
HAL Id: hal-04090554
https://uca.hal.science/hal-04090554

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RE-proximities as fixed points of an operator on
pseudo-proximities

Monique Chicourrat

To cite this version:
Monique Chicourrat. RE-proximities as fixed points of an operator on pseudo-proximities. Topology
and its Applications, 2000, 104 (1-3), pp.39-51. �hal-04090554�

https://uca.hal.science/hal-04090554
https://hal.archives-ouvertes.fr


RE-PROXIMITIES AS FIXED POINTS

OF AN OPERATOR ON PSEUDO PROXIMITIES

Monique CHICOURRAT

Abstract. We show that the RE-proximities of [7] can be obtained as images of some natural operator

defined on pseudo proximities. Considering the one-to-one correspondence between closed graph relations

on the ultrafilter space (the so-called ”nasses” of [10]) and pseudo proximities, this operator is indeed the

correspondent of an idempotent operator defined on nasses and based upon the concepts of equivalence

kernel and domain of a nasse.

0 - INTRODUCTION.

The results of this paper were presented in [2] and announced in [3] without proofs.

Some proofs are different from those in [2].

The aim of this paper is to show that RE-proximities can be constructed as fixed

points of some natural operator on the set of pseudo proximities.

We denote by P(X) the power set of a set X.

Definition. Given any relation δ on P(X), we call a Riesz extension of δ any topological

space Y containing a copy of X and satisfying the two following conditions :

(E1) AδB ⇐⇒ A ∩B 6= ∅ for all A,B ∈ P(X)

(E2) {x}δA ⇐⇒ x ∈ A for all x ∈ X, A ∈ P(X).

Of course, any relation δ admitting a Riesz extension is a proximity on X, i.e. δ is a

symmetric relation on P(X) satisfying (P1)-(P3).

(P1) ∅ (non-δ) A

(P2) Aδ(B ∪ C) ⇐⇒ AδB or AδC

(P3) A ∩B 6= ∅ =⇒ AδB

1991 Mathematics subject classification. primary: 54E05, 54D35, secondary: 54A05,

06A15.
Key words and phrases. proximities, regular extensions of spaces, Riesz problem,

ultrafilters and round and compressed filters.
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Furthermore if δ admits a T1-extension, then δ is separated i.e.

(P4) {x} δ {y} =⇒ x = y

Proximities admitting T1-extensions are known. First, it is obvious that such a prox-

imity is a separated LO-proximity , i.e. satisfying the following condition :

(LO) adhδ(A) δ adhδ(B) =⇒ AδB

where adhδ(A) = {x ∈ X / {x}δA}.
Conversely, Gagrat, Naimpally [8] and finally Thron [15] proved that any separated

LO-proximity admits a compact T1-extension to the set Γδ of maximal ”δ-bunches” with

the ”absorption topology” : ϕ : x ∈ X 7→ δ({x}) ∈ Γδ is an embedding of X into Γδ.

In fact, for any LO-proximity δ on X, define Γ̂ = X ∪ (Γδ \ ΓX) where ΓX =

{δ({x}) : x ∈ X}. Consider the following modification of the absorption topology (sim-

ilar to constructions of Császár) : the family {Γ̂(A) : A ⊂ X} where

Γ̂(A) = {x ∈ X : A ∈ δ({x})} ∪
{
G ∈

(
Γδ\ΓX

)
: A ∈ G

}
is a closed basis for a topology on Γ̂ and this topological space provides a compact Riesz

extension for the LO-proximity δ.

This proves that proximities admitting Riesz extensions are exactly LO-proximities

and that they actually admit a compact extension.

On the other hand, Smirnov [14] proved in 1952 that Efremovič proximities are those

proximities admitting T2-compact extensions. These are separated EF-proximities (in the

sense of [8]), i.e. satisfying the following

(EF) A (non-δ) B ⇐⇒ ∃ C ⊂ X : A (non-δ) C and (X\C) (non-δ) B

Constructions given by Smirnov and then by Leader are also absorption topologies on

some sets of filters (ends [14]) or grills (clusters [11]).

In the following sections we will be interested in the RE-proximities :

Definition. [7] An RE-proximity is a proximity admitting some regular Riesz extension.

These proximities were characterized by Császár in 1986 ; in particular, he constructed

regular Riesz extensions to the set of some filters (round and compressed filters).

In 1990, Fougères (*) described a new method (fairly similar to Samuel’s method [13])

to construct compact extensions for Efremovič proximities, using ultrafilters and based

upon the so-called nasses of [10].

(*) Personal communication
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This method is of real interest in the study of RE-proximities [5] (also in the study of

”RI-proximities” [4]). It naturally yields new characterizations for these proximities and

also a generalization of known results for ends or clusters and EF-proximities [12] to round

and compressed filters and RE-proximities.

Moreover, we will prove here that this method also shows clearly that RE-proximities

are fixed points (or images) of some natural idempotent operator on pseudo proximities.

In the first section, we will recall some preliminary facts and in particular the one-to-

one correspondence between nasses and pseudo proximities.

Then (section 2), using the concept of equivalence kernel of a nasse, we naturally

introduce and study some operator E on the set of nasses and also the correspondent

operator R defined on the set of pseudo proximities.

Next, we will prove in section 3 that RE-proximities are exactly those proximities

which are fixed points of the operator R.

Finally, in section 4, we link round and compressed filters with ultrafilters. Then one

gets a direct construction of the operator R on pseudo proximities in terms of round and

compressed filters.

1 - PRELIMINARIES.

A filter on a set X is a non empty subset F of P(X) such that

A ∩B ∈ F ⇐⇒ A ∈ F and B ∈ F
and a grill on X is a subset G of P(X) such that

∅ /∈ G and (A ∪B ∈ G ⇐⇒ A ∈ G or B ∈ G).

A proper filter will be any filter different from P(X).

Recall first that the map g : A ⊂ P(X) 7→ A# ⊂ P(X) where

A# = {B ⊂ X : ∀A ∈ A, A ∩B 6= ∅}
is one-to-one between filters and grills on X, the inverse map is again g ([6], [16]).

We denote by Ω(X) the set of ultrafilters on X. Then recall also that for any filter F
and grill G on X,

F ⊂ G ⇐⇒ ∃ U ∈ Ω(X) : F ⊂ U ⊂ G
and for A ∈ P(X),

A ∈ G ⇐⇒ ∃ U ∈ Ω(X) : A ∈ U ⊂ G.

3



We consider the usual separated compact topology on Ω(X). The family {Ω(A) :

A ⊂ X} where Ω(A) is the set of ultrafilters on X containing A is an open and closed

basis for this topology, it is closed under finite intersection and finite union.

Thus, if IF1 and IF2 are two disjoint closed sets of Ω(X) then there exists A ⊂ X such

that IF1 ⊂ Ω(A) and IF2 ⊂ Ω(X)\Ω(A) = Ω
(
X\A

)
.

For IH ⊂ Ω(X), IH denotes the closure of IH in Ω(X), and if Θ ⊂ Ω(X)2, we write Θ

for the closure of Θ for the product topology on Ω(X)2.

It is known that there is a bijection between filters (or grills) on X and closed subsets

of Ω(X). Any filter F (or any grill F#) on X and the closed subset

IF = {U ∈ Ω(X) : F ⊂ U} = {U ∈ Ω(X) : U ⊂ F#}
will be said to be associated. And we have

F = ∩ {U : U ∈ IF} and F# = ∪ {U : U ∈ IF}.
Furthermore, for any IH ⊂ Ω(X), we have IH = {U ∈ Ω(X) : F ⊂ U} where

F = ∩ {U : U ∈ IH}.

¿From now on, we identify any point x ∈ X with the ultrafilter centered at x. Thus

we can write X ⊂ Ω(X) and for A ⊂ X, the closure A of A in Ω(X) is Ω(A). In particular,

X is a dense subset of Ω(X).

Definition 1.1.

1. Following Haddad’s terminology, we call nasse on X any closed graph relation on

Ω(X).

2. Any relation δ on P(X) such that δ and δ− satisfy (P1) and (P2) will be called

pseudo proximity on X.

In the following theorem, we summarize preliminary results. These were given by

Fougères and they are a small generalization of results due to Haddad [10]. One can

consult [1] for basic facts on Galois connections. Proofs can be found in [4] and [5].

Theorem 1.1. For any relation δ on P(X), consider

ϕ(δ) = {(U ,V) ∈ Ω(X)2 : U × V ⊂ δ}
and for any relation Θ on Ω(X), define

ψ(Θ) = ∪{U × V : (U ,V) ∈ Θ}
i.e. A ψ(Θ)B iff Θ(A) ∩B 6= ∅ (or (A×B) ∩Θ 6= ∅).
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1. (ϕ,ψ) is a Galois connection i.e. ϕ and ψ are monotone and

Θ ⊂ ϕ(δ) ⇐⇒ ψ(Θ) ⊂ δ.
Thus the restriction ϕ : Imψ → Imϕ is the inverse of ψ : Imϕ→ Imψ .

2. For a relation Θ on Ω(X), we have ϕ(ψ(Θ)) = Θ.

3. Θ ∈ Imϕ iff Θ is a nasse on X.

δ ∈ Imψ iff δ is a pseudo proximity on X.

4. For any pseudo proximity δ on X,

δ is symmetric iff ϕ(δ) is symmetric,

δ satisfies (P3) iff ϕ(δ) is reflexive.

It follows in particular from this theorem that there is a one-to-one correspondence

between proximities and reflexive and symmetric closed relations on Ω(X).

Definition 1.2. For any pseudo proximity δ, the relation

∆ = {(U ,V) ∈ Ω(X)2 : U × V ⊂ δ}
is said to be the nasse of δ.

Remark 1.1. The nasse of δ is a closed subset ∆ of Ω(X)2 and for any closed subset

IF of Ω(X), ∆(IF) is closed in Ω(X).

Remark 1.2. For any pseudo proximity δ with associated nasse ∆, we have

AδB iff ∆(A) ∩B 6= ∅.

Finally, we recall the following nice characterization given by Haddad ([9], [10]) for EF-

proximities. This characterization is the main fact leading to a simple compact extension

for EF-proximities to the set of ultrafilters [5].

Theorem 1.2. A (pseudo) proximity δ with nasse ∆ satisfies condition (EF) iff ∆ is

an equivalence relation on Ω(X).

2 - THE OPERATORS E AND R

The following lemmas introduce the concepts of equivalence kernel and domain of a

symmetric relation. ( The proofs are left to the reader ).

Firstly, we will show that these notions generate idempotent operators on symmetric

nasses and on symmetric pseudo proximities.
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Lemma 2.1. Let R be a symmetric relation on a set E and define

ID(R) = {x ∈ E : R(x) 6= ∅ and for any y ∈ R(x), R(y) = R(x)}.
Then R(ID(R)) = ID(R) and R is an equivalence relation on ID(R). Furthermore, ID(R) is

the largest subset of E with these two properties.

Definition 2.1. (With the above notations).

The set ID(R) is called the equivalence domain of R and R′ = R ∩ ID(R)2 is its

equivalence kernel. An equivalence class of R′ will be said equivalence class of R.

Lemma 2.2. For any symmetric relation R on E, a non void subset A of E is an

equivalence class of R iff A×A ⊂ R and R(A) = A (or R(A) ⊂ A).

Lemma 2.3. If R is a symmetric relation on E and F ⊂ E, consider the relation

RF = R ∩ F 2 on F . Then F ∩ ID(R) ⊂ ID(RF ) and R′ ∩ F 2 ⊂ R′F .

Remark 2.1. For any x ∈ E, we have :

x ∈ ID(R) ⇐⇒ ( R(x) 6= ∅ , R(x)×R(x) ⊂ R , and R(R(x)) = R(x) ).

Remark 2.2. The equivalence kernel R′ of R is not necessarily a maximal equivalence

relation contained in R. It can even be empty. For example, if E = {1, 2, 3}, and

x R y ⇐⇒ (x = y) or (x = 1 and y ∈ {2, 3}) or (y = 1 and x ∈ {2, 3}).
Then R′ = ∅.

Definition 2.2.

1. For any symmetric nasse ∆, let ∆′ be the equivalence kernel of ∆ and define E(∆)

to be the (symmetric) nasse ∆′.

2. For any symmetric pseudo proximity δ with symmetric nasse ∆, we define R(δ) to

be the symmetric pseudo proximity on X whose nasse is E(∆) = ∆′.

Proposition 2.4.

1. For any symmetric nasse ∆, E(∆) is also symmetric and : E(∆) ⊂ ∆ and

E (E(∆)) = E(∆).

2. For any symmetric pseudo proximity δ : R(δ) ⊂ δ and R (R(δ)) = R(δ).

Proof. First observe that if ∆′ is the equivalence kernel of ∆ then E(∆) = ∆′ is

symmetric since ∆′ is.
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Of course, E(∆) ⊂ ∆ since ∆′ ⊂ ∆. Thus, to prove that E is idempotent we show

that E(∆) ⊂ E (E(∆)).

Actually, we have ID(∆) ⊂ ID(E(∆)) since for U ∈ ID(∆), ∆(U) = ∆′(U) = ∆′ (U)

and then

∆(U)×∆(U) ⊂ ∆′ ⊂ ∆′ and ∆′
(
∆′ (U)

)
⊂ ∆(∆(U)) ⊂ ∆(U) = ∆′ (U).

Hence, ∆′ = ∆′ ∩ ID(∆)2 ⊂ ∆′ ∩ ID(∆)2 ⊂ ∆′ ∩ ID(E(∆))2 =
(
E(∆)

)′
and thus

E(∆) ⊂ E
(
E(∆)

)
.

Finally, assertion 2. of the proposition is true since the operators ϕ and ψ of theorem

1.1 are monotone.

Remark 2.3. If E(∆) is reflexive so is ∆ and thus if R(δ) is a proximity, so is δ.

The converse is not true. Furthermore, the operators E and R are neither increasing nor

decreasing operators.

Actually, assume that X contains at least three points x, y, z ∈ X. Let ∆1 be the

diagonal of Ω(X)2 and consider ∆2 = ∆1 ∪ {(x, y), (y, x), (x, z), (z, x)} and ∆3 = ∆2 ∪
{(y, z), (z, y)}. These relations are symmetric nasses on X, we have E(∆1) = ∆1 and

E(∆3) = ∆3. And since any singleton of X2 is open in Ω(X)2, we have E(∆2) = ∆′2 ={
(U ,U) : U ∈ Ω(X)\{x, y, z}

}
.

Now observe that ∆2 is reflexive, but E(∆2) is not. And we have ∆1 ⊂ ∆2 ⊂ ∆3 but

E(∆1) 6⊂ E(∆2) and E(∆3) 6⊂ E(∆2).

Proposition 2.5. For any proximity δ with nasse ∆, the pseudo proximity R(δ) is a

proximity iff X ⊂ ID(∆).

Proof. We prove that for any symmetric nasse ∆, E(∆) is reflexive iff X ⊂ ID(∆).

Actually, for any x ∈ X, since {(x, x)} is open in Ω(X)2, we have the following :

x ∈ ID(∆) ⇐⇒ (x, x) ∈ ∆′ ⇐⇒ (x, x) ∈ ∆′.

Furthermore, {(x, x) : x ∈ X} is dense in the diagonal of Ω(X)2. Thus, X ⊂ ID(∆) iff

E(∆) = ∆′ is reflexive.

3. RE-PROXIMITIES AS IMAGES OF THE OPERATOR R

In this section, we use results and constructions presented also in [5].

The aim of this section is to prove that RE-proximities are exactly the proximities

which are the fixed points (or images) of R :
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Theorem 3.1. If δ is a proximity on X with associated nasse ∆, let ∆′ be the equiva-

lence kernel of ∆ and ID(∆) be the equivalence domain of ∆.

Then, δ is an RE-proximity iff one of the following conditions is satisfied. (By theorem

1.1., these conditions are equivalent.)

(RE1) E(∆) = ∆

(RE2) R(δ) = δ , or equivalently : (AδB ⇐⇒ ∆′
(
A
)
∩B 6= ∅).

Furthermore, if these conditions are satisfied, then δ admits a regular Riesz extension to

ID(∆).

Theorem 3.2. Let δ be any proximity with nasse ∆.

1. Considering ∆′ as a relation on Ω(X), define the following operator on ID(∆) :

c : IH ⊂ ID(∆) 7→ ∆′
(
IH
)
⊂ ID(∆).

This operator is a regular topological closure on ID(∆).

2. If R(δ) is a proximity then R(δ) is an RE-proximity and
(
ID(∆), c

)
is a regular

extension of R(δ) .

Lemma 3.3. Suppose that E is a topological space and R is a symmetric relation on

E such that for all closed subsets F of E, R(F ) is closed in E. Let R′ be the equivalence

kernel of R.

Then the operator c : H ⊂ ID(R) 7→ R′
(
H
)
⊂ ID(R) defines a topology on ID(R) and

if E is a separated normal space, then this topology is regular.

Proof. Remark that for H ⊂ E, we have R′(H) = R′(H ∩ ID(R)) = R(H) ∩ ID(R)

and if H ⊂ ID(R), R′(H) = R(H).

That c is a topological closure on ID(R) is now based on the following observation :

for H ⊂ ID(R), we have R′
(
H
)

= R′
(
H ∩ ID(R)

)
= R

(
H
)
∩ ID(R), then c(H) is finally

the image of the closure of H in the subspace ID(R) by the equivalence relation R′ and it

is closed in ID(R).

To prove the regularity of (ID(R), c) , take x ∈ ID(R), H ⊂ ID(R) such that x /∈ R′
(
H
)
.

Then, R′(x)∩R′
(
H
)

= ∅, and hence, R(x) and R
(
H
)

are disjoint closed subsets of E (recall

that R′(x) = R(x) ⊂ ID(R)).

Take closed sets F1 and F2 in E such that F1 ∪ F2 = E and R(x) ∩ F1 = ∅,
R
(
H
)
∩ F2 = ∅. Then R′(F1) ∪R′(F2) = ID(R), x /∈ R′(F1), and R′

(
H) ∩R′(F2) = ∅.

Remark now that R′(Fi) = R′
(
Fi ∩ ID(R)

)
and the proof is complete.
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Proof of theorem 3.2. ¿From lemma 3.3, the operator c defines a regular topology on

ID(∆). To prove the assertion 2., first, let us notice that ∆′ is an equivalence relation on

ID(∆) and thus by theorem 1.1, we have

A R(δ) B ⇐⇒
(
A×B

)
∩∆′ 6= ∅ ⇐⇒ ∆′

(
A
)
∩∆′

(
B
)
6= ∅.

Hence, if R(δ) is a proximity, then X ⊂ ID(∆) (by proposition 2.5.), and we have

(E1) : A R(δ) B ⇐⇒ c(A) ∩ c(B) 6= ∅
(E2) : {x} R(δ) A ⇐⇒

(
{x} ×A

)
∩∆′ 6= ∅ ⇐⇒ x ∈ ∆′

(
A
)
⇐⇒ x ∈ c(A)

and (ID(∆), c) is a regular Riesz extension of R(δ).

Theorem 3.2. proves that if the conditions (RE) are satisfied then δ is an RE-proximity.

The two next lemmas prove that the converse is true.

Lemma 3.4. If Y is a topological space, let π be the proximity defined on Y by

(AπB ⇐⇒ c(A) ∩ c(B) 6= ∅) where c(A) is the closure of A in Y . Denote by ∆

the nasse of π. If Y is regular, then Y ⊂ ID(∆) and π satisfies (RE2) (i.e. R(π) = π ).

Proof. To start with, remark that if Y is regular, then y ∈ c(A) iff {y}πA.

Fix y ∈ Y . To prove that y ∈ ID(∆), we use remark 2.1.

If (U ,V) ∈ ∆(y)×∆(y), for any (A,B) ∈ U × V, we have {y}πA and {y}πB, and

then AπB. So (U ,V) ∈ ∆ and ∆(y)×∆(y) ⊂ ∆.

Furthermore, fix U ∈ ∆(y) and V ∈ ∆(U). For any A ∈ U , we have y ∈ c(A) and

for any B ∈ V, c(A)∩ c(B) 6= ∅. Now set B ∈ V, if y /∈ c(B), take an open set O such that

y ∈ O ⊂ c(O) ⊂ Y \ c(B). Then y /∈ Y \ O, so Y \ O /∈ U , and also c(B) ∩ c(O) = ∅,
and thus O /∈ U . This contradicts that U is a ultrafilter. Therefore, V ∈ ∆(y) and finally,

∆(∆(y)) = ∆(y).

Hence Y ⊂ ID(∆) and :

AπB ⇐⇒ ∃ y ∈ Y : {y}πA and {y}πB
⇐⇒ ∃ y ∈ Y : A ∩∆(y) 6= ∅ and B ∩∆(y) 6= ∅
=⇒ ∆′(A) ∩B 6= ∅ (because ∆(y)×∆(y) ⊂ ∆′).

⇐⇒ A R(π) B

Finally, since R(π) ⊂ π, we have R(π) = π, and condition (RE2) is satisfied.

Lemma 3.5. If π is a proximity on a set Y and X ⊂ Y , let δ be the proximity induced

by π on X, i.e.

δ = π ∩ P(X)2.

If R(π) = π then R(δ) = δ.
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Proof. Let ∆Y be the nasse of π, and ∆X that of δ. We have to prove that if E(∆Y ) =

∆Y then E(∆X) = ∆X .

Since X ⊂ Y , Ω(X) can be identified with the open-closed subset {U ∈ Ω(Y ) : X ∈ U}
of Ω(Y ). Now one can easily verify that ∆X = ∆Y ∩ Ω(X)2.

So, by Lemma 2.3, ∆′Y ∩Ω(X)2 ⊂ ∆′X . But Ω(X)2 is open in Ω(Y )2 ; for this reason,

the density of ∆′Y in ∆Y implies that of ∆′Y ∩ Ω(X)2 in ∆Y ∩ Ω(X)2, and thus, that of

∆′X in ∆X .

Remark 3.1. It can be shown that any separated RE-proximity actually admits a

separated regular Riesz extension [5] : if δ satisfies one of the ”(RE)-conditions” and if it

is separated, then the quotient space ID(∆)/∆′ provides a separated and regular Riesz

extension of δ.

Remark 3.2. We finally remark that of course the constructions and results of Theorem

3.2 and of the preceding remark are available for EF-proximities and in fact, we obtain as

a corollary known results for these proximities [5] : if δ is an EF-proximity with nasse ∆,

then ID(∆) = Ω(X) and ∆′ = ∆ ; the operator c : IH ⊂ Ω(X) 7→ ∆
(
IH
)
⊂ Ω(X) is a

compact topological closure on Ω(X) and (Ω(X), c) is a Riesz extension of δ ; furthermore

if δ is separated, then the separated quotient space Ω(X)/∆ provides a separated compact

Riesz extension of δ.

4. THE OPERATOR R AND ROUND AND COMPRESSED FILTERS

In this section we will prove that the pseudo proximity R(δ) can be directly defined

from δ, using the link between round and compressed filters and ultrafilters.

We need some preliminary notations.

Let δ be any pseudo proximity on X and ∆ its associated nasse.

Notations. Let γ be the relation defined on P(X) by

AγB ⇐⇒ A (non-δ) (X\B).

Again we denote by γ(A) the set {B ⊂ X : AγB}.
If A ⊂ P(X), we define

γ(A) = ∪{γ(A) : A ∈ A} and Aδ = ∩{δ(A) : A ∈ A}.
Remark that for any filter F on X, γ(F) is a filter and Fδ is a grill on X.
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The following lemma is a small generalization of a result given in [10] for proximities.

The proof can be found also in [5].

Lemma 4.1. For any filter F on X with associated closed IF ⊂ Ω(X), γ(F)# = Fδ

and the closed subset of Ω(X) associated with the filter γ(F) (or with the grill Fδ) is ∆(IF).

Recall now some definitions. The definition of δ-cluster is due to Leader [11].

Definition 4.1. ([7], [16]) A proper filter F on X is said to be δ-round iff γ(F) = F .
We say that F is δ-compressed or F# is a δ-clan iff F# ×F# ⊂ δ.
A grill G on X is called a δ-cluster iff G = Gδ.

It is easy to see that any δ-cluster is a maximal δ-clan (the converse is false [2]) and

note that if δ is a proximity, then for any U ∈ Ω(X), U ⊂ Uδ and thus (Uδ)δ ⊂ Uδ. It

follows that the grill Uδ is a δ-clan iff Uδ is a δ-cluster.

Recall that for any filter F , with associated closed IF ⊂ Ω(X), F# is the union of

the ultrafilters of IF. So, using Lemma 4.1., one gets the following result.

Proposition 4.2. For any proper filter F on X with associated closed IF ⊂ Ω(X) :

F is δ-round iff IF = ∆(IF) ; and F is δ-compressed iff IF× IF ⊂ ∆.

In particular, the associated closed IF ⊂ Ω(X) of a ultrafilter U is {U}. So by Lemma

4.1, ∆(U) is the closed subset of Ω(X) associated to the filter γ(U) and therefore with

Lemma 2.2, we can deduce the following theorem.

Theorem 4.3. For any symmetric pseudo proximity δ :

1. U ∈ ID(∆) ⇐⇒ γ(U) is δ-round compressed.

2. For any proper filter F on X, with associated closed IF ⊂ Ω(X), F is δ-round

compressed iff there exists U ∈ ID(∆) such that IF = ∆(U) and then F = γ(U) and

F# = Uδ.
Thus for any proximity δ, if F is a δ-round compressed filter, then F# is a δ-cluster.

This result now yields a direct construction of R(δ) from δ and hence gives also

characterizations of RE-proximities. The characterization (RE4) was given (in terms of

the ”order” γ) by Császár [7].

For any symmetric pseudo-proximity δ with associated nasse ∆, denote by ∆′ the

equivalence kernel of ∆. Note that for any A ∈ P(X), and any U ∈ Ω(X), we have :
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U ∈ ∆′
(
A
)

iff U ∈ ID(∆) and A ∈ Uδ. Since ∆′ is an equivalence relation on ID(∆),

using the characterization of a pseudo proximity with its associated nasse (theorem 1.1),

we deduce :

Theorem 4.4.

1. AR(δ)B ⇐⇒ ∃ U ∈ ID(∆) : A,B ∈ Uδ

⇐⇒ there exists a δ-round compressed filter F such that A,B ∈ F#.

2. A proximity δ is an RE-proximity iff one of the following equivalent statements is

satisfied :

(RE3) AδB ⇐⇒ ∃ U ∈ ID(∆) : A,B ∈ Uδ

(RE4) AδB ⇐⇒ there exists a δ-round compressed filter F such that A,B ∈ F#.

Remark 4.1. Note that theorem 4.3 is a generalization of results available for EF-

proximities ([12], [16], [2]). As a matter of fact, the following assertions are equivalent if

∆ is an equivalence relation and IF ⊂ Ω(X) :

1. IF is maximal for the property IF× IF ⊂ ∆

2. IF is minimal for the property IF = ∆(IF)

3. IF× IF ⊂ ∆ and IF = ∆(IF)

4. There exists U ∈ Ω(X) such that IF = ∆(U).

Now let δ be an EF-proximity and F some filter on X. Since minimality for the filter F
(and maximality for the associated grill) means maximality for the associated closed IF,

and vice-versa, then the following properties are equivalent [5] :

1. F# is a maximal δ-clan

2. F is a minimal δ-compressed filter

3. F is a maximal δ-round filter

4. F is a δ-round compressed filter

5. F = γ(U) for some U ∈ Ω(X) (and F# = Uδ)
6. F# is a δ-cluster.

Remark 4.2. For any proximity δ, let us denote by Λδ the set of δ-round and compressed

filters. It is shown in [5] that for any separated RE-proximity δ, one gets a (separated)

regular Riesz extension of δ to the set Λδ. This extension is equivalent (in the same way

that compactifications of a completely regular space are equivalent) to ID(∆)/∆′, and to

the Riesz extension constructed by Császár.

But also in the general case of RE-proximities, it can be proved that the regular Riesz

extension constructed by Császár is a quotient of a subspace of ID(∆). Actually, consider
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ΛX = {γ({x}) : x ∈ X} (ΛX is the set of convergent filters) and Λ̂δ = X ∪
(
Λδ \ΛX

)
;

the topology generated by the family {Λ̂δ(A) : A ⊂ X} where Λ̂δ(A) = {x ∈ X :

A ∈ γ({x})} ∪ {F ∈
(
Λδ \ ΛX

)
: A ∈ F} provides a regular Riesz extension for the

RE-proximity δ [7]. One can show that this space is also a quotient of a subspace of ID(∆)

(see [2]), namely, it is a quotient of ÎD =
(
ID(∆) \ IEX

)
∪X where IEX =

⋃
x∈X

∆(x).

Remark 4.3. Finally, let us remark that Császár’s preregular systems of filters can be

linked with ultrafilters. These are systems Λ of filters on X inducing a proximity δ as

follows, for which Λ ⊂ Λδ :

AδB ⇐⇒ ∃ F ∈ Λ : A,B ∈ F#

Such a proximity δ is an RE-proximity (theorem 4.4.). If ∆ is the nasse of this proximity,

then preregular systems of filters Λ inducing δ correspond exactly to subsets IE of ID(∆)

such that IE = ∆(IE) and ∆∩IE2 is dense in ∆. The correspondence is clearly the following:

IE = {U ∈ ID(∆) : γ(U) ∈ Λ} and Λ = {γ(U) : U ∈ IE}.
Then, the results obtained for the Riesz extensions ID(∆), ID(∆)/∆′ and Λδ can be gener-

alized to IE, IE/(∆ ∩ IE2) and Λ.
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