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Abstract

Operator splitting methods have been recently concerned with inclusions prob-
lems based on composite operators made of the sum of two monotone oper-
ators, one of them associated with a linear transformation. We analyze here
a general and new splitting method which indeed splits both operator proxi-
mal steps, and avoiding costly numerical algebra on the linear operator. The
family of algorithms induced by our generalized setting includes known meth-
ods like Chambolle-Pock primal-dual algorithm and Shefi-Teboulle Proximal
Alternate Direction Method of Multipliers. The study of the ergodic and
non ergodic convergence rates show similar rates with the classical Douglas-
Rachford splitting scheme. We end with an application to a multi-block con-
vex optimization model which leads to a generalized Separable Augmented
Lagrangian Algorithm.

1 Introduction

Composite models involving sums and compositions of linear and monotone oper-
ators are very common and still challenging problems like in constrained separable
convex optimization or composite variational inequalities. We will consider here
composite monotone inclusions of the form (X and Y are Hilbert spaces) :

0 ∈ S(x) + A∗T (Ax) (1)

where S : X 7→ X and T : Y 7→ Y are maximal monotone operators and A : X 7→ Y
is a linear transformation (associated with its adjoint operator A∗ : Y 7→ X).

Most existing monotone operator splitting methods can deal with composite
models, for example the Douglas-Rachford family (see [14]) and its special de-
composition versions, the Alternate Direction Method of Multipliers (ADMM) (see
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[12, 11]) and the Partial Inverse or Proximal Decomposition Algorithm (PDA) (see
[24, 16, 19]).

Lions and Mercier [14] analyzed the Douglas-Rachford’s method (including the
limiting case of Peaceman-Rachford splitting, PRS) for the case of the sum of two
maximal monotone operators (S + T ), alternating between proximal steps applied
to each operator separately. Gabay [12] analyzed the case S + A∗TA where A
is an injective linear transformation (and A∗ its adjoint), yielding the celebrated
Alternative Direction Method of Multipliers (ADMM). Spingarn [23] studied the
case when the operator is the sum of the normal cone of a closed subspace M and
a maximal monotone operator T . Later, Pennanen [19] showed how to reformulate
that model as a monotone inclusion

The first study which explicitly considered an algorithm to solve the composite
inclusion which avoids the use of projection (or proximal) steps on the range of A
was proposed in [5] (an extension of Spingarn’s Partial Inverse to composite models
was proposed too in [1]). The corresponding algorithms solve the dual problem at
the same time, which is defined by :

0 ∈ −AS−1(−A∗y) + T−1(y)

Even if most results could be formerly extended to general Hilbert spaces, we will
present them in finite dimension spaces where many applications can be described
like the minimization of separable convex functions :

Minimize f(x) + g(Ax) (2)

where f : Rn → R and g : Rm → R are proper lower semi-continuous convex
functions and A is a given (m×n) matrix (the adjoint operator A∗ is thus identified
with the transpose matrix At).

The dual problem in the sense of Rockafellar-Fenchel theory is :

Minimize f ∗(−Aty) + g∗(y)

where f ∗(v∗) = supx〈x, v∗〉 − f(x) is the conjugate function of f .
Recently Chambolle and Pock [6] studied model (2) and introduced new splitting

schemes applied to a Lagrangian formulation of the primal minimization problem.
They applied a primal-dual version of (ADMM) to the following saddle-point for-
mulation :

min
x

max
y

f(x)− g∗(y) + 〈Ax, y〉

Observe that, using the subdifferential operators S = ∂f and T = ∂g, we could as
well define a Lagrangian operator associated with the composite inclusion (1) :

L(x, y) = [S(x) + Aty]× [T−1(y)− Ax] (3)

Chambolle and Pock’s algorithm relies on two Proximal steps on f and g with
an additional extrapolation step (in a similar fashion of Varga’s iterative principle
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[25]) as summarized below :
xk+1 = (I + τ∂f)−1(xk − τAtȳk)
yk+1 = (I + σ∂g∗)−1(yk + σAxk+1)
ȳk+1 = yk+1 + θ(yk+1 − yk)

where (I + τ∂f)−1 is the resolvent operator of the subdifferential operator S =
∂f which is known to be defined on the whole space and supposed to be easily
computable in a so-called ’backward’ proximal step as detailed below.

The difference and presumed advantage of that formulation is the symmetry
(considering that x and y can be updated in reverse order) and a potentially de-
composable algorithm which depends on three parameters. Their convergence result
states that we should choose their values such that στ‖A‖2 < 1.

Observe now that (CPA) can be rewritten using Augmented Lagrangian-like
functions by using the Moreau identity (see [17]) :

(I + σ∂g∗)−1(y) + σ(I + σ−1∂g)−1(σ−1y) = y

Resuming the transformed steps into the following iteration:

Algorithm (CPA)
xk+1 = argminx f(x) + 1

2τ
‖x− xk + τAtȳk‖2

zk+1 = argminz g(z) + σ
2
‖z − Axk+1 − σ−1yk‖2

yk+1 = yk + σ(Ax̄k+1 − zk+1)
ȳk+1 = yk+1 + θ(yk+1 − yk)

Chambolle and Pock confirmed the expected rate of convergence in O(1/k) and
even obtain the accelerated rate of O(1/k2) following the FISTA scheme of Beck
and Teboulle [3] (thus reaching Nesterov’s optimal rates in convex programming
[18]).

In a recent survey, Shefi and Teboulle [22] have presented a unified scheme algo-
rithm for solving model (2) based on the introduction of additional proximal terms
like in Rockafellar’s Proximal Method of Multipliers [20]. The resulting schemes in-
clude a version of a Proximal (ADMM) and other known algorithms like Chambolle-
Pock’s method (CPA). Indeed, a generic sequential algorithm proposed by Shefi and
Teboulle is the following three steps scheme :

Algorithm (STA)
xk+1 = argminx f(x) + σ

2
‖Ax− zk + σ−1yk‖2 + 1

2
‖x− xk‖2

M1

zk+1 = argminz g(z) + σ
2
‖Axk+1 − z + σ−1yk‖2 + 1

2
‖z − zk‖2

M2

yk+1 = yk + σ(Axk+1 − zk+1)

where ‖.‖M is the norm induced by a symmetric positive definite matrix M , i.e.
‖x‖2

M = xtMx. Algorithm (STA) makes use of alternate minimization steps on the
Augmented Lagrangian function associated with the coupling subspace Ax− z = 0.
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It is noted in [22] that (CPA) with the choice θ = 1 corresponds exactly to (STA)
with M1 = τ−1I − σAtA and M2 = 0 (which implies again that στ‖A‖2 < 1).

Later, Condat [7] extended the model (2) and algorithm (CPA) to the case
f = F + h where F : Rn → R is convex and smooth. He relaxed the restriction on
the parameters allowing στ‖A‖2 = 1 and also includes the Douglas-Rachford family
in the case of A = I (therefore we can say that Chambolle-Pock’s method generalized
Douglas-Rachford’s splitting scheme). Condat showed too that Chambolle-Pock’s
method is the proximal point method applied to the Lagrangian operator associated
with the primal and dual pair of inclusions.

In this paper we will further extend the algorithms surveyed by Shefi and Teboulle,
in order to solve the following convex optimization problem

min
(x,z)

[f(x) + g(z) : Ax+Bz = 0], (P )

where f and g are again convex lsc functions and, A and B are two matrices of order
m×n and m× p, respectively. It is clear that this problem includes problem (2) by
considering B = −Ip×p.

The primal variational formulation of (P ) is the following :

Find (x, z) ∈ Rn×Rp such that

(
0
0

)
∈
(
∂f(x)
∂g(z)

)
+

(
At

Bt

)
∂δ{0}(Ax+Bz) (4)

where δC is the indicator function of C which is 0 on C and +∞ otherwise.

The dual variational formulation of (P ) is :

Find y ∈ Rm such that 0 ∈ − A(∂f)−1(−Aty)−B(∂g)−1(−Bty) (5)

In Section 2, we propose a generalized proximal point method (GPPM) which
was developed implicitly by Condat [7], where we consider specific assumptions to
relax the condition of symmetric positive definiteness of the matrix associated with
the resolvent, to authorize matrices which are only symmetric positive semidefinite,
maintaining the properties of convergence of the proximal method.

In Section 3, we apply GPPM in order to find a zero of the Lagrangian map
associated with problem (P ), selecting an appropriate symmetric positive semi defi-
nite matrix in order to obtain a Generalized Splitting Scheme (GSS), which includes
various known algorithms, for instance both types of algorithms studied by Shefi
and Teboulle [22] correspond indeed to particular choices of the parameters in GSS.

In Section 4, we define a 1−co-coercive operator GT
P related to GPPM, which set

of fixed points is related to the zeroes of T . When T is the Lagrangian operator and
the matrix P has a special structure as considered in Section 3, we show examples
where we can get that operator explicitly, in particular we can recover the Douglas-
Rachford operator.
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In Section 5, we investigate the rate of converge of the GSS scheme, in the ergodic
and non ergodic sense, analyzing the convergence of the sequences of the optimal
values and the constraints violations associated with problem (P ).

Finally, section 6 applies the GSS scheme to some general multi-block convex
optimization problem with a composite structure. We show the relationship with a
separable Augmented Lagrangian algorithm (SALA) introduced in [15].

2 A generalized proximal point method

We begin by quoting some basic properties around monotonicity of point-to-set
operators on Rn. For a set-valued operator T : Rn ⇒ Rn, denoting its graph set by
gr(T ) = {(x, y) | y ∈ T (x)}, we consider the main properties used in this paper :

Definition 1 An operator T is monotone if for any (x, x∗), (x̄, x̄∗) ∈ gr (T ), one
has

〈x∗ − x̄∗, x− x̄〉 ≥ 0

It is maximal monotone if gr(T ) is not strictly contained in the graph of another
monotone operator.

Definition 2 An operator T is strongly monotone with radius ρ > 0 (or shortly
ρ-strongly monotone) if T − ρI is monotone, i.e. for any (x, x∗), (x̄, x̄∗) ∈ gr (T ),
one has

〈x∗ − x̄∗, x− x̄〉 ≥ ρ‖x− x̄‖2.

For single-valued operators, we get the following properties :

Definition 3 An operator T is Lipschitz continuous with constant L (or shortly
L-Lipschitz) if

∀x, x′ ‖T (x)− T (x′)‖ ≤ L‖x− x′‖

It is nonexpansive if L ≤ 1.

Definition 4 An operator T is α-averaged if

T = (1− α)I + αR

where R is a nonexpansive operator.

A 1/2-averaged operator is also called firmly nonexpansive. For example, the resol-
vent of a maximal monotone operator JT = (I + T )−1 is firmly nonexpansive (and
defined on the whole space).

Definition 5 An operator T is co-coercive with constant β (or shortly β-co-coercive)
if T−1 is β-strongly monotone
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In this case βT is also firmly nonexpansive.

The classical Proximal Point method is used to solve a monotone inclusion

Find x ∈ Rr such that 0 ∈ T (x) (V )

where T : Rr ⇒ Rr is a maximal monotone operator. We denote by sol (V ) the
solution set of problem (V ). It is closed, convex and may be empty. The iteration
exploits the contractive properties of the resolvent operator JTτ = (I + τT )−1 to
define a sequence given by xk+1 = JTτ (xk) which converges weakly to a solution of
(V ) if it is nonempty.

Following former ideas developed by Condat [7] in the proof of convergence of
a specialized splitting method closely related to (CPA), we define the generalized
Proximal Point iteration by substituting the classical resolvent by

JTP := (T + P )−1P (6)

where P is an r × r symmetric positive semidefinite matrix.
Since T is monotone, then for any (x, x∗), (x̄, x̄∗) ∈ gr (JTP ), one has

〈x∗ − x̄∗, Px− Px̄〉 ≥ 〈Px∗ − Px̄∗, x∗ − x̄∗〉 ≥ 0. (7)

We deduce immediately the following properties:

• T + P and thereby its inverse (T + P )−1 are monotone.

• R := P + Ir×r −Q is a symmetric positive definite matrix, whenever Q is the
orthogonal projection onto the image of P , which implies in particular that
Q satisfies QP = PQ = P and Q2 = Q.

• JTP = JTPQ, where Q is as above.

As R is symmetric positive definite, it induces an inner product on Rr, 〈u, v〉R :=
〈Ru, v〉 for all u, v ∈ Rr with its corresponding norm ‖u‖R :=

√
〈u, u〉R for all

u ∈ Rr.
Hence, from (7), for all x, x̄ ∈ dom (QJTP ) = dom (JTP ),

〈QJTP (x)−QJTP (x̄), x− x̄〉R ≥ ‖QJTP (x)−QJTP (x̄)‖2
R,

which implies that QJTP is R−co-coercive on domain of JTP (we will use the short-
cut R−co-coercive for 1−co-coercive with respect to metric R throughout the text).

We deduce immediately the following relationship between the solution set of
problem (V ) and the fixed points of JTP and QJTP .

Proposition 1 With the same notations as before, we have

• x ∈ sol (V ) if and only if x is a fixed point of JTP .
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• v is a fixed point of QJTP if and only if v = Qx for some x ∈ sol (V )∩JTP (v).

Proof. The first property is directly by definition. The second one follows from
the fact that v ∈ QJTP v if and only if there exists x such that x ∈ JTP (v) satisfying
v = Qx. It follows that x ∈ JTP (v) = JTP (Qx) = JTP (x). Using the first equivalence
we deduce that x belongs to sol (V ).

Concerning the regularity of JTP , we have

• If P is positive definite, then Q = Ir×r and R = P . We deduce that JTP = QJTP
and then JTP is P−co-coercive on the whole of its domain.

• If P is not positive definite, then JTP may not be single valued. But if it is
single valued, then it is continuous on the whole of its domain.

We consider now a relaxed version of the generalized proximal iteration. In con-
nection with the resolvent operator JTP and a real positive parameter ρ, we consider
for an arbitrary point x0 ∈ dom JTP , the sequence {xk} defined by

xk+1 ∈ ρJTP (xk) + (1− ρ)xk. (8)

Notice that this sequence is well defined whenever

range (ρJTP + (1− ρ)I) ⊆ dom (JTP ).

Concerning the convergence of {xk}, we distinguish the following situations:

• If P is positive definite, then JTP is P−co-coercive (hence single valued) with
full domain which implies that {xk} converges, for ρ ∈ (0, 2), assuming sol (V )
nonempty. In fact, given x∗ ∈ sol (V ), the convergence follows from the in-
equality

‖xk − x∗‖2
P ≥

2− ρ
ρ
‖xk+1 − xk‖2

P + ‖xk+1 − x∗‖2
P .

• In general, since QJTP is R−co-coercive, then for ρ ∈ (0, 2) and assuming that
QJTP has closed domain and nonempty fixed point set (which is equivalently
to say that sol (V ) is nonempty), the sequence {Qxk} is convergent. The
convergence of {xk} needs additional assumptions as we show in the following
proposition.

Proposition 2 Let T : Rr ⇒ Rr be maximal monotone and P be an r × r positive
semidefinite matrix. Assuming that JTP is single valued (which implies that it is
continuous) with closed domain and sol (V ) is not empty, then, for ρ ∈ (0, 2), the
sequence {xk} converges to some point belonging to sol (V ).

Proof. Since QJTP is R−co-coercive, it is single valued on its domain; and since
JTP = JTPQ, then from (8) we obtain that

Qxk+1 = ρQJTP (Qxk) + (1− ρ)Qxk. (9)



3 GENERALIZED SPLITTING ALGORITHMS 8

Using again the fact that QJTP is R−co-coercive and, by assumptions with closed
domain, ρ ∈ (0, 2) and sol (V ) nonempty, then {Qxk} converges to some point
a, which is a fixed point of QJTP . From Proposition 1 and the single valuedness
assumption, JTP (a) ∈ sol (V ).

On the other hand, using the triangular inequality in (8) we have

‖xk+1 − JTP (a)‖ ≤ ρ‖JTP (Qxk)− JTP (a)‖+ |1− ρ|‖xk − JTP (a)‖.

Since JTP is continuous, the sequence ‖JTP (Qxk)−JTP (a)‖ converges to 0. We deduce
that {xk} converges to JTP (a).

Some examples of specially tailored co-coercive operators will be discussed in
Section 4.

Remark 2.1 The hypothesis in the last proposition over JTP seems to be restrictive.
If T is strongly monotone, the single valuedness with full domain of JTP is easily
deduced, but we have in mind the situation where P is only positive semidefinite and
allows the generalized resolvent to be still single-valued. For instance, for an arbi-
trary positive semidefinite matrix P there is a non strongly monotone map T such
that JTP is single valued with full domain. Indeed, decomposing P as P = EDEt,
where D is the diagonal matrix consisting of eigenvalues of P and E is an orthogonal
matrix, i.e, satisfying EEt = EtE = I, and considering a singular diagonal matrix
D̂ such that D + D̂ is not singular, we have that the map T = ED̂Et is maximal
monotone but not strongly monotone. The resolvent map JTP = E(D + D̂)−1DEt is
single valued with full domain.

In the next section, we work with a special map which, under some conditions,
yields a single valued resolvent map with full domain.

3 Generalized splitting algorithms

With the convex minimization problem (P ) defined in Section 1, we associate its
Lagrangian function defined as

l(x, z, y) = f(x) + g(z) + 〈y, Ax+Bz〉 (10)

and then its saddle-point problem in the variational setting

Find (x̄, z̄, ȳ) ∈ Rn × Rp × Rm such that 0 ∈ L(x̄, z̄, ȳ), (VL)

where L is the maximal monotone map defined on Rn × Rp × Rm as

L(x, z, y) := (∂x,zl)× (∂y[−l]) =

 ∂f(x)
∂g(z)

0

+

 0 0 At

0 0 Bt

−A −B 0

 x
z
y

 . (11)

The map L, as the sum of maximal monotone operators and a skew-symmetric
linear operator, satisfies similar inequalities as the subdifferential of a convex-concave
bifunction. These inequalities will be used in order to obtain the rate of convergence
studied in Section 5.
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Proposition 3 For any (d, d∗), (d̄, d̄∗) ∈ gr (L), considering d = (x, z, y) and d̄ =
(x̄, z̄, ȳ), it holds

〈d− d̄, d∗〉 ≥ l(x, z, ȳ)− l(x̄, z̄, y) ≥ 〈d− d̄, d̄∗〉.

These inequalities are still verified if we consider (d, d∗) ∈ gr (L) and d̄ ∈ dom (f)×
dom (g) × Rm, for the first inequality; and (d̄, d̄∗) ∈ gr (L) and d ∈ dom (f) ×
dom (g)× Rm, for the second inequality.

It is well known that under some regularity conditions, problem (VL) admits a
saddle-point if and only if problem (P ) admits an optimal solution. One instance of
such regularity condition is :

There exist x ∈ ri (dom f) and z ∈ ri (dom g) such that Ax+Bz = 0, (H)

where ri (C) stands for the relative interior of set C, i.e. the interior set for the
topology induced by the affine hull of C.

We now apply to problem (VL) the relaxed proximal method described in the
previous section for a specially tailored matrix P in order to provide a separable
structure to the algorithm.

3.1 The separable structure on the main step

In this part we describe the main iteration step of the relaxed proximal method
given in (8) providing a decomposable structure.

We will choose an appropriate symmetric matrix P in order to split (L+P )−1 or
equivalently JLP = (L+P )−1P , into a separable structure leaving f and g separated.

To that end, given (x̃, z̃, ỹ) ∈ Rn × Rp × Rm, we analyze the solution of the
following inclusion system: Find (x, z, y) such that ∂f(x)

∂g(z)
0

+

 0 0 At

0 0 Bt

−A −B 0

 x
z
y

+

 P11 P t
21 P t

31

P21 P22 P t
32

P31 P32 P33

 x
z
y

 3
 x̃

z̃
ỹ

 .

We introduce now two parameters α, β ∈ R, and a positive definite matrix M to
simplify the third row-block of P into P3 = [(1 + α)A (1 + β)B M−1]. So, the
last inclusion can be expressed as

y = Mỹ − αMAx− βMBz (12)

and hence, replacing it in the second block-system, this results in

∂g(z) + (2 + β)Bt(Mỹ − αMAx− βMBz) + P21x+ P22z 3 z̃.

So, in order to express this last system eliminating primal variable x, we need to
consider P21 = α(2 + β)BtMA, obtaining

z ∈ (∂g + P22 − β(2 + β)BtMB)−1(z̃ − (2 + β)BtMỹ). (13)
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Using again (12), now in the first block system, we get

∂f(x) + (2 + α)At(Mỹ − αMAx− βMBz) + P11x+ α(2 + β)BtMAz 3 x̃

which is equivalent to

x ∈ (∂f + P11 − α(2 + α)AtMA)−1(x̃− (2 + α)AtMỹ − 2(α− β)AtMBz). (14)

Summarizing the previous sequence in order to get a separable structure, we must
first solve system (13), then system (14) and finally system (12). The corresponding
matrix P , of order (r × r) with r = n+ p+m, is then of the form

P :=

 C1 α(2 + β)AtMB (1 + α)At

α(2 + β)BtMA C2 (1 + β)Bt

(1 + α)A (1 + β)B M−1

 (15)

where C1(n× n), C2(p× p) are arbitrary symmetric matrices,
From the maximality of ∂f and ∂g, the inclusions in (13) and (14) are indeed

equalities if the matrices defined as

W1 := C1 − α(2 + α)AtMA and W2 := C2 − β(2 + β)BtMB,

are positive definite. In that case (L + P )−1 is single-valued with full domain and
therefore JLP is continuous with full domain.

It is clear that P is symmetric. It is positive semidefinite (resp. positive definite)
if and only if the matrix

U :=

(
C1 − (1 + α)2AtMA (α− β − 1)AtMB
(α− β − 1)BtMA C2 − (1 + β)2BtMB

)
(16)

is positive semidefinite (resp. positive definite).

We now list some conditions in order to get a positive semidefinite matrix U :

A1 If C1− [(1+α)2 +(α−β−1)2]AtMA and C2− [(1+β)2 +1]BtMB are positive
semidefinite then U is positive semidefinite.

A2 If C1− [(1+α)2 +1]AtMA and C2− [(1+β)2 +(α−β−1)2]BtMB are positive
semidefinite then U is positive semidefinite.

A3 If β ≤ α− 1, and C1− [(1 +α)2 + (α− β− 1)]AtMA and C2− [(1 + β)2 + (α−
β − 1)]BtMB are positive semidefinite then U is positive semidefinite.

A4 If β = α − 1. Then C1 − (1 + α)2AtMA and C2 − α2BtMB are positive
semidefinite if only if U is positive semidefinite.
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In order to calculate the sequence in (8), we first calculate (x̃k+1, z̃k+1, ỹk+1) =
JLP (xk, zk, yk), which is equal to

(x̃k+1, z̃k+1, ỹk+1) = (L+ P )−1

 C1x
k + α(2 + β)AtMBzk + (1 + α)Atyk

α(2 + β)BtMAxk + C2z
k + (1 + β)Btyk

(1 + α)Axk + (1 + β)Bzk +M−1yk


Then from (13), we have that

z̃k+1 = J̄gW2

(
z̃ − (β + 2)BtMAxk

)
(17)

where z̃ = C2z
k − (2 + β)(1 + β)BtMBzk − Btyk and J̄gW2

= (∂g + W2)−1 is the
generalized resolvent operator associated with the convex function g.

From (14), we have that

x̃k+1 = J̄fW1

(
x̃− 2(α− β)AtMBz̃k+1

)
(18)

where x̃ = C1x
k − (2 + α)(1 + α)AtMAxk + (α − 2β − 2)AtMBzk − Atyk and

J̄fW1
= (∂f +W1)−1 is the generalized resolvent operator associated with the convex

function f ; and from (12), we have that

ỹk+1 = yk + (1 + α)MAxk + (1 + β)MBzk − αMAx̃k+1 − βMBz̃k+1. (19)

The sequence in (8) is completed with an extrapolation step for a given ρ ∈ (0, 2):

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1− ρ)(xk, zk, yk). (20)

We obtain the following proposition directly from Proposition 2.

Proposition 4 Let ρ ∈ (0, 2). Assume that C1 ∈ Rn×n, C2 ∈ Rp×p and M ∈ Rm×m

are symmetric, with M positive definite; and α, β ∈ R, such that W1 and W2 are
positive definite and satisfying one of conditions (A1)-(A4). If sol (VL) is nonempty,
then for an arbitrary (x0, z0, y0) ∈ Rn+p+m, the sequence (xk, zk, yk) defined by the
sequential update formulas (17→ 18→ 19→ 20) converges to some element of
sol (VL).

3.2 The generalized splitting scheme

We will now further reformulate the iteration to show the alternating steps on sep-
arable Augmented Lagrangian functions. We introduce the parameter γ = α − β
and the matrices defined as

V1 := W1 − AtMA and V2 := W2 −BtMB. (21)

The conditions (A1)− (A4) become:

A1’ If V1 − (γ − 1)2AtMA and V2 − BtMB are positive semidefinite then U is
positive semidefinite.
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A2’ If V1 − AtMA and V2 − (γ − 1)2BtMB are positive semidefinite then U is
positive semidefinite.

A3’ If γ ≥ 1. Then V1−(γ−1)AtMA and V2−(γ−1)BtMB are positive semidefinite
then U is positive semidefinite.

A4’ If γ = 1. Then V1 and V2 are positive semidefinite if only if U is positive
semidefinite.

We introduce a new primal-dual auxiliary variable uk := yk+(α−γ+1)MAxk+
(1 + β)MBzk, to obtain the following updates :

zk+ 1
2 = V2z

k −Btuk (22)

z̃k+1 = JgW2
[zk+ 1

2 −BtMAxk] (23)

xk+ 1
2 = V1x

k − γAtMAxk + (γ − 1)AtMBzk − Atuk (24)

x̃k+1 = JfW1
[xk+ 1

2 − 2γAtMBz̃k+1] (25)

ũk+1 = uk + γMAxk + (1− γ)MAx̃k+1 +MBz̃k+1 (26)

(xk+1, zk+1, uk+1) = ρ(x̃k+1, z̃k+1, ũk+1) + (1− ρ)(xk, zk, uk) (27)

which is equivalent to the following sequential minimization subproblems :

Generalized Splitting Scheme (GSS)

z̃k+1 ∈ argmin

{
g(z) +

1

2
‖Bz +M−1uk + Axk‖2

M +
1

2
‖z − zk‖2

V2

}
(28)

vk+ 1
2 = γAxk − (γ − 1)Bzk +M−1uk (29)

x̃k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+ vk+ 1

2 + 2γBz̃k+1‖2
M +

1

2
‖x− xk‖2

V1

}
(30)

ũk+1 = uk +M(γAxk + (1− γ)Ax̃k+1 +Bz̃k+1) (31)

(xk+1, zk+1, uk+1) = ρ(x̃k+1, z̃k+1, ũk+1) + (1− ρ)(xk, zk, uk). (32)

From Proposition 4, we obtain the proposition of convergence of (GSS)

Proposition 5 Let ρ ∈ (0, 2). Assume that V1 ∈ Rn×n, V2 ∈ Rp×p and M ∈ Rm×m

are symmetric, with M positive definite such that V1 + AtMA and V2 + BtMB are
positive definite. Let γ ∈ R such that one of conditions (A1′) − (A4′) is satisfied.
If sol (VL) is nonempty, then for an arbitrary (x0, z0, u0) ∈ Rn+p+m, the sequence
(xk, zk, uk) in (28)-(32) converges to some element of sol (VL).

We analyze now the special cases when γ = 0 and γ = 1, which correspond to
the two types of algorithms proposed by Shefi and Teboulle [22].
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3.2.1 Case γ = 0

From (A1′), if both matrices V1−AtMA and V2−BtMB are positive semi-definite
then P is a positive semi-definite matrix.

Switching the order (28) for (30), we get the following algorithm where the primal
updates are performed in parallel:

x̃k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bzk +M−1uk‖2

M +
1

2
‖x− xk‖2

V1

}
(33)

z̃k+1 ∈ argmin

{
g(z) +

1

2
‖Axk +Bz +M−1uk‖2

M +
1

2
‖z − zk‖2

V2

}
(34)

ũk+1 = uk +M(Ax̃k+1 +Bz̃k+1) (35)

(xk+1, zk+1, uk+1) = ρ(x̃k+1, z̃k+1, ũk+1) + (1− ρ)(xk, zk, uk) (36)

If B = −Ip×p, M = cIp×p and ρ = 1 , we obtain the algorithm STA type I
proposed by Shefi and Teboulle [22].

Summarizing, from Proposition 5, we obtain the following proposition of conver-
gence of the sequence defined by (33)-(36).

Proposition 6 Let ρ ∈ (0, 2). Assume that V1 ∈ Rn×n, V2 ∈ Rp×p and M ∈ Rm×m

are symmetric, with M positive definite, such that V1 + AtMA and V2 + BtMB
are positive definite and V1 − AtMA and V2 − BtMB are positive semi-definite.
If sol (VL) is nonempty, then for an arbitrary (x0, z0, u0) ∈ Rn+p+m, the sequence
(xk, zk, uk) in (33)-(36) converges to some element of sol (VL).

3.2.2 Case γ = 1

From (A4′), it holds that V1 and V2 are positive semi-definite if only if P is a positive
semi-definite matrix. In this case GSS becomes :

z̃k+1 ∈ argmin

{
g(z) +

1

2
‖Axk +Bz +M−1uk‖2

M +
1

2
‖z − zk‖2

V2

}
(37)

ũk+1 = uk +M(Axk +Bz̃k+1) (38)

x̃k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bz̃k+1 +M−1ũk+1‖2

M +
1

2
‖x− xk‖2

V1

}
(39)

(xk+1, zk+1, uk+1) = ρ(x̃k+1, z̃k+1, ũk+1) + (1− ρ)(xk, zk, uk) (40)

If B = −Ip×p, M = τIp×p, V2 = 0 and V1 = σ−1In×n − τAtTA such that
1 ≥ στ‖A‖2, then we obtain the over relaxed algorithm proposed by Chambolle-
Pock [6].
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Considering ρ = 1 and defining, x̄k := xk, z̄k := zk+1 and ūk := uk+1, then
substituting in (37)-(39) and switching the order, we get the following algorithm

x̄k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bz̄k +M−1ūk‖2

M +
1

2
‖x− x̄k‖2

V1

}
(41)

z̄k+1 ∈ argmin

{
g(z) +

1

2
‖Ax̄k+1 +Bz +M−1ūk‖2

M +
1

2
‖z − z̄k‖2

V2

}
(42)

ūk+1 = ūk +M(Ax̄k+1 +Bz̄k+1) (43)

If B = −Ip×p and M = cIp×p, we obtain the algorithm STA type II proposed by
Shefi and Teboulle [22], which is called the Proximal Alternating Direction Method
(PADM).

Further transformations applied to (37)-(40) lead us to consider two interesting
algorithms. The first of them is obtained by considering V2 = 0, and considering
the auxiliary variables x̂k+1, ẑk, ûk, ŝk to update the relaxed sequences x̂k+1 :=
1
ρ
xk+1 + (1− 1

ρ
)xk = x̃k+1, ẑk := 1

ρ
zk+1 + (1− 1

ρ
)zk = z̃k+1, ûk := ũk+1 and ŝk := xk,

getting

x̂k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bẑk +M−1ûk‖2

M +
1

2
‖x− ŝk‖2

V1

}
(44)

ẑk+1 ∈ argmin

{
g(z) +

1

2
‖ρAx̂k+1 +Bz +M−1ûk + (ρ− 1)Bẑk‖2

M

}
(45)

ûk+1 = ûk + ρMAx̂k+1 + (ρ− 1)MBẑk +MBẑk+1 (46)

ŝk+1 = ρx̂k+1 + (1− ρ)ŝk (47)

The second interesting algorithm is obtained by considering the auxiliary vari-
ables x̌k, žk, ǔk, šk to update the relaxed sequences x̌k := 1

ρ
xk+1 + (1− 1

ρ
)xk = x̃k+1,

žk := 1
ρ
zk+1 + (1− 1

ρ
)zk = z̃k+1, ǔk := ũk+1 and šk := xk, getting

žk+1 ∈ argmin

{
g(z) +

1

2
‖ρAx̌k +Bz +M−1ǔk + (ρ− 1)Bžk‖2

M

}
(48)

ǔk+1 = ǔk + ρMAx̌k + (ρ− 1)MBžk +MBžk+1 (49)

šk+1 = ρx̌k + (1− ρ)šk (50)

x̌k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bžk+1 +M−1ǔk+1‖2

M +
1

2
‖x− šk+1‖2

V1

}
(51)

So, by considering in these two last algorithms B = −Ip×p, M = cIp×p and V1 = 0,
the sequences ŝk and šk becomes unnecessary. Moreover, (44)-(47) become the gen-
eralized ADMM proposed by Eckstein [11], and (48)-(51) become the algorithm 2
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consider in [9].

From Proposition 5, we obtain the convergence of the sequence (37)-(40)

Proposition 7 Let ρ ∈ (0, 2). Assume that V1 ∈ Rn×n, V2 ∈ Rp×p and M ∈ Rm×m

are symmetric, with V1 and V2 positive semi-definite and M positive definite such
that V1 +AtMA and V2 +BtMB are positive definite. If sol (VL) is nonempty, then
for an arbitrary (x0, z0, u0) ∈ Rn+p+m, the sequence (xk, zk, uk) defined in (37)-(40)
converges to some element of sol (VL).

4 The co-coercive map associated with GPPM

Lions and Mercier [14] have transformed an inclusion problem for the sum of two
maximal monotone operators (S+T ) into a fixed-point equation with respect to an
appropriate operator, the Douglas-Rachford operator, which is 1−co-coercive map
and, in order to compute its value at each point of its domain, only local calculations
of proximal terms on S and T separately are needed. Eckstein [11] later showed the
relationship between the splitting algorithm (ADMM) and the fixed-point method
applied to a Douglas-Rachford operator, after a suitable linear transformation.

In our general setting, we show in this section that the sequence generated by
the generalized proximal point method (GPPM) corresponding to map JTP for arbi-
trary maximal monotone operator T and arbitrary symmetric positive semidefinite
matrix P is nothing else but the sequence generated by the fixed point method cor-
responding to map GT

S defined in (53), after a linear transformation S (satisfying
P = StS). It leads thus in some sense to a generalization of the Douglas-Rachford
operator, keeping the property of 1−co-coercivity.

As pointed out in section 3.1, the sequence generated by GPPM for T = L de-
fined in (11) and P defined in (15) corresponds to the sequence generated by the
generalized splitting scheme (GSS) defined in (17→ 18→ 19→ 20).

In Section 2, we have shown that the sequence generated by GPPM is nothing
else but, under the linear transformation Q, the sequence generated by the fixed
point method corresponding to the R−co-coercive map QJTP (see (9)). Neverthe-
less, for arbitrary symmetric positive semidefinite matrix P , matrices Q and R are
difficult to calculate; of course, when P is symmetric positive definite, then Q = I
and R = P . Alternately by considering S such that P = StS, we define GT

S an
operator easier to implement than QJTP and having similar properties, for example,
a 1−co-coercive operator. In particular, using GT

S instead of QJTP , we will give an
alternative proof of Proposition 2.

Finally, by considering S = S3 defined in Remark 4.3, one get GL
S3

= St3(L +
St3S3)−1S3 which corresponds, under a reparametrization, to the classical Douglas-

Rachford operator defined byM− 1
2St3(L+St3S3)−1S3M

1
2 . In other words, the Douglas-
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Rachford operator and its fundamental properties of co-coercivity and splittability
will be show to be a special case of our generalized setting based on the Lagrangian
monotone inclusion.

Associated with the r × r symmetric positive semidefinite matrix P introduced
in the former section, let consider a q × r matrix S satisfying

P = StS (52)

and then the map GT
S : Rq ⇒ Rq defined as

GT
S := S(T + StS)−1St. (53)

It follows that
SJTP = GT

SS (54)

and hence, from (7), we get for all w,w′ ∈ Rr :

〈GT
S (Sw)−GT

S (Sw′), Sw − Sw′〉 ≥ ‖GT
S (Sw)−GT

S (Sw′)‖2.

Since for any s, s′ ∈ Rq there exist w,w′ ∈ Rr such that StSw = Sts and StSw′ =
Sts′, we get

〈GT
S (s)−GT

S (s′), s− s′〉 ≥ ‖GT
S (s)−GT

S (s′)‖2

which means that GT
S is 1−co-coercive.

The following proposition shows in particular that GT
S is the Moreau-Yosida

regularization of ST−1St. This will be used in the examples considered in this
Section and in Section 6 (Proposition 11).

Proposition 8 Let T : Rr ⇒ Rr be an arbitrary map, S and M two matrices
of order q × r and q × q, respectively, with M invertible. For z ∈ Rq the value
(ST−1St + M)−1Mz is nonempty if and only if (T + StM−1S)−1Stz is nonempty.
Furthermore, it holds that

(ST−1St +M)−1Mz = z −M−1S(T + StM−1S)−1Stz.

Proof. The proof follows from the two properties:

• x ∈ (ST−1St+M)−1Mz if and only if there exists y ∈ Rm such that Stx ∈ T (y)
and z −M−1Sy = x.

• y∗ ∈ (T + StM−1S)−1Stz if and only if exists x∗ ∈ Rr such that Stx∗ ∈ T (y∗)
and z −M−1Sy∗ = x∗.

Similar to Proposition 1, we get the relationship between the solution set of
problem (V ) and the fixed points of GT

S .

Proposition 9 With the same notations as before, we have
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• If z ∈ sol (V ), then Sz is a fixed point of GT
S .

• If w is a fixed point of GT
S , then w = Sq for some q ∈ sol (V )∩ (T +P )−1Stw.

We deduce that the set of fixed point of GT
S is exactly

S(sol (V )) = {Sw : w ∈ sol (V )}.

Applying S to the sequence {wk} defined in (8) and considering the permutation
property (54), we get:

Swk+1 = ρGT
S (Swk) + (1− ρ)Swk. (55)

This equation gives us another alternative proof of convergence of the sequence
{wk} under the same conditions of Proposition 2. In fact, since GT

S is 1−co-coercive
and from (55), we have that given w∗ ∈ sol (V )

‖Swk − Sw∗‖2 − 2− ρ
ρ
‖Swk+1 − Swk‖2 − ‖Swk+1 − Sw∗‖2 ≥ 0 (56)

Since rankStS = rankSt, the domain of GT
S is equal to the domain of JTP which is

closed, using this fact and from (56) we deduce that Swk converges to some point
b, which is a fixed point of GT

S . On the other hand, using the triangular inequality
and considering w̃ := (T + P )−1Stb, we get

‖wk+1 − w̃‖ ≤ ρ‖(T + P )−1St(Swk)− w̃‖+ |1− ρ|‖wk − w̃‖.

From the continuity of JTP , we deduce the continuity of (T +P )−1St = JTP S
+, where

S+ denotes the Moore–Penrose pseudo-inverse matrix of S. Therefore we deduce
that {wk} converges to w̃.

We now give some explicit expressions of GL
S for the Lagrangian operator L and

matrix S such that P = StS, considered in Section 3.

4.1 Examples of co-coercive operators GL
S

Example 4.1 Let γ = 1 (β = α− 1), We consider in (15),

C1 = V1 + (1 + α)2AtMA and C2 = V2 + α2BtMB,

where V1 and V2 are as (21) assumed positive semidefinite matrices. In (37)-(40)
matrices V1 and V2 are associated with the additional proximal term that will be
used in ADMM, which, as we have shown in Subsection 3.2.2, it is related to Shefi-
Teboulle algorithm type II [22]. We get :

P =

 V1 + (1 + α)2AtMA (1 + α)αAtMB (1 + α)At

(1 + α)αBtMA V2 + α2BtMB αBt

(1 + α)A αB M−1

 .
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The matrix

S1 =

 V
1
2

1 0 0

0 V
1
2

2 0

(1 + α)M
1
2A αM

1
2B M− 1

2


verifies (52) and the corresponding map GL

S1
, that applies Rn ×Rp ×Rm into itself,

is defined as

GL
S1

(x̂, ẑ, ŷ) =

 V
1
2

1 x

V
1
2

2 z

M
1
2Ax+M

1
2Bz + ŷ


where

x = (∂f + V1 + AtMA)−1(V
1
2

1 x̂− AtM
1
2 (ŷ + 2M

1
2Bz))

z = (∂g + V2 +BtMB)−1(V
1
2

2 ẑ −BtM
1
2 ŷ).

Note that GL
S1

has full domain if V1 +AtMA and V2 +BtMB are assumed positive
definite matrices.

In the two following remarks we will use the following notation for arbitrary
maps T1 and T2 and vectors x and y of appropriated dimensions:[

T1

T2

]−1(
x
y

)
=

(
T−1

1 x
T−1

2 y

)
.

Remark 4.1 The map GL
S1

is the Douglas–Rachford operator [14], applied to the
two maps

−

 V
1
2

1 0
0 Ip×p

M
1
2A 0

[ ∂f
0

]−1
(
−

(
V

1
2

1 0 AtM
1
2

0 Ip×p 0

))

and

−

 −In×n 0

0 −V
1
2

2

0 M
1
2B

[ 0
∂g

]−1
(
−

(
−In×n 0 0

0 −V
1
2

2 BtM
1
2

))

The corresponding sum of these two maps is exactly the dual variational map
(5) associated with the following optimization problem

min
(x1,x2,z1,z2)∈F

(f, 0)(x1, x2) + (0, g)(z1, z2)

where F is the set of all triples (x1, x2, z1, z2) satisfying V
1
2

1 0
0 Ip×p

M
1
2A 0

( x1

x2

)
+

 −In×n 0

0 −V
1
2

2

0 M
1
2B

( z1

z2

)
= 0.
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Remark 4.2 In the case that V2 = 0, which corresponds to Chambolle-Pock algo-
rithm as we showed in section 3.2.2, we can restrict the map GL

S1
, and obtain the

map D1 that applies Rn × Rm into itself, where D1(x, u) is(
V

1
2

1 (∂f + V1 + AtMA)−1[V
1
2

1 x− AtM
1
2 (u+ 2z)]

M
1
2A(∂f + V1 + AtMA)−1[V

1
2

1 x− AtM
1
2 (u+ 2z)] + z + u

)

where
z = M

1
2B(∂g +BtMB)−1BtM

1
2 (−u).

Note if B is injective, then D1 has full domain.

The map D1 can be obtained in the form (53), considering that when V2 = 0, the
matrix

S2 =

(
V

1
2

1 0 0

(1 + α)M
1
2A αM

1
2B M− 1

2

)
verifies (52), and we obtain that D1 = GL

S2
.

The map D1 can also be obtained as the Douglas–Rachford operator, applied to
the two maps

−

(
V

1
2

1

M
1
2A

)
(∂f)−1

(
−
(
V

1
2

1 AtM
1
2

))
and

−
(
−In×n 0

0 M
1
2B

)[
0
∂g

]−1(
−
(
−In×n 0

0 BtM
1
2

))
The corresponding sum of these two maps is exactly the dual variational map asso-
ciated with the following optimization problem

min
(x,z1,z2)∈F

f(x) + (0, g)(z1, z2)

where F is the set of all triple (x, z1, z2) satisfying(
V

1
2

1

M
1
2A

)
x+

(
−In×n 0

0 M
1
2B

)(
z1

z2

)
= 0.

Remark 4.3 In the case V1 = 0 and V2 = 0, we can restrict the map GL
S1

, and
obtain the map D2 that applies Rm into itself, where D2(x, u) is

M
1
2A(∂f + AtMA)−1AtM

1
2 [−u− 2z] + z + u

where
z = M

1
2B(∂g +BtMB)−1BtM

1
2 (−u).

Note that if A and B are injective, then D2 has full domain.



4 THE CO-COERCIVE MAP ASSOCIATED WITH GPPM 20

The map D2 can be obtained in the form (53), considering that when V1 = V2 = 0,
the matrix

S3 =
(

(1 + α)M
1
2A αM

1
2B M− 1

2

)
verifies (52), and we obtain that D2 = GL

S3
.

The map D2 can also be obtained as the Douglas–Rachford operator [14], applied
to the two maps

−M
1
2A(∂f)−1(−AtM

1
2 ) and −M

1
2B(∂g)−1(−BtM

1
2 ).

The corresponding sum of these two maps is exactly the dual variational map (5)
associated with the following optimization problem

min
(x,y)

[f(x) + g(z) : M
1
2Ax+M

1
2Bz = 0].

Alternatively we can consider, instead D2, the map D̃2 := M− 1
2D2M

1
2 , i.e

D̃2(ū) = A(∂f + AtMA)−1AtM [−ū− 2z] + z + ū

where
z = B(∂g +BtMB)−1BtM(−ū),

which is M−co-coercive.

Example 4.2 Let γ = 0 (α = β). We consider in (15),

C1 = (1 + (α + 1)2)AtMA+R and C2 = (1 + (α + 1)2)BtMB

where R is a positive semidefinite matrix. Then V1 and V2 in (21) are equal to

V1 = AtMA+R and V2 = BtMB.

These matrices are associated with the additional proximal term considered in (33)-
(36), which, as we have shown in Subsection 3.2.1, it is related to Shefi-Teboulle
algorithm type I [22]. We get :

P =

 (1 + (α + 1)2)AtMA+R α(2 + α)AtMB (1 + α)At

α(2 + α)BtMA (1 + (α + 1)2)BtMB (1 + α)Bt

(1 + α)A (1 + α)B M−1

 .

The matrix

S4 =

 R
1
2 0 0

M
1
2A −M 1

2B 0

(1 + α)M
1
2A (1 + α)M

1
2B M− 1

2


verifies (52) and hence the value GL

S4
(x̂, ẑ, ŷ) of the corresponding map GL

S4
, that

applies Rn × Rm × Rm into itself, is R
1
2x

M
1
2Ax−M 1

2Bz

M
1
2Ax+M

1
2Bz + ŷ


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where
x = (∂f + 2AtMA+R)−1(R

1
2 x̂+ AtM

1
2 (ẑ − ŷ))

z = (∂g + 2BtMB)−1BtM
1
2 (−ẑ − ŷ).

Note that GL
S4

has full domain if 2AtMA+R and 2BtMB are assumed positive
definite matrices.

Remark 4.4 In the case that R = 0, we can restrict the map GL
S4

, and obtain the
map D3 that applies Rm × Rm into itself, where D3(ẑ, ŷ) is(

M
1
2A(∂f + 2AtMA)−1AtM

1
2 (ẑ − ŷ) +M

1
2 (∂g + 2BtMB)−1BtM

1
2 (−ẑ − ŷ)

M
1
2A(∂f + 2AtMA)−1AtM

1
2 (ẑ − ŷ)−M 1

2 (∂g + 2BtMB)−1BtM
1
2 (−ẑ − ŷ) + ŷ

)
The map D3 can be obtained as the form (53), considering that when V1 = AtMA

and V2 = BtMB, the matrix

S5 =

(
M

1
2A −M 1

2B 0

(1 + α)M
1
2A (1 + α)M

1
2B M− 1

2

)
.

verifies (52), then we obtain that D3 = GL
S5

.

5 Rate of Convergence

The global rate of convergence of ADMM and other monotone operator splitting
algorithms has motivated many research contributions that we cannot survey here
(see [9] for example). We will recover these results for the generalized splitting
scheme GSS with no further refinements (like uniform or strong convexity) and will
remain in the framework of finite-dimensional spaces (see [2] for similar results in
Hilbert spaces).

In D. Davis and W. Yin [9] have show the ergodic and nonergodic convergence
rate of the feasibility and objective function error related to the relaxed PRS and
relaxed ADMM, which is a particular case of our general scheme as remarked in
Subsection 3.2.2. Similarly, in this Section, without regularity assumption, we show
the ergodic and nonergodic convergence rate of the constraint violations (feasibility)
and objective function error related to the chain of steps 17→ 18→ 19→ 20, de-
fined in Subsection 3.1, which is our main sequence asociated with primal problem
(P ) defined in the first section.

With the same expressions of matrices P and U defined in (15) and (16), re-
spectively, we get the following identity by using S satisfying P = StS and explicit
expressions of P and U ,

‖(x, z, y)‖2
P = ‖S(x, z, y)‖2 = ‖(x, z)‖2

U + ‖M
1
2 ((1 + α)Ax+ (1 + β)Bz) +M− 1

2y‖2.
(57)
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Notice that for γ = 0 (β = α),

‖(x, z)‖2
U = ‖x‖2

V1−AtMA + ‖z‖2
V2−BtMB + ‖Ax−Bz‖2

M

and for γ = 1 (β = α− 1),

‖(x, z)‖2
U = ‖x‖2

V1
+ ‖z‖2

V2
. (58)

Back to the sequence (17→ 18→ 19→ 20) and considering wk = (xk, zk, yk),
it holds from definition that

JLPw
k = (x̃k+1, z̃k+1, ỹk+1) and wk+1 = ρJLPw

k + (1− ρ)wk. (59)

The following proposition will be used later in Subsection 5.2 in order to estimate
an upper bound of the optimal value of problem (P ).

Proposition 10 With the same notations as before and considering w = (x, z, y) ∈
dom (f)× dom (g)× Rm, the following inequality holds:

‖wk−w‖2
P −

2− ρ
ρ
‖wk+1−wk‖2

P −‖wk+1−w‖2
P ≥ 2ρ

[
l(x̃k+1, z̃k+1, y)− l(x, z, ỹk+1)

]
Proof. Let w = (x, z, y) ∈ dom (f) × dom (g) × Rm. Since P (wk − JLPw

k) ∈
L(JLPw

k), then using Proposition 3, it holds that〈
JLPw

k − w,P (wk − JLPwk)
〉
≥ l(x̃k+1, z̃k+1, y)− l(x, z, ỹk+1). (60)

On the other hand, from the symmetry of P , it holds

2ρ
〈
JLPw

k − w,P (wk − JLPwk)
〉

= ‖wk − w‖2
P −

2− ρ
ρ
‖wk+1 − wk‖2

P − ‖wk+1 − w‖2
P

So, replacing this last expression in (60), we get the desired inequality.

In particular, from the inequality in the last proposition, we get

‖wk − w‖2
P − ‖wk+1 − w‖2

P ≥ 2ρ
[
l(x̃k+1, z̃k+1, y)− l(x, z, ỹk+1)

]
. (61)

This inequality will be used in Theorem 5.1 for approximating the optimal value of
problem (P ).

We note that Proposition 10 is a general version of the inequality given in Propo-
sition 2 of [9] by considering A = I = −B, M = γ−1I and P as in Remark 4.3,

w = (x, x, 0) (which implies M− 1
2S3w = x), z = M− 1

2S3z
k, and

z+ = (TPRS)λ(z) = (M− 1
2GL

S3
M

1
2 )2λ(M

− 1
2S3z

k) = M− 1
2S3w

k+1.

Similarly, Proposition 10 is also a general version of the one given in Proposition 11
of [9] by considering M = γI and P as in Remark 4.3; (x̄∗, z̄∗, ȳ∗) and z∗ fixed points

of GL
S3

and (TPRS)λ = (M
1
2GL

S3
M− 1

2 )2λ, respectively; wk satisfying M
1
2S3w

k = zk

and w = (x̄∗, z̄∗, 0) such that

M
1
2S3w = M

1
2S3(x̄∗, z̄∗, ȳ∗)− ȳ∗ = z∗ − w∗

where w∗ = Jγ(−B)(∂g)−1(−Bt)(z
∗).
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5.1 Bounding the fixed-point residual

The fixed-point residual of operator ρGT
S + (1−ρ)Iq×q is the sequence whith general

term
‖(ρGT

S + (1− ρ)Iq×q)Sw
k − Swk‖2

which, from (55), is equal to

‖Swk+1 − Swk‖2.

Since ρ ∈ (0, 2), then ρGT
S + (1− ρ)Iq×q is non expansive and hence {‖Swk+1 −

Swk‖} is non increasing. Summing over k = 0, · · · , N − 1 in (56), we get

‖Swk − Swk−1‖2 ≤ ρ

(2− ρ)k
‖Sw0 − Sw∗‖2. (62)

On the other hand, using the Jensen’s inequality, we get

‖Swk − Sw0‖2 ≤ 2‖Swk − Sw∗‖2 + 2‖Sw0 − Sw∗‖2 ≤ 4‖Sw0 − Sw∗‖2

and hence∥∥∥∥∥ 1

N

N∑
k=1

(Swk − Swk−1)

∥∥∥∥∥
2

=
1

N2
‖SwN − Sw0‖2 ≤ 4

N2
‖Sw0 − Sw∗‖2. (63)

Notice that upper bounds (62) and (63) can also be deduced respectively from The-
orem 1 “Notes on Theorem 1” and Theorem 2 developed in D. Davis and W. Yin [9].

5.2 Bounding the saddle-point gap

We consider the following ergodic sequences defined as: for N ≥ 1,

xN :=
1

N

N∑
k=1

x̃k, zN :=
1

N

N∑
k=1

z̃k and yN :=
1

N

N∑
k=1

ỹk.

Theorem 5.1 With the same notations as before, we get the following rate of con-
vergence:

• Ergodic Convergence: for any w = (x, z, y) ∈ dom (f)× dom (g)× Rm

l(xk, zk, y)− l(x, z, yk) ≤
1

2ρk
‖Sw0 − Sw‖2. (64)

• Nonergodic Convergence: for any w∗ = (x∗, z∗, y∗) ∈ sol (VL)

l(x̃k+1, z̃k+1, y∗)− l(x∗, z∗, ỹk+1) ≤ 1 + |1− ρ|
ρ
√
ρ(2− ρ)(k + 1)

‖Sw0 − Sw∗‖2. (65)
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Proof. Summing (61) over k = 0, · · · , N − 1, and applying the Jensen’s
inequality to the convex functions l(·, ·, y) − l(x, z, ·) for arbitrary fixed elements
x ∈ dom (f), z ∈ dom (g) and y ∈ Rm, where l is the lagrangian function defined in
(10) of Section 3, we deduce the desired ergodic convergence.

Given w∗ ∈ sol (VL) and considering w = w∗ in (60), we get

〈GL
SSw

k − Sw∗, Swk −GL
SSw

k〉 ≥ l(x̃k+1, z̃k+1, y∗)− l(x∗, z∗, ỹk+1) ≥ 0

and hence, from the Cauchy-Schwarz inequality and (55), we obtain

1

ρ
‖GL

SSw
k − Sw∗‖‖Swk+1 − Swk‖ ≥ l(x̃k+1, z̃k+1, y∗)− l(x∗, z∗, ỹk+1). (66)

On other hand, from (55) and since {‖Swk+1 − Sw∗‖} is non increasing, we get

‖GL
SSw

k−Sw∗‖ = ‖1

ρ
(Swk+1−Sw∗)+(1−1

ρ
)(Swk−Sw∗)‖ ≤ 1 + |1− ρ|

ρ
‖Sw0−Sw∗‖.

So, replacing this last expression and inequality (62) in expression (66), we de-
duce the desired nonergodic convergence.

5.3 Bounding constraint violations

We consider, for N ≥ 1,

x̂N :=
1

N

N∑
k=1

xk−1 and ẑN :=
1

N

N∑
k=1

zk−1.

We get the following theorem

Theorem 5.2 With the same notations as before, for any w∗ ∈ sol (VL), we get the
following rate of convergence:

• Ergodic Convergence:

‖(xk − x̂k, zk − ẑk)‖2
U + ‖Axk +Bzk‖2

M ≤
4

ρ2k2
‖Sw0 − Sw∗‖2.

• Nonergodic Convergence:

‖(x̃k − xk−1, z̃k − zk−1)‖2
U + ‖Ax̃k +Bz̃k‖2

M ≤
1

(2− ρ)ρk
‖Sw0 − Sw∗‖2.

Proof. From (59) we have wk − wk−1 = ρ(x̃k − xk−1, z̃k − zk−1, ỹk − yk−1) and
hence, from (19), we get

wk−wk−1 = ρ(x̃k−xk−1, z̃k−zk−1, M [(1+α)Axk−1 +(1+β)Bzk−1−αAx̃k−βBz̃k]).
(67)
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Summing over k = 1, · · · , N , we obtain

1

N

N∑
k=1

(wk−wk−1) = ρ(xN−x̂N , zN−ẑN , M [(1+α)Ax̂N+(1+β)BẑN−αAxN−βBzN ]).

Then from (57), we get

1

ρ2

∥∥∥∥∥ 1

N

N∑
k=1

(wk − wk−1)

∥∥∥∥∥
2

P

= ‖(xN − x̂N , zN − ẑN)‖2
U + ‖AxN +BzN‖2

M

and hence, given w∗ ∈ sol (VL), we deduce from (63) the ergodic rate of convergence
for constraint violations.

Using (67), from (57), we get

1

ρ2
‖wk − wk−1‖2

P = ‖(x̃k − xk−1, z̃k − zk−1)‖2
U + ‖Ax̃k +Bz̃k‖2

M

and hence, from (62), we deduce the nonergodic rate of convergence for constraint
violations.

We note that the particular case γ = 1, V1 = 0 and V2 = 0, which implies
that U = 0, the two terms ‖(xk − x̂k, zk − ẑk)‖2

U and ‖(x̃k − xk−1, z̃k − zk−1)‖2
U of

inequalities in Theorem 5.2 are null and hence we recover the Theorem 15 of [9].

Remark 5.1 From Proposition 8, we deduce that GT
S is the classical resolvent of

(ST−1St)−1 and hence, from Rockafellar [21], we can obtain the linear convergence
of the sequence defined by wk+1 = GT

S (wk) if ST−1St is Lipschitz continuous at 0,
i.e., such that

‖z − z∗‖ ≤ a‖w‖ whenever z ∈ ST−1St(w) and ‖w‖ ≤ τ,

for some positive parameters a and τ .

In particular, if T is α−strongly monotone, ST−1St is ‖S‖
2

α
−Lipschitz and hence

the linear convergence of ‖Sxk‖ is deduced for the sequence {xk} defined in (8) with
ρ = 1.

Considering ρ = 1 γ = 1, V2 = 0 and B = I in GSS algorithm, we have that
using the map defined in (3), this algorithm can be deduced from

(xk+1, uk+1) = JL
P

(xk, uk),

with P =

(
V1 + AtMA At

A M−1

)
.

Therefore, if f is strongly convex and g Lipschitz continuous, then L is strongly
monotone and hence from the previous paragraph discussion, we deduce the linear
convergence of (xk, uk). Alternately this convergence result can be deduced from
Remark 4.2, where we showed that GL

S2
coincides with the Douglas-Rachford map,

thus allowing to apply the convergence result given by D. Davis [8].
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6 Application to multi-block optimization prob-

lems

To conclude our study, we consider the application of the generalized scheme GSS
to the decomposition of some block structured convex optimization problems.

For i ∈ {1, ..., q}, let fi : Rni → R and g : Rm → R are proper lsc convex
functions, Ai and B matrices of order p × ni and p ×m, respectively. We consider
the following S-Model problem:

inf
(x1,··· , xq , z)

q∑
i=1

fi(xi) + g(z)

s.t

q∑
i=1

Aixi +Bz = 0.

This problem has been analyzed by many authors (see [13] for instance). We rewrite
it into two different forms, (B1) and (B2), but with the same structure as (BP ) de-
fined below, then we rewrite (BP ) as problem (P ) also defined below. Finally, we
apply the algorithm (37)-(40) to this last problem.

The S- Model problem is equivalent to

inf
(x1,··· , xq , z)

q∑
i=1

fi(xi) + g(z) + δ{0}(

q∑
i=1

Aixi +Bz). (B1)

In this formulation the function g can be viewed as a function fi. The associated
dual problem of (B1) is

inf
y∗

q∑
i=1

(f ∗i ◦ Ati)y∗ + (g∗ ◦Bt)y∗. (Ds)

Now, by considering n =
∑q

i=1 ni and f : Rn → R defined as f(x) :=
∑q

i=1 fi(xi),
the problem (Ds) can be written as

inf
y∗

f ∗ ◦

 At1
...
Atq

 y∗ + (g∗ ◦Bt)y∗.

This is a composite problem whose associated dual problem is

inf
(x1,··· , xq)

q∑
i=1

fi(xi) + (g∗ ◦Bt)∗ ◦ (−
q∑
i=1

Aixi). (B2)

We observe that in this last problem we reduce the number of variables considered
in the S-Model problem and function g acts now as regularization function.
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Using the same notations as before, we define a problem having the same struc-
tures as problems (B1) and (B2):

VP = inf
(x1,··· , xq)

q∑
i=1

fi(xi) + (g∗ ◦Bt)∗ ◦ (

q∑
i=1

Aixi). (BP )

In order to apply the splitting algorithm to problem (BP), we reformulate it to an
appropriate optimization problem. To do it, consider

K :=
(
Ip×p · · · Ip×p

)
∈ Rp×pq and

A :=

 A1

. . .

Aq

 ∈ Rpq×n.

So, problem (BP ) can be formulated as

inf
x∈Rn, z∈Rpq

[
f(x) + (g∗ ◦Bt)∗ ◦Kz : Ax− z = 0

]
. (P )

Notice that this last formulation problem have a good separable structure.

We apply to problem (P ) the algorithm (37)-(40) developed in Subsection 3.2.2.
We assume that g verifies the following identity

∂[(g∗ ◦Bt)∗ ◦K] = Kt(B(∂g)−1Bt)−1K.

The saddle-point problem of (P ) is

Find (x̄, z̄, ȳ) ∈ Rn × Rpq × Rpq such that 0 ∈ L̄(x̄, z̄, ȳ) (VL̄)

where L̄ is the maximal monotone map defined on Rn × Rpq × Rpq as

L̄(x, z, y) :=

 ∂f(x)
Kt(B(∂g)−1Bt)−1Kz

0

+

 0 0 At

0 0 I
−A I 0

 x
z
y

 .

For i ∈ {1, ..., q}, let Mi be an p × p symmetric positive definite matrix and Qi

be an ni × ni symmetric positive semi-definite matrix.

In order to take advantage of the separability of f , we take V1 = diag([Q1, ..., Qq])
and M = diag([M1, ...,Mq]), and we consider V2 = 0 in order to calculate zk+1 using
alone the resolvent of ∂g. So, the related algorithm (37)-(40) take the following
structure:

z̃k+1 = (Kt(B(∂g)−1Bt)−1K +M)−1(MAxk + yk) (68)

ỹk+1 = yk +M(Axk − z̃k+1) (69)

x̃k+1 = (∂f + AtMA+ V1)−1(V1x
k + AtMz̃k+1 − Atỹk+1) (70)
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(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1− ρ)(xk, zk, yk) (71)

Because the diagonal structure of expression (70) the calculation of x̃k+1 is real-
ized in parallel: for i ∈ {1, · · · , q},

x̃k+1
i = (∂fi + AtiMiAi +Qi)

−1(Qix
k
i + AtiMiz̃

k+1
i − Atiỹk+1

i ).

Now, in order to calculate z̃k+1, the following identity is relevant:

Proposition 11 With the same notations as before, the following identity holds:

(Kt(B(∂g)−1Bt)−1K +M)−1M = I −M−1KtΣ(I −B(∂g +BtΣB)−1BtΣ)K

where Σ is a p× p matrix defined by

Σ := (KM−1Kt)−1 =

(
q∑
i=1

M−1
i

)−1

.

Proof. From Proposition 8, we have

(Kt(B(∂g)−1Bt)−1K +M)−1M = I −M−1Kt(B(∂g)−1Bt +KM−1Kt)−1K

and hence by combining it with the following identity

(B(∂g)−1Bt + Σ−1)−1Σ−1 = I − ΣB(∂g +BtΣB)−1Bt

obtained also from Proposition 8, we get the desired identity.

So, using the identity of this last proposition, we can obtain an equivalent ex-
pression of ỹk+1 in (69) but with a more tractable expression for computational
purpose :

ỹk+1 = KtΣ(I −B(∂g +BtΣB)−1BtΣ)K(Axk +M−1yk). (72)

It follow in particular that ỹk+1 ∈ rangeKt and, by considering yk ∈ rangeKt

in (71), we have that yk+1 ∈ rangeKt and hence all the block components of ỹk+1

(similarly of yk+1) are equal. We denote by ỹk+1
c (resp yk+1

c ) such a block component
of ỹk+1 (resp yk+1). Then,

ỹk+1
c = Σ(I −B(∂g +BtΣB)−1BtΣ)K(Axk +M−1Ktykc ) (73)

By denoting

ζk+1 := (∂g +BtΣB)−1Bt(Σ

q∑
j=1

(Ajx
k
j ) + ykc )

we obtain, from (73),

ỹk+1
c = ykc + Σ(

q∑
j=1

(Ajx
k
j )−Bζk+1). (74)
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On the other hand, from (69), we get

z̃k+1 = Axk +M−1Kt(ykc − ỹk+1
c )

which combining with (74), we deduce that for i ∈ {1, · · · , q},

z̃k+1
i = Aix

k
i −M−1

i Σ

(
q∑
j=1

(Ajx
k
j )−Bζk+1

)
.

Therefore we obtain the following algorithm, called “Proximal Multi-block Al-
gorithm”.

Proximal Multi-block Algorithm
(PMA)

For i ∈ {1, · · · , q} set Qi ∈ Rni×ni symmetric positive semi-definite, Mi ∈ Rp×p sym-

metric positive definite. Set Σ =
(∑q

i=1M
−1
i

)−1
. Then for an arbitrary (x0, z0, y0

c ) ∈
Rn × Rpq × Rp

Step 1. Find ζk+1 such that

ζk+1 = argmin

{
g(w) +

1

2
‖Bw −

q∑
j=1

(Ajx
k
j )− Σ−1ykc ‖2

Σ

}

Step 2. Find z̃k+1

For all i ∈ {1, ..., q} do
Find z̃k+1

i such that

z̃k+1
i = Aix

k
i −M−1

i Σ

(
q∑
j=1

(Ajx
k+1
j )−Bζk+1

)
.

Step 3. Find ỹk+1
c such that

ỹk+1
c = ykc + Σ

(
q∑
j=1

(Ajx
k
j )−Bζk+1

)
.

end for

Step 4. Find x̃k+1

For all i ∈ {1, ..., q} do
Find x̃k+1

i such that

x̃k+1
i = argmin

{
fi(xi) +

1

2
‖Aixi − z̃k+1

i +M−1
i ỹk+1

c ‖2
Mi

+
1

2
‖xi − xki ‖2

Qi

}
end for
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Step 5. Find (xk+1, zk+1, yk+1
c )

(xk+1, zk+1, yk+1
c ) = ρ(x̃k+1, z̃k+1, ỹk+1

c ) + (1− ρ)(xk, zk, ykc ).

The next proposition gives conditions in order to guarantee the convergence of
PMA. The proof is a direct consequence of Proposition 7.

Proposition 12 Let ρ ∈ (0, 2). For i ∈ {1, ..., q}, assume that Qi ∈ Rni×ni and
Mi ∈ Rp×p are symmetric, with Qi positive semi-definite and Mi positive definite
such that Qi + AtiMiAi is positive definite. If sol (VL̄) is nonempty, then for an
arbitrary (x0, z0, y0

c ) ∈ Rn×Rpq×Rp, the sequence (xk, zk, Ktykc ) generated by (PMA)
converges to some element of sol (VL̄).

The Separable Augmented Lagrangian Algorithm (SALA) with multidi-
mensional scaling has been proposed in [10] to solve a special case of the S-Model
where g = 0 and B = 0 . This algorithm can be recovered if instead of applying
the algorithm (37)-(40) to problem (P ), we consider the algorithm (41)-(43) with
V1 = V2 = 0. Therefore SALA is a particular version of (PMA).
The advantages of (PMA) are twofold: 1) the inclusion of the relaxing term ρ ∈
(0, 2), which enables the accelaration of the algorithm, and 2) the additional proxi-
mal term ‖xi − xki ‖2

Qi
considered in the sub problems of Step 4, which improves the

strong convexity of the proximal sub problem when we choose an adequate matrix
Qi. More specifically, considering σi and τi positive numbers holding σiτi‖Ai‖2 ≤ 1
and choosing Mi and Qi matrices defined as

Mi = σiIp×p and Qi = τ−1
i Ini×ni

− σiAtiAi,

the conditions about matrices Qi, Mi and Qi+A
t
iMiAi in Proposition 12 are verified

and hence the subproblem in Step 4 of the Algorithm (PMA) becomes

x̃k+1
i = argmin

{
fi(xi) +

1

2τi
‖xi − xki − τi[σiAtiz̃k+1

i − σiAtiAixki − Atiȳk+1]‖2

}
which has an explicit solution in some particular cases, for instance fi(xi) = ‖xi‖1.

7 Conclusions

We have introduced a generalized splitting scheme for monotone composite inclu-
sions involving the sum of two monotone operators. It is based on a generalization
of the Proximal iteration allowing positive semidefinite matrices in the resolvent op-
erator. The new scheme includes different scaling parameters and induces separable
augmented lagrangian subproblems which are themselves regularized in the primal
and dual variables. It can be seen as an extension of Chambolle and Pock’s saddle-
point splitting scheme and it allows to recover different splitting algorithms studied
in the literature. The rate of convergence is in O(1/k) in the ergodic sense which
is indeed the expected rate for that family of methods. Further investigation is on-
going to consider the possibility to obtain linear convergence rates in the strongly
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convex case and the challenge remains, as for all these theoretical algorithms, to be
able to tune the parameters and allow approximate solutions in the subproblems to
design practical and efficient algorithms.

We have presented the application of the generalized splitting scheme to block-
structured convex optimization problems. It can be applied to a wide variety of
models with any number of blocks and linear but not necessarily full-rank coupling
constraints. It remains to show how to adapt the generalized splitting to composite
models with very large scale linear operators like the ones studied in Statistical
Learning (see for example [4]).
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