if we consider the previously
reported number of records per anomaly which in average are hundreds, not dozens.

P-4 E-13 T-1 D-14 T-13 C-1

Layers 2 2 2 2 1 2
Units 94 94 128 60 34 32

Units Decay 0.528 0.528 0.5 0.9998 0.615 0.5
Dropout 0.185 0.185 0.0 0.0165 0.052 0.0

Reg. Strength 0.0001 0.0001 0.0 0.001 0.0001 0.0001
Le. Rate 0.01 0.01 0.01 0.01 0.01 0.01

Le. Scheduler step step step exponential step step
Le. Patience 5 5 10 7 8 9
Batch Size 32 32 32 32 64 64

Trainable Param/s 161,393 161,393 284,801 133,991 28,595 24,353
Run Found 3rd 3rd 12th 16th 6th 12th

Table 11: The optimized hyper-parameter values over the six channels

Interestingly, we observe that almost every generated model uses a form of regularization (fea-
tures and/or recurrent) for the encoder, although it is optional. Along with the presence of various
batch size and learning strategies, we experimentally confirm our expectations described in Section
3.3. Considering also that all models initialized by the same configuration, the expectations of Sec-
tion 3.2 are also valid. That is because all models make use of the dynamic modeling architecture
(depth and/or width).

The trainable parameters indicate the size of each model, mainly affected by the total number of
units and the context window properties. However, in their relative model size comparison context
window properties does not count, since all channels share the same context window size. Hence,
T-1 is expected to exhibit the highest model size followed by P-4, E-13, D-14, T-13 and C-1 in
descending order. Moreover, the run found indicates the position out of 20 optimization runs, at
which the best configuration is reported per channel. Particularly, we observe that the majority
of them are found on the early attempts, with all to perform better than on the default (1st) one.
This validates that 20 in total runs where enough to find the best solution.

4.3. Results and Discussion
The trained models are applied on the Test sequences of the corresponding channels, to evaluate

predictability and detection power. We also used the models of [9]. All models are executed under
a common environment, using a random seed 42 for reproducible results.
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4.3.1. Predicting Normality
Predictability power refers to the ability of a model to predict normality close to the actual

records when these are labeled normal and far from them when labeled abnormal. Since ground
truth (labels) is provided by experts, we can separately evaluate the mean absolute error (MAE)
over normal and anomalous records. Models are trained to predict normality, thus a good quality
of predictions corresponds to low MAE over normal records in conjunction with high MAE over
anomalous ones. The objective of this experiment is to evaluate how well normality is learned by
DITAN models compared to the ones in [9], since their models defined an important and growing
challenge within spacecraft operations. In addition, we use the Mann-Whitney non-parametric test
to attach a statistical evidence to the results.

Normal records Abnormal records

Figure 8: MAE and standard deviations for the 6 channels.

The resulted MAE and their standard deviations are presented in figure 8 for both normal
and abnormal records. The average STD on both normal and abnormal MAE values are low,
in a similar manner between DITAN and [9] methods, indicating a solid mean representation of
absolute errors. Individual STD values across normal MAE is considerably lower than in abnormal
MAE. The minimum STD is found on normal MAE (channel P-4) at 0.0001 for DITAN and 0.0017
for [9]. The maximum STD is found on abnormal MAE (Channel P-4) at 0.3612 for DITAN and
0.3438 for [9] respectively. Tracing the underlying values, DITAN models result in lower MAE on
5/6 channels across normal records with p-value 0.85 and thus no statistical evidence to reject that
observation. Authors in [9] resulted higher MAE on 4/6 channels across abnormal records, with
also insufficient evidence for rejection, but lies in a lower 0.62 p-value.

Interestingly, DITAN is favored higher on normal records than [9] on abnormal records. A large
improvement is then expected on predicting normality with negligible cost on abnormal records.
This is examined in table 12 measuring the percentage change of errors between models and their
percentage difference per model, leading on two research questions.

P-4 E-13 T-1 D-14 T-13 C-1 AVG

% change (RQA)
Normal ↓100% ↓36% ↑154% ↓83% ↓73% ↓8% -

Abnormal ↓42% ↓11% ↓8% ↑216% ↓32% ↑1% -
Total Change (RQA) +16% +21% -150% +478% +18% +9% -

% difference (RQB)
DITAN +200% +68% -140% +199% +60% +93% 80%

[9] +128% +37% -71% +185% -32% +85% 55%

Table 12: Percentage change from [9] to DITAN over normal and abnormal errors, and Percentage difference between
normal and abnormal errors per model.

Question A. What is the percentage change on normal and abnormal errors by switching from
[9] to DITAN modeling? In overall we observe a decreasing trend on both normal and abnormal
error values. Particularly, in P-4, E-13 and T-13 the decrease change is more than 2 times higher on
normal than on abnormal, indicating a beneficial result against [9]. Generally, a large improvement
on predicting normal records (i.e. decrease normal errors) is usually accompanied by a small cost
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on predicting abnormal records (i.e. also decrease on abnormal errors). It is the fee we pay against
overfitting. Similarly in D-14 and C-1, results continue proving the higher quality on predicting
normality, with no cost at all. The only exception is channel T-1. That is because it contains an
anomaly of length 1499 records, which is impossible to be captured by observing context windows
of 25 records. Finally, Total Change is computed per channel, as an indicator of the total benefit
(+) or cost (-) in percentage, using A + B + (A ∗ B), where A determines the percentage change
over normal and B over abnormal errors. Note that A is positive only when decrease changes while
B is positive only when increase changes. Therefore, changing from [9] to DITAN modeling, the
predictability power across all channels is improved by 65.3%.

Question B. How different normal and abnormal errors are, as a factor of overfitting per
model? The quality of learned normality is further examined by measuring the percentage difference
between normal and abnormal MAE per model. The higher the percentage value the more distinct
normal and abnormal MAE values are, while zero indicates no distinction and negative sign (-)
miss-conception of normality (i.e. normal > abnormal errors). The high quality of DITAN models
is also observed here, maintaining the highest distinction to all channels. Yet, observation is
supported statistically at p-value 0.78 with no significant evidence to reject it. These results are
an indicator that DITAN is more tolerant to overfitting against [9]. It is also observed that in
T-1 and T-13 channels, [9] models exhibit a negative percentage. This is a sign of normality miss-
conception to these channels, while DITAN model accomplished T-13. In average, the percentage
difference between normal and abnormal errors on DITAN is 80% against the 55% for [9].

4.3.2. Detecting Anomalies
Detection is an extremely important module for the analysis of the resulting scores. The

objective of this experiment is to evaluate the detection module of DITAN given the actual state
of records labeled by experts. For each channel, except T-1 for which normality is failed to be
captured, we compute the confusion matrix together with various metrics (Table 13). Each metric
is applied across channels to examine a different aspect. As a matter of fact, we use False Positive
Rate (FPR) to examine FP, while TP are examined using both precision (w.r.t. FP) and recall
(w.r.t. FN) due to the imbalanced class environment of anomaly detection. An overall performance,
mainly affected by precision is also resulted using F0.5 score. Note that all metrics are applied on
a record level, while we finally measure Intersection over Union (IoU) on anomalous event level.

TP FP TN FN FPR Precision Recall F0.5 Score

P-4 242 0 7340 201 0.0% 100% 54.6% 0.86
E-13 113 121 8255 151 1.4% 48.3% 42.8% 0.47
D-14 222 69 2334 0 2.9% 76.3% 100% 0.80
T-13 136 33 2145 116 1.5% 80% 54% 0.73
C-1 201 142 1810 111 7.3% 58.6% 64.4% 0.60

Table 13: Confusion Matrix of the records across channels.

False Positive Rate. The probability of false alarm is examined using FPR = FP/(FP +
TN), measuring the portion of normal records (TN) incorrectly identified as anomalous (FP).
The low probability of false alarms indicates an accurate estimation of normality across all chan-
nels, whatever their type (SMA, MSL). False alarms in D-14, T-13 and C-1 result from different
alignments between critical regions and actual anomalies. In E-13, an additional critical region is
introduced along with the difference in alignments (Fig. 9, second and third anomalies). In P-4,
all critical regions are aligned to the actual anomalies (Fig. 10). Among all the critical regions
reported by DITAN, only one is considered FP while the rest are aligned to the 12 actual anomalies.

Precision. The probability of a true alarm when an anomalous record is reported is measured
using the Precision P = TP/(TP + FP ). It is the fraction of records correctly identified as
anomalous among all anomalous predicted records. Precision across channels contaminated by
only point anomalies (P-4, D-14) is slightly higher than in channels contaminated by at least one
contextual anomaly (E-13, T-13, C-1). That is because contextual anomalies require more normal
patterns to be memorized and thus introduce more noisy errors. In average, the probability of
reporting a true instead of false alarm is more than 70%, while the remaining percentage is mainly
due to the critical region displacement on the true alarm. This result exhibits a way for the experts
to consider the detection abilities of DITAN to their analysis.

27

                  



Recall. The probability of a true alarm that is correctly identified is measured using the Recall
R = TP/(TP + FN). It is the fraction of records correctly identified as anomalous among all
discovered and missed anomalies. Here also, channels contaminated by point anomalies are more
favored than the ones with contextual anomalies. Particularly, in channels P-4 and D-14, large
error bumps cover all actual anomalies, aligned by critical regions. However, due to the pruning
methodology, tails are filtered and thus a subset of actual anomalies is considered FN in P-4
(Fig. 10). Same situation occurs in E-13, T-13 and C-1, where an actual anomaly is additionally
masked, under the noisy errors of C-1 and E-13 (Fig. 9, first actual anomaly). The average recall
mainly indicates the expected intersection of a critical region with an actual anomaly. From the
12 actual anomalies, only two are masked and thus failed to be discovered by DITAN.

Figure 9: E-13 channel of contextual anomalies. From left to right, FN, miss-alignment, FP, miss-alignment

Figure 10: P-4 channel of point anomalies. From left to right, three miss-alignments

F-score. The harmonic mean of the precision and recall is examined using the F0.5 score,
F0.5 = 1.25P.R/(0.25P+R). The F-score family is very useful for evaluating results on unbalanced
data. Unlike F1 score, F0.5 score gives more weight to precision (FP) than to recall (FN). This
measure is extremely useful in cases such as the sensitive telemetry spacecraft channels of this
experiment, because they required to report only high certain anomalies. We observe that precision
and recall values are projected across channels, resulting relatively high F-score values. The highest
ones correspond to P-4, D-14 (point anomalies) and T-13 (contextual anomalies), while the lowest
ones are computed on C-1 and E-13 (joint and contextual) respectively. In average, SMAP (P-4,
E-13) channels result in 0.67%, while MSL (D-14, T-13, C-1) channels in 0.71%. Thus DITAN
results similarly well on both datasets, despite their explicit characteristics.

Intersection over union. We finally measure how well critical regions are aligned to the 12
actual anomalies, using the intersection over union (IoU) across corresponding records (table 14).
Point anomalies are covered similarly well as contextual anomalies, resulting in 0.54 and 0.55
respectively in average, a value close to the alignment over joint anomalies 0.58. This means that
DITAN is able to align critical regions over actual anomalies, despite the contamination type. Also
the majority of IoU values are above 0.5, which is accepted as a good result, while the ones below
are mainly due the presence of FN, such as in P-4 channel (Fig. 10).

4.3.3. Interpreting Anomalies
Last but not least we empirically evaluate how informative similarity is for interpreting the

detected anomalies. The goodness on clustering anomalous records to the units space is quantified
based on their corresponding DBI scores. DBI is a measurement of similarity between varying
shape clusters (see Section 3.6), where the lower the score the better the clustering; further apart
and less dispersed. The results of clustering per channel are reported in table 15. Although the
number of clusters is constrained up to 10, the early ones are preferred due to early success on
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Actual Range Critical Region/s IoU

Point

P-4: P1 950-1080 1008-1054 0.35
(P) P-4: P2 2150-2350 2161-2207, 2244-2343 0.72

P-4: P3 4770-4880 4791-4838 0.43
D-14: P1 1630-1650 1614-1674 0.33
D-14: P2 1800-2000 1794-2023 0.87

Contextual

E-13: C1 5309-5410 masked -
(C) E-13: C2 5600-5640 5600-5658 0.69

E-13: C3 6449-6569 6442-6520 0.56
T-13: C1 690-790 657-767 0.58
T-13: C2 1900-2050 1942-1999 0.38

Joint
C-1: P1 550-750 415-757 0.58
C-1: C1 2100-2210 masked -

Table 14: The intersection over union (IoU) per anomaly, given critical regions of DITAN

their DBI scores. Particularly, the DBI scores across P-4 and D-14 are relatively lower than in
E-13, T-13 and C-1 for a similar clustering choice, because the latter channels are contaminated
by contextual anomalies and thus their units (decoded) representation is more complex than the
former ones. Therefore DBI scores 0.23 for contextual and 0.13 for point contamination conclude
to a good choice of clustering on the units space, resulting in a compact clustering.

Records Units Space Optimal Cluster # DBI

P-4 242 94 4 0.15
E-13 234 94 3 0.23
D-14 291 60 2 0.11
T-13 169 34 2 0.23
C-1 343 32 4 0.22

Table 15: The scores of clustering in the units space across channels

The role of the decoder is to reconstruct the data representation of a requested horizon, by
constructing its internal representation in the units space. Although we showed the goodness on
the choice of clustering in the units space, we also have to evaluate how informative it is on the
data space. To do so, we examine if the model’s understanding of anomalous records is verified
w.r.t. their actual representation. This is quantified as the portion of anomalous records considered
similar in the units space, that are also similar in the data space. Thus, same clustering semantics
are applied on the data space of the univariate horizons, using the actual (instead of sparse) inverse
covariance matrix and constrained up to the optimal number of clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Overall

P-4 16/16 133/147 73/73 5/6 227/242 (93.8%)
E-13 32/52 128/144 32/38 - 192/234 (82.1%)
D-14 154/159 100/132 - - 254/291 (87.3%)
T-13 111/111 58/58 - - 169/169 (100%)
C-1 182/215 24/51 21/30 23/47 250/343 (72.9%)

Table 16: The units space similarities verified in data space across channels

From the total number of anomalous records, the ones that are considered similar in the units
space and verified in data space are reported in table 16. In overall, the average number of
records which maintain similarity also in the data space is above 87%, indicating that the choice of
clustering in the units space is also intuitive to the data space. Particularly, on channels P-4 and D-
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14 (point contaminated) the 91% of records similarity is verified in both spaces. On the E-13, T-13
and C-1 contextual contaminated channels!, results are slightly lower, because complexity in data
space also appears in units space. Fig. 11 illustrates results of channel T-13 where all similarities are
verified. On the top figure, horizons of all records are presented in the data space, where anomalous
ones are colored orange (C0) and green (C1) corresponding to the units space clustering on the
bottom figure. By tracing the colors, we observe that DITAN properly understands the anomalies.
It first recognizes the statistical (e.g. trend) differences between the two events and thus results
in no similarity between their anomalous records. It then considers the consecutive anomalies on
each event similar, since their previous context results in a similar pattern.

Figure 11: T-13 channel, the two anomalous events and units space clustering

However, depending on the number of clusters, shifts in context may occur a change to clustering
(similarities) inside an anomalous event, such as illustrated in Fig. 12. Zooming to the third
anomalous event of E-13 channel, we observe that consecutive records of similar context are grouped
to the same green colored cluster (C1) which is repeated two times indicating the start and the
end of the anomalous event. Also, two intermediate shifts in context are captured, with the
corresponding consecutive records to be colored in red (C2) and orange (C0) clusters respectively.

Figure 12: E-13 channel, the third anomalous event and units space clustering

The probabilities of chosen clusters are all equal to one across channels, indicating a high
confidence level of DITAN for the chosen similarities.

5. Benchmark across Baselines

In the previous section, DITAN is evaluated across several datasets (channels) using one baseline
method. In this section, we evaluate our method using one dataset and many baselines, examining
all the top-notch methods from the model perspectives of the generic normality feature learning
framework, extensively described in Section 2.

30

                  



To this direction, we had the opportunity to contribute on the ongoing experiment initiated
in [38], by introducing the performance of DITAN on the MIT-BIH Supraventicular Arrhythmia
(MBA), a popular large-scale dataset in the management community. MBA is a collection of
electrocardiogram recordings from four patients, containing multiple instances of two different kind
of anomalies. The dataset is partitioned into train, test and labels sequences of common size at
7680 samples. The values in train and test sequences are normalized using min-max normalization,
while the duration of each anomaly is fixed to [-20, 20] indicating the left and right distance in
samples from each (labeled) anomalous sample respectively.

In this experiment, DITAN uses a context size of 10 and only 5 epochs for the training phase
(table 9), to maintain the same values of the common hyper-parameters in [38]. The optimized
DITAN model with 22,682 trainable parameters is found at the 13th optimization run (out of 20)
over the train sequence. It uses 1 layer, 35 units, 0.404 units decay, 0.1049 dropout, 0 reg. strength,
0.001 le. rate, constant le. scheduler, 5 le. patience and 32 batch size.

P R AUC F1

MERLIN [22] 0.9846 0.4913 0.7828 0.6555
LSTM-NDT [9] 0.9207 0.9718 0.9780 0.9456
DAGMM [39] 0.9475 0.9900 0.9858 0.9683

OmniAnomaly [28] 0.8561 1.0000 0.9570 0.9225
MSCRED [35] 0.9272 1.0000 0.9799 0.9623
MAD-GAN [15] 0.9396 1.0000 0.9836 0.9689

USAD [2] 0.8953 0.9989 0.9701 0.9443
MTAD-GAT [40] 0.9018 1.0000 0.9721 0.9484

CAE-M [41] 0.8442 0.9997 0.9661 0.9154
GDN [6] 0.8832 0.9892 0.9528 0.9332

TranAD [38] 0.9569 1.0000 0.9885 0.9780
DITAN (our) 0.9910 0.7785 0.8878 0.8719

Table 17: performance comparison of DITAN with 11 state-of-the-art methods on the MBA dataset. P: Precision,
R:Recall, AUC: Area under the ROC curve, F1: F1 score.

Performance results are presented in Table 17. We observe lower performance on AUC and F1
as a result of a low recall. That is because true anomalies are defined by a fixed duration while
DITAN constructs dynamic length critical regions depending on the time-steps required to the
corresponding error values to drop back to its mean level. In other words, all true anomalies are
captured with more than the half duration. In addition, DITAN takes the lead on precision since
all the detected anomalies are true ones. In fact, precision slightly deviates from the perfect value,
due to the only misalignment between an actual anomaly and its corresponding critical region.

In overall, we observe that DITAN is the most precise method compared to the 11 baselines,
able to capture all the true anomalous events in duration more than the half of the defined one.

5.1. The effect of Thresholding to Recall
The formation of critical regions follows the model prediction in a series of steps to detect

anomalies across multi/univariate series in an unsupervised manner. In Sections 4, 5 we demon-
strated that a major contribution of DITAN is its capability of computing extremely high true
alarm rates with less than few false alarms, leading to uninterrupted alerts. We clearly stated both
quantitatively in Section 4 (Table 14) and qualitatively in Section 5 (Table 17) that on average
more than the first-half temporal duration of a true anomaly is captured. So it is fact, more than
hypothesis, that recall is poor due to false negatives occurred by sub-capturing true anomalies
instead of missing them. We strongly believe, and we also asked experts in applicative domains,
that in the real world, capturing a sub-part of a true anomaly is enough to trigger the attention
of experts to the corresponding time-steps for further examination.
To make things complete, we ran the 6 available implementations of the aforementioned baselines
on the channels of Section 4, considering only the results over the first dimension as originally
proposed in [9]. The objective is to discuss false negatives (FN) and false positives (FP) from the
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aspect of threshold positioning across baseline methods (Figure 13). A conservative methodology
is expected to set high thresholds and thus introduce more FN. While in a loose one, thresholds
are set lower, introducing more anomalies thus more FP. An optimal threshold positioning results
in both low FN and FP values.

False Negatives False Positives

Figure 13: FN and FP across channels per method

MERLIN is unable to identify anomalies on P-4 and E-13 channels, since the number of its
FN reaches the number of corresponding true anomalies. Similarly, TranAD, GDN, OmniAnomaly
and USAD fails on channels T-13 and C-1 as their FNs reach the number of true anomalies of the
channels respectively. MAD-GAN fails only on T-13 channel, resulting as many FN as the total
number of true anomalies. This is a strong indicator that their threshold value on these channels
is positioned to a higher error magnitude than what is should be considering the true anomalies.
On the other hand, DITAN is the only method that do not fail across any channel, critical regions
adapting the position of a threshold to the locality of error magnitudes, as opposed of using a
global threshold value.
Furthermore, despite the zero FP of TranAD, GDN, USAD and OmniAnomaly on C-1 channel, we
showed that their corresponding FN are extremely high. Similarly on channel T-13, TranAD and
GDN result in no FP but at the same time no TP. On these two channels, MAD-GAN results the
lowest FP on C-1 and DITAN on T-13. In channel P-4, all the TranAD, MAD-GAN and DITAN
are leading with zero FP. In channel E-13, DITAN leads with the less FP (121) and in channel
D-14 TranAD with 7 FPs. In other words, DITAN leads on the most (3/5) channels maintaining
the lowest FP and at the same time able to identify true anomalies.
In overall, DITAN results in conservative thresholding methodology reaching a FN number no
more than half of true anomalies, while maintaining similarly low FPs across channels.

6. Conclusion and Future Work

We proposed in this paper DITAN, a domain agnostic framework for the detection and in-
terpretation of temporal-based anomalies. We first lightened the requirements of contamination
in multivariate time series, demonstrating an anomalous exploratory space and addressing the
limitations of the current literature on their anomalous and temporal support. Particularly, we
qualitatively showed that no individual can support all the requirements of its related work. We
then showed in both quantitative and qualitative way that DITAN captures all these requirements.
In our unsupervised environment, where no labels are required, the method instantiates a neural
network model based on Encoder-Decoder architecture with implicit/explicit attention and ad-
justable layers/units to capture normality as regular patterns over temporal records. Anomalous
records are then detected by introducing a two-stage thresholding methodology that reveals critical
regions to their errors sequence. Using detected anomalies, root cause is examined on their data
space and similarities are seen in their units space using a clustering method.

DITAN is assessed on the well-known MSL and SMAP real-world datasets. From these, 6
multivariate channels are selected to cover all possible contamination types (point, contextual,
joint) at a varying duration. To highlight the generic nature of the proposed framework, optimizer
is used to automatically configure the hyper-parameters of a model per channel. The proposed
models are capable of predicting normality with high tolerance to overfitting, dominating against
to the original ones [9] . Critical regions are well aligned to all anomalous events (IoU > 0.5), from
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which point anomalous records (F0.5 ≈ 0.8) are captured slightly better than contextual anomalies
(F0.5 ≈ 0.6). In total, from the 12 anomalous events only 2 are masked, while the rest are detected
with more than 70% precision. Finally, a good clustering (DBI < 0.19) is applied to the units space
of the detected anomalous records, with more than 87% of them to be verified similar also in their
actual data space. The major limitation due to the unsupervised environment is that poor data
quality can corrupt the data modeling phase. That requires a good understanding of the training
sequence to allow the framework to learn normality. On the other hand, if the contamination level
is too high, the system will try to model those instances, hence, considering them as normal at
inference time. Also if the duration of an anomalous event is too large, w.r.t. context size, then it
may partially covered or considered normal.

We now plan to extend the framework by integrating an expert knowledge level. We more
particularly aim at providing an environment enabling experts to annotate the detected events by
"physical reasons" that caused them, in a deductive way using IF-THEN temporal rules. DITAN is
trained to predict normality and thus detected anomalies that do not conform. Another interesting
extension that we are additionally working on is to train a supervised model using the DITAN labels
for both normal and anomalous records, to predict future anomalies before they happen.
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