
HAL Id: hal-04152104
https://uca.hal.science/hal-04152104

Submitted on 5 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A Comparison of Several Speed Computation Methods
for the Safe Shortest Path Problem
Aurélien Mombelli, Alain Quilliot, Mourad Baiou

To cite this version:
Aurélien Mombelli, Alain Quilliot, Mourad Baiou. A Comparison of Several Speed Computation
Methods for the Safe Shortest Path Problem. Proceedings of the 12th International Conference on
Operations Research and Enterprise Systems (ICORES 2023), SCITEPRESS - Science and Technology
Publications, pp.15-26, 2023, 978-989-758-627-9. �10.5220/0011618600003396�. �hal-04152104�

https://uca.hal.science/hal-04152104
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

A Comparison of Several Speed Computation Methods for the Safe
Shortest Path Problem

Aurélien Mombelli1, Alain Quilliot1 and Mourad Baiou1

LIMOS, UCA, 1 rue de la chebarde, 63170 Aubière, France
{f author, s author}@uca.fr,

Keywords: Dynamic Programming, Risk Aware, Time-dependant, Reinforcement Learning

Abstract: This paper is based on (Mombelli et al., 2022). In their article, they dealt with a fleet of autonomous vehicles
which is required to perform internal logistics tasks in some protected areas. This fleet is supposed to be ruled
by a hierarchical supervision architecture which, at the top level, distributes and schedules Pick up and Delivery
tasks, and, at the lowest level, ensures safety at the crossroads and controls the trajectories. They presented the
problem of finding a shortest path under risk constraints and proposed a way to compute speed functions along
the path. In this paper, we present some theoretical results and focus on the fixed path problem. We propose
several new ways of computing speed functions including a couple with reinforcement learning.

1 INTRODUCTION

While human drivers are capable of local risk avoid-
ance, autonomous vehicles (AV) do not have such
intrinsic capabilities and risk aware algorithms are ab-
solutely necessary.

Monitoring a fleet involving AVs usually relies on
hierarchical supervision. The trend is to use three
levels. At the low level, or embedded level, robotic-
related problems are tackled for specific AVs like con-
trolling trajectories in real-time and adapting them
to the possible presence of obstacles, see (Martı́nez-
Barberá and Herrero-Pérez, 2010). At the middle
level, or local level, local supervisors manage prior-
ities among AVs and resolve conflicts in a restricted
area (Chen and Englund, 2016; Philippe et al., 2019)
who worked on crossroad strategies. Then, at the top
level, or global level, global supervisors assign tasks
to the fleet and schedule paths. This level must take
lower levels into account to compute its solution. See
(Koes et al., 2005; Vis, 2006; Le-Anh and De Koster,
2006) for example or (Wurman et al., 2008) who com-
pute the shortest path thanks to the A* algorithm but
assign each task to the fleet of AVs using a multi-agent
artificial intelligence to avoid most conflicts in arcs.

This study puts the focus on the global level: rout-
ing and giving instructions to an AV in a fleet. An
AV, idle until now, is chosen to carry out a new task.
Since a vehicle is moving from some origin to some
destination, performing some loading or unloading
transaction and keeping on. But some specific features

impose new challenges:

• The time horizon for AVs is usually short and deci-
sions have to be taken online, which means that de-
cision processes must take into account the commu-
nication infrastructure, see (Vivaldini et al., 2013),
and the way the global supervisor can be provided,
at any time, with a representation of the current
state of the system and its short term evolution;

• As soon as AVs are involved, safety is at stake (see
(Pimenta et al., 2017)). The global supervisor must
compute and schedule routes in such a way that not
only tasks are going to be efficiently performed,
but also that local and embedded supervisors will
perform their job safely.

To compute a safe shortest path, (Ryan et al., 2020)
used, a weighted sum of time and risks in Munster’s
roads in Ireland using an A* algorithm. In their case,
the risk is a measure of dangerous steering or braking
events on roads. But these techniques mostly cannot
be applied here because the risk, in our case, is time-
dependent. Here, the risk will not be a measure of
dangerous events on the roads of a city but the expected
repair costs in a destructive accident scenario, should
it happens. To compute such expectation, planning
of risks is to be computed from the already working
fleet because the path they will follow and their speed
functions are known. A risk planning procedure is
then used to transform previous information into risk
functions over time that is necessary to compute the
expected repair costs for the AV.

In an article presented at the ICORES conference
in 2022, (Mombelli et al., 2022) presented the problem
of finding a shortest path under risk constraints and
proposed a way to compute speed functions along
the path. In this contribution, we will present new
advances related to:

• the comprehension of the way risk functions may
be defined and computed

• the complexity of the global problem

• the different ways decisions may be designed and
induce transitions

• the way statistical learning may be involved in
order to filter both decisions and states

First, a precise description of the global problem is pre-
sented with structural results. Then, the problem with
fixed path where only the speed functions are unknown
is tackled and it’s complexity is discussed. In the
fourth section, the fixed path problem is approached
with dynamic programming with several speed genera-
tion methods followed by, in the fifth section, filtering
and learning processes. Lastly, numerical experiments
are presented with a conclusion.

2 RISK INDUCED BY THE
ACTIVITY OF AN AV FLEET

In this section, the problem we already talked about
in the previous paper is described together with the
specific problem on a fixed path. Then, some structural
results of the solution will be presented leading to a
reformulation of our problem. Lastly, the complexity
of the problem is tackled.

2.1 Measuring the Risk

A warehouse is represented as a planar connected
graph G = (N,A) where the set of nodes N represents
crossroads and the set of arcs A represents aisles. For
any arc a∈A, La represents the minimal travel time for
an AV to go through aisle a. Moreover, two aisles may
be the same length but one may stock fragile objects
so that vehicles have to slow down.

Also, risk functions Πa : t 7→Πa(t), generated from
activities of aisle a, are computed using the risk plan-
ning procedure on experimentation in a real warehouse
that we are provided with. It is important to note
that the risk is not continuous. Indeed, there is, in
an aisle, a finite number of possible configurations:
empty, two vehicles in opposite directions, etc. (see
Figure 1). Each configuration is, then, associated with
an expected cost of repairs in the event of accidents.

Figure 1: At time t, 3 aisles have 1 vehicle each. At the next
time , Blue and Purple join in the same aisle. One time after,
all 3 vehicles join, generating high risks in this aisle (figure
from (Mombelli et al., 2022)).

Figure 2: Risk function of an aisle (figure from (Mombelli
et al., 2022)).

Therefore, they are staircase functions evaluated in
a currency (euro, dollars, etc.). Figure 2 shows an
example of a risk function of an aisle.

From a risk function, we can have an estimation of
the risk an AV takes in an aisle a between two times
t1 and t2 with v : t 7→ v(t) as its speed function with
Equation 1.

risk(t1, t2,v) = H(v)
∫ t2

t1
Πa(t)dt (1)

We impose function H to be such that H(v)≪ v
vmax

in
order to express the fact that a decrease of the speed
implies a decrease of the risk. In further sections, H is

set to H : v 7→
(

v
vmax

)2
.

Remark 1. Speed Normalization: We only care here
about traversal times of arcs e ∈ A, and not about their
true length, in the geometric sense. So we suppose,
without loss of generality that, for any arc e, vmaxe = 1.
Therefore we deal with reduced speed values v ∈ [0,1]
and Le means the minimal traversal time for arc e.

2.2 Discussion about Risk Functions

We are going to discuss here the way functions Π come
from and how they can be derived from observations
in a real example. As a matter of fact, the key issue
is about the way the risk related to the activity of a
fleet of AVs inside a transit network G = (N,A) may
be defined.

In any case, the risk should be defined here as re-
lated to the expected damage

∫
[t,t+dt]

Πe(s).ds which

is induced, on a given arc e and during a time inter-
val [t, t + dt], by the activity of the fleet along arc
e. It comes that the issue for us is to determine risk
functions t 7→ Πe(t),e ∈ A. We notice that this activ-
ity may not only involve vehicles which are moving
along e = (i, j) but also those who are performing
some storage or retrieval activity, and also that we may
have to consider vehicles which move along the arc
e−1 = (j, je).

2.2.1 The Simplest Case

Here, the risk is induced by identical moving vehi-
cles, which follow the arcs of G. Then, risk function
Πe should take the form Πe(t) = Πe

n(v1(t), . . . ,vn(t)),
where n is the number of vehicles which are moving
along arc e at time t, and v1, . . . ,vn their respective
speed. Since we suppose all vehicles to be identical,
function Πe

n should be symmetrical. In order to ex-
press the impact of the introduction of an additional
vehicle at a given speed v, we should be able to write:

Π
e
n+1(v1, . . . ,vn,v)

= H(v).Qe
n(v1, . . . ,vn)+Π

e
n(v1, . . . ,vn)

with H(v) << v ≤ 1 and Qe
n(v1, . . . ,vn) symmetrical.

This expression means that we distinguish the damages
which explicitly involve additional vehicle n+1 from
the damages which only involve other vehicles.

Above decomposition identifies function Πe =
Πe(t) with function Qe

n(v1, . . . ,vn) and quantity
H(v).Πe(t) involved in Section 3 with the marginal
expected damage induced by the introduction into arc
e and at speed v, of an additional vehicle. Since this
marginal expected damage is likely to involve, not only
the additional vehicle, but also some vehicles which
are currently moving inside e, we should also have:

∑
i=1,...,n+1

H(vi).Qe
n(v1, . . . ,vi, . . . ,vn)

≥ Π
e
n+1(v1, . . . ,vn,vn +1)

Above formulas may be implemented into many
ways. A simple one comes as follows:

Π
e
n(v1, . . . ,vn) = (Πi=1,...,nH(vi)).He(n)

where He is an increasing function of n such that
He(n)−He(n− 1) is also increasing. According to
this, we may set:

Π
e(t) =Π

e
n+1(v1(t), . . . ,vn(t),1)

−Π
e
n(v1(t), . . . ,vn(t)) (2)

2.2.2 The Case When non Moving Vehicles Must
Be Taken Into Account

We proceed the same way to arrive to the formula:

Π
e
n,p(v1, . . . ,vn) = (Πi=1,...,nH(vi)).Ke(n, p)

where n denotes the number of vehicles which are mov-
ing along e and p the number of vehicles involved into
some storage/retrieval activity. Function Ke should be
increasing in n and p and such that:
• Ke(n+1, p)−Ke(n, p) is increasing in n

• Ke(0, p) = 0 and Ke(n,0) = He(n)

2.2.3 The Case When Arc e Support
Bi-directional Vehicles

We proceed the same way to arrive to the formula:

Π
e
n,q(v1, . . . ,vn,u1, . . . ,uq)

= (Πi=1,...,nH(vi)).(Π j=1,...,qH(ui)).Le(n,q)

where n denotes the number of vehicles which are
moving along e and q the number of vehicles which are
moving along e−1. Function Le should be increasing
in n and q and such that:
• Le(n+1,q)−Le(n,q) is increasing in n

• Le(n,q+1)−Le(n,q) is increasing in q

• Le(0, p) = He−1
(n) and Le(n,0) = He(n)

3 OUR PROBLEM: SEARCHING
FOR SPEED FUNCTIONS
UNDER RISK CONSTRAINTS

An idle AV must now carry out a new task inside
the warehouse. Its task is to go through a path Γ.
A way of finding such path has been tackled in the
previous article and we will focus on determining the
speed functions in each aisle a of this path while being
provided with:
• The minimum travel time La of every arc a;

• The risk function Ra : t 7→ Ra(t) of every arc a;
Then, we want to compute:
• the leaving time ta of every arc a of Γ.

• the speed functions v to apply when the vehicle is
located inside every arc a of Γ.
As it is, we could have worked with a multi-

objective problem. However, we want to compute
speed functions such that the AV is “safe”. That means
a maximum risk value constraint is added. The ware-
house manager will impose a maximum value of risk

Rmax (quantified in currency, it can correspond to the
cost of replacing a vehicle in the event of an accident)
that an AV can take for a task. Then, the objective is
to determine quickly:

SSPP: Safe Shortest Path Problem
Compute leaving times ta and speeds functions va

on every arc a of path Γ

such that:
• the arrival time at the end of the path is minimal;
• the global risk ∑

a∈Γ

risk (ta−1, ta,va)<= Rmax.

where ta−1 is the leaving time of the previous arc (i.e.
the entry time of arc a).

3.1 Some Structural Results

As it is stated, SSPP looks more like an optimal control
problem than a combinatorial one. But, as we are
going to show now, we may impose restrictions on
speed function v, which are going to make the model
get closer to a discrete decision model.

Proposition 1. Optimal solution (Γ,v) of SSPP may
be chosen in such a way that v is piecewise constant,
with breakpoints related to the times ti when vehicle V
arrives at the end-nodes of arcs ti, i = 1, . . . ,n, and to
the breakpoints of function Πe

i , i = 1, . . . ,n.

Proof. Let us suppose that V is moving along some
arc e = ei, and that δ1, δ2 are 2 consecutive break-
points in above sense. If v(t) is not constant between
δ1 and δ2 then we may replace v(t) by the mean value
v∗ of function t 7→ v(t) between δ1 and δ2. Time
value Time(Γ,v) remains unchanged, while risk value
Risk(Γ,v) decreases because of the convexity of func-
tion H. So we conclude.

Proposition 2. If optimal SSPP trajectory (Γ,v) is
such that v(t) ̸= 1 at some t, then Risk(Γ,v) = Rmax.

Sketch of the proof. Let us suppose that path Γ is
a sequence e1, . . . ,en of arcs of G. We proceed by
induction on n.

First case: n = 1.
We suppose above assertion to be false and set:

• q0 = largest q such that v < 1 between tq and tq+1;

• v0 = related speed; l0 = distance covered by V
at time tq0 .

Let us increase v0 by ε > 0, such that v0 + ε ≤ 1 and
that induced additional risk taken between tq0 and tq0+1
does not exceed Rmax −Risk(Γ,v). Then, at time tq0+1,
vehicle V covered a distance l > l0. If l < Le, then
it keeps on at speed v = 1, and so arrives at the end
of e before time tq0 , without having exceeded the risk
threshold Rmax. We conclude.

Second case: n > 1.
Let us suppose above assertion to be false and apply
the following strategy:
On the first arc e1 where there exists t such that v(t)<
1, increase the speed as described in the case n =
1. The additional risk taken does not exceed Rmax −
Risk(Γ,v)

2 . Therefore, vehicle V reaches the end of e1
at some time t1 −β,β > 0, with an additional risk no
larger than (Rmax − Risk(Γ,v))

2 . So, for any i = 2, . . . ,n
we compute speed value vi such that moving along ei
at speed vi between ti−1−β and ti−1 does not induce an
additional risk more than (Rmax − Risk(Γ,v))

2n and finish
the path strictly before time tn. We conclude.

Proposition 3. Given an optimal SSPP trajectory
(Γ,v), with Γ = {e1, . . . ,en} and v satisfying Proposi-
tion 1. Let us denote by ti the arrival time at the end of
arc ei. Then, for any i = 1, . . . ,n, and any t in [ti−1, ti]
such that v = v(t)< 1, the quantity H ′(v(t)).Πeq(t) is
independent on t, where H ′(v) denotes the derivative
of H in v.

Proof. Once again, let us denote by ti time when ve-
hicle V arrives at the end of arc ei. For a given i,
we denote by δ1, . . . ,δH(i), the breakpoints of func-

tion Πei which are inside interval]ti−1, ti[, by Π
iq
q

related value of Πeq on the interval]δ j,δ j+1[, by
v0, . . . ,vq, . . . ,vH(q), the speed values of V when it
leaves those breakpoints, and by Rq the risk globally
taken by V when it moves all along eq. Because of
proposition 2, vector (v0, . . . ,vH(q)) is an optimal solu-
tion of the following convex optimization problem:

Compute (v0, . . . ,vH(q)) such that ∑q vq.(δq+1 −δq)

and which minimizes ∑q H(vq)Π
ei
q (δq+1 −δq).

Then, Kuhn-Tucker conditions for the optimality of
differentiable convex optimization program tell us that
there must exists λ ≥ 0 such that: for any q such that
vq < 1,H ′(vq).Π

ei
q = λ. As a matter of fact, we see

that λ cannot be equal to 0. We conclude.

Remark 2. In case H(v) = v2, above equality
H ′(vq)Π

ei
q = λ becomes vqRei

q = λ

2 where vqRei
q means

the instantaneous risk per distance dR
dL at the time when

V moves along ei between times δq and δq+1.

3.2 Adaptation of the Notion of
Wardrop Equilibrium

Let us suppose now that we are dealing with a risk mea-
sure which derives from the above mono-directional
simple case, and that we are imposed some time hori-
zon [0,T max]. Then, we consider a vehicle fleet, with
n vehicles k = 1, . . . ,n, whose activity is scheduled

between 0 and T max, according to routing strategies
(Γk,vk),k = 1, . . . ,n, where Γk is a path which starts
from some origin ok and arrives at some target destina-
tion dk. b (Γk,vk),k = 1, . . . ,n, allow us to derive, for
any arc e a risk function t 7→ Πe(t) defined with:

• A collection of auxiliary risk functions t 7→ Πe
k(t)

whose meaning is: Πe
k(t) is the risk function,

which we obtain while removing vehicle k and
related routing strategy (Γk,vk)

• A collection of marginal risk functions t 7→ Πe
k(t),

obtained from equation 2 and whose meaning is:
if we consider all vehicles but k, and if we make
vehicle k run along e between t and t +dt at speed,
v ≤ 1, then additional expected damage explicitly
involving for k is equal to H(v).Πe(t).dt

Then we may extend the well-known notion of
Wardrop Equilibrium by defining a Risk Wardrop
Equilibrium as follows: A collection of strategies
{(Γk,vk),k = 1, . . . ,n} define a Risk Wardrop Equi-
librium if, for any k = 1, . . . ,n : (Γk,vk) is an optimal
strategy for vehicle k in the sense of the SSPP instance
involving marginal risk functions t 7→ Πe

k(t) and time
horizon [0,T max]. We state:

Proposition 4. If T max ≥ supk{L∗(ok,dk)}, where L∗

means the shortest path distance in the sense of the
length L, then there exists a Risk Wardrop Equilibrium.

Proof. It directly derives from the way we defined
t 7→ Πe

k(t) as related to the marginal expected damage
induced by the introduction of additional vehicle k
into a transit network where other vehicles 1, . . . ,k−
1,k + 1, . . . ,n, are supposed to be already evolving.
More precisely, function t 7→ Πe

k(t) is defined for any
k by equations 2 which links it to risk function t 7→
Πe(t) and risk functions t 7→ Πe

k(t). Let us consider
an optimal solution {(Γopt

k ,uopt
k),k = 1, . . . ,n} of the

following GRM: Global Risk Minimization problem:

Compute a strategy collection {(Γk,vk),k = 1, . . . ,n}
such that resulting global risk value ∑

e

∫
[0,T max]

Πe(t)dt

be the smallest possible.

Let us denote by t 7→ Ropte
(t), t 7→ Ropte

k (t) and
t 7→ Π

opte

k (t),k = 1, . . . ,n, related risk func-
tions and marginal risk functions. Then we see
that, for any k, (Γ

opt
k ,uopt

k), which meets time
horizon [0,T max], minimizes under this con-
straint ∑

e

∫
[0,T max]

Πe(t)dt − ∑
e

∫
[0,T max]

Ropte

k (t)dt =

∑
e

∫
[0,T max]

H(v(t)).Πopte

k (t)dt, and so is an optimal

solution of the SSPP instance induced by marginal risk
functions t 7→ Π

opte

k (t). If T max ≥ supk{L∗(ok,dk)}

then GRM clearly admits a feasible solution. What re-
mains to be proved is that it admits an optimal solution.
We notice that no more than n vehicles can be located
at a given time t on a same arc e, and that, once a
vehicle leaves e, it does not come back later. It comes
that the number of breakpoints of a function Πe

k(t)
cannot exceed n. Then a simple topological argument
about compactness allows us to check that from any
sequence {(Γp

k ,u
p
k),k = 1, . . . ,n, p = 1, · · ·+∞} , we

may extract a convergent subsequence in the simple
sense, and that Lebesgue Theorem may be applied to
this convergence. We deduce that there must exist a
collection {(Γopt

k ,uopt
k),k = 1, . . . ,n} which achieves

In f(Γk,vk),k=1,...,n(∑
e

∫
[0,T max]

Πe(t)dt).

3.3 Risk Versus Distance SSPP
Reformulation

Remark 2 leads us to define the Risk versus Distance
coefficient for arc ei as the value 2H ′(vq)Π

ei
q involved

in Proposition 3. This proposition, combined with
Proposition 1, allows us to significantly simplify SSPP:
We define a risk versus distance strategy as a pair
(Γ,λRD) where:

• Γ is a path, that means a sequence {e1, . . . ,en} of
arcs, which connects origin node o do destination
node d;

• λRD
e associates, with any arc e in Γ, Risk ver-

sus Distance coefficient λRD
e = 2H ′(v)Re. In case

H(v) = v2, we notice that this coefficient means
the amount of risk per distance unit induced on arc
e at any time t such that v(t)< 1, by any trajectory
(Γ,v) which satisfies Proposition 3.

Let us suppose that we follow a trajectory (Γ,v) which
meets Proposition 3, and that we know value λRD

e for
any arc e of Γ.Since H is supposed to be convex and
such that H(v) ≪ v, we may state that H ′ admits a
reciprocal function H ′−1. Then, at any time t when
vehicle V is inside arc e, we are able to reconstruct
value

v(t) :

{
H ′−1(λRD

e
2Re

), if H ′−1(λRD
e

2Re
)< 1

1, otherwise
(3)

According to this and Proposition 3, SSPP may be
rewritten as follows with the notations Risk(Γ,v) and
Time(Γ,v) as Risk(Γ,λRD) and Time(Γ,λRD):

Risk versus Distance Reformulation: Compute risk
versus distance strategy (Γ,λRD) such that

Risk(Γ,λRD)≤ Rmax and Time(Γ,λRD) is the smallest
possible.

3.4 Discussion About the Complexity

The time dependence of the transit network together
with the proximity of the SSPP model with Shortest
Path Constraint models suggests that SSPP is a com-
plex problem. Sill, identifying the complexity of SSPP
is not that simple, since we are dealing with continu-
ous variables. Complexity also depends on function
H, and so we suppose here that H(v) = v2. We first
may check that:

Proposition 5. SSPP is in NP.

Sketch of proof. It is clearly enough to deal with the
case when Γ = {e1, . . . ,en} is fixed. Let us denote by
ti the time when vehicle V will arrive at the end of ei
(we set t0 = 0). If we know values {t1, . . . , tn}, then we
may retrieve values λRD

e ,e ∈ Γ, through binary search.
It comes that the core of our problem is about the com-
putation of values {t1, . . . , tn}. For any i, value ti may
be either equal to some breakpoint of the risk function
or located two of them. In order to make the distinc-
tion between those 2 configurations, we introduce the
function σ that is equal to 0 on every breakpoints and
1 between them. The number of possible functions σ

is bounded by CHn . Now we notice that, once function
σ is fixed, the problem becomes about computing val-
ues for those among variables {t1, . . . , tn} which are
not non-instantiated, together with speed values for all
consecutive intervals defined by elements of ∆ and by
those time values. This problem can be formulated
as a cubic optimization problem, and one may check
that, in case this problem has a feasible solution, then
first order Kuhn-Tucker equations for local optimality
determine exactly one local optimum. We conclude.

Conjecture 1. SSPP is in NP-Hard.

This conjecture is motivated by the fact that SSPP
seems to be close to the constrained shortest path
problems, which are most often NP-Hard (Lozano
and Medaglia, 2013). Practical difficulty of SSPP
may be captured through the following example (Fig-
ure 3), which makes appear that if (Γ,v) defines an
optimal SSPP trajectory, the risk per distance value
λRD

e = 2.H ′(v(t)).Πe may be independent on t on arc
e as told in Proposition 3, but cannot be considered as
independent on arc e.

Path Γ contains 2 arcs, e1 and e2, both with length
1 and maximal speed 2. Function Πe2 is constant and
equal to 1. Function Πe1 takes value 2 for 0 ≤ t ≤ 1,
and a very large value M (for instance 100) for t > 1
(see Figure 3). Rmax =

3
4 ; Function H is: v 7→ H(v) =

v2.Then we see that vehicle V must go fast all along the
arc e1, in order to get out of e1 before this arc becomes
very risky. That means that its speed is equal to 1 on e1,
and that its risk per distance value is equal to 1

2 . Next

Figure 3: Functions Πe1 and Πe2.

it puts the brake, in the sense that its speed remains
equal to 1 but its risk per distance value decreases to
1
4 . It is easy to check that this routing strategy is the
best one, with Risk(Γ,v) = 3

4 and Time(Γ,v) = 2.

3.5 Deriving Speed Functions from
Compact Decisions

As we saw in Section 3.3, there is a Risk versus Dis-
tance method to generate decisions in the form of a
single value λRD and this value will be used to create
the speed functions. Therefore, in this section, we will
talk about the transition procedure used to create a
speed function from a decision. Moreover, we propose
two other methods to generate decisions: Risk versus
Time and Distance versus Time.

• First approach: The Risk versus Distance ap-
proach.

Since H(v)= v2, H ′(v(t))Πe(t)= 2u(t)Πe(t) for any t
during the traversal of e. It comes that if we fix λRD the
speed value v(t) is given by: v(t)= In f (1,λRD/Πe(t)).
Resulting state (j,r2, t2)will be obtained from λRD and
(i,r1, t1) through the iterative process described in Al-
gorithm 1.

A special attention will be put for the first value
of dt as it needs to be less than Tq+1 − t1 and not
Tq+1 −Tq.

• Second approach: The Risk versus Time ap-
proach.

Since H(v) = v2 we have that at any time t during
the traversal of e, related risk speed dR

dT (t) is equal

to v(t)2Πe(t). It comes that if we fix λRT we get:

v(t) = In f (1,
(

λRT

Πe(t)

)1/2
).

Resulting state (j,r2, t2) will be obtained from λRT and
(i,r1, t1) through the same following iterative process
of Algorithm 1.

• Third approach: The Distance versus Time ap-
proach (mean speed approach).

This method is a little different from the two other as
a λDT will not give the speed function easily but only

Algorithm 1 Risk Distance Transition procedure

Require: Le the length of arc e
Require: T1, . . . ,TQ the breakpoints of Πe which are

larger than t1 and Πe
0, . . . ,Π

e
Q related Πe values.

Initialisation:
t2 = t1, r2 = r1, l = 0 and q = 0.
while Le < l do

v = λRD

Πe
q

if < 1 else 1

dt = Le−l
v if < Tq+1 −Tq else Tq+1 −Tq

t2 = t2 +dt
l = l + v.dt
r2 = r2 + v2Πe

qdt
q = q+1

end while
if r2 < Rmax then

return Success
else

return FAIL
end if

the value t2: t2 = t1 + Le
λDT . In order to determine the

speed function t 7→ v(t) and the value r2, the quadratic
program described in Algorithm 2 must be solved:

Algorithm 2 Distance Time Transition procedure

Require: Le the length of arc e
Require: T1, . . . ,TQ the breakpoints of Πe which are

larger than t1 and Πe
0, . . . ,Π

e
Q related Πe values.

Then we must compute speed values u1, . . . ,uQ ∈
[0,1] such that:
∑q u2

qΠe
q(Tq −Tq−1) is minimal

∑q uq(Tq −Tq−1) = t2 − t1

This quadratic convex program may be solved
through direct application of Kuhn-Tucker 1st order
formulas for local optimality. Then we get r2 by set-
ting: r2 = r1 +∑q u2

qΠe
q.(Tq −Tq−1). If r2 > Rmax then

the Mean Speed transition related to λDT yields a Fail
result.

3.6 Generic Algorithmic Scheme

To solve the SSPP, the following generic algorithm
scheme is used:

• State space: s = (i, t,r)
t (resp. r) is a feasible date (resp. sum of the risks)
at node i.

• Decision space: λ

A value from one of the three approaches presented
in Section 3.5.

• Transition space: s λ−→ s′

Transition from (i, t,r) to (j, ti, r+ risk (t, ti,vi))
by deriving the speed function vi from the compact
decision λ.

In the SSPP case, the decision space is a little
different as the next arc is unknown. Then a decision
would be ((i, j),λ) and this scheme becomes an A*
algorithm.

In the case where the path Γ is fixed, if all states
from the same node are used before moving on the
next node, this scheme becomes a forward dynamic
programming scheme.

Lastly, a greedy algorithm can be derived from
the Risk versus Distance reformulation on the shortest
path as Algorithm 3.

Algorithm 3 RD Greedy Algorithm

l = 0
(t,r) = (0,0)
for e ∈ Γ do

λRD = Rmax−r
L∗−l

Compute the speed function v thanks to Algo-
rithm 1 and λRD.
t ′ = t + Le

v
l = l +Le
(t,r) = (t ′,r+ risk(t, t ′,v))

end for

4 GENERATING DECISIONS AND
FILTERING STATES WITH
STATISTICAL LEARNING

First, we will talk about the decisions and how to
generate them. Then, in a second part, we consider a
way to speed up our algorithms in order to adapt to a
dynamic context: limiting the number of states (t,r)
linked to any node i. We do so by focusing on the
λ = λRD case.

4.1 Generating Decisions

Starting from state (i, t,r), a lot of new states can be
generated. But most of them are useless or not promis-
ing enough to be considered (too slow, too risky, slower
and riskier than another state, etc.).

Even for the Risk versus Distance reformulation,
the optimal value λopt of every individual arc is un-
known, more so for the other two methods. We pro-
pose to generate decisions by searching between a
low and high estimation of λopt : λin f and λsup. Those

generated values will be distributed between λin f and
λsup and led by λmidst (half of them uniformly dis-
tributed between λin f and λmidst and half of them be-
tween λmidst and λsup for example).

Rmax, L∗ and the time value tgreedy of the greedy
algorithm can be used to initialise λmidst as:

• λRD
midst =

Rmax
L∗

• λRT
midst =

Rmax
tgreedy

• λDT
midst =

L∗
tgreedy

Then, λin f =
λmidst

ρ
and λsup = ρλmidst with ρ a given

value.

4.2 The Filtering Issue

There is a logical filtering that can be applied first: if
the lower bound of the arrival time from a state (the
time it took to finish the path at vmax) is greater than an
existing solution (from the RD Greedy algorithm for
example). However, the logical filtering alone will not
be very efficient. We propose two more filtering pro-
cesses: one to limit the number of generated decisions
and one to limit the number of states.

4.2.1 State Limitation

In order to filter the set of states State[i] linked to a
given node i and to impose a prefixed threshold Smax
on the cardinality of State[i], several techniques can
be applied. For example, 2 states (t,r) and (t ′,r′) can
be considered as equivalent if |t − t ′|+ |r − r′| does
not exceed a rounded threshold. We will not follow
this approach which does not guarantee that we will
maintain the cardinality of State[i] below the imposed
threshold Smax. Instead, we’re going to pretend there’s
a natural conversion rate ω that turns risk into time.
Based on this, we will order the (t,r) pairs according
to increasing ωt + r values and continue with only the
best Smax states according to this order.

The key issue here is the value of ω. Intuitively,
ω should be equal to Rmax

to , where to is the optimal
value of SSPP, and we should be able to learn its value
depending on the main characteristics of the SSPP
instances: the most relevant characteristics seem to be
the risk threshold Rmax, the length L∗ of the path Γ, the
average ∆ of the functions Πe,e∈ A, and the frequency
of the breakpoints of these functions. We can notice
that if all the functions Πe are constant and equal to a
certain value ∆, then the speed v is constant and equal
to Rmax

L∗∆
, and the time value to is equal to L∗

v = ∆L∗2

Rmax
.

This will lead to initializing ω as ω = R3
max

∆L∗2 .

4.2.2 Filtering by Learning a Good ω Value

However, a lack of flexibility in the pruning procedure
associated with a not perfectly adjusted ω value can
give, for a given node i, an unbalanced State[i] collec-
tion. More precisely, we can qualify a pair (t,r) as
risky if r

∑
j≥i+1

L j
is large compared to Rmax

L∗ , or cautious

if the opposite is true. Our pruning technique may then
produce (t,r) pairs that, taken together, are either too
risky or too cautious. In order to control this kind of
side effect, we make the ω value self-adaptive as:
• if, in average, generated states are risky, ω should

be decreased to emphasise lower risk states
• on the contrary, if, in average, generated states are

safe, ω should be increased to emphasise faster
and riskier states
Then, if #State[i] > Smax, which states must be

removed? If the ω value is very close to Rmax
to , the Smax

lowest value states are kept and all others are removed
from State[i]. However, if it is not, a high state can
be better than the lowest state. Therefore, a method
to determine whether ω is a good approximation must
be used. We propose to compute the deviation of the
state’s risks of State[i] from the travelled percentage
of the path as in Equation 4.

Ω =

∑
(t,r)∈State[i]

(r
Rmax

−
∑

j≥i+1
L j

L∗)

#State[i]
(4)

If Ω’s absolute value is high, generated states take, on
average, too much risk or too little (meaning they can
go faster).
States are, then, removed depending on Ω’s value:
• If |Ω| is “high” (close to 1), ω is supposed a bad

approximation:⌊
#State[i]−Smax

3

⌋
states are removed from each third

of State[i] independently.

• If |Ω| is “medium”:
⌊

#State[i]−Smax
2

⌋
states are re-

moved from the union of the 1st and 2nd third of
State[i] and the 3rd third of State[i] independently.

• If |Ω| is “small” (close to 0), ω is supposed a good
approximation: the first Smax states are kept and all
others are removed.

5 Two Reinforcement Learning
Algorithms

In this section, two approaches will be presented. The
first one use the modifications of the decisions se-

quence as a direction and move in the feasible set
depending on whether the last direction improved the
solution or not. The second approach is based on the
fact that a global solution is also a local solution, thus
modifying the current decisions toward local solutions.

5.1 Learning a Good Direction of
Modifications

The algorithm Direction SSPP that we are now going
to present, introduces the principle of reinforcement
learning, in the sense that the vehicle V advances along
the path Γ by making a decision at each step i (greedy
algorithm), but learns to make good decisions through
training, i.e. by traversing Γ several times, in order to
learn to anticipate the consequences of changes in the
function Πe when it passes from an arc to its successor
in the path Γ.

The Direction SSPP algorithm will also work by
having vehicle V train multiple times along path Γ.
The first time V will follow Γ of size Q by applying
the standard decision λRD = rmax

L∗ . Then, at each step
of i along Γ, V will make decisions that will aim to im-
prove its current trajectory. We denote by (rq, tq,λq, tq)
respectively the risk of travel, the time of travel, the
decision and the time at the end of the arc aq. Suppose
also that t and r denote a current lead, respectively in
time and in risk, with respect to the situation which
prevailed in q at the end of the previous path along Γ

and that δ >0 is a current target move.
The idea here is to modify all the decisions slightly

(a direction of modification) and evaluate their impact.
At the next execution, if the direction had a positive
gain (i.e. arrived sooner at the end of Γ), the same
direction will be took again along with new random
modifications. We propose to use a decreasing ampli-
tude step for the random modifications and the move-
ment learned during the previous execution. From now
on, a movement defines a direction and its amplitude.

The learning greedy algorithm is therefore pre-
sented as Algorithm 4.

The calculation of (rq, tq,λq, tq) values follows the
pseudo-algorithm Algorithm 5.

5.2 Learning While Locally Minimising
the Risk

As the Direction SSPP algorithm, the LocMin SSPP
we are going to present now, will go through Γ several
times. However, this time, the decisions will be modi-
fied by trying to minimising the risk locally. Then, the
decisions can be increased a little to speed up and use
the risk we retrieved previously.

Algorithm 4 Direction SSPP Algorithm

Require: A first run of the greedy algorithm pre-
sented in Section 3.3
This first run provides us with a feasible solution
Solbest , as well as a time value tbest .
step = 0.5
for 10 iterations do

tprec = tQ
Calculate the values (rq, tq,λq, tq) along Γ

if tQ < tbest then
Update Solbest and tbest
r = rmax −∑

q
rq

end if
step = 0.8× step

end for

Algorithm 5 Computation of (rq, tq,λq, tq) values

Require: step the current amplitude
δ the movement applied at the previous execution
δgain the gain associated with the movement δ

q = 0
while q ≤ Q−1 do

Draw a random move δalea

for all λi do
λi = λi − step.(δgainδi +δalea

i)
end for
Apply transition and move to next arc

end while
Apply the transition on the last arc according to the
RD reformulation.

To do this, the arcs will be taken in pairs. The
entry time of the first arc and the exit time of the
second arc are considered fixed and the local problem
of minimizing the risk between those two dates will
lead the modifications of the decisions.

Here again, we will not search for the exact solu-
tion as we want a very fast algorithm. Instead, we will
try to make the derivative of the optimization function
tend to 0. Therefore, during the transition of an arc
for a specific decision λ, the derivatives Gλ

t of t with
respect to λ and Gλ

r the derivative of r with respect
to λ will be computed. Like for the speed function,
(Gλ

t ,G
λ
r) can be computed on every risk plateau:

• for any risk plateau before the end of the arc,
Gλ

t = 0 and Gλ
r = Gλ

r +2.v.Π.dT.Gλ
v

• for the last risk plateau,
Gλ

t = Gλ
v .

dL
v2 and Gλ

r = Gλ
r +2.v.Π.dT.Gλ

v +v2.Π.Gλ
v

where Π (resp. dT) is the value (resp. duration) of
the risk plateau, Gλ

v is the derivative of v with respect
to λ that is 0 if v = 1 and 1

Π
otherwise and dL is the

remaining distance before the end of the arc.
At the end the arc and the beginning of the next

one, the derivatives (GT
t ,G

T
r) of t and r with respect

to T , the leaving time of the first arc (and entry time
of the next one), can be computed as Equation 5.

GT
t =

(
v1

v2
−1

)
GT

r = v1.(v2.Π2 − v1.Π1)

(5)

where Π1 (resp. Π2) the risk value just before (resp.
just after) T and v1 (resp. v2) is the speed just before
(resp. just after) T according to decision λ, Π1 and
Π2.

From (Gλ1
t ,Gλ1

r) of the first arc, (Gλ2
t ,Gλ2

r) of
the second arc and (GT

t ,G
T
r), the true derivatives of

(Gλ1
t ,Gλ1

r) can be computed as in Equation 6.

Gλ1
t =Gλ2

t +(Gλ1
t +GT

t)

Gλ1
r =Gλ2

r +(Gλ1
r +GT

r)
(6)

Finally, the descent direction (∆λ1 ,∆λ2) is com-
puted thanks to Gλ1

t , Gλ1
r , Gλ2

t and Gλ2
r by projecting

(Gλ1
r ,Gλ2

r) on the plane orthogonal to (Gλ1
t ,Gλ2

t) and
normalising the resulting vector as Equations 7:

(∆λ1 ,∆λ2)∗ =(Gλ1
r ,Gλ2

r)−

< (Gλ1
r ,Gλ2

r),(Gλ1
t ,Gλ2

t)>

||(Gλ1
t ,Gλ2

t)||2
.(Gλ1

t ,Gλ2
t)

(∆λ1 ,∆λ2) =
(∆λ1 ,∆λ2)∗

||(∆λ1 ,∆λ2)∗||
(7)

But now that the risk has decreased, the speed
can be increased and use back the risk we retrieved
previously. We propose to multiply the decision λq
by the quotient of the previous risk and the new risk.
Then, if we actually retrieve some risk, the quotient
will be superior to 1 and equal to 1 if we did not.

Here again, the amplitude of the modifications will
be decreasing as in Algorithm 4. Therefore, to min-
imise the risk locally, several iterations of the min-
imisation process are applied (3 for example) and
the calculation of (rq, tq,λq, tq) values will follows the
pseudo-algorithm Algorithm 6.

6 NUMERICAL EXPERIMENTS

Goal: We perform numerical experiments with the
purpose of studying the behavior of DP Evaluate,
RechLoc SSPP and Direction SSPP algorithms.

Algorithm 6 Computation of (rq, tq,λq, tq) values

Require: step the current amplitude
q = 0
while q ≤ Q−1 do

rprev the risk on arc q before any modification
for 3 iterations (arbitrary choice) do

Compute (Gλ1
t ,Gλ1

r) and (Gλ2
t ,Gλ2

r) on arcs q
and q+1
Compute the descent direction (∆λ1 ,∆λ2)

λq = λq − step.∆λ1

λq+1 = λq+1 − step.∆λ2

Compute new risk r on arc q
end for
λq =

rprev

r λq
Apply transition with the new λq value

end while
Apply the transition on the last arc according to the
RD reformulation.

Table 1: Instance parameters table

id |A| Freq R α L∗ Greedy
1 4 0.2 2 0.4 59 142.32
2 5 0.25 1.9 1 55 82.47
3 6 0.19 2 1.5 63 72.72
4 4 0.43 2 0.4 67 141.15
5 6 0.6 1.9 1 61 118.89
6 7 0.42 2 1.5 68 93.34
7 6 0.16 1.9 0.4 104 317.61
8 7 0.18 1.9 1 96 142.3
9 6 0.18 2 1.5 93 102.79

10 7 0.41 2 0.4 102 194.87
11 6 0.45 2 1 104 185.33
12 8 0.32 2 1.5 101 129.06

Technical Context: Algorithms were imple-
mented in C++17 on an Intel i5-9500 CPU at 4.1GHz.
CPU times are in milliseconds.

Instances: We generate random paths that can be
summarized by their number |A| of arcs. Length values
Le,e ∈ A, are uniformly distributed between 3 and 10.
Function H is taken as function u 7→ H(u) = u2. Func-
tion Πe are generated by fixing a time horizon Tmax,
a mean frequency Freq of break points te

i , and an av-
erage value R for value Πe(t): More precisely, values
Πe are generated within a finite set {2R, 3R

2 ,R, R
2 ,0}.

As for threshold Rmax, we notice that if functions Πe

are constant with value R and if we follow a path Γ

with length Ldiam, the diameter of network G, at speed
1
2 = vmax

2 , then the expected risk is LdiamR
2 . It comes

that we generate Rmax as a quantity α
LdiamR

2 , where
α is a number between 0.2 and 2. Finally, since an
instance is also determined by origin/pair (o, p), we

Table 2: DynProg - Impact of λmode, with Smax = +∞,
Gmax = 21 and ρ = 8

id T RD RRD T RT RRT T DT RDT

1 102.3 98.3 118.5 99.9 126.2 78.9
2 66.1 96.1 68.1 99.1 62 87.8
3 63 84.1 63 84.1 72.3 49.5
4 129.4 79.8 136.6 89.7 131.7 96.3
5 72 97.2 70.2 98.2 75.3 92.7
6 78.7 99.8 77.6 98.1 76.2 99.6
7 279.1 97.3 278.1 99.5 284.6 99.2
8 116 96.3 116.2 94.3 118.5 99.9
9 94.7 98.9 93.2 97.9 93.2 86.2

10 176.7 92.6 167.4 99.3 174.7 99.8
11 123.5 92.8 123.4 93.5 123.2 92.6
12 110.3 99.8 109.6 99.7 111 99.9

denote by L∗ the value L∗
o,p. Table 1 presents a pack-

age of 18 instances with their characteristics and the
time value obtained by the greedy algorithm presented
in Section 3.3.

□ Outputs related to the behavior of DP SSPP.

We apply DP SSPP while testing the role of pa-
rameters λ = λRD,λRT ,λDT , as well as Smax and ρ. So,
for every instance, we compute:

• in Table 2: The time value T DPmode, the per-
centage of risk R DPmode from Rmax, and the CPU
times (in milliseconds.) CPUmode, induced by ap-
plication of DP SSPP on the shortest path between
o and p with λmode = λRD,λRT ,λDT , Smax = +∞,
Gmax = 21 and ρ = 8;

• in Table 4: The time value T DPmode, the per-
centage of risk R DPmode from Rmax, and the CPU
times (in milliseconds.) CPUmode, induced by ap-
plication of DP SSPP on the shortest path between
o and p with λmode = λRD,λRT ,λDT , Smax = 21,
Gmax = 5 and ρ = 4;

• in Table 3: For the specific mode λRD, mean num-
ber #S of states per node i, together with time value
T RD, when Smax =+∞, Gmax = 21 and ρ = 1.5,4.

Comments:
There are two important points in those four tables:

• the length of the shortest path of the instance 3 is
63 time units. Therefore solutions that go at full
speed do not reach Rmax;

• the RD method always performs best or is near the
best solution as it can be expected because of the
RD reformulation, see Section 3.3;

• the DT method is designed to minimise its risks,
then it may end without reaching Rmax more often
than the two other methods;

Table 3: DynProg - Impact of ρ, with λRD, Smax =+∞ and
Gmax = 21

ρ 1.5 4
id T RD #S T RD #S
1 113.4 236.75 103.2 75.5
2 79.7 370.3 62 221.15
3 66.2 118.75 63 254.75
4 130.6 70.7 127.9 62.9
5 81.9 151.8 71.2 174.7
6 80.4 723.8 76.1 623.45
7 282.8 233.06 275.7 203.4
8 118.5 550.13 115.8 331.63
9 95.8 61.73 93.2 170.86

10 183.2 222.36 176.5 293.76
11 127.3 91.2 123.2 210.36
12 112.9 542 110.3 511.86

Table 5: ProgDyn with learning

id T LocMin T Dir T Gr

1 139.4 139.4 142.3
2 68.0 62.4 82.4
3 71.6 64.0 72.7
4 141.0 141.0 141.1
5 83.5 83.9 118.8
6 87.8 81.4 93.3
7 285.2 317.6 317.6
8 121.0 142.3 142.3
9 95.5 96.0 102.7

10 194.8 194.8 194.8
11 131.2 125.2 185.3
12 115.5 120.5 129.0

• on instance 11, the tree methods end without reach-
ing Rmax, so we can deduce that the last arc is not
risky around the arrival date.

Then, we can see that the solutions in Table 4 are
fairly close to the solutions in Table 2 but with just
a few states kept at every node (hence the very short
computing time).

□ Outputs related to the behavior the improved
greedy algorithms.

Finally, we will compare the different approaches
based on the greedy algorithm: the local search and
the reinforcement learning. For each instance, we
calculate in the Table 5: the time value T alg in-
duced by applying LocMin SSPP (LocMin) and Di-
rection SSPP(Dir) in comparison with the greedy al-
gorithm (Gr).

Table 4: DynProg - Impact of λmode, with Smax = 21, Gmax = 5 and ρ = 4

id T RD RRD cpuRD T RT RRT cpuRT T DT RDT cpuDT

1 140 93.9 0.28 132.8 99.6 0.27 142.3 87.8 0.53
2 72.3 99.5 1.57 78.7 96.1 0.46 79.6 88.5 1.19
3 63 84.1 1.22 63 84.1 1.14 72.6 55.1 1.04
4 140.3 96.6 0.34 137.1 91.7 0.19 229.1 91.3 0.18
5 90.2 90.4 0.98 76.2 98.2 1.1 85.6 96.6 1.34
6 81.4 99.9 1.36 78 99.6 1.72 78.2 97.8 1.99
7 280.5 98 1.21 283.3 98.4 1.01 287.5 82.4 1.12
8 120.2 99.2 1.5 121.2 96.5 1.44 125.8 99.6 1.03
9 95.7 97.2 0.99 93.2 97.4 0.88 94.6 83.5 1.06

10 187.2 94.7 1.08 188.9 97.6 1.07 194.8 95.8 1.11
11 124.9 96.2 1.08 124.5 93.8 1.14 125.1 95.9 1.74
12 126 95.9 1.5 111.2 99.2 2.84 115.6 98.4 3.43

7 CONCLUSION

We dealt here with the problem of finding good speed
function with risk constraints for autonomous vehicles,
which we handled under the prospect of fast, reactive
and interactive computational requirements. We also
show how, from observation of real situation, one can
compute the risk functions and presented some prop-
erties of such functions. Those properties allowed us
to reformulate the problem which helped us in the cre-
ation of several heuristics that we compared. It comes
that a challenge from industrial players becomes to use
our models in order to estimate the best-fitted size of
an AGV fleet, and the number of AVs inside this fleet.
We plan addressing those issues in the next months.

REFERENCES

Chen, L. and Englund, C. (2016). Cooperative Intersec-
tion Management: A Survey. IEEE Transactions on
Intelligent Transportation Systems, 17(2):570–586.

Koes, M., Nourbakhsh, I., and Sycara, K. (2005). Hetero-
geneous multirobot coordination with spatial and tem-
poral constraints. AAAI Workshop - Technical Report,
WS-05-06:9–16.

Le-Anh, T. and De Koster, M. B. (2006). A review of design
and control of automated guided vehicle systems. Eu-
ropean Journal of Operational Research, 171(1):1–23.

Lozano, L. and Medaglia, A. L. (2013). On an exact method
for the constrained shortest path problem. Computers
and Operations Research, 40(1):378–384.

Martı́nez-Barberá, H. and Herrero-Pérez, D. (2010). Au-
tonomous navigation of an automated guided vehicle
in industrial environments. Robotics and Computer-
Integrated Manufacturing, 26(4):296–311.

Mombelli, A., Quilliot, A., and Baiou, M. (2022). Searching
for a Safe Shortest Path in a Warehouse. In Proceed-
ings of the 11th International Conference on Opera-

tions Research and Enterprise Systems, pages 115–122.
SCITEPRESS - Science and Technology Publications.

Philippe, C., Adouane, L., Tsourdos, A., Shin, H. S., and
Thuilot, B. (2019). Probability collectives algorithm
applied to decentralized intersection coordination for
connected autonomous vehicles. In IEEE Intelligent
Vehicles Symposium, Proceedings, volume 2019-June,
pages 1928–1934. IEEE.

Pimenta, V., Quilliot, A., Toussaint, H., and Vigo, D. (2017).
Models and algorithms for reliability-oriented Dial-
a-Ride with autonomous electric vehicles. European
Journal of Operational Research, 257(2):601–613.

Ryan, C., Murphy, F., and Mullins, M. (2020). Spatial
risk modelling of behavioural hotspots: Risk-aware
path planning for autonomous vehicles. Transportation
Research Part A: Policy and Practice, 134:152–163.

Vis, I. F. (2006). Survey of research in the design and con-
trol of automated guided vehicle systems. European
Journal of Operational Research, 170(3):677–709.

Vivaldini, K. C. T., Tamashiro, G., Junior, J. M., and Becker,
M. (2013). Communication infrastructure in the cen-
tralized management system for intelligent warehouses.
In Communications in Computer and Information Sci-
ence, volume 371, pages 127–136.

Wurman, P. R., D’Andrea, R., and Mountz, M. (2008). Coor-
dinating hundreds of cooperative, autonomous vehicles
in warehouses. In AI Magazine, volume 29, pages 9–
19.

