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Abstract
In this paper we investigate the existence of subexponential parameterized algorithms of three
fundamental cycle-hitting problems in geometric graph classes. The considered problems, Triangle
Hitting (TH), Feedback Vertex Set (FVS), and Odd Cycle Transversal (OCT) ask for the
existence in a graph G of a set X of at most k vertices such that G − X is, respectively, triangle-free,
acyclic, or bipartite. Such subexponential parameterized algorithms are known to exist in planar
and even H-minor free graphs from bidimensionality theory [Demaine et al., JACM 2005], and there
is a recent line of work lifting these results to geometric graph classes consisting of intersection of
"fat" objects ([Grigoriev et al., FOCS 2022] and [Lokshtanov et al., SODA 2022]). In this paper we
focus on "thin" objects by considering intersection graphs of segments in the plane with d possible
slopes (d-DIR graphs) and contact graphs of segments in the plane. Assuming the ETH, we rule out
the existence of algorithms:

solving TH in time 2o(n) in 2-DIR graphs; and
solving TH, FVS, and OCT in time 2o(

√
n) in K2,2-free contact-2-DIR graphs.

These results indicate that additional restrictions are necessary in order to obtain subexponential
parameterized algorithms for these problems. In this direction we provide:

a 2O(k3/4·log k)nO(1)-time algorithm for FVS in contact segment graphs;
a 2O(

√
d·t2 log t·k2/3 log k)nO(1)-time algorithm for TH in Kt,t-free d-DIR graphs; and

a 2O(k7/9 log3/2 k)nO(1)-time algorithm for TH in contact segment graphs.
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1 Introduction

In this paper we consider three fundamental NP-hard cycle-hitting problems, namely Tri-
angle Hitting (TH), Feedback Vertex Set (FVS), and Odd Cycle Transversal
(OCT) where, given a graph G and an integer k, the goal is to decide whether G has a set of
at most k vertices hitting all its triangles (resp. cycles for FVS, and odd cycles for OCT).
We consider these problems from the perspective of parameterized complexity, where the
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objective is to answer in time f(k)nO(1) for some computable function f , and with n denoting
the order of G. It is known (see for instance [8]) that these three problems can be solved
on general graphs in time cO(k)nO(1) (for some constant c) and that, under the Exponential
Time Hypothesis (ETH), the contribution of k cannot be improved to a subexponential
function (i.e., there are no algorithms with running times of the form co(k)nO(1) for these
problems).

However, it was discovered that some problems admit subexponential time algorithms in
certain classes of graphs, and there is now a well established set of techniques to design such
algorithms. Let us now review these techniques and explain why they do not apply on the
problems we consider here.

1.1 Subexponential parameterized algorithms in sparse graphs
Let us start with the bidimensionality theory, which gives an explanation on the so-called
square root phenomenon arising for planar and H-minor free graphs [11] for bidimensional1
problems, where a lot of graph problems admit ETH-tight 2O(

√
k)nO(1) algorithms.

What we call a graph parameter here is a function p mapping any (simple) graph to a
natural number and that is invariant under isomorphism. The classical win-win strategy to
decide if p(G) ≤ k for a minor-bidimensional2 parameter (like p = fvs, the size of a minimum
feedback vertex set of G) is to first reduce to the case where ⊞(G) = O(

√
k) (where ⊞(G)

denotes the maximum k such that the (k, k)-grid is contained as a minor in G), and then
use an inequality of the form tw(G) ≤ f(⊞(G)) to bound the treewidth obtained through
the following property.

▶ Definition 1 ([2]). Given c < 2, a graph class G has the subquadratic grid minor property
for c (SQGM for short), denoted G ∈ SQGM(c), if tw(G) = O(⊞(G)c) for all G ∈ G. We
write G ∈ SQGM if there exists c < 2 such that G ∈ SQGM(c).

While in general every graph G satisfies the inequality tw(G) ≤ ⊞(G)c for some c < 10 [7],
the SQGM property additionally require that c < 2. Thus, for any G ∈ SQGM(c) and G ∈ G
such that ⊞(G) = O(

√
k), we get tw(G) ≤ ⊞(G)c = O

(
kc/2)

= o(k). For instance planar
graphs and more generally H-minor free graph [12] are known to have a treewidth linearly
bounded from above by the size of their largest grid minor. In other words, these classes
belong to SQGM(1).

The conclusion is that the SQGM property allows subexponential parameterized al-
gorithms for minor-bidimensional problems (if the considered problem has a 2O(tw(G))nO(1)-
time algorithm) on sparse graph classes. Notice that these techniques have been extended to
contraction-bidimensional problems [2].

1.2 Extending the results to geometric graphs
Consider now a geometric graph class G, meaning that any G ∈ G represents the interactions
of some specified geometric objects. We consider here (Unit) Disk Graphs which correspond
to intersection of (unit) disks in the plane, d-DIR graphs (where the vertices correspond to
segments with d possible slopes in R2), and contact segment (where each vertex corresponds
to a segment in R2, and any intersection point between two segments must be an endpoint

1 Informally, a problem is bidimensional if positive instances are minor-closed and a solution on the
(r, r)-grid has size Ω(r2).

2 See definition in [19].
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of one of them). We refer to Section 2.2 for formal definitions. Classes of geometric graphs
represented in the plane form an appealing source of candidates to obtain subexponential
parameterized algorithms as there is an underlying planarity in the representation. However
these graphs are no longer sparse as they may contain large cliques, and thus cannot have the
SQGM property. Indeed, if G is a clique of size a, then tw(G) = a−1 but ⊞(G) ≤

√
|G| =

√
a.

To overcome this, let us introduce the following notion.

▶ Definition 2. Given a graph parameter p and a real c < 2, a graph class G has the almost
subquadratic grid minor property for p and c (G ∈ ASQGM(c)/p) if there exists a function
f such that tw(G) = O(f(p(G))⊞(G)c). We say that G ∈ ASQGM/p if there exists c < 2
such that G ∈ ASQGM(c)/p.

This notion was used implicitly in earlier work (e.g., [19]) but we chose to define it
explicitly in order to highlight the contribution f of the parameter p to the treewidth, which
is particularly relevant when it can be shown to be small (typically, polynomial). Let us now
explain how ASQGM can be used to obtain subexponential parameterized algorithms on
geometric graphs.

It was shown in [18] that FVS can be solved in time 2O(k3/4 log k)nO(1) in map graphs, a
superclass of planar graphs where arbitrary large cliques are possible, as follows. Let ω(G)
denote the order of the largest clique in a graph G. The first ingredient is to prove that map
graphs are ASQGM/ω, and more precisely that tw(G) = O(ω(G)⊞(G)). Then, if ω(G) ≥ kϵ

for some ϵ, the presence of such large clique allows to have subexponential branchings (as
a solution of FVS must take almost all vertices of a clique). When ω(G) < kϵ, then the
ASQGM property gives that tw(G) ≤ kϵ ⊞(G) ≤ k

1
2 +ϵ (as before we can immediately answer

no if ⊞(G) > O(
√

k)). By carefully choosing ϵ they obtain the mentioned running time. The
same approach also applies to unit disk graphs and has since been improved to 2

√
k log knO(1)

in [17] using a different technique.
There is also a line of work aiming at establishing ASQGM property for different classes

of graphs and parameters, with for example [19] proving that (1) string graphs are ASQGM

when the parameter p is the number of times a string is intersected (assuming at most two
strings intersect at the same point), and that (2) intersection graphs of "fat" and convex
objects are ASQGM when the parameter p(G) is the minimal order of a graph H not
subgraph of G (generalizing the degree when H is a star).

1.3 Extending the results for TH and FVS to geometric graphs classes
not ASQGM/ω.

A natural next step for FVS and TH is to consider classes that are not ASQGM/ω. Observe
(see Figure 1) that neither disk graphs, 2-DIR or contact 2-DIR graphs are in ASQGM/ω,
and thus constitute natural candidates.

New ideas allowed the authors of [23] to obtain subexponential parameterized algorithms
on disk graphs for, in particular, TH, FVS and OCT. The first idea is a preprocessing step
(working on general graphs) which given an input (G, k) first reduces to the case where we
are given a set M such that |M | = O(k1+ϵ), G − M is a forest, and for any v ∈ M , N(v) \ M

is an independent set (see Corollary 16).
The second idea is related to neighborhood complexity which, informally, measures the

number of ways the vertices of G − X connect to the vertices of X for every vertex set X

(see Definition 34 for a formal definition). The following theorem is formulated using clique
number instead of ply (the maximum number of disks containing a fixed point), but it is
known [4] that these two values are linearly related in disk graphs. It holds that:
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Figure 1 Three intersection graphs. From left to right, a disk graph, a 2-DIR graph, and a
contact 2-DIR graph. In these graphs (where the left one is from [18]), ω(G) is constant, tw(G) ≥ t

(where t = 3 here) as it contains Kt,t as a minor, ⊞(G) = O(
√

t) as they have a feedback vertex set
of size at most t.

▶ Theorem 3 (Theorem 1.1 in [23]). Disk graphs with bounded clique number have linear
neighborhood complexity.

For TH, these two ideas are sufficient to obtain a subexponential parameterized algorithm.
For FVS, [23] provide the following corollary.

▶ Corollary 4 (Corollary 1.1 in [23] restricted to FVS). Let G be a disk graph with a (non-
necessarily minimal) feedback vertex set M ⊆ V (G) such that for all v ∈ M , N(v) \ M is
an independent set, and such that for all v ∈ V (G) \ M , N(v) \ M is non-empty. Then, the
treewidth of G is O(

√
|M |ω(G)2.5).

As they use this corollary after a branching process reducing the clique number to kϵ and
as their (approximated) feedback vertex set M has size |M | = k1+ϵ′ , they obtain a sublinear
treewidth and thus a subexponential parameterized algorithm for FVS (and several variants
of FVS) running in time 2O(k13/14 log k)nO(1).

1.4 Subexponential parameterized algorithms via kernels
Let us finally point out that another approach to obtain 2o(k)nO(1) algorithms is to obtain
small kernels (meaning computing in polynomial time an equivalent instance (G′, k′) with
|G′| typically in O(k)), and then use a 2o(n) time algorithm. For FVS such a 2o(n)-time
algorithm is known in string graphs from [5] or [24], but as far as we are aware, the existence
of a linear kernel in this graph class is currently open.

1.5 Our contribution
Our objective is to study the existence of subexponential parameterized algorithms for TH
and FVS mainly in 2-DIR, Kt,t-free d-DIR (for t and d constants), and contact segment.

Negative results.

The first interesting difference between disk graphs and d-DIR graphs is that Theorem 3
(about the linear neighborhood complexity) no longer holds for d-DIR graphs, because of the
presence of large bicliques. Thus, it seems that Kt,t is an important subgraph differentiating
the two settings and this fact is confirmed by our first results (recall that TH admits
subexponential parameterized algorithms in disk graphs).

▶ Theorem 5. Assuming the ETH, there is no algorithm solving TH, and OCT in time 2o(n)

on n-vertex 2-DIR graphs.
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This result was already proved for OCT in [25] where the authors also provide algorithmic
lower bounds for homomorphisms problems in string graphs.

Our second negative result is the following, whose 2o(√
n) lower-bound matches those

known for the same problems in planar graphs [6].

▶ Theorem 6. Under the Exponential Time Hypothesis, the problems TH, OCT, and FVS
cannot be solved in time 2o(√

n) on n-vertex K2,2-free contact 2-DIR graphs.

Positive results for FVS.

Notice first that Corollary 4 does not hold in 2-DIR, for example in the second graph of
Figure 1, where M is the set of vertical segments. Thus, there is no hope to directly apply
the approach of [23] to obtain subexponential parameterized algorithm for FVS in 2-DIR.
Whether such algorithms exist is a natural open question. As a first step toward it, we
consider the case of contact segment graphs. The motivation behind this class is that contact
segment with axis parallel segments is a special case of 2-DIR, and that our technique can
even handle contact segment (with arbitrary segments, which is incomparable with 2-DIR).

Moreover, observe that the techniques of Section 1.2 do not apply here as contact segment
does not belong to ASQGM/ω (Figure 1). This motivates our first approach of Section 3.1,
where we first prove that contact segment belongs to ASQGM/(ω ·d∆) (where d∆ is a suitable
graph parameter that we introduce). Then, instead of following the classical approach which
would be to branch to decrease ω and d∆, we use the preprocessing phase of [23] (Corollary 16)
to reduce to a graph with treewidth o(k). This leads to the following result.

▶ Theorem 7. FVS can be solved in time 2O(k7/8·log k)nO(1) in contact segment graphs, even
when no representation is given.

Then, we develop in Section 3.2 another approach (which also uses, as a first step,
Corollary 16 from [23]) to improve the running time of the previous theorem. Informally, we
reduce the instance to a Kt,t-free graph H with |H| ≤ k1+ϵ for t = kϵ′ . This allows us to use
a result of [21] on the treewidth of Kt,t-free string graphs, and obtain again a treewidth in
o(k). This approach leads to the following.

▶ Theorem 8. FVS can be solved in time 2O(k3/4·log k)nO(1) in contact segment graphs,
assuming a representation is given as input.

Notice that Corollary 4 might hold for contact segment graphs however it is not clear
that this would lead to an improvement in the time complexity above. We point out that
the existence of a 2o(k)nO(1) algorithm for FVS on 2-DIR graph is left open.

Positive results for TH.

In Section 4.2 we observe that, for any hereditary graph class with sublinear treewidth, the
branching step in Corollary 16 directly leads to a subexponential parameterized algorithm
for TH. This implies the following statement for Kt,t-free string graphs.

▶ Theorem 9. For every integer t there is a constant ct > 0 such that the following holds.
There is an algorithm for TH in string graphs that runs on n-vertex instances with parameter
k in time

2ctk2/3 log knO(1),

where t is the minimum integer such that G is Kt,t-free, even when neither t nor a string
representation are given as input.
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To provide bounds on the constant ct in the case of d-DIR graphs, we prove the following
statement on the neighborhood complexity that may be of independent interest.

▶ Lemma 10. For every integer t > 0, the class of Kt,t-free d-DIR graphs has linear
neighborhood complexity with ratio O(d · t3 · log t).

▶ Lemma 11. The class of contact segment graphs has linear neighborhood complexity.

This leads to the the following improved running time for TH in Kt,t-free d-DIR and
contact segment.

▶ Corollary 12. There is an algorithm that solves TH in time
2O(k2/3 log k·t2 log t·

√
d)nO(1) in Kt,t-free d-DIR graphs,

2O(k7/9 log3/2 k)nO(1) in contact segment
even when no representation is given.

2 Preliminaries

2.1 Basics
In this paper logarithms are binary and all graphs are simple, loopless and undirected. Unless
otherwise specified we use standard graph theory terminology, as in [14] for instance. Given
a graph G, we denote by ω(G) the maximum order of a clique in G, and given X ⊆ V (G),
by G[X] the subgraph induced by X, and by G − X the graph G[V (G) \ X]. We denote by
dG(v) the degree of v ∈ V (G), or simply d(v) when G is clear from the context.

We denote by ⊞(G) the maximum k such that the (k, k)-grid is contained as a minor in
G. We consider the following three problems denoted Triangle Hitting (TH), Feedback
Vertex Set (FVS), and Odd Cycle Transversal (OCT), where given as input a graph
G and an integer k, we have to decide if there exists a set X ⊆ V (G) with |X| ≤ k such
that G − X has no triangle, no cycle, or no odd cycle, respectively. We denote by tw(G) the
treewidth of G, and say that a graph class G has sublinear treewidth if for some δ ∈ [0, 1)
there is a function f(n) = O(nδ) such that every graph G ∈ G satisfies tw(G) ≤ f(|G|). A
prominent class of graphs that has sublinear treewidth is that of planar graphs. A graph
class is said hereditary if for any graph G in the class, all its induced subgraphs are also part
of the class.

2.2 Graph classes
In this article, we are mainly concerned with geometric graphs described by the intersection
or contact of objects in the Euclidean plane. We focus our attention in particular on non-fat
objects in the plane, like strings (a.k.a. Jordan arcs) or segments. The class of intersection
graphs of strings (resp. segments) is called string graphs (resp. segment graphs). d-DIR
graphs is a subset of segment graphs where the segments have at most d different slopes; in
particular, for 2-DIR graphs we assume the segments to be axis-parallel. These graph classes
admit subclasses, called contact, where the representations should not contain crossings. In
these representations, two strings either intersect tangentially, or they intersect at a string
endpoint. In a segment contact representation, any point belonging to two segments must
be an endpoint of at least one of these segments. If a point belongs to several strings or
segments, the above property must hold for any pair of them.
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2.3 Preliminary branching steps
This section describes the preprocessing routines used by our algorithms. We first consider the
branching step allowing to reduce cliques larger than a chosen size p (where typically p = kϵ).
Informally, for any algorithmic problem where a solution S must intersect all triangles (such
as the three problems we consider), finding a clique K of size at least p (assuming we can
do it in polynomial time) and branching to guess the at most 2 vertices of K that S avoids
leads to a recursion of the type f(k) = p2f(k − (p − 2)), implying that f(k) = 2O( k

p log p).
This folklore preliminary step is formalized in the following lemma, originally formulated in
[23] for disk graphs and re-stated here for any graph class where the maximum clique can be
approximated in polynomial time, as it remains trivially true in any such graph class.

▶ Lemma 13 ([23, Lemma 6.1]). Let G be a hereditary graph class where the maximum
clique can be approximated within a constant factor in polynomial time. There exists a
2O( k

p log p)nO(1)-time algorithm that, given a graph G ∈ G and p, k ∈ N with p ≥ 6, returns a
collection Y ⊆ {(D, U, K) : D, U ⊆ V (G), D ∩ U = ∅, K is a partition of D} of size 2O( k

p log p)
such that:
1. For every (D, U, K) ∈ Y, G − D does not have a clique of size larger than p.
2. For every S ⊆ V (G) of size at most k such that G − S is triangle-free, there exists a

unique (D, U, K) ∈ Y such that D ⊆ S and S ∩ U = ∅.

▶ Corollary 14. Let Π be FVS or TH. Let G be a hereditary graph class where the maximum
clique can be computed in polynomial time. There exists a 2O( k

p log p)nO(1)-time algorithm
that, given an instance (G, k) of Π and an integer p ≥ 6, where G ∈ G, returns a collection C
of size 2O( k

p log p) of instances of Π such that:
1. For any (G′, k′) ∈ C, G′ is an induced subgraph of G, ω(G′) ≤ p, and k′ ≤ k.
2. (G, k) is a yes-instance if and only if there exists (G′, k′) ∈ C which is a yes-instance.

Proof. The proof is immediate from Lemma 13 by associating to any (D, U, K) ∈ Y a pair
G′ = G − D, k′ = k − |D|. ◀

Our algorithms rely on the following routine previously used in the context of disk
graphs [23].

▶ Lemma 15 ([23, Lemma 6.5]). There is a 2O( k
λ log k) · nO(1)-time algorithm that, given a

n-vertex graph G, λ, k ∈ N, and a set X ⊆ V (G) such that G − X is triangle-free, returns a
collection

Z ⊆ {(D, U, Z) : D, U ⊆ X, D ∩ U = ∅, and Z ⊆ V (G) \ X}

of size 2O( k
λ log k) and such that:

1. for every (D, U, Z) ∈ Z, |Z| ≤ 2(k +λ|X \D|) and for every v ∈ V (G)\D, N(v)\(X ∪Z)
is an independent set;

2. for every S ⊆ V (G) of size at most k such that G − S is triangle-free, there exists a
unique (D, U, Z) ⊆ Z such that D ⊆ S and S ∩ U = ∅.

▶ Corollary 16. Let Π be FVS or TH. There exists a 2O( k
λ log k)nO(1)-time algorithm that,

given an instance (G, k) of Π and an integer λ, returns a collection C of size 2O( k
λ log k) of

tuples (G′, M, k′) such that:
1. For any (G′, M, k′) ∈ C, (G′, k′) is an instance of Π where G′ is an induced subgraph of

G, and k′ ≤ k.
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2. |M | ≤ 11λk, G − M is triangle-free (when Π =TH) or is a forest (when Π =FVS), and
for any v ∈ M , N(v) \ M is an independent set.

3. (G, k) is a yes-instance if and only if there exists (G′, M, k′) ∈ C such that (G′, k′) is a
yes-instance.

Proof. Let (G, k) be an instance of Π and an let λ ∈ N. As both FVS and TH admit
polynomial 3-approximation [1, 3], compute first in polynomial time a 3-approximation X.
If |X| > 3k then we can define C as a singleton containing a dummy no-instance, and thus
we now assume that |X| ≤ 3k. Observe that for both problems, G − X is triangle-free, and
thus we can use Lemma 15 to obtain the claimed collection Z. We define C as follows. For
any (D, U, Z) ∈ Z, define G′ = G − D, k′ = k − |D|, M = (X \ D) ∪ Z.

First and third property are straightforward. Let us consider the second property. As X

was a solution to Π and X ⊆ M , we get that G − M is triangle free (when Π =TH) or is a
forest (when Π =FVS), and |M | ≤ |X| + |Z| ≤ 3k + 2(k + 3λk) ≤ 11λk. Item 1 of Lemma 15
implies that for any v ∈ M , N(v) \ M is an independent set. ◀

3 Positive results for Feedback Vertex Set

3.1 A subexponential FPT algorithm for contact segment graphs via
ASQGM

3.1.1 Proving ASQGM
The distance bewtween two vertices of a graph is the minimum length (in number of edges)
of a path linking them and the diameter of a graph is the maximum distance between two of
its vertices. In order to show ASQGM we use the framework of [2] that we recall now.

▶ Definition 17 (Contractions [2]). Given a non-negative integer c, two graphs H and G,
and a surjection σ : V (G) → V (H) we write H ≤c

σ G if
for every x ∈ V (H), the graph G[σ−1(x)] has diameter at most c and
for every x, y ∈ V (H), xy ∈ E(H) ⇐⇒ G[σ−1(x) ∪ σ−1(y)] is connected.

We say that H is a c-diameter contraction of G if there is a surjection σ such that H ≤c
σ G

and we write this H ≤c G. Moreover, if σ is such that for every x ∈ V (H), |σ−1(x)| ≤ c′,
then we say that H is a c′-size contraction of G, and we write H ≤(c′) G. If there exists an
integer c such that H ≤c G, then we say that H is a contraction of G.

▶ Definition 18 ((c1, c2)-extension [2]). Given a class of graph G and two non-negative
integers c1 and c2, we define the (c1, c2)-extension of G, denoted by G(c1,c2), as the class
containing every graph H such that there exist a graph G ∈ G and a graph J that satisfy
G ≤(c1) J and H ≤c2 J .

See Figure 2 for an illustration of the above definitions.

J

G ∈ G H ∈ G(c1,c2)

c1-size contraction c2-diameter contraction v

Figure 2 Left: a graphical representation of the definition of G(c1,c2), adapted from [2]. Right: a
representation B where the non-trivial contact points of v, the red horizontal segment, are circled in
blue, and dB

∆(v) = 3. Vertices of NB
∆(v) are depicted in green.
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Our proofs will rely on the following result, that appears implicitly in the proof of
Theorem 15 of [2].

▶ Lemma 19 ([2]). For every integers c1, c2 and G ∈ P(c1,c2), with P the class of planar
graphs, we have tw(G) = O(c1 · c2 ⊞(G)).

We will show that contact segment graphs have the ASQGM property involving a
parameter that we define now.

▶ Definition 20 (non-trivial contact points, d∆, End, N∆ ). For a contact segment graph G

with representation B and a vertex v ∈ V (G), we call non-trivial contact point of the segment
of v any point of that segment that is not an endpoint and where at least two other segments
intersect.3

We denote by dB
∆(v) the number of non-trivial contact points of v, and dB

∆(G) =
maxv∈V (G) dB

∆(v). Moreover we define d∆(G) = minB dB
∆(G), the minimum being taken

over all contact segment representation B of G.
Given point p of the plane, we denote by EndB(p) the set of vertices whose segments end
in p. For a vertex v, NB

∆(v) =
⋃

p EndB(p), where the union is on all the non-trivial
contact points p of v. When B is clear from context we drop the superscript in the
notation.

See Figure 2 for an illustration of these definitions on an example. Notice that for any
non-trivial contact point p of v, | End(p)| ≥ 2 and End(p) ∪ {v} induces a complete graph.
We use Lemma 19 to prove the following result.

▶ Theorem 21. For every contact segment graph G we have tw(G) = O(ω(G) · (d∆(G) +
1) · ⊞(G)).

Proof. Let G be a contact segment graph. We will prove that G ∈ P(ω(G),2·d∆(G)+2). Let B
be a contact segment representation of G such that dB

∆(G) = d∆(G). From this representation,
we define a planar graph J (see Figure 3) whose vertex set is partitioned into three sets VE ,
V∆, and Vs as we describe now. For each segment v in B, we create:

one vertex in VE for each of the two endpoints of v,
one vertex in V∆ for each non-trivial contact point of v,
one vertex in Vs for each maximal subsegment of v without non-trivial contact points.

Let us now define the edges of J . We start by adding, for each segment v of B, a path
starting at an endpoint of v and then (following their order along v) alternating with the
vertices of Vs and the vertices of V∆ associated to v, until reaching the other endpoint of v.
We say that this path in J is associated to the segment v. Then, for every pair s1, s2 of
segments in contact, we distinguish 3 cases:

1. if the two segments are in contact with their endpoints, then we add an edge between the
vertices associated to these endpoints;

2. if an endpoint of s1 is in contact with an inner point of s2, and it is the only segment with
this contact point, then we add an edge between the vertex associated to this endpoint of
s1 and the vertex corresponding to the subsegment of s2 where the contact point is;

3 Note that these two or more other segments intersect on their endpoints, as we are dealing with contact
graphs.
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Figure 3 A contact segment representation of a graph (top left), the constructed graph J (top
right) for the proof of Theorem 21 and the associated planar graph H (bottom). Vertices of J

are depicted in black for VE , red for V∆, and green for Vs. Edges of J depicted in black are the
edges added first to obtain an induced path between vertices associated to the same segment. Edges
depicted in blue correspond to edges added in Case 2. For readability we did not draw the edges of
the black and red-back cliques but instead represented them with black (resp. red) curves around
their vertices.

3. if an endpoint of s1 is in contact with a non-trivial contact point of s2, then we add an
edge between the vertex associated to this endpoint of s1 and the vertex corresponding
to the non-trivial contact point in s2.

This completes the definition of J . Observe that for any ℓ-clique K in J with ℓ ≥ 3,
either K ⊆ VE , which we call a black clique (corresponding to the case where ℓ segments
share the same endpoint), or |K ∩ VE | = ℓ − 1 and |K ∩ V∆| = 1, which we call a red-black
clique (corresponding to a non-trivial contact point, where ℓ − 1 segments share the same
endpoint, which is in the interior of the last segment of the clique).

Let us now show how we can contract vertices in J to either obtain G or a planar graph.
First, if we contract in J the paths associated to each segment, we obtain the contact graph G.
Let us now bound the diameter of this contraction. As we contract paths, we only need to
compute the size of each contracted path. Observe that the path associated to each v ∈ G

has 2 · d∆(v) + 3 vertices, as there are always two vertices in VE and one in Vs, and then each
inner non-trivial contact point of a segment creates one vertex in V∆ and one in Vs. This
implies that this is a (2 · d∆(G) + 2)-diameter contraction.

If we now contract in J all black and red-black cliques, we obtain a graph H which is
planar, as we can get a planar drawing of H from B. Contracted sets have size ω(G), so
we get that G ∈ P(ω(G),2·d∆(G)+2). Then, by Lemma 19, we obtain the claimed bound on
tw(G). ◀

We point out that Theorem 21 cannot be improved in the sense that contact segment
graphs are neither ASQGM/ω (see Figure 1) nor ASQGM/d∆ (when for example G is a
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clique where all segments share a common point).

3.1.2 From the ASQGM property to subexponential FPT algorithms
In this section, we show how the ASQGM property of Theorem 21 can be used to deduce a
subexponential parameterized algorithm for FVS in contact segment graphs.

We point out that the classical method to use an ASQGM property (typically of the
form tw(G) = O(ω(G)⊞(G))) is to branch first to reduce to ω(G) = O(kϵ), implying then
that tw(G) ≤ O(k1/2+ϵ), as for bidimensional problems we only need to consider the case
where ⊞(G) = O(

√
k). In our case where tw(G) = O(ω(G) · d∆(G) · ⊞(G)), we can still

branch to reduce ω(G), but branching to reduce d∆(G) seems difficult in subexponential
time. Indeed, consider v with d∆(v) ≥ kϵ. A typical branching step would be to either take
v in the solution, or to take | End(p)| − 1 segments among those in End(p), for any non-trivial
contact point p of v. However, if now v is such that | End(p)| = 2 for any non-trivial contact
point p of v, such branching does not lead to subexponential parameterized time. Thus, we
rather rely on the following lemma.

▶ Lemma 22. Consider a contact segment graph G with a set M ⊆ V (G) such that G−M is a
forest, and such that for any vertex v ∈ M , the graph G[N(v)]−M is edgeless. Then for every
positive integer τ , there exists a set B ⊆ V (G) of size O(|M |/τ) such that d∆(G − B) ≤ τ .

Proof. Observe first that for a clique of size at least 3 in G, all but at most one of its
vertices are in M as M is a feedback vertex set, and for any v ∈ M , G[N(v)] − M is edgeless.
Now, take v ∈ V (G) having a non-trivial contact point p. By the previous observation,
| End(p) ∩ M | ≥ | End(p)| − 1 ≥ 1

2 | End(p)| as | End(p)| ≥ 2. By summing over all non-trivial
contact points of v we get | N∆(v) ∩ M | ≥ 1

2 | N∆(v)|.
Let τ be a positive integer, we define B = {v ∈ V (G) : d∆(v) ≥ τ} the set of vertices

with "big" d∆ in G. By definition of non-trivial contact points we have | N∆(v)| ≥ 2d∆(v),
and thus

|B|τ ≤
∑
v∈B

d∆(v) ≤
∑
v∈B

| N∆(v)|
2 ≤

∑
v∈B

| N∆(v) ∩ M |.

Moreover, as for any v ∈ V (G) there are at most 2 vertices u such that v ∈ N∆(u) (one for
each endpoint of v), we get

∑
v∈B | N∆(v) ∩ M | ≤ 2|M | by the pigeonhole principle (if the

inequality was false, then there would exists v ∈ M with |{u : v ∈ N∆(u)}| ≥ 3). This leads
to |B| = O(|M |/τ). ◀

▶ Theorem 7. FVS can be solved in time 2O(k7/8·log k)nO(1) in contact segment graphs, even
when no representation is given.

Proof. Given an instance (G, k) of FVS in contact segment, by pipelining Corollary 14 and
Corollary 16 with p and k which will be chosen later, we generate 2O(kp−1 log k)+O(kλ−1 log k)
triples (G′, M, k′) where (G′, k′) is an instance of FVS in contact segment that we have to
solve, with k′ ≤ k.

▷ Claim 23. There is a polynomial time algorithm that, given (G′, k′), correctly concludes
either that ⊞(G′) = O(

√
k) or that (G′, k′) is a no-instance.

Proof. Recall that we can compute a 2-approximation S for the FVS problem in polynomial
time [1], and if |S| > 2k′ then we have a no-instance. So we can assume |S| ≤ 2k′. As a grid
minor of G′ have size at most O(

√
|S|), which gives ⊞(G′) = O(

√
k′) = O(

√
k). ⌟
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So we can assume ⊞(G′) = O(
√

k). Let τ ≥ 1 to be chosen later.

▷ Claim 24. We have tw(G′) = O
(

max
(

λτ−1k, pτ
√

k
))

.

Proof. By Lemma 22 there exists a set B such that d∆(G−B) ≤ τ . By denoting G′′ = G′−B

and by Theorem 21 we have tw(G′′) = O(p · τ · ⊞(G′′)). Observe that ⊞(G′′) ≤ ⊞(G′)
because G′′ is a subgraph of G′. This gives tw(G′′) = O(p · τ ·

√
k). Removing a vertex

decreases the treewidth by at most 1, so tw(G′) ≤ |B| + tw(G′′). By Corollary 16 |M | ≤
11λk so by Lemma 22 we get |B| = O(λτ−1k) and obtain the wanted result tw(G′) =
O

(
max

(
λτ−1k, pτ

√
k
))

. ⌟

Solving the FVS instance (G′, k′) using a 2O(tw(G′))nO(1) algorithm (see [8]), and by
putting p = kϵ1 , λ = kϵ2 and τ = kϵ3 , we get an overall complexity of 2xnO(1) where
x = O(k1−ϵ1 log k) + O(k1−ϵ2 log k) + O(max

(
k1+ϵ2−ϵ3 , k1/2+ϵ1+ϵ3

)
). Taking ϵ1 = ϵ2 = 1

8
and ϵ3 = 1

4 , we get the claimed complexity. ◀

3.2 A subexponential parameterized algorithm for contact segment via
a reduction to string graphs

In this section we improve the running time of Theorem 7 using another approach where
we first use Corollary 16, and then use the following lemma to reduce to a contact graph of
strings which have small treewidth as we will see later.

▶ Definition 25. Given a contact segment representation, a Helly point is a point of the
plane that is contained in at least 3 segments.

▶ Lemma 26. There is a polynomial time algorithm that, given an instance (G, k) of FVS,
a representation of G as contact segment, and a set M ⊆ V (G) such that G − M is a forest,
and such that for any vertex v ∈ M the graph G[N(v)] − M is edgeless, returns an equivalent
instance (G′, k′) such that:

G′ is a contact graph of strings,
k′ ≤ k and |G′| = O(|M |), and
ω(G′) ≤ ω(G) + 2.

Proof. The equivalent instance will be defined using reduction rules. Before describing these
rules, we define the set M ′ by adding to M every segment containing a Helly point (see
Figure 4).

By construction:
(a) For every v ∈ V (G) \ M ′, the segment v does not contain a Helly point.
We show that the set M ′ has similar properties as M :

▷ Claim 27.
(b) |M ′| ≤ 3|M |; and
(c) G − M ′ is a forest.

Proof. We start with item (b). Clearly a Helly point corresponds to a clique of order 3 or
more in G. By definition of M , the graph G[N(v)] − M is edgeless for every v ∈ M , so
every such clique has all but at most one vertices in M . Besides, the Helly point is not an
endpoint for at most one segment of the clique (otherwise G would not be contact segment).
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T2

u1

u2

T c
1

v

T b
1T a

1

Figure 4 Vertices of M are depicted in black, and M ′ = M ∪ {u1, u2}.

Therefore every Helly point is an endpoint of some segment in M . Each segment has at most
two endpoints, so there are at most 2|M | Helly points in total. Since, at every such point
there is at most one segment not in M (as already observed above), at most 2|M | segments
are added to M when constructing M ′. Regarding item (c), since G − M ′ is a subgraph of
G − M , it is also a forest. ⌟

Let us describe informally how we will reduce the instance. We do so by keeping M ′ and
by reducing or fully deleting each connected component of G − M ′, those being trees. In
particular we have to shrink, through kernelization rules defined below, the size of connected
component T of V (G) − M ′ (as they can be arbitrarily large, like the top part of T2 in
Figure 4 which is only attached to v ∈ M). Then, on one side, we will bound the total size of
connected components T of V (G) − M ′ such that |N(T ) ∩ M ′| ≥ 3 (like T2) by a planarity
argument. One the other side, as there could be arbitrarily many components T such that
|N(T ) ∩ M ′| ≤ 2 (like T a

1 , T b
1 and T c

1 in Figure 4), we need that kernelization rules also
remove some of them.

Let us consider the following kernelization rules for FVS. Those are applied prioritizing
the first rules. We omit the proofs of the first two folklore rules.
(R1) Delete every vertex v with degree at most one, and maintain the parameter k.
(R2) If there is an induced P3 = uvw with d(v) = 2 and u, v /∈ M ′, delete v, add an edge

uw, and maintain the parameter k.
Rule (R2) is such that no multiple edge can be created, as u and w are non-adjacent. From
now on, this rule implies that every vertex of degree two is either in M ′, has both neighbors
in M ′, or is contained in a triangle.

(R3) If there are two vertices u, v with same neighborhood, N(u) = N(v), and such that this
neighborhood consists of two adjacent vertices, delete v and maintain the parameter k.

Proof. (Safeness of R3) A minimal feedback vertex set can avoid any degree-two vertex x

that is adjacent to a vertex of degree at least three. Indeed, every cycle passing through
x also goes through this neighbor. So, before and after deleting v, we can assume that a
minimal feedback vertex set contains at least one neighbor of N(u), and this neighbor is
sufficient also to hit all the cycles going through v. So it is safe to delete v. ⌟
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(R4) If there is a triangle uvw such that deg(u) = 2 and deg(w) = 3, delete v and decrease
the parameter k by one.

Proof. (Safeness of R4) Any feedback vertex set should intersect {u, v, w}, and any cycle
intersecting this set goes through vertex v. So it is safe to force v in the solution. ⌟

(R5) If there is a vertex v ∈ M ′ and a path Pℓ = x1 . . . xℓ in G − M ′, with ℓ ≥ 4, such that
dG−M ′(xi) ≤ 2 and N(xi) ∩ M ′ ⊆ {v}, for all 1 ≤ i ≤ ℓ, delete v and decrease the
parameter k by one.

Proof. (Safeness of R5) By (R2), v is adjacent to every vertex in Pℓ. The correctness of (R5)
relies on the fact that a feedback vertex set avoiding v should contain at least 2 vertices of
Pℓ, but in that case such set could be modified by replacing one of the vertices by v. So it is
safe to force v in the solution. ⌟

(R6) If there are vertices u, v ∈ M ′ and a path Pℓ = x1 . . . xℓ in G − M ′, with ℓ ≥ 16, such
that dG−M ′(xi) ≤ 2 and N(xi) ∩ M ′ ⊆ {u, v}, for all 1 ≤ i ≤ ℓ, delete u and v and
decrease the parameter k by two.

Proof. (Safeness of R6) Let X = {u, v, x1, . . . , xℓ}. Note that for any cycle C such that
C ∩ X ̸= ∅, either C ∩ {u, v} ≠ ∅, or Pℓ ⊆ C. So any feedback vertex set intersecting X on
at least three vertices can be safely modified to include u and v. We consider from now on a
feedback vertex set S intersecting X on at most 2 vertices.

By (R2) every vertex of Pℓ is adjacent to u or v. Thus, one of these two vertices has at
least 8 neighbors in Pℓ. Assume it is v. As X contains four cycles intersecting only at v, a
feedback vertex set avoiding v would intersect X on at least four vertices, a contradiction.
Thus, v ∈ S.

By (R5) u has at least 4 neighbors in Pℓ so X \ {v} contains two cycles intersecting only
on u. Thus, a feedback vertex set avoiding u would intersect X on at least three vertices (on
v and on each of the cycles). Thus, we obtain u ∈ S. ⌟

The following rules deal with the connected components of G − M ′. This subgraph being
acyclic, these connected components are trees. Note that the leaves in these trees have degree
at least two in G (by rule (R1)), so they are necessarily adjacent to vertices in M ′.

(R7) If there is a vertex v ∈ M ′ and a connected component T in G − M ′ such that
N(u) ∩ M ′ ⊆ {v} for every u ∈ V (T ), delete v and decrease the parameter k by one.

Proof. (Safeness of R7) As noted above, T is a tree. The rule (R1) does not apply on T ,
so T has at least two leaves and each are adjacent to v; in particular there is a cycle in
G[V (T ) ∪ {v}]. We can thus force v in the feedback vertex set. ⌟

The rule (R7) ensures that every connected component T of G − M ′ is such that
|N(T ) ∩ M ′| ≥ 2, where N(T ) = (∪v∈V (T )N(v)) \ V (T ). Given two vertices u, v ∈ M ′, let
Fu,v be the subforest of G − M ′ obtained by keeping the connected components T such that
N(T ) = {u, v}. A tree T in Fu,v is said trivial if there is only one edge between T and u,
and only one edge between T and v. Note that by the previous rules such trivial tree is just
a single vertex.

(R8) If there are vertices u, v ∈ M ′, such that G[V (Fu,v) ∪ {u, v}] has no feedback vertex
set S with |S| < 2, delete u and v and decrease the parameter k by two.
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Proof. (Safeness of R8) Indeed, every feedback vertex set should intersect G[V (Fu,v)∪{u, v}]
on at least two vertices, and removing u and v destroys every cycle intersecting V (Fu,v)∪{u, v}.
We can thus force u and v in the feedback vertex set. ⌟

Note that from now on, there are no pair of disjoint cycles in G[V (Fu,v) ∪ {u, v}].

(R9) If there are vertices u, v ∈ M ′, such that G[V (Fu,v) ∪ {u, v}] has two cycles intersecting
only at v, delete v and decrease the parameter k by one.

Proof. (Safeness of R9) Indeed, every feedback vertex set avoiding v should intersect
G[V (Fu,v) ∪ {u, v}] on at least two vertices, but removing u and v destroys every cycle
intersecting V (Fu,v) ∪ {u, v}. We can thus force v in the feedback vertex set. ⌟

Note that from now on, for every u, v ∈ M ′, the forest Fu,v has at most 2 connected
components, or all its components are trivial.

(R10) If there are vertices u, v ∈ M ′, such that Fu,v has ℓ ≥ 3 trivial connected components,
delete ℓ − 3 of these connected components and maintain the parameter k.

Proof. (Safeness of R10) Let G′ be the obtained graph, and S a feedback vertex set of G′

with |S| ≤ k. Every minimum feedback vertex set S of G′ has to intersect V (Fu,v) ∪ {u, v}]
on one or two vertices. If this intersection has size two, then the set (S \ Fu,v) ∪ {u, v} has
same size and it is a feedback vertex set of G. If the intersection has size one, it is on u or v,
and this set S is already a feedback vertex set of G. So in both cases the size of a minimum
feedback vertex set of G′ is the same as for G. ⌟

From now on, we have that for every u, v ∈ M ′, the forest Fu,v has at most 3 connected
components. Let us now refer to the obtained graph and parameter as G′ and k′, and note
by construction that k′ ≤ k. As all rules are safe, we know that (G′, k′) is equivalent to
(G, k), and thus it remains to decide (G′, k′).

The graph G′ is a contact graph of strings because in every rule, except (R2), we only
delete vertices, while for (R2), one can draw a new string for u in the space left by the old
strings of u and v. One should also notice that this operation does neither create a Helly
point. This implies that G′ and M ′ verify property (a). Note that (b) and (c) also hold for
G′. Note also that ω(G′) ≤ ω(G) + 2, as a clique in G′ has at most two vertices not in M ′,
G − M ′ being acyclic, and as G′[M ′] ⊆ G[M ′]. Let us now prove that V (G′) has bounded
size.

Notice that in the contact string representation of G′ in hand, every string corresponding
to a vertex in M ′ is actually a segment. Let us denote G∗ the contact graph obtained from
this representation of G′ by slightly shortening every end of a segment u ∈ M ′ that is in
contact with another segment of M ′. This results exactly in deleting all the edges inside M ′,
so G∗[M ′] is edgeless. Note also that G∗ is a contact graph of strings with ply two (i.e. any
point belongs to at most two strings), so it is planar.

To bound the size of V (G′) = V (G∗) the main difficulty is to establish that |T | ≤
534 · |N(T ) ∩ M ′|, for each connected component T of G − M ′. This is proved below as
Lemma 28. Once this is established one has to consider the graph G∗

2 with vertex set M ′ and
such that uv is an edge if and only if there exists a non-empty forest Fu,v in G′. Note that
this graph being a minor of G∗ it is planar, and hence contains at most 3|M ′| edges. One has
also to consider G∗

>2, the graph obtained from G∗ by contracting every connected component
T of G − M ′ into a single vertex, and by then deleting every degree two vertex not in M ′.
Note that this graph is planar and bipartite, with vertex sets M ′ and X, and it is such that
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degG∗
>2

(vT ) ≥ 3, for each vT ∈ X. In such case we have that
∑

vT ∈X degG∗
>2

(vT ) ≤ 6|M ′|.
Indeed, this sum is at most twice the number of edges in the plane graph with vertex set
M ′ and with an edge uv if G∗

>2 has an uv-facial walk of length two, the twice coming from
the fact that an edge in this graph may appear because of at most two facial walks. Now,
since V (G′) = M ′ ∪ (∪u,v∈M ′V (Fu,v) ∪ (∪T V (T )), where the union on T is on all connected
components of G′ − M ′ such that |N(T ) ∩ M ′| ≥ 3, we can bound V (G′) as follows.

|G′| = |M ′| +
∑

u,v∈M ′

|Fu,v| +
∑

T ∈G−M with |N(T )∩M ′|≥3

|T |

≤ |M ′| + 3|M ′| · max
u,v∈M ′

|Fu,v| + 534 ·
∑

T ∈G−M with |N(T )∩M ′|≥3

|N(T ) ∩ M ′|

≤ |M ′| + 3|M ′| · (3 · 2 · 534) + 534 · 6|M ′|

◀

▶ Lemma 28. With the notation of the proof of Lemma 26, for every connected component
T of G − M ′ we have

|T | ≤ 534 · |N(T ) ∩ M ′|.

Proof. Consider an arbitrary connected component T of G − M ′ and let N(T ) ∩ M ′ =
{v1, . . . , vd}, for some d ≥ 2. Then, root T at an arbitrary vertex r. For any vertex v ∈ V (T )
denote by Tv the rooted subtree of T rooted at v and let us denote by NT (v) the set
N(Tv) ∩ M ′. Note that NT (v) ⊆ {v1, . . . , vd}. Two vertices u, v of T are said incomparable
if u /∈ Tv and v /∈ Tu.

The graph G∗ being planar we have the following two properties.

▷ Claim 29. For any triple of incomparable vertices u, v, w of T , there is no pair i, j ∈
{1, . . . , d} such that {vi, vj} ⊆ NT (u), {vi, vj} ⊆ NT (v), and {vi, vj} ⊆ NT (w).

Proof. Indeed, otherwise contracting Tu, Tv, Tw, and the rest of T on u, v, w, and r,
respectively, these four vertices and the vertices vi and vj would form a K3,3 minor in G∗. ⌟

▷ Claim 30. There are at most 3d incomparable vertices in T such that each of these vertices
v has a distinct pair cv ∈ {1, . . . , d}2 with cv ⊆ NT (v).

Proof. Indeed, otherwise one could construct a minor of G∗, with vertex set {v1, . . . , vd}
and more than 3d edges, which is impossible for a planar graph. ⌟

Let I ⊆ V (T ) (I for inner vertices) be the set of vertices v such that |NT (v)| ≥ 2.

▷ Claim 31. |I| ≤ 134d.

Proof. Observe that if v ∈ I and u ∈ V (T ) is an ancestor of v (i.e., v ∈ Tu), then u ∈ I.
Also, as d ≥ 2, r ∈ I. So T [I] is connected and the leaves of T [I] form a set of incomparable
vertices. By Claim 29 and Claim 30, we deduce that T [I] has at most 6d leaves. This implies
that the number of vertices of T [I] with degree at least three (in T [I]) is also bounded by 6d.
The same bound of 6d holds on the number of connected components in the subgraph of
T [I] induced by the vertices having degree two in T [I]. In the following let us refer to these
connected component as long paths.

To bound the number of vertices of degree two (in T [I]), let us now cut each long path
into order-16 subpaths whenever possible, and let us refer to these paths as the short paths.
Each long path leading to at most one short path of order smaller than 16, these short
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paths contribute in total for at most 6d × 15 vertices in T [I]. Let us now bound the number
of short paths of order exactly 16. By (R6), for every such short path P we have that
|N(P ) ∩ M ′| ≥ 3. This implies that the minor of G∗ obtained by contracting these short
paths and keeping the vertices in {v1, . . . , vd} has at most 2d contracted vertices. Indeed,
we have seen above that a bipartite plane graph with d vertices in one part and minimum
degree 3 on the other part has at most 6d edges. Thus there are at most 2d vertices in the
second part, and so there are at most 2d short paths of length 16. So in total the size of I is
bounded by 6d + 6d + (6d × 15) + (2d × 16) = 134d. ⌟

▷ Claim 32. For every vertex v ∈ V (T ) \ I, we have that G′[N [v]] is a triangle with one
vertex in each of V (T ) \ I, I, and M ′.

Proof. Consider a vertex v ∈ V (T ) \ I, and toward a contradiction suppose Tv has more
than one vertex. Note that every vertex of Tv belongs to V (T ) \ I too. Let u be a leaf of Tv

furthest from v. As |NT (v)| < 2, (R1) implies that |NT (u)| = 1. Let us denote u′ and w the
neighbors of u in M ′ and in V (T ), respectively. Possibly w = v.

By (R2) the vertices u′ and w are adjacent. As w ∈ V (T ) \ I we have that NT (x) = {u′}
for every vertex x ∈ V (Tw). If w has another son y ≠ u, then this should also be a leaf in T

(u being a furthest leaf), and N(y) = {u′, w} (for the same reasons as u). This is impossible
by (R3), so u is the unique son of w and thus deg(w) = 3. Now (R4) leads to a contradiction,
we thus have that v is a leaf of T . Furthermore, the same arguments as above (for u) imply
that v has two neighbors, one neighbor in M ′ and one in I, and that these neighbors are
adjacent. ⌟

We are now ready to complete the proof of the lemma. By Claim 31, the set I has size at
most 134d, and thus the graph G∗[I ∪ {v1, . . . , vd}] has at most 400d edges (this graph being
planar). On the other hand, by Claim 32, every connected component of T − I is an isolated
vertex whose neighborhood (in G∗) is isomorphic to K2 (i.e., it has two neighbors that are
adjacent). By (R3), there are at most one vertex in T − I per edge of G∗[I ∪ {v1, . . . , vd}],
which implies that |T − I| ≤ 400d. So in total |T | ≤ 534d ◀

▶ Lemma 33. A string contact graph with clique number ω does not contain a K12ω,12ω as
a subgraph.

Proof. Towards a contradiction, assume there is a string contact graph H with clique
number ω containing a K12ω,12ω-subgraph, with vertex sets A = {a1, . . . , a12ω} and B =
{b1, . . . , b12ω}. We denote by αA and αB the sizes of a maximum independent set in H[A]
and H[B], respectively. As these graphs are not complete, we have αA ≥ 2 and αB ≥ 2.

Every triangle-free contact graph of strings (as it only contains trivial contact points) is
planar (see Lemma 2 in [13]), so in particular K3,3 is not a contact graph of string. Therefore
there is no induced K3,3 in H, which implies that αA ≤ 2 or αB ≤ 2. In the following we
assume that αA = 2 and αB ≥ 2. Let b1, b2 ∈ B be non-adjacent.

We consider a maximal subset A′ ⊆ A whose strings touch b1 on the same side, and
touch b2 on the same side. This set has size at least 2ω, as there are at most 4ω strings in A

touching b1 or b2 on their endpoints, and as the other strings can be partitioned into four
sets according to the sides of b1 and b2 they reach these strings. If a string of A touches b1
at several places and on distinct sides, consider an arbitrary side for the partition.

The segments in A′ can be ordered a′
1, . . . , a′

2ω, . . . so that a′
i and a′

j , with i < j do not
intersect if j − i ≥ ω − 1 (otherwise, all the segments in-between and b1 would intersect and
form a (ω + 1)-clique). Thus a′

1, a′
ω, and a′

2ω form an independent set, a contradiction to
αA = 2. ◀
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Preliminary branching steps and the previous reduction algorithm imply the following
result.

▶ Theorem 8. FVS can be solved in time 2O(k3/4·log k)nO(1) in contact segment graphs,
assuming a representation is given as input.

Proof. Given an instance (G, k) of FVS in contact segment, by pipelining Corollary 14 with
p = kϵ1 and Corollary 16 with λ = kϵ2 (for ϵ1, ϵ2 which will be chosen later), we generate
2O(k1−ϵ1 log k)+O(k1−ϵ2 log k) instances of FVS in contact segment graphs that we have to solve.
For each such instance, by Lemma 26 we can reduce in polynomial time to an instance (G′, k′)
such that G′ is a contact string graph with ω(G′) ≤ kϵ1 + 2 and |G′| ≤ O(k1+ϵ2), where
G′ is Kt,t-free for t = 12kϵ1 + 24 by Lemma 33. By Corollary 43, we have that tw(G′) ≤
O

(√
k1+ϵ1+ϵ2 log k

)
. Solving FVS using a 2O(tw(G′))nO(1) algorithm (see [8]), we get a

running time in 2xnO(1) where x = O(k1−ϵ1 log k) + O(k1−ϵ2 log k) + O(k(1+ϵ1+ϵ2)/2 log1/2 k).
Taking ϵ1 = ϵ2 = 1

4 , we get the claimed complexity. ◀

Notice in the proof of Theorem 8 that we could also chose ϵ1 = 1, use Lemma 26 to reduce
to |G′| ≤ O(k1+ϵ2), and the algorithm in 2O(n2/3 log3/2(n)) of [5] for FVS on n vertex string
graphs, but this would result in a worse running time.

4 Positive results for Triangle Hitting

4.1 A subexponential FPT algorithm in classes with sublinear separators
In this section we provide a subexponential parameterized algorithm for TH in graph classes
with strongly sublinear separators (Theorem 39).

For a graph G and a set X ⊆ V (G) we are interested in the number of ways the vertices
of G − X connect to the vertices of X.

▶ Definition 34. If for a graph class G there is a constant c such that for every G ∈ G
and every X ⊆ V (G), |{N(v) ∩ X : v ∈ V (G)}| ≤ c|X|, then we say that G has linear
neighborhood complexity with ratio c.

▶ Definition 35 ([15]). We say that a hereditary graph class G has strongly sublinear
separators if there is a function f : N → R with f(n) = O(nδ) for some δ ∈ [0, 1) such that
every G ∈ G has a balanced separator of order at most f(|G|).

Strongly sublinear separators and neighborhood complexity are linked by the following
results. To avoid definitions that are otherwise irrelevant to this paper, we skip the definitions
of polynomial and bounded expansion used in the next two results.

▶ Theorem 36 ([15]). Every graph class with strongly sublinear separators has polynomial
expansion.

▶ Lemma 37 ([26]). If a graph class has bounded expansion, then it has linear neighborhood
complexity.

We will also need the following connection to treewidth.

▶ Theorem 38 ([16]). If a hereditary graph class C has strongly sublinear separators with
function f(n) = βnδ, then the treewidth of any n-vertex graph in G is at most 15βnδ.

The proof of the following result follows the same steps as the proof in [23] for disk graphs,
but as our statement is more general, we prefer to include it.
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▶ Theorem 39. If G is a hereditary graph class that has strongly sublinear separators, then
there is a subexponential time algorithm for TH.
More precisely, if the size of the separators in G is f(n) = βnδ for some δ < 1, β > 0 and
the ratio of neighborhood complexity is c, then the algorithm runs on n-vertex instances with
parameter k in time

2O(βγδcδk2δ/(1+δ) log k)nO(1).

for some universal constant γ.

Notice that by Theorem 36 and Lemma 37, the ratio c as in the above statement is always
defined for graph classes with strongly sublinear separators.

Proof of Theorem 39. Let α = 1−δ
1+δ . We first use Corollary 16 with λ = kα, and thus in

2O(k1−α log k)nO(1) time we generate the 2O(k1−α log k) instances (G′, M, k′) as described in
Corollary 16. Let us now describe how we solve these instances.

By definition of c the vertices of G′ − M can be partitioned into at most c|M | classes
V1, . . . , Vr such that two vertices in the same class have the same neighborhood in M . For
every i ∈ {1, . . . , r} we delete all but one vertex of Vi, that we call vi. Let G′′ be the
obtained graph. In order to keep track of the deleted vertices we define a weight function
w : V (G′′) → N as w(vi) = |Vi| for every i ∈ {1, . . . , r} and w(v) = 1 for every v ∈ M .
The produced instance is (G′′, w, k′); we call it a translation of the instance (G′, M, k′).
Observe that it can be computed in polynomial time, and that it is an instance of Weighted
Triangle Hitting.

▷ Claim 40. (G′, k′) is a yes-instance or TH ⇔ (G′′, w, k′) is a yes-instance of Weighted
TH.

Proof. Observe first the property (P 1) that, as for any v ∈ M , N(v) \ M is an independent
set, and M is a triangle hitting, any triangle ∆ of G′ (or G′′) has |∆ ∩ M | ≥ 2.

Direction “⇐”. Let S′′ be a solution of (G′′, w, k′). Observe that every vertex of S′′

either belongs to M or is of the form vi for some i ∈ {1, . . . , r} (using the same notation as
above). Let I ⊆ {1, . . . , r} be the set of integers such that S′′ \ M = {vi : i ∈ I}. We define
S′ = (S′′ ∩ M) ∪

⋃
i∈I Vi. By the definition of k′ and w, we have |S′| ≤ k′. In order to show

that S′ is a triangle hitting set of G′, we assume toward a contradiction that G′ − S′ has
a triangle ∆. If |∆ ∩ M | = 3 then ∆ would be a triangle in G′′ − S′′, a contradiction, so
by property (P1) we have |∆ ∩ M | = 2, and thus let vi be the representative in G′′ of the
vertex in ∆ \ M . By construction of S′, this implies that vi /∈ S′′, and even that ∆ ∩ S′′ = ∅,
a contradiction.

Direction “⇒”. Let S′ be a subset-minimal solution of (G′, k′). Observe that for every
i ∈ {1, . . . , r}, either Vi ⊆ S′ or Vi ∩ S′ = ∅. Indeed, if v ∈ Vi belongs to S′, by minimality
of this set there is a triangle ∆ containing v in G′ − (S′ \ {v}), and by property (P1) it
has its two other vertices in M . By definition of Vi, every u ∈ Vi is neighbor of these two
vertices. So, as S′ is a triangle hitting set, u ∈ S′. Let I = {i ∈ {1, . . . , r} : S ∩ Vi ≠ ∅}. Let
S′′ = (S′ ∩ M) ∪ {vi : i ∈ I}, and notice that this set has weight |S′| ≤ k′. So it remains to
show that S′′ is a triangle hitting set of G′′. Suppose toward a contradiction that G′′ − S′′

has a triangle ∆. As previously, if |∆∩M | = 3 we have a contradiction and thus |∆∩M | = 2,
and let vi be the vertex in ∆ \ M . By definition of S′′, vi /∈ S′ and thus ∆ is a triangle of
G′ − S′, a contradiction. ⌟
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In remains now to solve such an instance (G′′, w, k′) of Weighted Triangle Hitting.
Let t = tw(G′′). We first compute in 2O(t)|G′| steps a tree decomposition of width O(t) (for
instance using the approximation algorithm of Korhonen [20]). We then solve the problem in
2O(t)|G′|O(1) steps via a standard dynamic programming algorithm on the tree decomposition
by observing that every triangle lies in some clique (as observed by Cygan et al. [9] for the
general problem of hitting cliques).

According to Corollary 16, |M | ≤ 11k1+α so |G′′| ≤ 11(c + 1)k1+α. Recall that G is
hereditary and G′′ is an induced subgraph of G′ that is an induced subgraph of G, so G′′ ∈ G.
As G has strongly sublinear separators with bound f , by Theorem 38 the treewidth t of
G′′ is at most 15β|G′′|δ, so t ≤ 15βγδcδ · k(1+α)δ for some constant γ > 0. The number of
instances generated by Corollary 16 is at most 2O(k1−α log k) so overall the running time is

2O(βγδcδ·k(1+α)δ+k1−α log k) · nO(1) ≤ 2O(βγδcδk2δ/(1+δ) log k) · nO(1),

as claimed. ◀

4.2 Application to Kt,t-free d-DIR, Kt,t-free string graphs and contact
segment

Theorem 39 from the previous section can be directly applied to Kt,t-free string graphs.
Indeed a straighforward consequence of the following results of Lee is that such graphs have
strongly sublinear separators.

▶ Theorem 41 ([21]). m-edge string graphs have balanced separators of size O(
√

m).

▶ Theorem 42 ([21]). There is a constant c such that for every integer t > 0, every Kt,t-free
string graph on n vertices has at most c · t log t · n edges.

▶ Corollary 43. Kt,t-free string graphs on n vertices have strongly sublinear separators of
order O(

√
n · t log t), and by Theorem 38 they have treewidth at most O(

√
n · t log t).

Corollary 43 and Theorem 39 applied with δ = 1/2, β = O(
√

t log t) and for c any bound
on the neighborhood complexity (that is bounded from above by a function δ, according to
Theorem 36 and Lemma 37) lead to the following result.

▶ Theorem 9. For every integer t there is a constant ct > 0 such that the following holds.
There is an algorithm for TH in string graphs that runs on n-vertex instances with parameter
k in time

2ctk2/3 log knO(1),

where t is the minimum integer such that G is Kt,t-free, even when neither t nor a string
representation are given as input.

In Kt,t-free d-DIR graphs we are able to provide a polynomial upper-bound on the
constant ct of Theorem 9, that we explain now.

▶ Lemma 10. For every integer t > 0, the class of Kt,t-free d-DIR graphs has linear
neighborhood complexity with ratio O(d · t3 · log t).

Proof. Let G be a Kt,t-free d-DIR graph, and fix M ⊆ V (G). Observe that |{N(v) ∩ M :
v ∈ V (G)}| ≤ |M | + |{N(v) ∩ M : v ∈ V (G) \ M}|, and thus we only have to prove that
|{N(v) ∩ M : v ∈ V (G) \ M}| = O(d · t3 · log t|M |).
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Whenever two vertices of G−M have the same neighborhood in M , we delete one of them.
For simplicity we also delete all vertices with no neighbors in M and call G′ the obtained
graph. We now focus on bounding the order of G′; observe that this would straightforwardly
translate to a bound on the number of neighborhoods in M of vertices of G − M .

For a d-DIR representation of G′, we consider that one of its direction is the horizontal.
So in the following we say that a vertex of G′ is horizontal if its segment in the representation
is. For convenience the vertices with 0-length segments are considered as horizontal vertices.

Let MH denote the horizontal vertices of M and MC = M \ MH . Moreover we set
A = V (G′) \ M and define in the same way AH . As the horizontal direction was chosen
arbitrarily, a bound of the size of AH multiplied by d would be a bound to the size of A.
Towards this goal we further partition AH into two subsets: AH1 and AH2 with AH1 = {v ∈
AH : N(v) ∩ MH ̸= ∅} and AH2 = AH \ AH1 .

▷ Claim 44. |AH1 | = O(t2 · log t · |M |).

Proof of Claim 44. We will bound |AH1 | by using special points of the plane contained in
the horizontal segments of M . Let PH be the set of the endpoints of the MH segments and
the points of intersection of a MH segment with a MC segment.

We denote by mM the number of edges of the graph G′[M ]. The size of PH is at most
2|MH | + mM as intersections between segments correspond to edges in G′[M ], whose number
is bounded by O(t · log t · |M |) in Theorem 42.

There are at most |PH | segments of AH1 which does not intersect any point of PH : those
are the ones strictly included in a subsection of the horizontal segments of M split at the
PH points. For the remaining points, which each intersect at least one point of PH , there
cannot be more than 2t|PH | of them as otherwise by the pigeonhole principle there would
be a point of PH contained in at least 2t segments. But then K2t would be a subgraph
of G, and so Kt,t, contradicting our hypothesis. So overall we get |AH1 | ≤ (2t + 1)|PH | ≤
(2t + 1)(2|MH | + mM ) = O(t2 · log t · |M |). ⌟

We now want to bound the size of AH2 , the horizontal vertices of G − M which do not
intersect a horizontal segment of M .

▷ Claim 45. |AH2 | = O(t3 · log t · |M |).

Proof of Claim 45. Let us first remark that we can safely ignore the horizontal vertices of
M as they have no neighbors in AH2 . To simplify the proof, we add a perturbation to the
segments of the representation of G′, keeping the property that this is a d-DIR representation
of G′ but such that an intersection involves at most 2 different directions, and such that all
the endpoints and the intersections between segments of MC have distinct ordinate. For
achieving such perturbation, we extend the length of every segment of the representation
of G′ by a small amount. Moreover for each line that supports at least one segment, we
move slightly the whole line to a near parallel line (ensuring the associated intersection graph
remains the same). Once this perturbation done, we define a set of special points in the
plane, PC , which are the endpoints of the MC segments and theirs intersections points with
each other. The perturbation ensure that the PC points have distinct ordinates. Let denote
p1, . . . , pk the points of PC ordered from top to bottom, and for 1 ≤ i ≤ k we denote Li the
horizontal line containing the point pi. We now partition AH2 according to their position
relatively to the (Li)i lines: for 1 ≤ i ≤ k we denote by Zi the set of segments of AH2 whose
neighborhood in M can be achieved by an horizontal segment above Li+1 but not by a
segment on or above the line Li. (see Figure 5)

Observe that:
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Li−1

Li

Li+1

pi−1

pi

pi+1

Figure 5 Example for the construction of the family (Zi)i in the proof of Claim 45. The green
segment would be part of the set Zi.

(Zi)i is a partition of AH2 , as a segment that can be represented on one line Li will
have a direction, either up or down, where it can be moved by a small amount without
changing its neighborhood.
In the zone between lines Li and Li+1, there would be no endpoints of segments of MC ,
and segments of MC do not cross each other, which means they will have a constant left
to right order. We will denote Si = {s1, . . . , sl} those segments enumerated from left to
right .
For a segment of Zi, its neighborhood is an interval in the sequence (si)i.

We now want to prove that there exist two segments in Si such that every segment in Zi

intersects at least one of them. We differentiate three cases depending of the point pi:
if pi is an intersection of segments of different direction, the perturbation ensure that at
most two directions are involved. So there is two segments in Si, each containing the point
pi and one from each involved direction, such that a segment in Zi cross exactly one of
those two segments, as otherwise a representation of this segment with this neighborhood
in M could be raised above the line Li.
if pi is a top endpoint of a segment s, then each segment z of Zi would intersect this
segment s as otherwise the representation of z below Li could be raised up above Li.
if pi is a bottom endpoint of a segment s, if this endpoint was at the left of each segment
in S then all the segment that could be done below Li could still be represented with the
same neighborhood above Li and so Zi = ∅, the same is true if the endpoint is on the
right of each segment of Si. So we can assume that the endpoint is between two segments
of S. Then a segment of Zi will necessarily intersect these two segments as otherwise the
representation of z below Li could be raised up above Li.

Now than we have this property, let sj be the segment of Si that is crossed by at least
half of Zi. There are at most t2 segments that do not cross the segment sj−t, nor sj+t as
this is the number of intervals in [j − t, . . . , j, . . . , j + t] that contain j. There are at most
t − 1 segments intersecting sj−t (if it exists), as otherwise, there would be a Kt,t. Similarly
there are at most t − 1 segments intersecting sj+t. So |Zi| ≤ 2(t2 + 2t − 2) = O(t2).

As the (Zi)i was a partition of AH2 , and the number of special points |PC | is at most
2|MC | + mM = O(t · log t · |M |), we obtain |AH2 | = O(t3 · log t · |M |). ⌟

To conclude,

|{N(v) ∩ M : v ∈ V (G) \ M}| ≤ 1 + d(|AH1 | + |AH2 |) = O(d · t3 log t · |M |).

◀
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Figure 6 Example of the construction used in the proof of Claim 46. The contact segment
representation of G′ is on the left, with the segments of M in black, and the segments of A2 in red.
On the right is the the constructed planar graph H, with the red edges being the representation of
the segments of A2.

▶ Lemma 11. The class of contact segment graphs has linear neighborhood complexity.

Proof. Let G be a contact segment graph, and fix M ⊆ V (G). As in the previous lemma, let
us only prove that |{N(v) ∩ M : v ∈ V (G) \ M}| = O(|M |). Whenever two vertices of G − M

have the same neighborhood in M , we delete one of them. We also delete all vertices whose
neighborhood in M can be obtained with a zero-length segment: this kind of neighborhood
either contains at most one vertex of M (there are |M | + 1 such neighborhoods) or is a set
of segments in contact on the same point. This point has to be an endpoint of at least one
segment of M , so there are at most 2|M | such neighborhoods. We call G′ the graph obtained
after deleting those vertices. We split the set A = V (G′) \ M in two parts such that A1 is
the set of segments of A whose interior is in contact with an endpoint of a segment of M ,
and A2 = A \ A1. Observe that an endpoint of a segment can be in contact with only one
interior of segments without creating a crossing, so we have |A1| ≤ 2|M |. Now it remains to
bound A2.

▷ Claim 46. |A2| ≤ 24|M |.

Proof. Let us define an embedding in the plane of a planar graph H such that |H| ≤ 8|M |
and |E(H)| ≥ |A2|. The embedding is defined from a contact segment representation of
G′ −A2, as depicted in Figure 6. Firstly we add one vertex on every position of the endpoints
of the segments of M , and denote V1 this set of vertices, where |V1| ≤ 2|M |. Then, we add
edges between vertices of V1 as follows: for each segment v of M , we add a path starting at
an endpoint of v and then (following their order along v) all the endpoints of segments of
M on segment v, until reaching the other endpoint of v. We draw the edges of this path
following the segment representation of v. We denote this set of edges by E1. Observe that
at this step the graph is planar, implying that |E1| ≤ 6|M | by the Euler’s formula.

The next step of the construction is to subdivide every edge e ∈ E1 by adding a vertex
ve on the center e. We denote V2 this set of vertices. Informally, we associated a vertex of H

to every section of segment between endpoints of M . Observe that |V1| + |V2| ≤ 8|M |.
Let us now associate to each v ∈ A2 a new edge e(v) in H, and also explain how we can

draw these new edges without crossings. Let v ∈ A2. Observe that as v is not in contact with
M in its interior, its neighborhood in M is entirely decided by its two endpoints, and both of
them are part of a segment of M as otherwise the neighborhood in M of v could be achieved
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with a zero-length segment, and so v /∈ V (G′). Let s be the segment representing v and
{p1(s), p2(s)} be the endpoints of s. Let slightly shortening s to obtain s̃, and for i ∈ {1, 2}
let pi(s̃) be the endpoint of s̃ corresponding to pi(s). We now associate a vertex vi ∈ V (H)
to each pi(s) and we will define e(v) = {v1, v2}. Moreover, to draw e(v), we will also define
three segments s1(v), s2(v) and s3(v), and draw e(v) as s1(v) ∪ s2(v) ∪ s3(v). Firstly, we
define s3(v) = s̃. Then, let us distinguish two cases:
1. If pi(s) is also an endpoint p of a segment of M , then vi is the vertex of H corresponding

to the endpoint of this segment in M , and si(v) = {p, pi(s̃)}
2. Otherwise, pi(s) is in the interior of exactly one segment s of M , and more precisely

inside an edge e ∈ E1. Then, we define vi = ve. Let p(ve) be the point associated to ve.
We define si(v) = {p(ve), pi(s̃)}.

This concludes the definition of H. As required, we get that H is planar, |H| ≤ 8|M |,
|E(H)| ≥ |A2|. This last property gives |E(H)| ≤ 3|H| by the Euler’s formula, and so
|A2| ≤ 24|M |, which is the wanted result. ⌟

In total, |{N(v) ∩ M : v ∈ V (G) \ M}| ≤ 1 + |M | + |A1| + |A2| = O(|M |). ◀

▶ Corollary 12. There is an algorithm that solves TH in time
2O(k2/3 log k·t2 log t·

√
d)nO(1) in Kt,t-free d-DIR graphs,

2O(k7/9 log3/2 k)nO(1) in contact segment
even when no representation is given.

Proof. For the first result, Corollary 43, together with Theorem 39 with δ = 1/2, β =
√

t log t,
c = O(d · t3 log t) (Lemma 10), implies the claimed running time. For the second result, given
(G, k), we first use Corollary 14 with p = kϵ. This leads to 2O(k1−ϵ log k) instances (G′, k′)
to solve, where each G′ has ω(G′) ≤ kϵ, and thus is Kt,t-free for t = O(kϵ) according to
Lemma 33. Thus, Corollary 43, together with Theorem 39 with δ = 1/2, β = O(

√
t log t),

c the constant of Lemma 11, implies a running time in 2O(
√

kϵ log kk2/3 log knO(1) for each of
these 2O(k1−ϵ log k) instances. Choosing ϵ = 2

9 , we get the claimed running time. ◀

5 Negative results

Let us first start with the following result on TH.

▶ Theorem 47. Under the Exponential Time Hypothesis, TH cannot be solved in time 2o(n)

on n-vertex 2-DIR graphs.

Before proceeding to the proof of Theorem 47 we need to introduce some definitions
about the gadgets used in our reduction.

▶ Definition 48. For k ≥ 2, a k-polygon P is a 2-DIR graph composed of 4k axis-parallel
segments in the plane such that V (P ) = H ∪ V ∪ C with :
1. H is a set of k disjoint horizontal segments of non-zero length;
2. V is a set of k disjoint vertical segments of non-zero length;
3. every segment of H intersects exactly two segments of V , and vice-versa;
4. C consists of zero-length segments located at each intersection point between a segment of

H and a segment of V ; and
5. the intersection graph of the segments in P is connected.
Notice that in the definition above, |C| = 2k. See Figure 7 for a depiction of a 3-polygon.
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Figure 7 An example of a 3-polygon, where the segments in H are blue, the ones in V are red,
and the length 0 segments in C are represented by black dots.

▶ Lemma 49. Let P be a k-polygon. Then P does not have any triangle hitting set of size
k − 1, and has exactly two triangle hitting sets of size k: the non-zero horizontal segments
and the non-zero vertical segments.

Proof. Let P be a k-polygon, and let {H, V, C} be the partition of V (P ) named as in the
definition of k-polygon. Notice that every vertex of C together with its two neighbors (one
vertical, one horizontal, by definition) forms a triangle, and that every triangle P has this
form. So P contains 2k triangles. As every segment is part of at most two triangles, any
triangle hitting set has size at least k, which shows the first part of the statement. Suppose
now that X is a triangle hitting set of size k. In order to intersect the 2k triangles of P , each
of the k segments in X have to take part in two triangles, so X ∩ C = ∅, and no triangle can
be hit twice, so S is an independent set. The induced subgraph over V ∪ H is a cycle of size
2k, whose independent sets of size k are H and V . So X = V or X = H, as claimed. ◀

Proof or Theorem 47. The proof is a reduction from 3-SAT.
Let φ be a 3-SAT instance with n variables x1, . . . , xn and m clauses C1, . . . , Cm. Without

loss of generality we may assume that each variable appears in some clause and that φ has
no clause with only one literal (otherwise it could be easily simplified). For our reduction we
also want to avoid clauses with 3 literals all positive or all negative. To do so, for any clause
of the form xa ∨ xb ∨ xc we define an additional variable yi and we replace the clause by the
equivalent clauses xa ∨ xb ∨ yi and xc ∨ yi, and similarly for clauses containing only negative
literals. Notice that after performing these operations the number of clauses and variables
increased by O(m).

Let us now construct a 2-DIR graph G from the formula φ. In this graph each variable xi

is represented by a ki-polygon with ki to be specified later. (We only describe the non-zero
segments, as the position of the zero-length segments is uniquely determined by those, by
definition.) To every clause C, we associate a point of the plane zC . We construct the variable
polygons such that, for every clause C and variable x, each of the following is satisfied:
1. if the literal x (respectively x̄) appears in C, then some vertical (respectively horizontal)

segment of the polygon of the variable x ends at zC ;
2. if C contains only two literals, then a new vertex with zero-length segment is added at

position zC ;
3. if x does not appear in C, then zC does not belongs to any segment of the polygon of x;

and
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x2 ∨ x4 ∨ x3 x1 ∨ x3 ∨ x4 x2 ∨ x4

Figure 8 The construction for the formula (x2 ∨ x4 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x4). The
zero-length segments at each corner of the k-polygons are not represented, while that added for the
clause with two variables is depicted with a black dot.

x1 ∨ x2 x1 ∨ x2

Figure 9 The two remaining possibilities for the clause gadget. The length 0 segments at each
corner of the k-polygons are not represented. The black dots represent the length 0 segments we
add for clauses with 2 literals.

4. if two horizontal (respectively vertical) segments intersect, their intersection consists in a
unique point of the form zC′ for some clause C ′.

Also, we want the number of segments in each polygon and its number of intersections
with each other polygon to be linearly bounded from above by the number of clauses the
corresponding variable appear in. Such a configuration can for instance be obtained by
initially drawing the polygons of the variables as concentric rectangles and then, for every
clause C, picking a point zC outside of the outermost triangle and connecting corresponding
the polygons to it. See Figure 8 for an illustrative example and Figure 9 for a depiction of
the connection to the zC ’s.

For 1 ≤ i ≤ n we define ki such that the variable gadget for the variable xi constructed
as defined above is a ki-polygon. Let k =

∑n
i=1 ki. We define a good triangle hitting set as a

triangle hitting set of size k.

▷ Claim 50. If a good triangle hitting set exists, it is a minimum triangle hitting set, it only
contains non-zero length segments, and all the segments from a same polygon it contains
have the same orientation.

Proof. Let S be a good triangle hitting set of G. By Lemma 49, for each variable xi, its
corresponding ki-polygon needs ki segments in order to hit all its triangles. As k =

∑n
i=1 ki

and no segment is part of two distinct polygons, we can conclude that exactly ki segments of
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the considered polygon are in S, and S is a minimum triangle hitting set. Again by Lemma 49
we get that those ki segments have non-zero length and either consist of all vertical segments
of the polygon, or of all its horizontal segments. Moreover, this implies that S does not
contains the zero length segments added for clauses with two literals. ⌟

▷ Claim 51. G has a good triangle hitting set if and only φ is satisfiable.

Proof. Direction “⇒”. Let S be a good triangle hitting set of G. We define a truth assignment
for the variables by setting the variable xi at false if the segments of the corresponding
polygon being in S are the horizontal segments, and true if they are the vertical ones. For a
clause C of φ, let ∆C denote the set of the 3 vertices containing zC (which trivially induce
a triangle). Because S is a hitting set and by Claim 50, we have S ∩ ∆C ̸= ∅. Let xi be
a variable such that its ki-polygon contains a segment in S ∩ ∆C . Suppose this segment
is vertical, this means that the variable xi appears in C in a positive literal, and that in
the constructed assignment xi is true, and the clause C is verified. We can obtain the same
conclusion is the case of a vertical segment, so each clause is verified with the defined truth
assignment, and so φ is satisfiable.

Direction “⇐”. For an assignment of the variables xi such that φ is verified, we construct
a set S of size k with the same encoding than before: S contains the vertical segments of the
ki-polygon for the variables xi assigned to true, and the horizontal ones otherwise. Let us
now show that S is a hitting set.

All the triangles contained in the polygons encoding the variables are hit, as they always
contain an horizontal segment and a vertical segment of the same polygon. The remaining
triangles are the one formed by each clause C on the point zC . As φ is verified by the
considered truth assignment, there is a literal which evaluate to true. Let xi be the variable
contained in this literal. If the literal is positive, then xi was assigned to true, so all the
horizontal segments of its polygon are in S; and the segment in contact with zC is horizontal.
So the triangle at the point zC is hit by S. The case of a negative literal have the same
conclusion. So all triangles of G are hit by S. ⌟

▷ Claim 52. |G| = O(m).

Proof. As argued above for every variable, the number of segments of its polygon is linearly
bounded by the number of clauses it appears in. Each clause contains at most 3 variables
and there are at most m extra vertices (for clauses of size 2) so the total number of segments
is O(m). ⌟

We described the construction of a graph G and integer k from φ such that (G, k) is a
positive instance of TH if and only if φ is satisfiable. Besides, the construction can clearly
be done in time polynomial in n + m and the graph has n′ = O(m) vertices. Therefore any
algorithm solving TH in time 2o(n′) for input graphs of size n′ could be used to solve 3-SAT
in time 2o(m) on formulae with m clauses, which would refute the ETH. ◀

We observe that the instances constructed as in Figure 8 contain large complete bicliques.
We now provide a construction that is K2,2-free, where segments do not cross (i.e., that is a
contact 2-DIR graph) and that applies also to FVS and OCT, to the price of a worse lower
bound.

▶ Theorem 6. Under the Exponential Time Hypothesis, the problems TH, OCT, and FVS
cannot be solved in time 2o(√

n) on n-vertex K2,2-free contact 2-DIR graphs.
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The incidence graph of a 3-SAT formula is the (bipartite) graph whose vertices are clauses
and variables and where edges connect variables to the clauses they appear in. The restriction
of the 3-SAT problem to formulae with a planar incidence graph is called Planar-3-SAT.

▶ Theorem 53 ([22]). There is no algorithm that solves Planar-3-SAT on a formula with
n variables and m clauses in time 2o(

√
n+m), unless the ETH fails.

▶ Lemma 54. There is an algorithm that, given a planar bipartite graph G, returns in
polynomial time a representation of G as a contact graph of rectangles, where two intersecting
rectangles intersect on a non-zero length segment.

Proof. Let G be a planar bipartite graph. In linear time it can be represented as a contact
2-DIR graph according to [10], with the contact occurring only between segments of different
directions. We will now transform this representation to obtain a representation of G as
a contact graph of rectangles. To do this, we first prevent the contact of endpoints of two
segments, by slightly extending one if such a contact point exists. This transformation done,
we then shorten all the segments by a small ϵ, and thicken them at both side by the same
amount. The segments are now interior disjoint rectangles, and two segments that were in
contact are now two rectangles sharing an ϵ-length segment on their border. ◀

In order to avoid all-positive or all-negative clauses as in the proof of Theorem 47, we show
below that those (if any) can be replaced without destroying planarity.

▶ Lemma 55. There is an algorithm that, given a planar 3-SAT formula with n variables
and m clauses, returns in time polynomial in n + m an equivalent planar 3-SAT formula
with n + m variables and 2m clauses where in addition no clause contains 3 positive literals
or 3 negative literals.

Proof. Let ϕ be the input formula with n variables and m clauses and let G be its planar
incidence graph. For a variable or clause z of φ, we denote by v(z) the corresponding
vertex in G. If there is a clause C of the form xa ∨ xb ∨ xc then we replace it by the
two clauses C1 = xa ∨ xb ∨ ȳ and C2 = y ∨ xc, where y is a fresh variable. Clearly the
obtained formula φ′ is equivalent and has n + 1 variables and m + 1 clauses. Also, the
incidence graph G′ of φ′ can be obtained from G by renaming v(C) into v(C1) (for the
clause C1) and replacing the edge v(xc)v(C1) by the path v(C1)v(y)v(C2)v(xc), where v(C2)
and v(y) are new vertices representing C2 and y. As a subdivision of a planar graph, G′

is planar. A symmetric replacement can be done for clauses where all literals are negative.
Each replacement decreases the number of all-positive or all-negative clauses so after m

replacement steps at most the obtained formula is free of such clauses (and equivalent to the
initial one). Finding a clause to replace and doing so can be performed in polynomial time,
hence so does the replacement of all all-positive and all-negative clauses, as claimed. ◀

Proof of Theorem 6. In this proof we adapt our construction from Theorem 47 so that the
polygons intersect each other only at points of the form zC , for C a clause. toward this goal
we consider an instance φ of the problem Planar-3-SAT; by Lemma 55 we may assume
that φ has no all-positive or all-negative clause; also we can easily simplify clauses of size
one.

The incidence graph Gφ of φ is a bipartite planar graph, so using Lemma 54 it can be
represented as a contact graph of rectangles. Let us now describe how this representation
is used to construct a 2-DIR instance of the cycle-hitting problems we consider. Initially,
for each variable we create a 2-polygon that follows the associated rectangle (in the contact
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Figure 10 An example of extensions of three polygons toward a point ZC in order to encode a
clause as described in the proof of Theorem 6.

Figure 11 Portion of a polygon before and after the adding of the crenellation on each side of
the polygon.

representation) and for each clause C we choose a point zC of the plane located at the center
of its rectangle. For each clause, we want to add a few sides to the polygons of its (2 or 3)
variables so that these polygons intersect in zC only. As they do not intersect elsewhere,
this ensures that the obtained graph is a contact 2-DIR. We describe the construction for
clauses with 3 variables; that for two variables is a simpler version of it. Recall that for
a clause C, the rectangles of its variables are in contact with the rectangle of C and do
not intersect mutually. For each variable in C, we add a non-zero length segment with
one endpoint being zc, vertical if the literal containing the variable is positive, horizontal
otherwise. As the clause does not contain all-positive or all-negative literals, it is always
possible to do so with the three segments intersecting in zC only. The choices of the sides of
zc on which we put the segments is made so that the circular order of the segments around
zC is the same as the circular order of the rectangles of the variables around that of C. We
claim that extending the polygons of the variables in order to connect each with the newly
created segment without crossings can be done by adding a constant number of segments to
each, as depicted in Figure 10. In order to finish the construction of the graph G, for each
non-zero length segment, which is then a side of one of the polygons, we add in the portion of
segment between the two intersections with the two adjacent sides of the concerned polygon
a crenellation, which is the simple gadget depicted in Figure 11. We make this crenellation
small enough so that it does not for not intersect other segments. This corresponds to
subdividing 4 times each edge of the cycles corresponding to polygons.

▷ Claim 56. A cycle in G which is not a triangle contains 5 consecutive sides of a same
polygon. And so G is K2,2 free.

Proof. Let Q a cycle of size at least 4. A zC point is contained in only 3 segments and
the segments containing a z′

C point with C ′ ̸= C are at distance at least 4 because of the
crenellation. This ensures there is in Q a segment s which does not contain a zC point, so
which is a part of a polygon and more precisely of a crenellation. But if a cycle hits a segment
from a crenellation that does not contain a zC point, all the paths that the cycle can follow
over the crenellation go from one of its side to another, crossing the 5 adjacent non-zero
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length segments of the crenellation. Observe that K2,2 is a cycle of size 4, and we just proved
that a cycle that is a subgraph of G is either of size 3 or at least 5, so G is K2,2 free. ⌟

Observe that the graph G obtained by the above construction satisfies the same properties
as the graph constructed in the proof of Theorem 47. Additionally,
1. G is a contact 2-DIR (as argued above);
2. G is K2,2-free, as proved in Claim 56.
3. the polygons corresponding to two variables intersect only in a point of the form zC , for

C a clause where they both appear.
Now that the graph is defined, let us show how it relates to the cycle-hitting problems. As
in the previous proof, we denote ki the number such that the variable gadget for the variable
xi is a ki-polygon and k =

∑n
i=1 ki.

▷ Claim 57. For a set S ⊆ V (G) of size at most k, the three following properties are
equivalent:
1. S is a feedback vertex set,
2. S is a odd cycle transversal,
3. S is a triangle hitting set.

Proof. We trivially have (1)⇒(2)⇒(3) so it is enough to prove (3)⇒(1). Let S be a triangle
hitting set of G of size at most k. Hitting all the triangles of the polygons of G requires
already k vertices, so S has size exactly k and so is a good triangle hitting set as defined in
the proof of Theorem 47. Claim 56 assures that any cycle of length greater than 3 contains
two adjacent non-zero length segments from a same polygon, and so with different directions.
But because S is a good triangle hitting set, we know that one of those two segments will
be part of S. This proves that S not only hits all the triangles, but it is a set hitting every
cycle of G. ⌟

Because our construction still verifies the properties of the construction done in the
Theorem 47, the Claim 51 is still verified. So an algorithm solving FVS, TH or OCT in
time 2o(

√
n) would also solve Planar-3-SAT with the same complexity, which according to

Theorem 53 contradicts the ETH. ◀
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