Sparse graphs without long induced paths - Université Clermont Auvergne
Article Dans Une Revue Journal of Combinatorial Theory, Series B Année : 2024

Sparse graphs without long induced paths

Résumé

Graphs of bounded degeneracy are known to contain induced paths of order $\Omega(\log \log n)$ when they contain a path of order $n$, as proved by Ne\v{s}et\v{r}il and Ossona de Mendez (2012). In 2016 Esperet, Lemoine, and Maffray conjectured that this bound could be improved to $\Omega((\log n)^c)$ for some constant $c>0$ depending on the degeneracy. We disprove this conjecture by constructing, for arbitrarily large values of $n$, a graph that is 2-degenerate, has a path of order $n$, and where all induced paths have order $O((\log \log n)^2)$. We also show that the graphs we construct have linearly bounded coloring numbers.
Fichier principal
Vignette du fichier
2304.09679.pdf (665.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Commentaire Voir arxiv pour la version à jour

Dates et versions

hal-04075469 , version 1 (13-03-2024)

Licence

Identifiants

Citer

Oscar Defrain, Jean-Florent Raymond. Sparse graphs without long induced paths. Journal of Combinatorial Theory, Series B, inPress, 166, pp.30-49. ⟨10.1016/j.jctb.2023.12.003⟩. ⟨hal-04075469⟩
104 Consultations
25 Téléchargements

Altmetric

Partager

More