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CONVERGENCES, PRETOPOLOGIES AND PROXIMITIES
INDUCED BY CAUCHY AND RIESZ SCREENS

MONIQUE CHICOURRAT (CLERMONT FERRAND)

ABSTRACT. We answer a question of Csészar [12]: under which con-
ditions a given pretopological closure or proximity can be induced by
a Cauchy structure? We give a characterization for these closures and
proximities using properties of convergences and nasses [14] induced by
Cauchy structures. We prove also that the set of Cauchy screens induc-
ing a given reciprocal convergence structure is a non empty interval of
the set of Cauchy screens equipped with the usual inclusion order.
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ondary 54E70

1. Introduction

The starting point of this paper is a question asked and investigated by
Csészar in [12]: under which conditions a given pretopological closure or
proximity can be induced by a Cauchy screen (or Cauchy structure)?

Recall [1] that a pretopological space (X, ¢) is given by a set X and

a pretopological closure ¢ on X, that is, a mapping ¢ : P(X) — P(X)
from the power set of X to itself satisfying the following conditions:

(CL1) (D) = 0;
(CL2) VAeP(X), ACc(A);
(CL3) VA,BeP(X), c(AUB)=c(A)Uc(B).

It is well known that a pretopological structure on a set X can be given
equivalently by a pretopological closure or a pretopological convergence or
also by a family (V(x))zex of filters on X, each V(z) being fixed at x.

Recall that a proximity (in the sense of [1]) on a set X is a binary
symmetric relation ¢ on P(X) such that:

(P0) V A€ P(X), h(non-0)A !
(P1) YA BeP(X):ANB#0 = AsB
(P2) Y A,B,CeP(X): AS(BUC) & ASB or ASC.

Such a relation induces a pretopological closure ¢ on X defined by :

z € c¢(A) & {z}dA.

IWe write ASB for (A, B) € § and A(non-6)B for (A, B) ¢ &
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According to the terminology of [11] a screen on a set X is a family C of
proper filters (that is, not containing () on X such that:

(SC0) VrxeX,ieC?
(SC1) for any filters F and G, if F € C and F C G then G € C.

In the terminology of [15] the pair (X,C) is a filterspace.

A screen C is a Cauchy screen (or a Cauchy structure in [16] and [7])
if it satisfies the following condition:

(SC2) If F and G are members of C such that F C G# then FNG is

also in C

where G# denotes the set {A € P(X):V B€ G, AN B # 0}.
The set of screens on X is equipped with the following order: a screen C
is coarser than a screen C’, or C’ is finer than C, if ' C C.

Any screen C induces a convergence structure —¢ given by:
F —cax ifandonlyif FnNniel
It also induces a proximity d and a pretopological closure ¢ as follows:

ASB<3Fel, A BeF7

rec(A) e 3IFec, ({z},A) e Fr x Ft

where F# is defined as above.
This closure c is also the pretopological closure induced by the convergence

In section 4 we give an answer to Csaszar’s question. We use the one-
to-one correspondence between proximities and nasses of Haddad (reflexive
and closed graph relations on the set of ultrafilters) and also properties
concerning convergences induced by Cauchy screens.

It is known that the convergences induced by a screen are the Kent con-
vergences [15] and those induced by a Cauchy screen are the reciprocal limit
structures [7]. In section 3 we study some order properties of screens and
convergences: we prove for example that those (Cauchy) screens inducing a
given convergence form a non empty interval of the ordered set of (Cauchy)
screens, in particular there exist a coarsest and a finest one. We study also
the relationship between properties of convergences and properties of some
screens inducing them.

Section 4 deals with those nasses, proximities and closures induced by
(Cauchy) screens and uses results from section 3.

Section 2 is about notations and definitions.

23 denotes the ultrafilter on X containing {z}.
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2. Notations and basic definitions.

2.1. Filters and grills. We give here some terminology, notation and basic
useful facts about filters, grills and ultrafilters. For more details, the reader
may consult [19] and [20].

As in [13] a subset F of P(X) such that : (A€ F, AC B= B € F),
will be called a semifilter (it is a stack in [20],) and for any semifilter, we
write

F*={AeP(X):VF € F,FNA#(}
(it is denoted by sec F in [7]); F7 is again a semifilter and F — F# is an
idempotent map such that: F C G <= G# c F#.
Furthermore we have for any semifilter 7: A € F# < X\ A ¢ F.

We call a filter on X any nonempty semifilter F such that AN B € F
whenever A and B are in F. A filter is proper if it is not equal to P(X)
(which is to say that () ¢ F).

We denote by ¢(X) the set of proper filters on X. A filter F on X is said
to be centered (or fixed) if its center N{F : F' € F} is not empty otherwise
it is free, and if z is in N{F : F € F}, we say that F is fixed at x. An
ultrafilter is a maximal filter.

If F and G are filters on X such that F C G#, then F V G denotes the
filter generated by F U G. We say that F mesh G (or F and G mesh)
whenever F C G7.

A filter grill (or a grill for short) is a semifilter G not equal to P(X) and
for which AU B € G if and only if A or B is in G. These were introduced
by Choquet in [6]. Recall that the map F +— F7 is a bijection between
filters and grills, fixed points of which are exactly the ultrafilters on X and
we have for any filter 7 and any grill G: F C Gifandonlyif F CU C G
for some ultrafilter &/ on X.

Let BX be the set of ultrafilters on X and for any A C X let A be
the set of ultrafilters containing A. SX is equipped with the usual compact
topology for which {A: A C X} is a base of open sets.

We write & for the ultrafilter containing {x}. Recall that & is an isolated
point of 85X and that a subset D of X is dense in X if and only if D
contains all of the centered ultrafilters.

For any filter F, we denote by B(F) the closed set of all ultrafilters
containing F (or contained in F7). For any filters F and G, we have:
F C G# if and only if B(F) N B(G) # 0, in particular A € F7# if and only if
BAN B(F) # 0.

For all filters F and G, B(F N G) = B(F) U B(G), that is, any ultrafilter
containing F N G contains F or G.

Recall also that there exists a bijection between closed subsets of X and
filters on X. Actually for any subset F of X and any filter F, we have:
F =n{U :U € F} if and only if 3(F) =F.

Finally, an elementary filter F [11] is a filter for which 3(F) is finite,
i.e. F is a finite intersection of ultrafilters. If U,V € BX, we call the filter
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U NV a bi-ultrafilter, notice that (U N V) = {U,V}. Any ultrafilter is a
bi-ultrafilter.

2.2. Convergences. A convergence structure (or a convergence) on
a set X is a relation & from ¢(X) to X such that:
(CO) (&,xz)eforallzeX,
(C1)  For all filters F and G, (G,x) € £ whenever (F,z) € £ and
FcCg.

We will also write F —¢ « or F — « for (F,z) € £ and we will say that F
converges to x or that x is a limit point of F. A filter F is said to be
convergent if it admits a limit point.

A convergence ¢ is coarser than a convergence 7 (or 7 is finer than &) if:
F—rro=F —¢x
and we write : 7 < £.
Following [15] a convergence ¢ is a Kent convergence provided that the
following is satisfied:
(C2) If F— xthen FNi — x.
A convergence £ is said to be a limit structure if the following is satisfied:
(C3) if z is a limit point of the filters F; and Fy, then F; N Fo
converges to x.
A convergence ¢ is pseudotopological [5] provided that:
(C4) F—oz<—=VYUEPF) U— .

Given a convergence ¢ one assigns to any point z of X the neighborhood
filter Ve¢(x) (or V(x)) of x defined by:

Ve(x) = {F : F —¢ x}.

We have also Ve(z) = N{U € BX : U —¢ x}.
The pretopology associated to the system of neighborhood filters (Ve (x))zex
is the pretopology associated to &.

A convergence ¢ is pretopological [5] provided that for all z, Ve(x) —¢ @,
or equivalently if:

(C5) F—=gx<=Ve(r)CF
that is to say that £ is the convergence related to its associated pretopological
structure.

We have : (C5) = (C4) = (C3) = (C2).

Recall (with the terminology of [18]) that for any convergence £ there exists
a pseudotopological modification Ps¢ which is the finest pseudotopo-
logical convergence coarser than £ and a pretopological modification
Pr¢ which is the finest pretopological convergence coarser than £. They are
respectively defined by:

F —=pgr<=VUEP(F), U —cax+ B(F)CF,
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where F, = {U € X : U —¢ x}, and:
F —pre x < Vg(a:) C F.

In other words, Pr¢ is the convergence associated to the pretopology with
neighborhood filters (V¢(x))zex. We have { < Ps§ < Pré.

3. Convergences and screens.

To every screen C one assigns its induced convergence which is defined

by:
F —cx ifandonlyif Fnzel

Notice that any convergent filter is member of C.

For any screen C the neighborhood filter of a point z (with respect to the
induced convergence) is given by:

Ve)={F:F-cz}={F:FneelC}=n{FelC:FCi}
According to [11] a screen C is said to be Riesz if for all x € X, V(z) € C.
It is known that to a Cauchy screen C on X one can associate an equiva-
lence relation ~ on C, which we call associated to C, defined as follows:
F~G= FNngGecl.

Then we have:

F —crx<—=FelC and F ~ 1.

3.1. Properties of convergences induced by particular screens. Re-
call first the following definitions and results of [15] and [7] (propositions
3.1.1 and 3.1.2).

Definition 3.1.1. A convergence & is called symmetric if the following is
satisfied:

(S0) If F is a convergent filter and F C 1 then F converges to y.

The convergence £ is said to be reciprocal if provided some filter converges
to both x and y, then a filter converges to x if and only if it converges to y.

It is easy to see that a reciprocal convergence is symmetric.

Proposition 3.1.1. [15] A convergence £ is induced by a screen if and only
if it is a symmetric Kent convergence. Any symmetric Kent convergence is
induced by the screen of its convergent filters.

Proposition 3.1.2. [7] A convergence on a set X is induced by a Cauchy
structure if and only if it is a reciprocal limit structure.

Furthermore for any reciprocal limit structure & the screen Conv(€) of its
convergent filters is a Cauchy screen inducing &.

From these results we get corollaries 3.1.1 and 3.1.2 below.
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Corollary 3.1.1. A symmetric Kent convergence £ is induced by a Cauchy
screen if and only if the screen Conv(§) of its convergent filters is a Cauchy
screen.

For a pretopological convergence it is easy to see that (S0) is equivalent
to each one of properties (S1), (S1’), (S1”) given below. Closures satisfying
(S1) are called weakly separated in [10]. Thus proposition 3.1.1 gives the
following corollary.

Corollary 3.1.2. A pretopological convergence with associated neighborhood
filters (V(x))zex and closure c is induced by a screen if and only if it satisfies
(S0) which in turn is equivalent to each of the following properties:

(S1) c{z}) Ne(A) # 0 < z € ¢(A)

(S17) V(z) #V(y) =3IV eV(x): y¢Vie yé¢c{z})

(S17) y € c({z}) if and only if forall AC X : x € c(A) <y € c(A).
In particular ¢ is symmetric in the sense of [10], i.e.

y € c({z}) if and only if x € c({y}).

Remark and example. For any limit structure &, if Conv(§) is a Cauchy
screen, then £ is not necessarily induced by a Cauchy screen. For example
take a set X, x¢ and yg distinct points of X, and consider the convergence
¢ for which each & converges to x and @ N g and &g converge to g, £ is a
limit structure but it is not reciprocal not even symmetric and it is easy to
see that Conv(§) is a Cauchy screen.

Remark about property (50).
For any limit structure, property (S0) is equivalent to the following symme-
try axiom of [7] (denoted by (S0) in [16]):

(S0) ifi — ythen: F -2+ F —y.

Concerning Riesz screens we can prove the following result.

Proposition 3.1.3. A convergence £ is induced by a Riesz screen if and
only if € is pretopological and symmetric. In this case Conv(§) is a Riesz
screen inducing €.

Proof. If £ is pretopological with property (S0) then by proposition 3.1.1,
¢ is induced by the screen Conv(€) of its convergent filters. Therefore the
neighborhood filter at a point x for the convergence — copy(¢) coincides with
the neighborhood filter for the convergence . Finally Conv(§) is a Riesz
screen since £ is pretopological and every neighborhood filter is convergent.

Conversely if ¢ is induced by a Riesz screen C, then the neighborhood
filter at a point = is member of C and so converges to x since it is fixed at
x. This proves that £ is pretopological. O

It follows from propositions 3.1.2 and 3.1.3:
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Corollary 3.1.3. A convergence £ is induced by a Riesz Cauchy screen if
and only if it is pretopological and reciprocal.

According to [11] a pretopological space with associated neighborhood fil-
ters (V(z))zex is an (S2)-pretopological space if the following separation
condition is satisfied:

(52)  Vr,yeX, V(z)c V) = V() =V(y).

Notice that the condition [V(z) C V(y)#] is equivalent to the existence of a
filter converging to both x and y.

It is then easy to see that a pretopological convergence £, with associated
neighborhood filters (V(x)),ex, is reciprocal if and only if condition (S52) is
satisfied.

Corollary 3.1.4. A convergence £ is induced by a Riesz Cauchy screen
if and only if it is pretopological and reciprocal if and only if £ is the con-
vergence associated to an (S2) pretopological space.

Finally we will characterize reciprocal pseudotopological convergences us-
ing the following definition taken from [17].

Definition 3.1.2. A Cauchy screen C is full if a filter F is in C whenever
B(F) is contained in an equivalence class of C (for the equivalence relation

N)'
Proposition 3.1.4. A convergence £ is induced by a full Cauchy screen if

and only if £ is pseudotopological and reciprocal. In this case Conv(§) is a
full Cauchy screen inducing &.

Proof. Let £ be induced by some full Cauchy screen C. The convergence &
is reciprocal. We prove that it is pseudotopological. If F is a filter such that
every ultrafilter of 3(F) converges to some point x, then §(F) is contained
in the equivalence class of & in C and then F is in C and is also equivalent
to &, therefore F converges to x.

Conversely if £ is pseudotopological and reciprocal then it is induced by
the Cauchy screen Conv(§). Let us see that this screen is full. Assume
that for some filter F, 5(F) is contained in an equivalence class of Conv(§).
There exists a filter G converging to a point x such that G(F) is contained
in the equivalence class of G which is also the equivalence class of . Then
every member of G(F) converges to x and since £ is pseudotopological we
conclude that F converges also to x and F is in Conv(§). O

3.2. Order properties for the set of screens inducing a given con-
vergence. Recall that x is a cluster point for a given filter F with respect
to a given convergence if and only if there exists a filter G containing F con-
verging to x. We introduce now the following definitions generalizing notions
given by Cséaszar in the pretopological setting (cf. [10], [12]).



8 MONIQUE CHICOURRAT (CLERMONT FERRAND)

Definition 3.2.1. Let £ be a convergence on a set X. A filter F is called:
(i) &-compressed if: F C & = F — x;
(ii) strongly {-compressed whenever any cluster point for F is a limit
point for F.
We denote by Comp(&) the set of all -compressed filters and by SComp(§)
the set of all strongly &-compressed filters.

Remarks.

1. If £ is the convergence induced by a pretopological closure c on X, then
the c-compressed and strongly c-compressed filters of Csészar are precisely
the £&-compressed and strongly &-compressed filters respectively.

2. A convergent filter is compressed if and only if the convergence is
symmetric. Generally a convergent filter is not necessarily compressed even
for a Kent convergence or a limit structure as the example given in the
preceding subsection shows.

Lemma 3.2.1. The sets Comp(§) and SComp(§) are screens on X and we
have: SComp(§) C Comp(§).

The proof is straightforward.

Theorem 3.2.1. Let & be a symmetric Kent convergence on X. Denote by
Conv(§) the screen of convergent filters.
For any screen C inducing a symmetric Kent convergence &', we have :

(i) £E<& & Conv(§) CC

(it) & < € & C C Compl(€)
In particular £ is induced by any screen between Conv(§) and Comp(§),
Conuv(§) is the finest, Comp(§) is the coarsest.

Proof.

(i) Clearly, if ¢ < ¢ where ¢ is induced by C then Conv(¢) C C. Con-
versely assume that Conv(§) C C, if F converges to = for { then F N &
converges to x since ¢ satisfies (C2), so F N & is in C.

(i) Assume that ¢ < { and let F € C. If F C & then FNi € C,
therefore 7 —¢ x and F —¢ z, which proves that F is {-compressed and
that C C Comp(§).

Conversely assume that C C Comp(§). If F —¢ x then F N4 € C and
FNieComp(€)soFNi —¢x and therefore F —¢ . O

Corollary 3.2.1. Fvery screen inducing some pretopological symmetric con-
vergence is a Riesz screen,
Conv(§) is the finest, Comp(§) is the coarsest.

The proof is clear since Conv(§) is a Riesz screen contained in every screen
inducing &.

Theorem 3.2.2. For all limit structure &, the screen SComp(§) is a Cauchy
screen.
Furthermore if £ is reciprocal (i.e. induced by some Cauchy screen) then:
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(a) Conv(§) and SComp(&) are Cauchy screens such that Conv(§) C
SComp(§).

(b) For all Cauchy screen C, we have :
C induces & if and only if Conv(§) C C C SComp(§).

Proof. We check that SComp(¢§) fulfills condition (SC2) of Cauchy
screens.
Let F and G be members of SComp(&) such that F C G# and assume that
x is a cluster point of the filter FNG. Then there exists a filter and therefore
an ultrafilter U containing F NG and converging to x. Since this ultrafilter
contains F or G, x is a cluster point for F or G and so a limit point for this
filter. Therefore the filter F V G converges also to x, finally z is a cluster
point and so a limit point for both F and G and by property (C3), F NG
converges to . We conclude that F NG is in SComp(&). Thus SComp(§)
is a Cauchy screen.

Now assume that £ is reciprocal.

(a) Conv(§) € SComp(§): let F be a filter converging to a point x, if y is
a cluster point for F, then there is a filter G containing F and converging to
1y, so G converges to both x and y, and since £ is reciprocal F also converges
to y.

(b) By proposition 3.2.1 a Cauchy screen C induces £ if and only if
Conv(§) C C C Comp(§).

Since SComp(§) C Comp(), the condition Conv(§) C C C SComp(§) is
sufficient for C to induce €.

Conversely, assume that a Cauchy screen C induces £. We have to check
that C € SComp(§). If F € C and x is a cluster point for F then there
is a filter G containing F and converging to . We then have: F ~ G and
G ~ 2 in C, and so F ~ & in C which proves that F converges to x. Finally
F € SComp(§). O

If € is the convergence ¢ induced by a pretopological closure ¢ the preced-
ing result implies the following which was proved by Csészar in [12]:

Corollary 3.2.2. If ¢ is a pretopological closure on X then the strongly
c-compressed filters constitute a Cauchy screen.

Finally we have also:

Corollary 3.2.3. For any reciprocal limit structure £, SComp(§) is the
coarsest Cauchy screen contained in Comp(§).

Remark. Let £ be a convergence induced by a Cauchy screen; Conv(§) is
the finest Cauchy screen inducing £ and SComp(§) is the coarsest.

Let C be a Cauchy screen inducing a convergence &’.

We have: ¢ < ¢ < Conv(€) C C, but it is false that: ¢ < & & C C
SComp(§).
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In the example below, we construct reciprocal (actually separated) pretopo-
logical convergences £ and &', which are induced by the Cauchy screens of
their strongly compressed filters and such that ¢ < ¢ and SComp(¢') ¢
SComp(§).

Example. Consider the usual convergence & on the set of reals IR, and
then take non convergent (distinct) ultrafilters Uy and U; containing respec-
tively the non compact subsets | — 0o, 0] and [0, +oc[. In particular, these
ultrafilters do not contain any neighborhood filter for ¢’.

Now take the pretopological convergence £ for which Ve () = Ve () if
is neither 0 nor 1, and V¢(0) = Ve (0) NUp, Ve(1) = Ver (1) N U

Each of these pretopological convergences is a limit structure on IR, &’ is
reciprocal and actually separated, i.e. z # y = Ve (x) ¢ Ve (y)7.

The convergence ¢ is also separated and thus reciprocal. To prove this, we
use the following equivalence for filters F and G: F C G# if and only if
B(F) N B(G) # (. Since any ultrafilter containing the intersection of two
filters contains necessarily one of them (property recalled in section 2) we
have: S(Ve(0)) = B(Ver(0)) U {Uho} and B(Ve(1)) = S(Ver(1)) U {thi}. Of
course if x is in IR\ {0,1}, B(Ve(x)) = B(Ve(x)). For any distinct points
z,y € R, B(Ve(z)) N (Ve (y)) = 0 and each one of Uy and U; does not
contain any neighborhood filter for &’. Finally with Uy # Uy, we check that
if ,y are distinct points, then B(Ve(x)) N B(Ve(y)) = 0, which proves that
£ is separated.

Therefore each one of ¢’ and ¢ is induced by the Cauchy screen of its strongly
compressed filters.

Let Fy be the bi-ultrafilter Uy N, with respect to £, Fy is not convergent

and has no cluster point since the only ultrafilters containing Fy are Uy and
U, and they do not converge for &’. Therefore Fy is a strongly £’-compressed
filter.
With respect to &, 0 and 1 are cluster points for Fy since Uy and Uy converge
to 0 and 1 respectively. Furthermore U; ¢ (5(Ve(j)) for {i,j} = {0,1},
therefore F does not contain V¢(j) either and does not converge to j for &.
So Fy is not strongly £-compressed. Finally SComp(¢’) is not contained in
SComp(§).

We complete our study with the following result.

Proposition 3.2.1. For all reciprocal pseudotopological convergence &, the
Cauchy screens Conv(§) and SComp(§) are full.

Proof. It has already been shown that Conv(§) is full. We check now
that SComp(§) is full.

Assume that for some filter F, 3(F) is contained in an equivalence class
of SComp(§). If = is a cluster point for F then some member U of F(F)
converges to x. Therefore U and so every member of 5(F) is in the equiv-
alence class of &, that is, every ultrafilter containing F converges to x and
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then F converges also to x since £ is pseudotopological. We conclude that
F is in SComp(€). O

4. Pretopological closures and proximities induced by Cauchy
screens

A proximity ¢ on a set X induces a pretopological closure ¢ on X defined
by :
x € c(A) & {z}dA
and the neighborhood filter of a point x is given by:
Vs(z) = 6({z})*  where d({z}) = {A C X : {z}5A}.

A screen C induces a proximity ¢ and a pretopological closure ¢ as defined
in the introduction.

This closure c is also the associated closure of the pretopological structure
induced by the convergence —¢ since for all x € X the neighborhood filters
at x coincide. Actually the neighborhood filter of x related to —¢ is:

V()=n{F:FeC,FCi}

and we have:

S({z}) =U{F* . FecC,Fci}=V)?
therefore V(z) = §({z})* and then V(z) = Vs(x).

In [12], Cséaszar asked for a characterization of those pretopological clo-
sures and those proximities induced by Cauchy screens. We give an answer
to both questions.

4.1. Proximities and screens. If a screen C induces a proximity J then
every member F of C is such that F# x F# C §, that is, F# is a d-clan in
the sense of Thron [20], or equivalently, F is a /-compressed filter in the
sense of [10].

For every proximity d the set Cs of d-compressed filters is a screen and
it is known that § is induced by Cs (indeed it is the coarsest one): for all
subsets A and B of X, AdB if and only if there exists a §-clan containing A
and B. Thron [20] gave a short proof for this result using basic properties of
grills, filters and ultrafilters. Thus every proximity is induced by a screen.

We call a Riesz proximity (or RI-proximity, [3]) on X any proximity
§ for which there exists a pretopological closure space (Y, ¢) containing X as
a dense subset and such that we have: AdB if and only if ¢(A) N(B) # 0.
These proximities have been studied and characterized in [2], [3], [10].

Theorem 4.1.1. The proxzimities induced by a Riesz screen are precisely
the Riesz proximities.
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Proof. It is known (see [2], [10], [3]) that a proximity J is a Riesz proxim-
ity if and only if one of the equivalent following conditions is true (¢ denotes
the pretopological closure induced by §):

(RI) VA BeP(X), c(A)Ne(B)#£0= AdiB

(RI') VzeX, §d({z}) x 6({z}) C o,
which means that for all z € X, Vs(z) is d-compressed. Then if ¢ is a
Riesz proximity the screen Cs of d-compressed filters is a Riesz screen since
it induces 6 and Vj(z) is also the neighborhood filter at z related to —¢;.
Conversely let § be a proximity induced by a Riesz screen C. Then for all
x € X, the neighborhood filter V(z) is in C and so is compressed for the
proximity 0. Thus J is a Riesz proximity since V(x) = Vs(z). O

We obtain a characterization for those proximities induced by some Cauchy
screen using the following notion of [14].

Definition 4.1.1. A nasse on X is a reflexive and closed graph relation on
8X.

The following facts were proved in [14]:

1. there is a bijection between proximities (or dually the topogeneous
orders of Csdszar [8]) on X and the so-called nasses of Haddad.
For any proximity J with associated nasse A, we have

UV)eEA=UXVCS  and  ASB < (BAx BB)NA #0.

We recover here Thron’s result which says that the screen of 6-
compressed filters induces 6. Actually if A6B then there is a pair
(U,V) € (BA x B) N A. Tt follows that A and B are members of
U UV and from (U, V) € A we get that Y/ UV is a d-clan (i.e. U NV
is 0-compressed).

2. Recall that an Efrémovi¢-proximity (or EF-proximity for short)
is a proximity § on a set X with the following separation property:

for all A, B in P(X),
A(non-6)B =3 C € P(X) : A(non-§)C and (X \ C)(non-9)B.

For any proximity the converse implication is true, as one can easily
see.

A proximity § is an EF-proximity if and only if its nasse A is an
equivalence relation.

We will prove the following theorem.

Theorem 4.1.2. Let § be a proximity on X.
1. § is induced by a screen C if and only if its associated nasse is the clo-
sure in (8X)? of the relation ©¢ = U B(F) x B(F) on X induced

Fec
by C.
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2. ¢ is induced by a Cauchy screen if and only if its associated nasse A
is the closure in (3X)? of a transitive and symmetric relation on fX
if and only if A is the closure in (BX)? of an equivalence relation
on BX.

Notations. Any family B of filters on X induces a relation O3 on X
defined by:
o5 = | B(F) x B(F).
FeB
If C is the set of all filters containing a member of B, we then have Op = O¢
and (U,V) € O¢ if and only if U NV € C.
This defines a relation on SX which is clearly symmetric and reflexive
with domain
D=CngX = | B
FeC
Since C and D contain exactly the same ultrafilters, we get:
C is a screen if and only if D contains all of the centered ultrafilters,
that is, if and only if D is dense in 5X.

Note that if C is a Cauchy screen then the relation ©O¢ is the restriction
on D = CNBX of the equivalence relation ~ associated to C (recalled in the

beginning of section 3), and therefore ©¢ is an equivalence relation on
D.

Now to an arbitrary relation © on X let us associate the family of filters
Co on X defined as follows:

Co ={F € ¢(X) : B(F) x B(F) C ©}
and let C% be the screen of the bi-ultrafilters of Cg.

Theorem 4.1.3. A relation © is induced by some screen C (in the sense
that © = O¢) if and only if © is a symmetric and reflexive relation on a
dense subset of BX.

Furthermore, if © is such a relation with dense domain D then © is induced
by any screen between Cg and Co, Cg 1is the coarsest one inducing ©, Cb@ is
the finest one.

Proof. For any symmetric and reflexive relation © on a dense subset D
of X, D contains all centered ultrafilters and it is straightforward that Cg
and C% are screens on X inducing ©. Furthermore any screen inducing © is
clearly contained in Cg, and it contains Cg since if Y and V are ultrafilters
such that U NV is in C§ then (U,V) is in © and there exists F € C such
that U,V are both in S(F),so F CUNV and U NV is also in C. O

Theorem 4.1.4. For all relations © on X the following are equivalent:

1. © is induced by a Cauchy screen.
2. O is an equivalence relation on its domain and its domain is a dense

subset of BX.
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3. Co is a Cauchy screen.
4. The screen C§ of elementary filters of Cg is a Cauchy screen.

In case one of the above conditions holds then, among the Cauchy screens
inducing ©, Cg is the coarsest and C§ is the finest.

Proof. 1. = 2. has already been observed.

Now we prove: 2. = 3. Assume that © is an equivalence relation on a
dense domain D of X

The screen Cg is the coarsest screen inducing O, we check that it is a
Cauchy screen.

Let F,G € Cg such that F C G#. The sets B(F)? and 3(G)? are subsets of
© and B(F)NB(G) # (. Since O is transitive, it follows that 3(F)x5(G) C ©
and 3(G) x B(F) C ©, and finally 3(F N G)? = (B(F) U B(G))?> C ©, and
FNG e Co.

Next we prove: 3. = 4. Assume that Cg is a Cauchy screen. Let F,G € C§
such that F C G#, then F, G are elementary and F,G € Cg. Therefore, FNG
is in Co and it is again elementary, i.e. F NG € Cg. This proves that the
screen Cg is Cauchy.

Finally 4. = 1. is clear since the screen Cg is between Cg and Cg, which
proves that Cg induces ©. by the preceding theorem.

Assume now that one of the conditions 1. to 4. is true. We prove that
C§ is the finest Cauchy screen inducing ©.

Let C be a Cauchy screen inducing also ©, note first that D =C N BX =
CégNpX.

Let F € C§, F is the intersection of a finite number of ultrafilters, say
Uy,...,U,. BEach (U;,U;) is in © and therefore U; NU; is a member of C.
In particular each U; and U; N U; 1 are members of C. Finally, since C is a
Cauchy screen, by finite induction we prove that for all 1 < i < n,UiN...NU;
is again member of C, so F € C. a

Now we can prove Theorem 4.1.2.

Proof of Theorem 4.1.2.
1. Let  be a proximity and C be a screen on X. We have:
§ is induced by C < [ AdB < 3F € C: A,B € F#]

S [AB < 3F eC: (BAxBB)N(BF)? #0] & [ A6B < (BA x
BB)NO¢ # 10 |
Since {fA x BB : A, B € P(X)} is a base for the open sets of the product
topology on (3X)?, we have finally:

§ is induced by C < [ AdB < (BA x B)NO¢ # ]

which is to say that O¢ is the nasse associated to 6.
2. Note that a nasse A is always reflexive and therefore if © is a symmetric

and transitive relation on X which is dense in A then
O =0U{U.U):UEcpBX}
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is an equivalence relation on X which is again dense in A.
Now the second part of the theorem follows from the first part and theo-
rem 4.1.4. O

Actually from theorem 4.1.2 and theorem 4.1.4 we get the following result.
Recall that a Cauchy screen C is totally bounded ([7]) if every ultrafilter
is a Cauchy filter.

Theorem 4.1.5. A proximity induced by a Cauchy screen is also induced
by a totally bounded and full Cauchy screen.

Proof. According to theorem 4.1.2 let ©® be an equivalence relation on
BX which is dense in the nasse A of a proximity § induced by a Cauchy
screen. The Cauchy screen Co = {F : B(F) x B(F) C O} induces § and is
clearly totally bounded since © is reflexive on SX. Furthermore if F is a
filter such that 3(F) is contained in an equivalence class of Cg for ~ then
B(F) is contained in an equivalence class for © since © is the restriction of
~ to 8X. Thus F € Cg, which proves finally that Cg is a full and totally
bounded Cauchy screen inducing © and therefore the proximity §. O

We give now some corollaries. The first one recovers in particular Thron’s
result: any proximity is induced by the screen of its compressed filters.
We recall the following result.

Proposition 4.1.1. [4] For any prozimity 0 with associated nasse A, a filter
F is §-compressed if and only if B(F) x B(F) C A.

Corollary 4.1.1. Any prozimity d is induced by the screen Cs of d-compressed
filters and also by the screens Cg and C§ consisting of bi-ultrafilters and ele-
mentary filters respectively of Cs.

Proof. Let A be the nasse associated to a proximity d. The nasse A
is a symmetric and reflexive relation on X, therefore using theorem 4.1.3,
A =0Oc, =O¢y = Ocg where Ca = {F:B(F)xB(F) C A} and C} and C4
are the screens consisting of bi-ultrafilters and elementary filters respectively
of C(;.

It follows from the preceding proposition that Ca is also the screen Cs of all
d-compressed filters. Finally theorem 4.1.2 implies that the proximity J is
induced by the screens Cs, Cé’ and C§. O

Theorem 4.1.4 and Haddad’s characterization of EF-proximities imply
also the following result which was proved by Csdszar in [12].

Corollary 4.1.2. For any proximity d, the screen Cs is Cauchy if and only
if C§ is also Cauchy if and only if § in an EF-proximity,

Proof. Let A be the nasse associated to . The screen Ca is again Cs.
Therefore since a proximity 0 is an EF-proximity if and only if its nasse A
is an equivalence relation on X ([14]), we get from theorem 4.1.4 that the
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screen Cs is Cauchy if and only if C§ is also Cauchy if and only if A is an
equivalence relation and thus if and only if ¢ in an EF-proximity. O

Remarks.

1. For any proximity § the screen Cj is the coarsest screen inducing §,
generally a finest one fails to exist ([12], example 3.18, p.212).

2. Of course if § is an EF-proximity then Cs is the coarsest Cauchy
screen inducing ¢. Csédszar [12] gave examples of proximities and closures
induced by Cauchy screens for which neither a coarsest nor a finest compat-
ible Cauchy screen exists.

Actually in the next subsection we show that for any RE-proximity J
which is not an EF-proximity, there does not exist a coarsest Cauchy screen
inducing §.

3. It follows from corollaries 4.1.1 and 4.1.2 that a proximity induced by
a Cauchy screen and which is not an EF-proximity is induced by screens
which are not Cauchy, indeed Cj is one of them.

We conclude this section with the following result. This result can be
found also in [12] where it is proved directly that a proximity induced by a
Cauchy screen satisfies property (RI).

Proposition 4.1.2. A proximity induced by a Cauchy screen is a Riesz
proximaty.

Proof. It was proved in [3] that a proximity 0 is a Riesz proximity if
and only if its nasse is the closure of ® o ©~ for some relation © on gX.
From theorem 4.1.2 a proximity induced by a Cauchy screen is a Riesz
proximity since its nasse is the closure of an equivalence relation © and we
have © =0 0O~ O

4.2. About RE-proximities. An RE-proximity on X is a proximity J
for which there exists a regular topological closure space (Y, ¢), Y containing
a copy of X and such that we have: AdB if and only if p(A) N p(B) # 0.
For basic properties and results concerning RE-proximities, the reader may
consult [9], [4].

It is known that to any proximity é on X one can associate a topogeneous
order (in the sense of Csédszar) v on X defined by:

VA,B € P(X) AyB if and only if A(non-0)(X \ B).

For any filter F on X the set v(F) consisting of subsets B of X such that
AvB for some A € F is a filter on X and the inclusion v(F) C F is always
true. If x € X, the filter v(&) is simply denoted by ~y(x).

Definition 4.2.1. Given a proxzimity § on X, a filter F on X for which
F =~(F) is a -round filter (or a y-round filter).
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Round filters were introduced in [9] using a somewhat different notation.

As in [4], let 6 be a proximity with associated nasse A and let
D(A) = {U € BX : AUU)* C A and A(AU)) C AU)}.

It is called the equivalence domain of A.
The restriction A’ of A to the set D(A) is the equivalence kernel of A.
It is an equivalence relation on D(A).

Theorem 4.2.1. The equivalence relation A’ on D(A) is induced by the
set B of d-round and compressed filters in the sense that A/ = Op =
U 8(F) x B(F).

FeB

Furthermore the equivalence classes of A’ are exactly the sets B3(F) for

FeB.
Consequently, the set C.q of all filters containing a member of B satisfies the
condition (SC2) of Cauchy screens and we have also A" = ©¢_,.

Proof. From [4] we have the following:
1. the equivalence classes of A’ are exactly the sets A(U) for U € D(A),
which are also the sets 3(v(U)).
2. U € D(A) if and only if v(U) € B.
3. F € Bif and only if F = v(U), or equivalently 5(F) = A(U), for
some U € D(A).
It follows that B = {y(U) : U € D(A)} and that the equivalence classes
of A" are the sets B(F) for F € B.
Since equivalence classes are disjoint or equal, for any members F; and
F5 of B such that F; C .7-"2#, we have F1 = Fo.
From this it follows that the set C,q satisfies condition (SC2): for any

members F; and Fy of C,4 such that F; C .7:2# we have FiNFy € Cpg. O

Theorem 4.2.2. Let § be any prozimity on X and C.q the set of filters
containing a d-round and compressed filter. The set C.q is a Cauchy screen

if and only if for every x in X, y(x) is a d-round and compressed filter if
and only if D(A) is dense in $X. And then C.q is a full Cauchy screen.

Proof. From A’ = ©O¢,,, we have that C,4 is a screen (i.e. it contains
every centered ultrafilter) if and only if the domain D(A) of A’ contains
every centered ultrafilter, that is, if and only if D(A) is dense in 5X.

As it was recalled in the proof of the preceding proposition, an ultrafilter
U on X is in D(A) if and only if v(Uf) is in B [4]. Finally C,4 is a screen if
and only if for every x in X, v(z) is a é-round and compressed filter. And
then it is a Cauchy screen. Let us prove that it is also full.

Assume that for some filter F, 3(F) is contained in an equivalence class
of Crq. The relation ¢, , = A’ is the restriction on D(A) of the relation ~
on C,qNBX. Therefore 3(F) is contained in an equivalence class of A’; that
is a set 3(G) for some d-round and compressed filter G. This inclusion gives
G C F and finally F € C,q. O
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Since every centered ultrafilter is isolated in 3X, the closure A’ of A’ in
BX is a nasse (that is, reflexive) on SX if and only if D(A) is dense in 8X.
According to [4], under this condition, the proximity R(J) associated to A’
is an RE-proximity. It follows from the above discussion and theorem 4.1.2
that this proximity is induced by the Cauchy screen C,q.

We have the following characterization from [4]: ¢ is an RE-proximity if
and only if its nasse A is the closure in (3X)? of its equivalence kernel A/
if and only if R(d) = §. In particular if ¢ is an RE-proximity ID(A) is dense
in 8X and ¢ is induced by the Cauchy screen C,4. Finally C,4 is a screen
inducing the proximity ¢ if and only if ¢ is an RE-proximity.

So we have the following proposition:

Theorem 4.2.3. An arbitrary RE-proximity § is always induced by a full
Cauchy screen, namely the screen C,.q generated by the set of §-round and
compressed filters. Consequently the same is true of arbitrary RC or EF-
proximities.

A preregular system of filters of Csaszar [9] generates a Cauchy screen
inducing an RE-proximity. We give another equivalent definition.

Consider a family B of filters such that:
(PSF1) Vee X, dFeB, FcCaua.
We associate to B a proximity dg or ¢ for short, on X defined by:
AépB if and only if there exists F € B such that 4, B € F7.

Notice that if C is the screen generated by B, that is the set of all filters
containing some member of B, then dc = dp and C satisfies (PSF'1) if and
only if B does, if and only if C contains all centered ultrafilters.

The topogeneous order v associated to d is defined by:

[AyB] if and only if [VF € B,Ac F* = B ¢ F].

The family B is a preregular system of filters in the sense of [9] if and
only if :
(PSF2) every F in B is d-round,

that is, for any A in some F in B, there exists a B € F such that BvyA.
It was proved in [9] that a proximity ¢ is an RE-proximity if and only if §
is 05 for some preregular system of filters B.

Now it follows easily from these definitions that if B is a preregular system
of filters on X, then B is a subset of the set of d-round and compressed filters
and then again, as shown in the proof of theorem 4.2.1: for all 71, Fs € B
such that F; C ff we have F1 = Fo. Therefore the screen C generated by
B is a Cauchy screen on X.

Finally we have the following result:



CONVERGENCES, PRETOPOLOGIES AND PROXIMITIES INDUCED BY CAUCHY AND RIESZ SCREENS

Proposition 4.2.1. If 6 is an RE-proxzimity which is not an EF-proximity
then a coarsest Cauchy screen inducing § does not exist.

Proof. Let A be the nasse associated to § and A’ be its equivalence
kernel which is dense in A. A is not an equivalence relation on SX and
D(A) # 5X. 1t is easy to check that there exist three different ultrafilters
U,V,Win X \ D(A) such that UAVAW and U (non-A)W. Therefore one
can see that the relations Ay = A'UBUN V)2 U{(X,X), X € X} (recall
that BUNV) = {U,V}) and Ay = A’UBWNV)2U{(X,X), X € X} are
equivalence relations on X which are dense again in A'.

Let C,4 be the screen generated by the J-round and compressed filters
and consider the following screens C = C.q U X, C; = CU{U NV} and
Co = CU{W NV} Since Cpq is Cauchy and full it is easy to see that
C is actually a totally bounded and full Cauchy screen as well as C; and
Co (because U, V, W are not in C,q). These screens induce § again since
Oc¢, = A; and O¢, = Ay which are dense in the nasse A.

Finally there does not exist a Cauchy screen inducing § and containing
both C; and Cy because any Cauchy screen containing them should contain
also U N W also since the filters &4 NV and V N W mesh, and then & N W
would be d-compressed and (U, V) would be in A which is not the case. O

From the preceding proof one can extract the following observation:

Corollary 4.2.1. Among the full and/or totally bounded Cauchy screens
inducing a giwen RE-proximity which is not EF, a coarsest one does not
exist.

4.3. Pretopological closures induced by a screen. The pretopological
closure ¢ on X induced by a screen C is defined by:

(*) € c(A) if and only if there exists F € C such that ({z}, A) € F7# xF¥.

It is the closure associated to the proximity § induced by C: z € ¢(A) if and
only if {z}dA.

As it was observed at the beginning of this section, the pretopological closure
induced by C is also the closure associated to the pretopological modification
of the convergence —¢ induced by C.

We will use the two points of view to study the closures induced by Cauchy
screens.

Theorem 4.3.1. For a pretopological closure ¢ the following are equivalent:
(i) ¢ is induced by a screen
(ii) ¢ is induced by a proximity
(iii) ¢ is symmetric, i.e. Ve,ye X, y € c({z}) & x € c({y})
Proof. Since every proximity is induced by a screen, we get easily that
Furthermore it is clear that a closure ¢ induced by a proximity (or a
screen) is symmetric.
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Conversely assume that c is symmetric, then take the proximity 7 defined
by:
ArB if Anc¢(B)#0orc¢(A)NB#9.

By the symmetry axiom on ¢, if ¢({z}) N B # () then = € ¢(B). Therefore if
{z}nB then x € ¢(B) and so c¢ is induced by the proximity 7. O

Remark. If § is a proximity inducing ¢, then AdB provided A N¢(B) # ()
and it is easy to see that = is the smallest proximity inducing ¢ when c is
symmetric.

Theorem 4.3.2. For a pretopological closure ¢ the following are equivalent:

(i) ¢ is induced by a Riesz screen
(ii) ¢ is induced by a Riesz proximity
(iii) ¢ satisfies condition (S1) (or equivalently conditions (S1'), (S1”) of
corollary 3.1.2):
(S1) Vrxe X, VAeP(X), c{z})Nc(A) #0 < x € c(A)

Proof. Since a proximity is induced by a Riesz screen if and only if it is
a Riesz proximity, it is clear that (i) < (7).

By condition (RI) for a Riesz proximity (in the preceding subsection) the
condition (S1) is clearly necessary for ¢ to be induced by a Riesz proximity.

Conversely assume that (S1) is true, then take the proximity 7 defined
by: ArnB if and only if ¢(A) Ne(B) # 0. This proximity is clearly a Riesz
proximity and by condition (S1), ¢ is induced by 7. O

Remark. If § is a Riesz proximity inducing ¢, we have that ¢(A) Ne(B) #
) = AdB and finally when (S1) is true, 7 is the smallest Riesz proximity
inducing c.

To characterize closures induced by Cauchy screens we use the conver-
gence point of view. We get from proposition 3.1.2 that:

Proposition 4.3.1. A pretopological closure is induced by a Cauchy screen
C if and only if it is the closure associated to the pretopological modification
of a reciprocal limit structure (namely the convergence —¢).

Theorem 4.3.3. For a pretopological closure ¢ with associated neighborhood
filters (Vy)zex, the following are equivalent :

(i) ¢ is induced by a Cauchy screen,
(ii) ¢ is (the closure associated to) the pretopological modification of a
reciprocal pseudotopology,
(iii) there exists a family (F;)zex of subsets of BX satisfying the following
condition:

(S) Vez,yeX, Vo={U:UeF,} and [F,NF,#0=TF,=F,.

We prove first the following propositions.
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Proposition 4.3.2.  Let & be any pseudotopological convergence on X and
for any x € X, write F, ={U € X : U — x}.
The convergence & is reciprocal if and only if :

Ve,ye X, F,NF, #0=F, =F,.

In particular a pretopological convergence & with associated neighborhood
filters (V(x))zex, is reciprocal if and only if the separation condition (S2)
of Csdszdar is satisfied (see subsection 3.1).

Proof. The first part is straightforward since the convergence is given
by: F — x if and only if 5(F) C F,.

In the pretopological case, one has to note that F,, = 5(V(z)) for every z,
and therefore that [V(z) mesh V(y) <= F,NF, # 0] and [V(z) = V(y) <=
F, =T, 0

Proposition 4.3.3. If £ is a reciprocal convergence then so is its pseudoto-
pogical modification.

Proof. The pseudotopological modification of £ is given by:
F — z if and only if 5(F) C F,

where F, = {U/ € BX : U —¢ x}. Notice that an ultrafilter converges to
a point x for £ if and only if it converges to x for the pseudotopological
modification. We then have F, = {U// € X : U — x} and therefore using
proposition 4.3.2, if £ is reciprocal then so is its pseudotopological modifi-
cation. O

Proof of theorem 4.3.3.

With proposition 4.3.3, (i) < (ii) is clear since a convergence and its
pseudotopological modification have the same pretopological modification.

(i) < (iii) :

Let £ be a reciprocal pseudotopology inducing ¢ and take F, = {U/ : U —¢
x}. We clearly have V, = "{F : F —¢ 2} = N{U : U € F,} and since & is
reciprocal, using proposition 4.3.2, we get condition (.5).

Conversely assume that there exists a family (F,).cx satisfying condition
(S) and define a convergence ¢ as follows: F —¢ z if B(F) C F.

Let us check that it is indeed a convergence.

The condition V, = N{U : U € F,} means that 5(V,) is the closure in 53X of
F,. Since & € B(V,) and {&} is open in 8X, we have & € F,. Therefore ¢ is
a convergence and it is pseudotopological since for any ultrafilter U, U —¢ x
if and only if 4 € F,. Now from condition (.5), £ is also reciprocal and c is
the closure associated to the pretopological modification of &. O

Finally theorem 4.3.3 with proposition 3.1.3 yield the following result from
[12]:

Corollary 4.3.1. A pretopological closure is induced by a Riesz Cauchy
screen if and only if it is the closure of an (S2)-pretopological space.
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