
HAL Id: hal-04090501
https://uca.hal.science/hal-04090501

Submitted on 25 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convergences, pretopologies and proximities induced by
Cauchy and Riesz screens

M. Chicourrat

To cite this version:
M. Chicourrat. Convergences, pretopologies and proximities induced by Cauchy and Riesz screens.
Acta Mathematica Hungarica, 2010, 128 (3), pp.199-220. �10.1007/s10474-010-9133-7�. �hal-04090501�

https://uca.hal.science/hal-04090501
https://hal.archives-ouvertes.fr


CONVERGENCES, PRETOPOLOGIES AND PROXIMITIES
INDUCED BY CAUCHY AND RIESZ SCREENS

MONIQUE CHICOURRAT (CLERMONT FERRAND)

Abstract. We answer a question of Császár [12]: under which con-
ditions a given pretopological closure or proximity can be induced by
a Cauchy structure? We give a characterization for these closures and
proximities using properties of convergences and nasses [14] induced by
Cauchy structures. We prove also that the set of Cauchy screens induc-
ing a given reciprocal convergence structure is a non empty interval of
the set of Cauchy screens equipped with the usual inclusion order.
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1. Introduction

The starting point of this paper is a question asked and investigated by
Császár in [12]: under which conditions a given pretopological closure or
proximity can be induced by a Cauchy screen (or Cauchy structure)?

Recall [1] that a pretopological space (X, c) is given by a set X and
a pretopological closure c on X, that is, a mapping c : P(X) → P(X)

from the power set of X to itself satisfying the following conditions:
(CL1) c(∅) = ∅;
(CL2) ∀A ∈ P(X), A ⊂ c(A);
(CL3) ∀A,B ∈ P(X), c(A ∪B) = c(A) ∪ c(B).

It is well known that a pretopological structure on a set X can be given
equivalently by a pretopological closure or a pretopological convergence or
also by a family (V(x))x∈X of filters on X, each V(x) being fixed at x.

Recall that a proximity (in the sense of [1]) on a set X is a binary
symmetric relation δ on P(X) such that:

(P0) ∀ A ∈ P(X), ∅(non-δ)A 1

(P1) ∀ A,B ∈ P(X) : A ∩B 6= ∅ ⇒ AδB
(P2) ∀ A,B, C ∈ P(X) : Aδ(B ∪ C) ⇔ AδB or AδC.

Such a relation induces a pretopological closure c on X defined by :

x ∈ c(A) ⇔ {x}δA.

1We write AδB for (A, B) ∈ δ and A(non-δ)B for (A, B) /∈ δ
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According to the terminology of [11] a screen on a set X is a family C of
proper filters (that is, not containing ∅) on X such that:

(SC0) ∀x ∈ X, ẋ ∈ C 2

(SC1) for any filters F and G, if F ∈ C and F ⊂ G then G ∈ C.
In the terminology of [15] the pair (X, C) is a filterspace.

A screen C is a Cauchy screen (or a Cauchy structure in [16] and [7])
if it satisfies the following condition:

(SC2) If F and G are members of C such that F ⊂ G# then F ∩ G is
also in C

where G# denotes the set {A ∈ P(X) : ∀ B ∈ G, A ∩B 6= ∅}.
The set of screens on X is equipped with the following order: a screen C

is coarser than a screen C′, or C′ is finer than C, if C′ ⊂ C.

Any screen C induces a convergence structure →C given by:

F →C x if and only if F ∩ ẋ ∈ C

It also induces a proximity δ and a pretopological closure c as follows:

AδB ⇔ ∃ F ∈ C, A,B ∈ F#

x ∈ c(A) ⇔ ∃ F ∈ C, ({x}, A) ∈ F# ×F#

where F# is defined as above.
This closure c is also the pretopological closure induced by the convergence

→C .

In section 4 we give an answer to Császár’s question. We use the one-
to-one correspondence between proximities and nasses of Haddad (reflexive
and closed graph relations on the set of ultrafilters) and also properties
concerning convergences induced by Cauchy screens.

It is known that the convergences induced by a screen are the Kent con-
vergences [15] and those induced by a Cauchy screen are the reciprocal limit
structures [7]. In section 3 we study some order properties of screens and
convergences: we prove for example that those (Cauchy) screens inducing a
given convergence form a non empty interval of the ordered set of (Cauchy)
screens, in particular there exist a coarsest and a finest one. We study also
the relationship between properties of convergences and properties of some
screens inducing them.

Section 4 deals with those nasses, proximities and closures induced by
(Cauchy) screens and uses results from section 3.

Section 2 is about notations and definitions.

2ẋ denotes the ultrafilter on X containing {x}.
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2. Notations and basic definitions.

2.1. Filters and grills. We give here some terminology, notation and basic
useful facts about filters, grills and ultrafilters. For more details, the reader
may consult [19] and [20].

As in [13] a subset F of P(X) such that : (A ∈ F , A ⊂ B ⇒ B ∈ F),
will be called a semifilter (it is a stack in [20],) and for any semifilter, we
write

F# = {A ∈ P(X) : ∀F ∈ F , F ∩A 6= ∅}
(it is denoted by secF in [7]); F# is again a semifilter and F 7→ F# is an
idempotent map such that: F ⊂ G ⇐⇒ G# ⊂ F#.
Furthermore we have for any semifilter F : A ∈ F# ⇔ X \A /∈ F .

We call a filter on X any nonempty semifilter F such that A ∩ B ∈ F
whenever A and B are in F . A filter is proper if it is not equal to P(X)
(which is to say that ∅ /∈ F).

We denote by φ(X) the set of proper filters on X. A filter F on X is said
to be centered (or fixed) if its center ∩{F : F ∈ F} is not empty otherwise
it is free, and if x is in ∩{F : F ∈ F}, we say that F is fixed at x. An
ultrafilter is a maximal filter.

If F and G are filters on X such that F ⊂ G#, then F ∨ G denotes the
filter generated by F ∪ G. We say that F mesh G (or F and G mesh)
whenever F ⊂ G#.

A filter grill (or a grill for short) is a semifilter G not equal to P(X) and
for which A ∪ B ∈ G if and only if A or B is in G. These were introduced
by Choquet in [6]. Recall that the map F 7→ F# is a bijection between
filters and grills, fixed points of which are exactly the ultrafilters on X and
we have for any filter F and any grill G: F ⊂ G if and only if F ⊂ U ⊂ G
for some ultrafilter U on X.

Let βX be the set of ultrafilters on X and for any A ⊂ X let βA be
the set of ultrafilters containing A. βX is equipped with the usual compact
topology for which {βA : A ⊂ X} is a base of open sets.
We write ẋ for the ultrafilter containing {x}. Recall that ẋ is an isolated
point of βX and that a subset D of βX is dense in βX if and only if D
contains all of the centered ultrafilters.

For any filter F , we denote by β(F) the closed set of all ultrafilters
containing F (or contained in F#). For any filters F and G, we have:
F ⊂ G# if and only if β(F) ∩ β(G) 6= ∅, in particular A ∈ F# if and only if
βA ∩ β(F) 6= ∅.
For all filters F and G, β(F ∩ G) = β(F) ∪ β(G), that is, any ultrafilter
containing F ∩ G contains F or G.
Recall also that there exists a bijection between closed subsets of βX and
filters on X. Actually for any subset F of βX and any filter F , we have:
F = ∩{U : U ∈ F} if and only if β(F) = F.

Finally, an elementary filter F [11] is a filter for which β(F) is finite,
i.e. F is a finite intersection of ultrafilters. If U ,V ∈ βX, we call the filter
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U ∩ V a bi-ultrafilter, notice that β(U ∩ V) = {U ,V}. Any ultrafilter is a
bi-ultrafilter.

2.2. Convergences. A convergence structure (or a convergence) on
a set X is a relation ξ from φ(X) to X such that:

(C0) (ẋ, x) ∈ ξ for all x ∈ X,
(C1) For all filters F and G, (G, x) ∈ ξ whenever (F , x) ∈ ξ and

F ⊂ G.
We will also write F →ξ x or F → x for (F , x) ∈ ξ and we will say that F
converges to x or that x is a limit point of F . A filter F is said to be
convergent if it admits a limit point.

A convergence ξ is coarser than a convergence τ (or τ is finer than ξ) if:

F →τ x =⇒ F →ξ x

and we write : τ ≤ ξ.

Following [15] a convergence ξ is a Kent convergence provided that the
following is satisfied:

(C2) If F → x then F ∩ ẋ → x.
A convergence ξ is said to be a limit structure if the following is satisfied:

(C3) if x is a limit point of the filters F1 and F2, then F1 ∩ F2

converges to x.
A convergence ξ is pseudotopological [5] provided that:

(C4) F → x ⇐⇒ ∀ U ∈ β(F), U → x.
Given a convergence ξ one assigns to any point x of X the neighborhood

filter Vξ(x) (or V(x)) of x defined by:

Vξ(x) = ∩{F : F →ξ x}.
We have also Vξ(x) = ∩{U ∈ βX : U →ξ x}.
The pretopology associated to the system of neighborhood filters (Vξ(x))x∈X

is the pretopology associated to ξ.

A convergence ξ is pretopological [5] provided that for all x, Vξ(x) →ξ x,
or equivalently if:

(C5) F →ξ x ⇐⇒ Vξ(x) ⊂ F
that is to say that ξ is the convergence related to its associated pretopological
structure.
We have : (C5) ⇒ (C4) ⇒ (C3) ⇒ (C2).

Recall (with the terminology of [18]) that for any convergence ξ there exists
a pseudotopological modification Psξ which is the finest pseudotopo-
logical convergence coarser than ξ and a pretopological modification
Prξ which is the finest pretopological convergence coarser than ξ. They are
respectively defined by:

F →Psξ x ⇐⇒ ∀ U ∈ β(F), U →ξ x ⇐⇒ β(F) ⊂ Fx
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where Fx = {U ∈ βX : U →ξ x}, and:

F →Prξ x ⇐⇒ Vξ(x) ⊂ F .

In other words, Prξ is the convergence associated to the pretopology with
neighborhood filters (Vξ(x))x∈X . We have ξ ≤ Psξ ≤ Prξ.

3. Convergences and screens.

To every screen C one assigns its induced convergence which is defined
by:

F →C x if and only if F ∩ ẋ ∈ C
Notice that any convergent filter is member of C.

For any screen C the neighborhood filter of a point x (with respect to the
induced convergence) is given by:

V(x) = ∩{F : F →C x} = ∩{F : F ∩ ẋ ∈ C} = ∩{F ∈ C : F ⊂ ẋ}
According to [11] a screen C is said to be Riesz if for all x ∈ X, V(x) ∈ C.

It is known that to a Cauchy screen C on X one can associate an equiva-
lence relation ∼ on C, which we call associated to C, defined as follows:

F ∼ G ⇐⇒ F ∩ G ∈ C.
Then we have:

F →C x ⇐⇒ F ∈ C and F ∼ ẋ.

3.1. Properties of convergences induced by particular screens. Re-
call first the following definitions and results of [15] and [7] (propositions
3.1.1 and 3.1.2).

Definition 3.1.1. A convergence ξ is called symmetric if the following is
satisfied:

(S0) If F is a convergent filter and F ⊂ ẏ then F converges to y.

The convergence ξ is said to be reciprocal if provided some filter converges
to both x and y, then a filter converges to x if and only if it converges to y.

It is easy to see that a reciprocal convergence is symmetric.

Proposition 3.1.1. [15] A convergence ξ is induced by a screen if and only
if it is a symmetric Kent convergence. Any symmetric Kent convergence is
induced by the screen of its convergent filters.

Proposition 3.1.2. [7] A convergence on a set X is induced by a Cauchy
structure if and only if it is a reciprocal limit structure.
Furthermore for any reciprocal limit structure ξ the screen Conv(ξ) of its
convergent filters is a Cauchy screen inducing ξ.

From these results we get corollaries 3.1.1 and 3.1.2 below.
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Corollary 3.1.1. A symmetric Kent convergence ξ is induced by a Cauchy
screen if and only if the screen Conv(ξ) of its convergent filters is a Cauchy
screen.

For a pretopological convergence it is easy to see that (S0) is equivalent
to each one of properties (S1), (S1’), (S1”) given below. Closures satisfying
(S1) are called weakly separated in [10]. Thus proposition 3.1.1 gives the
following corollary.

Corollary 3.1.2. A pretopological convergence with associated neighborhood
filters (V(x))x∈X and closure c is induced by a screen if and only if it satisfies
(S0) which in turn is equivalent to each of the following properties:

(S1) c({x}) ∩ c(A) 6= ∅ ⇐⇒ x ∈ c(A)
(S1’) V(x) 6= V(y) =⇒ ∃V ∈ V(x) : y /∈ V i.e. y /∈ c({x})
(S1”) y ∈ c({x}) if and only if for all A ⊂ X : x ∈ c(A) ⇐⇒ y ∈ c(A).

In particular c is symmetric in the sense of [10], i.e.

y ∈ c({x}) if and only if x ∈ c({y}).

Remark and example. For any limit structure ξ, if Conv(ξ) is a Cauchy
screen, then ξ is not necessarily induced by a Cauchy screen. For example
take a set X, x0 and y0 distinct points of X, and consider the convergence
ξ for which each ẋ converges to x and ẋ0 ∩ ẏ0 and ẋ0 converge to y0, ξ is a
limit structure but it is not reciprocal not even symmetric and it is easy to
see that Conv(ξ) is a Cauchy screen.

Remark about property (S0).
For any limit structure, property (S0) is equivalent to the following symme-
try axiom of [7] (denoted by (S0) in [16]):

(S0′) if ẋ → y then: F → x ⇐⇒ F → y.

Concerning Riesz screens we can prove the following result.

Proposition 3.1.3. A convergence ξ is induced by a Riesz screen if and
only if ξ is pretopological and symmetric. In this case Conv(ξ) is a Riesz
screen inducing ξ.

Proof. If ξ is pretopological with property (S0) then by proposition 3.1.1,
ξ is induced by the screen Conv(ξ) of its convergent filters. Therefore the
neighborhood filter at a point x for the convergence →Conv(ξ) coincides with
the neighborhood filter for the convergence ξ. Finally Conv(ξ) is a Riesz
screen since ξ is pretopological and every neighborhood filter is convergent.

Conversely if ξ is induced by a Riesz screen C, then the neighborhood
filter at a point x is member of C and so converges to x since it is fixed at
x. This proves that ξ is pretopological. 2

It follows from propositions 3.1.2 and 3.1.3:
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Corollary 3.1.3. A convergence ξ is induced by a Riesz Cauchy screen if
and only if it is pretopological and reciprocal.

According to [11] a pretopological space with associated neighborhood fil-
ters (V(x))x∈X is an (S2)-pretopological space if the following separation
condition is satisfied:

(S2) ∀x, y ∈ X, V(x) ⊂ V(y)# =⇒ V(x) = V(y).

Notice that the condition [V(x) ⊂ V(y)#] is equivalent to the existence of a
filter converging to both x and y.

It is then easy to see that a pretopological convergence ξ, with associated
neighborhood filters (V(x))x∈X , is reciprocal if and only if condition (S2) is
satisfied.

Corollary 3.1.4. A convergence ξ is induced by a Riesz Cauchy screen
if and only if it is pretopological and reciprocal if and only if ξ is the con-
vergence associated to an (S2) pretopological space.

Finally we will characterize reciprocal pseudotopological convergences us-
ing the following definition taken from [17].

Definition 3.1.2. A Cauchy screen C is full if a filter F is in C whenever
β(F) is contained in an equivalence class of C (for the equivalence relation
∼).

Proposition 3.1.4. A convergence ξ is induced by a full Cauchy screen if
and only if ξ is pseudotopological and reciprocal. In this case Conv(ξ) is a
full Cauchy screen inducing ξ.

Proof. Let ξ be induced by some full Cauchy screen C. The convergence ξ
is reciprocal. We prove that it is pseudotopological. If F is a filter such that
every ultrafilter of β(F) converges to some point x, then β(F) is contained
in the equivalence class of ẋ in C and then F is in C and is also equivalent
to ẋ, therefore F converges to x.

Conversely if ξ is pseudotopological and reciprocal then it is induced by
the Cauchy screen Conv(ξ). Let us see that this screen is full. Assume
that for some filter F , β(F) is contained in an equivalence class of Conv(ξ).
There exists a filter G converging to a point x such that β(F) is contained
in the equivalence class of G which is also the equivalence class of ẋ. Then
every member of β(F) converges to x and since ξ is pseudotopological we
conclude that F converges also to x and F is in Conv(ξ). 2

3.2. Order properties for the set of screens inducing a given con-
vergence. Recall that x is a cluster point for a given filter F with respect
to a given convergence if and only if there exists a filter G containing F con-
verging to x. We introduce now the following definitions generalizing notions
given by Császár in the pretopological setting (cf. [10], [12]).
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Definition 3.2.1. Let ξ be a convergence on a set X. A filter F is called:
(i) ξ-compressed if: F ⊂ ẋ ⇒ F → x;
(ii) strongly ξ-compressed whenever any cluster point for F is a limit

point for F .
We denote by Comp(ξ) the set of all ξ-compressed filters and by SComp(ξ)
the set of all strongly ξ-compressed filters.

Remarks.
1. If ξ is the convergence induced by a pretopological closure c on X, then

the c-compressed and strongly c-compressed filters of Császár are precisely
the ξ-compressed and strongly ξ-compressed filters respectively.

2. A convergent filter is compressed if and only if the convergence is
symmetric. Generally a convergent filter is not necessarily compressed even
for a Kent convergence or a limit structure as the example given in the
preceding subsection shows.

Lemma 3.2.1. The sets Comp(ξ) and SComp(ξ) are screens on X and we
have: SComp(ξ) ⊂ Comp(ξ).

The proof is straightforward.

Theorem 3.2.1. Let ξ be a symmetric Kent convergence on X. Denote by
Conv(ξ) the screen of convergent filters.
For any screen C inducing a symmetric Kent convergence ξ′, we have :

(i) ξ ≤ ξ′ ⇔ Conv(ξ) ⊂ C
(ii) ξ′ ≤ ξ ⇔ C ⊂ Comp(ξ)

In particular ξ is induced by any screen between Conv(ξ) and Comp(ξ),
Conv(ξ) is the finest, Comp(ξ) is the coarsest.

Proof.
(i) Clearly, if ξ ≤ ξ′ where ξ′ is induced by C then Conv(ξ) ⊂ C. Con-

versely assume that Conv(ξ) ⊂ C, if F converges to x for ξ then F ∩ ẋ
converges to x since ξ satisfies (C2), so F ∩ ẋ is in C.

(ii) Assume that ξ′ ≤ ξ and let F ∈ C. If F ⊂ ẋ then F ∩ ẋ ∈ C,
therefore F →ξ′ x and F →ξ x, which proves that F is ξ-compressed and
that C ⊂ Comp(ξ).

Conversely assume that C ⊂ Comp(ξ). If F →ξ′ x then F ∩ ẋ ∈ C and
F ∩ ẋ ∈ Comp(ξ) so F ∩ ẋ →ξ x and therefore F →ξ x. 2

Corollary 3.2.1. Every screen inducing some pretopological symmetric con-
vergence is a Riesz screen,

Conv(ξ) is the finest, Comp(ξ) is the coarsest.

The proof is clear since Conv(ξ) is a Riesz screen contained in every screen
inducing ξ.

Theorem 3.2.2. For all limit structure ξ, the screen SComp(ξ) is a Cauchy
screen.
Furthermore if ξ is reciprocal (i.e. induced by some Cauchy screen) then:
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(a) Conv(ξ) and SComp(ξ) are Cauchy screens such that Conv(ξ) ⊂
SComp(ξ).

(b) For all Cauchy screen C, we have :
C induces ξ if and only if Conv(ξ) ⊂ C ⊂ SComp(ξ).

Proof. We check that SComp(ξ) fulfills condition (SC2) of Cauchy
screens.
Let F and G be members of SComp(ξ) such that F ⊂ G# and assume that
x is a cluster point of the filter F∩G. Then there exists a filter and therefore
an ultrafilter U containing F ∩ G and converging to x. Since this ultrafilter
contains F or G, x is a cluster point for F or G and so a limit point for this
filter. Therefore the filter F ∨ G converges also to x, finally x is a cluster
point and so a limit point for both F and G and by property (C3), F ∩ G
converges to x. We conclude that F ∩ G is in SComp(ξ). Thus SComp(ξ)
is a Cauchy screen.

Now assume that ξ is reciprocal.
(a) Conv(ξ) ⊂ SComp(ξ): let F be a filter converging to a point x, if y is

a cluster point for F , then there is a filter G containing F and converging to
y, so G converges to both x and y, and since ξ is reciprocal F also converges
to y.

(b) By proposition 3.2.1 a Cauchy screen C induces ξ if and only if
Conv(ξ) ⊂ C ⊂ Comp(ξ).

Since SComp(ξ) ⊂ Comp(ξ), the condition Conv(ξ) ⊂ C ⊂ SComp(ξ) is
sufficient for C to induce ξ.

Conversely, assume that a Cauchy screen C induces ξ. We have to check
that C ⊂ SComp(ξ). If F ∈ C and x is a cluster point for F then there
is a filter G containing F and converging to x. We then have: F ∼ G and
G ∼ ẋ in C, and so F ∼ ẋ in C which proves that F converges to x. Finally
F ∈ SComp(ξ). 2

If ξ is the convergence ξ induced by a pretopological closure c the preced-
ing result implies the following which was proved by Császár in [12]:

Corollary 3.2.2. If c is a pretopological closure on X then the strongly
c-compressed filters constitute a Cauchy screen.

Finally we have also:

Corollary 3.2.3. For any reciprocal limit structure ξ, SComp(ξ) is the
coarsest Cauchy screen contained in Comp(ξ).

Remark. Let ξ be a convergence induced by a Cauchy screen; Conv(ξ) is
the finest Cauchy screen inducing ξ and SComp(ξ) is the coarsest.
Let C be a Cauchy screen inducing a convergence ξ′.
We have: ξ ≤ ξ′ ⇔ Conv(ξ) ⊂ C, but it is false that: ξ′ ≤ ξ ⇔ C ⊂
SComp(ξ).
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In the example below, we construct reciprocal (actually separated) pretopo-
logical convergences ξ and ξ′, which are induced by the Cauchy screens of
their strongly compressed filters and such that ξ′ ≤ ξ and SComp(ξ′) 6⊂
SComp(ξ).

Example. Consider the usual convergence ξ′ on the set of reals IR, and
then take non convergent (distinct) ultrafilters U0 and U1 containing respec-
tively the non compact subsets ] −∞, 0] and [0,+∞[. In particular, these
ultrafilters do not contain any neighborhood filter for ξ′.

Now take the pretopological convergence ξ for which Vξ(x) = Vξ′(x) if x
is neither 0 nor 1, and Vξ(0) = Vξ′(0) ∩ U0, Vξ(1) = Vξ′(1) ∩ U1.

Each of these pretopological convergences is a limit structure on IR, ξ′ is
reciprocal and actually separated, i.e. x 6= y =⇒ Vξ′(x) 6⊂ Vξ′(y)#.
The convergence ξ is also separated and thus reciprocal. To prove this, we
use the following equivalence for filters F and G: F ⊂ G# if and only if
β(F) ∩ β(G) 6= ∅. Since any ultrafilter containing the intersection of two
filters contains necessarily one of them (property recalled in section 2) we
have: β(Vξ(0)) = β(Vξ′(0)) ∪ {U0} and β(Vξ(1)) = β(Vξ′(1)) ∪ {U1}. Of
course if x is in IR \ {0, 1}, β(Vξ(x)) = β(Vξ′(x)). For any distinct points
x, y ∈ IR, β(Vξ′(x)) ∩ β(Vξ′(y)) = ∅ and each one of U0 and U1 does not
contain any neighborhood filter for ξ′. Finally with U0 6= U1, we check that
if x, y are distinct points, then β(Vξ(x)) ∩ β(Vξ(y)) = ∅, which proves that
ξ is separated.
Therefore each one of ξ′ and ξ is induced by the Cauchy screen of its strongly
compressed filters.

Let F0 be the bi-ultrafilter U0∩U1, with respect to ξ′, F0 is not convergent
and has no cluster point since the only ultrafilters containing F0 are U0 and
U1 and they do not converge for ξ′. Therefore F0 is a strongly ξ′-compressed
filter.
With respect to ξ, 0 and 1 are cluster points for F0 since U0 and U1 converge
to 0 and 1 respectively. Furthermore Ui /∈ β(Vξ(j)) for {i, j} = {0, 1},
therefore F0 does not contain Vξ(j) either and does not converge to j for ξ.
So F0 is not strongly ξ-compressed. Finally SComp(ξ′) is not contained in
SComp(ξ).

We complete our study with the following result.

Proposition 3.2.1. For all reciprocal pseudotopological convergence ξ, the
Cauchy screens Conv(ξ) and SComp(ξ) are full.

Proof. It has already been shown that Conv(ξ) is full. We check now
that SComp(ξ) is full.

Assume that for some filter F , β(F) is contained in an equivalence class
of SComp(ξ). If x is a cluster point for F then some member U of β(F)
converges to x. Therefore U and so every member of β(F) is in the equiv-
alence class of ẋ, that is, every ultrafilter containing F converges to x and
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then F converges also to x since ξ is pseudotopological. We conclude that
F is in SComp(ξ). 2

4. Pretopological closures and proximities induced by Cauchy
screens

A proximity δ on a set X induces a pretopological closure c on X defined
by :

x ∈ c(A) ⇔ {x}δA
and the neighborhood filter of a point x is given by:

Vδ(x) = δ({x})# where δ({x}) = {A ⊂ X : {x}δA}.
A screen C induces a proximity δ and a pretopological closure c as defined

in the introduction.

This closure c is also the associated closure of the pretopological structure
induced by the convergence →C since for all x ∈ X the neighborhood filters
at x coincide. Actually the neighborhood filter of x related to →C is:

V(x) = ∩{F : F ∈ C,F ⊂ ẋ}
and we have:

δ({x}) = ∪{F# : F ∈ C,F ⊂ ẋ} = V(x)#

therefore V(x) = δ({x})# and then V(x) = Vδ(x).

In [12], Császár asked for a characterization of those pretopological clo-
sures and those proximities induced by Cauchy screens. We give an answer
to both questions.

4.1. Proximities and screens. If a screen C induces a proximity δ then
every member F of C is such that F# ×F# ⊂ δ, that is, F# is a δ-clan in
the sense of Thron [20], or equivalently, F is a δ-compressed filter in the
sense of [10].

For every proximity δ the set Cδ of δ-compressed filters is a screen and
it is known that δ is induced by Cδ (indeed it is the coarsest one): for all
subsets A and B of X, AδB if and only if there exists a δ-clan containing A
and B. Thron [20] gave a short proof for this result using basic properties of
grills, filters and ultrafilters. Thus every proximity is induced by a screen.

We call a Riesz proximity (or RI-proximity, [3]) on X any proximity
δ for which there exists a pretopological closure space (Y, ϕ) containing X as
a dense subset and such that we have: AδB if and only if ϕ(A)∩ϕ(B) 6= ∅.
These proximities have been studied and characterized in [2], [3], [10].

Theorem 4.1.1. The proximities induced by a Riesz screen are precisely
the Riesz proximities.
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Proof. It is known (see [2], [10], [3]) that a proximity δ is a Riesz proxim-
ity if and only if one of the equivalent following conditions is true (c denotes
the pretopological closure induced by δ):

(RI) ∀ A,B ∈ P(X), c(A) ∩ c(B) 6= ∅ ⇒ AδB
(RI’) ∀ x ∈ X, δ({x})× δ({x}) ⊂ δ,

which means that for all x ∈ X, Vδ(x) is δ-compressed. Then if δ is a
Riesz proximity the screen Cδ of δ-compressed filters is a Riesz screen since
it induces δ and Vδ(x) is also the neighborhood filter at x related to →Cδ

.
Conversely let δ be a proximity induced by a Riesz screen C. Then for all
x ∈ X, the neighborhood filter V(x) is in C and so is compressed for the
proximity δ. Thus δ is a Riesz proximity since V(x) = Vδ(x). 2

We obtain a characterization for those proximities induced by some Cauchy
screen using the following notion of [14].

Definition 4.1.1. A nasse on X is a reflexive and closed graph relation on
βX.

The following facts were proved in [14]:
1. there is a bijection between proximities (or dually the topogeneous

orders of Császár [8]) on X and the so-called nasses of Haddad.
For any proximity δ with associated nasse ∆, we have

(U ,V) ∈ ∆ ⇔ U × V ⊂ δ and AδB ⇔ (βA× βB) ∩∆ 6= ∅.

We recover here Thron’s result which says that the screen of δ-
compressed filters induces δ. Actually if AδB then there is a pair
(U ,V) ∈ (βA × βB) ∩ ∆. It follows that A and B are members of
U ∪ V and from (U ,V) ∈ ∆ we get that U ∪ V is a δ-clan (i.e. U ∩ V
is δ-compressed).

2. Recall that an Efrěmovič-proximity (or EF-proximity for short)
is a proximity δ on a set X with the following separation property:
for all A,B in P(X),

A(non-δ)B =⇒ ∃ C ∈ P(X) : A(non-δ)C and (X \ C)(non-δ)B.

For any proximity the converse implication is true, as one can easily
see.
A proximity δ is an EF-proximity if and only if its nasse ∆ is an
equivalence relation.

We will prove the following theorem.

Theorem 4.1.2. Let δ be a proximity on X.
1. δ is induced by a screen C if and only if its associated nasse is the clo-

sure in (βX)2 of the relation ΘC =
⋃
F∈C

β(F)×β(F) on βX induced

by C.
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2. δ is induced by a Cauchy screen if and only if its associated nasse ∆
is the closure in (βX)2 of a transitive and symmetric relation on βX
if and only if ∆ is the closure in (βX)2 of an equivalence relation
on βX.

Notations. Any family B of filters on X induces a relation ΘB on βX
defined by:

ΘB =
⋃
F∈B

β(F)× β(F).

If C is the set of all filters containing a member of B, we then have ΘB = ΘC
and (U ,V) ∈ ΘC if and only if U ∩ V ∈ C.

This defines a relation on βX which is clearly symmetric and reflexive
with domain

D = C ∩ βX =
⋃
F∈C

β(F)

Since C and D contain exactly the same ultrafilters, we get:
C is a screen if and only if D contains all of the centered ultrafilters,
that is, if and only if D is dense in βX.

Note that if C is a Cauchy screen then the relation ΘC is the restriction
on D = C ∩βX of the equivalence relation ∼ associated to C (recalled in the
beginning of section 3), and therefore ΘC is an equivalence relation on
D.

Now to an arbitrary relation Θ on βX let us associate the family of filters
CΘ on X defined as follows:

CΘ = {F ∈ φ(X) : β(F)× β(F) ⊂ Θ}
and let Cb

Θ be the screen of the bi-ultrafilters of CΘ.

Theorem 4.1.3. A relation Θ is induced by some screen C (in the sense
that Θ = ΘC) if and only if Θ is a symmetric and reflexive relation on a
dense subset of βX.
Furthermore, if Θ is such a relation with dense domain D then Θ is induced
by any screen between Cb

Θ and CΘ, CΘ is the coarsest one inducing Θ, Cb
Θ is

the finest one.

Proof. For any symmetric and reflexive relation Θ on a dense subset D
of βX, D contains all centered ultrafilters and it is straightforward that CΘ

and Cb
Θ are screens on X inducing Θ. Furthermore any screen inducing Θ is

clearly contained in CΘ, and it contains Cb
Θ since if U and V are ultrafilters

such that U ∩ V is in Cb
Θ then (U ,V) is in Θ and there exists F ∈ C such

that U ,V are both in β(F), so F ⊂ U ∩ V and U ∩ V is also in C. 2

Theorem 4.1.4. For all relations Θ on βX the following are equivalent:
1. Θ is induced by a Cauchy screen.
2. Θ is an equivalence relation on its domain and its domain is a dense

subset of βX.
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3. CΘ is a Cauchy screen.
4. The screen Ce

Θ of elementary filters of CΘ is a Cauchy screen.
In case one of the above conditions holds then, among the Cauchy screens
inducing Θ, CΘ is the coarsest and Ce

Θ is the finest.

Proof. 1. ⇒ 2. has already been observed.
Now we prove: 2. ⇒ 3. Assume that Θ is an equivalence relation on a

dense domain D of βX.
The screen CΘ is the coarsest screen inducing Θ, we check that it is a

Cauchy screen.
Let F ,G ∈ CΘ such that F ⊂ G#. The sets β(F)2 and β(G)2 are subsets of

Θ and β(F)∩β(G) 6= ∅. Since Θ is transitive, it follows that β(F)×β(G) ⊂ Θ
and β(G) × β(F) ⊂ Θ, and finally β(F ∩ G)2 = (β(F) ∪ β(G))2 ⊂ Θ, and
F ∩ G ∈ CΘ.

Next we prove: 3. ⇒ 4. Assume that CΘ is a Cauchy screen. Let F ,G ∈ Ce
Θ

such that F ⊂ G#, then F ,G are elementary and F ,G ∈ CΘ. Therefore, F∩G
is in CΘ and it is again elementary, i.e. F ∩ G ∈ Ce

Θ. This proves that the
screen Ce

Θ is Cauchy.

Finally 4. ⇒ 1. is clear since the screen Ce
Θ is between CΘ and Cb

Θ, which
proves that Ce

Θ induces Θ. by the preceding theorem.

Assume now that one of the conditions 1. to 4. is true. We prove that
Ce

Θ is the finest Cauchy screen inducing Θ.
Let C be a Cauchy screen inducing also Θ, note first that D = C ∩ βX =

Ce
Θ ∩ βX.
Let F ∈ Ce

Θ, F is the intersection of a finite number of ultrafilters, say
U1, . . . ,Un. Each (Ui,Uj) is in Θ and therefore Ui ∩ Uj is a member of C.
In particular each Ui and Ui ∩ Ui+1 are members of C. Finally, since C is a
Cauchy screen, by finite induction we prove that for all 1 ≤ i ≤ n, U1∩. . .∩Ui

is again member of C, so F ∈ C. 2

Now we can prove Theorem 4.1.2.

Proof of Theorem 4.1.2.
1. Let δ be a proximity and C be a screen on X. We have:
δ is induced by C ⇔ [ AδB ⇔ ∃F ∈ C : A,B ∈ F# ]
⇔ [ AδB ⇔ ∃F ∈ C : (βA × βB) ∩ (β(F))2 6= ∅ ] ⇔ [ AδB ⇔ (βA ×

βB) ∩ΘC 6= ∅ ]
Since {βA × βB : A,B ∈ P(X)} is a base for the open sets of the product
topology on (βX)2, we have finally:

δ is induced by C ⇔ [ AδB ⇔ (βA× βB) ∩ΘC 6= ∅ ]
which is to say that ΘC is the nasse associated to δ.

2. Note that a nasse ∆ is always reflexive and therefore if Θ is a symmetric
and transitive relation on βX which is dense in ∆ then

Θ′ = Θ ∪ {(U ,U) : U ∈ βX}



CONVERGENCES, PRETOPOLOGIES AND PROXIMITIES INDUCED BY CAUCHY AND RIESZ SCREENS15

is an equivalence relation on βX which is again dense in ∆.
Now the second part of the theorem follows from the first part and theo-

rem 4.1.4. 2

Actually from theorem 4.1.2 and theorem 4.1.4 we get the following result.
Recall that a Cauchy screen C is totally bounded ([7]) if every ultrafilter
is a Cauchy filter.

Theorem 4.1.5. A proximity induced by a Cauchy screen is also induced
by a totally bounded and full Cauchy screen.

Proof. According to theorem 4.1.2 let Θ be an equivalence relation on
βX which is dense in the nasse ∆ of a proximity δ induced by a Cauchy
screen. The Cauchy screen CΘ = {F : β(F) × β(F) ⊂ Θ} induces δ and is
clearly totally bounded since Θ is reflexive on βX. Furthermore if F is a
filter such that β(F) is contained in an equivalence class of CΘ for ∼ then
β(F) is contained in an equivalence class for Θ since Θ is the restriction of
∼ to βX. Thus F ∈ CΘ, which proves finally that CΘ is a full and totally
bounded Cauchy screen inducing Θ and therefore the proximity δ. 2

We give now some corollaries. The first one recovers in particular Thron’s
result: any proximity is induced by the screen of its compressed filters.
We recall the following result.

Proposition 4.1.1. [4] For any proximity δ with associated nasse ∆, a filter
F is δ-compressed if and only if β(F)× β(F) ⊂ ∆.

Corollary 4.1.1. Any proximity δ is induced by the screen Cδ of δ-compressed
filters and also by the screens Cb

δ and Ce
δ consisting of bi-ultrafilters and ele-

mentary filters respectively of Cδ.

Proof. Let ∆ be the nasse associated to a proximity δ. The nasse ∆
is a symmetric and reflexive relation on βX, therefore using theorem 4.1.3,
∆ = ΘC∆

= ΘCb
∆

= ΘCe
∆

where C∆ = {F : β(F)×β(F) ⊂ ∆} and Cb
∆ and Ce

∆

are the screens consisting of bi-ultrafilters and elementary filters respectively
of Cδ.
It follows from the preceding proposition that C∆ is also the screen Cδ of all
δ-compressed filters. Finally theorem 4.1.2 implies that the proximity δ is
induced by the screens Cδ, Cb

δ and Ce
δ . 2

Theorem 4.1.4 and Haddad’s characterization of EF-proximities imply
also the following result which was proved by Császár in [12].

Corollary 4.1.2. For any proximity δ, the screen Cδ is Cauchy if and only
if Ce

δ is also Cauchy if and only if δ in an EF-proximity,

Proof. Let ∆ be the nasse associated to δ. The screen C∆ is again Cδ.
Therefore since a proximity δ is an EF-proximity if and only if its nasse ∆
is an equivalence relation on βX ([14]), we get from theorem 4.1.4 that the
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screen Cδ is Cauchy if and only if Ce
δ is also Cauchy if and only if ∆ is an

equivalence relation and thus if and only if δ in an EF-proximity. 2

Remarks.
1. For any proximity δ the screen Cδ is the coarsest screen inducing δ,

generally a finest one fails to exist ([12], example 3.18, p.212).
2. Of course if δ is an EF-proximity then Cδ is the coarsest Cauchy

screen inducing δ. Császár [12] gave examples of proximities and closures
induced by Cauchy screens for which neither a coarsest nor a finest compat-
ible Cauchy screen exists.

Actually in the next subsection we show that for any RE-proximity δ
which is not an EF-proximity, there does not exist a coarsest Cauchy screen
inducing δ.

3. It follows from corollaries 4.1.1 and 4.1.2 that a proximity induced by
a Cauchy screen and which is not an EF-proximity is induced by screens
which are not Cauchy, indeed Cδ is one of them.

We conclude this section with the following result. This result can be
found also in [12] where it is proved directly that a proximity induced by a
Cauchy screen satisfies property (RI).

Proposition 4.1.2. A proximity induced by a Cauchy screen is a Riesz
proximity.

Proof. It was proved in [3] that a proximity δ is a Riesz proximity if
and only if its nasse is the closure of Θ ◦ Θ− for some relation Θ on βX.
From theorem 4.1.2 a proximity induced by a Cauchy screen is a Riesz
proximity since its nasse is the closure of an equivalence relation Θ and we
have Θ = Θ ◦Θ−. 2

4.2. About RE-proximities. An RE-proximity on X is a proximity δ
for which there exists a regular topological closure space (Y, ϕ), Y containing
a copy of X and such that we have: AδB if and only if ϕ(A) ∩ ϕ(B) 6= ∅.
For basic properties and results concerning RE-proximities, the reader may
consult [9], [4].

It is known that to any proximity δ on X one can associate a topogeneous
order (in the sense of Császár) γ on X defined by:

∀A,B ∈ P(X) AγB if and only if A(non-δ)(X \B).

For any filter F on X the set γ(F) consisting of subsets B of X such that
AγB for some A ∈ F is a filter on X and the inclusion γ(F) ⊂ F is always
true. If x ∈ X, the filter γ(ẋ) is simply denoted by γ(x).

Definition 4.2.1. Given a proximity δ on X, a filter F on X for which
F = γ(F) is a δ-round filter (or a γ-round filter).
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Round filters were introduced in [9] using a somewhat different notation.

As in [4], let δ be a proximity with associated nasse ∆ and let

D(∆) = {U ∈ βX : ∆(U)2 ⊂ ∆ and ∆(∆(U)) ⊂ ∆(U)}.
It is called the equivalence domain of ∆.
The restriction ∆′ of ∆ to the set D(∆) is the equivalence kernel of ∆.
It is an equivalence relation on D(∆).

Theorem 4.2.1. The equivalence relation ∆′ on D(∆) is induced by the
set B of δ-round and compressed filters in the sense that ∆′ = ΘB =⋃
F∈B

β(F)× β(F).

Furthermore the equivalence classes of ∆′ are exactly the sets β(F) for
F ∈ B.
Consequently, the set Crd of all filters containing a member of B satisfies the
condition (SC2) of Cauchy screens and we have also ∆′ = ΘCrd

.

Proof. From [4] we have the following:
1. the equivalence classes of ∆′ are exactly the sets ∆(U) for U ∈ D(∆),

which are also the sets β(γ(U)).
2. U ∈ D(∆) if and only if γ(U) ∈ B.
3. F ∈ B if and only if F = γ(U), or equivalently β(F) = ∆(U), for

some U ∈ D(∆).
It follows that B = {γ(U) : U ∈ D(∆)} and that the equivalence classes

of ∆′ are the sets β(F) for F ∈ B.
Since equivalence classes are disjoint or equal, for any members F1 and

F2 of B such that F1 ⊂ F#
2 , we have F1 = F2.

From this it follows that the set Crd satisfies condition (SC2): for any
members F1 and F2 of Crd such that F1 ⊂ F#

2 we have F1 ∩ F2 ∈ Crd. 2

Theorem 4.2.2. Let δ be any proximity on X and Crd the set of filters
containing a δ-round and compressed filter. The set Crd is a Cauchy screen
if and only if for every x in X, γ(x) is a δ-round and compressed filter if
and only if D(∆) is dense in βX. And then Crd is a full Cauchy screen.

Proof. From ∆′ = ΘCrd
, we have that Crd is a screen (i.e. it contains

every centered ultrafilter) if and only if the domain D(∆) of ∆′ contains
every centered ultrafilter, that is, if and only if D(∆) is dense in βX.

As it was recalled in the proof of the preceding proposition, an ultrafilter
U on X is in D(∆) if and only if γ(U) is in B [4]. Finally Crd is a screen if
and only if for every x in X, γ(x) is a δ-round and compressed filter. And
then it is a Cauchy screen. Let us prove that it is also full.

Assume that for some filter F , β(F) is contained in an equivalence class
of Crd. The relation ΘCrd

= ∆′ is the restriction on D(∆) of the relation ∼
on Crd∩βX. Therefore β(F) is contained in an equivalence class of ∆′, that
is a set β(G) for some δ-round and compressed filter G. This inclusion gives
G ⊂ F and finally F ∈ Crd. 2
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Since every centered ultrafilter is isolated in βX, the closure ∆′ of ∆′ in
βX is a nasse (that is, reflexive) on βX if and only if D(∆) is dense in βX.
According to [4], under this condition, the proximity R(δ) associated to ∆′

is an RE-proximity. It follows from the above discussion and theorem 4.1.2
that this proximity is induced by the Cauchy screen Crd.

We have the following characterization from [4]: δ is an RE-proximity if
and only if its nasse ∆ is the closure in (βX)2 of its equivalence kernel ∆′

if and only if R(δ) = δ. In particular if δ is an RE-proximity D(∆) is dense
in βX and δ is induced by the Cauchy screen Crd. Finally Crd is a screen
inducing the proximity δ if and only if δ is an RE-proximity.

So we have the following proposition:

Theorem 4.2.3. An arbitrary RE-proximity δ is always induced by a full
Cauchy screen, namely the screen Crd generated by the set of δ-round and
compressed filters. Consequently the same is true of arbitrary RC or EF-
proximities.

A preregular system of filters of Császár [9] generates a Cauchy screen
inducing an RE-proximity. We give another equivalent definition.

Consider a family B of filters such that:

(PSF1) ∀x ∈ X, ∃F ∈ B, F ⊂ ẋ.

We associate to B a proximity δB or δ for short, on X defined by:

AδBB if and only if there exists F ∈ B such that A,B ∈ F#.

Notice that if C is the screen generated by B, that is the set of all filters
containing some member of B, then δC = δB and C satisfies (PSF1) if and
only if B does, if and only if C contains all centered ultrafilters.
The topogeneous order γ associated to δ is defined by:

[AγB] if and only if [∀F ∈ B, A ∈ F# ⇒ B ∈ F ].

The family B is a preregular system of filters in the sense of [9] if and
only if :

(PSF2) every F in B is δ-round,
that is, for any A in some F in B, there exists a B ∈ F such that BγA.
It was proved in [9] that a proximity δ is an RE-proximity if and only if δ
is δB for some preregular system of filters B.

Now it follows easily from these definitions that if B is a preregular system
of filters on X, then B is a subset of the set of δ-round and compressed filters
and then again, as shown in the proof of theorem 4.2.1: for all F1,F2 ∈ B
such that F1 ⊂ F#

2 we have F1 = F2. Therefore the screen C generated by
B is a Cauchy screen on X.

Finally we have the following result:
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Proposition 4.2.1. If δ is an RE-proximity which is not an EF-proximity
then a coarsest Cauchy screen inducing δ does not exist.

Proof. Let ∆ be the nasse associated to δ and ∆′ be its equivalence
kernel which is dense in ∆. ∆ is not an equivalence relation on βX and
D(∆) 6= βX. It is easy to check that there exist three different ultrafilters
U ,V,W in βX \D(∆) such that U∆V∆W and U(non-∆)W. Therefore one
can see that the relations ∆1 = ∆′ ∪ β(U ∩ V)2 ∪ {(X ,X ),X ∈ βX} (recall
that β(U ∩V) = {U ,V}) and ∆2 = ∆′ ∪ β(W ∩V)2 ∪ {(X ,X ),X ∈ βX} are
equivalence relations on βX which are dense again in ∆′.

Let Crd be the screen generated by the δ-round and compressed filters
and consider the following screens C = Crd ∪ βX, C1 = C ∪ {U ∩ V} and
C2 = C ∪ {W ∩ V}. Since Crd is Cauchy and full it is easy to see that
C is actually a totally bounded and full Cauchy screen as well as C1 and
C2 (because U ,V,W are not in Crd). These screens induce δ again since
ΘC1 = ∆1 and ΘC2 = ∆2 which are dense in the nasse ∆.

Finally there does not exist a Cauchy screen inducing δ and containing
both C1 and C2 because any Cauchy screen containing them should contain
also U ∩ W also since the filters U ∩ V and V ∩ W mesh, and then U ∩ W
would be δ-compressed and (U ,W) would be in ∆ which is not the case. 2

From the preceding proof one can extract the following observation:

Corollary 4.2.1. Among the full and/or totally bounded Cauchy screens
inducing a given RE-proximity which is not EF, a coarsest one does not
exist.

4.3. Pretopological closures induced by a screen. The pretopological
closure c on X induced by a screen C is defined by:

(∗) x ∈ c(A) if and only if there exists F ∈ C such that ({x}, A) ∈ F#×F#.

It is the closure associated to the proximity δ induced by C: x ∈ c(A) if and
only if {x}δA.
As it was observed at the beginning of this section, the pretopological closure
induced by C is also the closure associated to the pretopological modification
of the convergence →C induced by C.
We will use the two points of view to study the closures induced by Cauchy
screens.

Theorem 4.3.1. For a pretopological closure c the following are equivalent:
(i) c is induced by a screen
(ii) c is induced by a proximity
(iii) c is symmetric, i.e. ∀x, y ∈ X, y ∈ c({x}) ⇔ x ∈ c({y})

Proof. Since every proximity is induced by a screen, we get easily that
(i) ⇔ (ii).

Furthermore it is clear that a closure c induced by a proximity (or a
screen) is symmetric.
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Conversely assume that c is symmetric, then take the proximity π defined
by:

AπB if A ∩ c(B) 6= ∅ or c(A) ∩B 6= ∅.
By the symmetry axiom on c, if c({x})∩B 6= ∅ then x ∈ c(B). Therefore if
{x}πB then x ∈ c(B) and so c is induced by the proximity π. 2

Remark. If δ is a proximity inducing c, then AδB provided A ∩ c(B) 6= ∅
and it is easy to see that π is the smallest proximity inducing c when c is
symmetric.

Theorem 4.3.2. For a pretopological closure c the following are equivalent:
(i) c is induced by a Riesz screen
(ii) c is induced by a Riesz proximity
(iii) c satisfies condition (S1) (or equivalently conditions (S1′), (S1′′) of

corollary 3.1.2):
(S1) ∀x ∈ X, ∀A ∈ P(X), c({x}) ∩ c(A) 6= ∅ ⇔ x ∈ c(A)

Proof. Since a proximity is induced by a Riesz screen if and only if it is
a Riesz proximity, it is clear that (i) ⇔ (ii).

By condition (RI) for a Riesz proximity (in the preceding subsection) the
condition (S1) is clearly necessary for c to be induced by a Riesz proximity.

Conversely assume that (S1) is true, then take the proximity π defined
by: AπB if and only if c(A) ∩ c(B) 6= ∅. This proximity is clearly a Riesz
proximity and by condition (S1), c is induced by π. 2

Remark. If δ is a Riesz proximity inducing c, we have that c(A) ∩ c(B) 6=
∅ ⇒ AδB and finally when (S1) is true, π is the smallest Riesz proximity
inducing c.

To characterize closures induced by Cauchy screens we use the conver-
gence point of view. We get from proposition 3.1.2 that:

Proposition 4.3.1. A pretopological closure is induced by a Cauchy screen
C if and only if it is the closure associated to the pretopological modification
of a reciprocal limit structure (namely the convergence →C).

Theorem 4.3.3. For a pretopological closure c with associated neighborhood
filters (Vx)x∈X , the following are equivalent :

(i) c is induced by a Cauchy screen,
(ii) c is (the closure associated to) the pretopological modification of a

reciprocal pseudotopology,
(iii) there exists a family (Fx)x∈X of subsets of βX satisfying the following

condition:

(S) ∀x, y ∈ X, Vx = ∩{U : U ∈ Fx} and [Fx ∩ Fy 6= ∅ ⇒ Fx = Fy].

We prove first the following propositions.
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Proposition 4.3.2. Let ξ be any pseudotopological convergence on X and
for any x ∈ X, write Fx = {U ∈ βX : U → x}.
The convergence ξ is reciprocal if and only if :

∀x, y ∈ X, Fx ∩ Fy 6= ∅ =⇒ Fx = Fy.

In particular a pretopological convergence ξ with associated neighborhood
filters (V(x))x∈X , is reciprocal if and only if the separation condition (S2)
of Császár is satisfied (see subsection 3.1).

Proof. The first part is straightforward since the convergence is given
by: F → x if and only if β(F) ⊂ Fx.

In the pretopological case, one has to note that Fx = β(V(x)) for every x,
and therefore that [V(x) mesh V(y) ⇐⇒ Fx∩Fy 6= ∅] and [V(x) = V(y) ⇐⇒
Fx = Fy]. 2

Proposition 4.3.3. If ξ is a reciprocal convergence then so is its pseudoto-
pogical modification.

Proof. The pseudotopological modification of ξ is given by:

F → x if and only if β(F) ⊂ Fx

where Fx = {U ∈ βX : U →ξ x}. Notice that an ultrafilter converges to
a point x for ξ if and only if it converges to x for the pseudotopological
modification. We then have Fx = {U ∈ βX : U → x} and therefore using
proposition 4.3.2, if ξ is reciprocal then so is its pseudotopological modifi-
cation. 2

Proof of theorem 4.3.3.
With proposition 4.3.3, (i) ⇔ (ii) is clear since a convergence and its

pseudotopological modification have the same pretopological modification.
(ii) ⇔ (iii) :
Let ξ be a reciprocal pseudotopology inducing c and take Fx = {U : U →ξ

x}. We clearly have Vx = ∩{F : F →ξ x} = ∩{U : U ∈ Fx} and since ξ is
reciprocal, using proposition 4.3.2, we get condition (S).

Conversely assume that there exists a family (Fx)x∈X satisfying condition
(S) and define a convergence ξ as follows: F →ξ x if β(F) ⊂ Fx.

Let us check that it is indeed a convergence.
The condition Vx = ∩{U : U ∈ Fx} means that β(Vx) is the closure in βX of
Fx. Since ẋ ∈ β(Vx) and {ẋ} is open in βX, we have ẋ ∈ Fx. Therefore ξ is
a convergence and it is pseudotopological since for any ultrafilter U , U →ξ x
if and only if U ∈ Fx. Now from condition (S), ξ is also reciprocal and c is
the closure associated to the pretopological modification of ξ. 2

Finally theorem 4.3.3 with proposition 3.1.3 yield the following result from
[12]:

Corollary 4.3.1. A pretopological closure is induced by a Riesz Cauchy
screen if and only if it is the closure of an (S2)-pretopological space.
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[1] E. Čech, Topological spaces, revised edition by Z. Froĺık and M. Katětov, Academia,
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