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Abstract
In a similar spirit of the extension of the proximal point method developed by Alves et al. [2], we propose in this work an
Inertial-Relaxed primal-dual splitting method to address the problem of decomposing the minimization of the sum of
three convex functions, one of them being smooth, and considering a general coupling subspace. A unified setting is
formalized and applied to different average maps whose corresponding fixed points are related to the solutions of the
inclusion problem associated with our extended model. An interesting feature of the resulting algorithms we have
designed is that they present two distinct versions with a Gauss–Seidel or a Jacobi flavor, extending in that sense former
proximal ADMM methods, both including inertial and relaxation parameters. Finally we show computational
experiments on a class of the fused LASSO instances of medium size.

Digital Object Identifier 10.5802/ojmo.22

Keywords Operator splitting methods, Convex composite optimization.

1 Introduction

We will propose in this paper new versions of existing splitting methods for the following general convex
minimization model involving the sum of three convex functions, one of them being smooth and the other ones
coupled by linear operators:

Minimize f(x) + g(z) + h(x) (1)
Ax + Bz = 0

where f : Rn 7→ R and g : Rp 7→ R are proper convex lsc functions, A and B are (m × n) and (m × p) matrices,
respectively, and h : Rn 7→ R is convex and ( 1

β )-Lipschitz-differentiable, with β positive.
The above model can be seen as a functional version of the general inclusion problem of finding a zero of

the sum of three monotone operators defined on a Hilbert space, one of them being co-coercive (see Davis and
Yin [12]). The role of the linear operators A and B in the coupling subspace intends to cover a broad scope of
current applications, justifying the reference to “composite inclusions” in the title.

That model has received a lot of attention recently, most of the work aiming at extending known splitting
schemes adapted to the two functions case where h = 0. Here again, we will explore the corresponding splitting
issues, thus designing algorithms which involve forward or backward steps associated with each function separately.

The celebrated Alternate Direction Method of Multipliers (ADMM) is one of the most important first order
splitting method to solve (1) when h = 0 (see [14] for the original introduction or [5] for a survey with potential
applications to signal processing). It can be seen as a dual approach based on the composite Augmented
Lagrangian function where the dual multipliers are denoted by y ∈ Rm:

l(x, z, y) = f(x) + g(z) + 1
2∥Ax + Bz + M−1y∥2

M
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2 Inertial-relaxed splitting

where M is a positive definite (m × m) symmetric matrix and ∥a∥2
M = aT Ma the corresponding elliptic norm.

ADMM basically consists in alternating the minimization of that Lagrangian w.r.t. x and z separately, followed
by the dual update of the y variables.

Many variants of ADMM have been developed, including unified variants of ADMM which are condensed
in the Shefi-Teboulle’s algorithms [22] in the case (B = −Ip×p) where additional primal proximal terms are
added in the respective Lagrangian functions like in the Proximal Method of Multipliers [21]. These can be easily
extended to the general case with any matrix B and called hereafter Proximal Primal-Dual Splitting (PPDS)
with two distinct interpretations as a Gauss–Seidel and a Jacobi-like versions.
▶ Proximal primal-dual Algorithm (PPDS).

xk+1 ∈ argmin
{

f(x) + 1
2 ∥Ax + Bzk + M−1yk∥2

M + 1
2 ∥x − xk∥2

V1

}
zk+1 ∈ argmin

{
g(z) + 1

2 ∥Aηk + Bz + M−1yk∥2
M + 1

2 ∥z − zk∥2
V2

}
yk+1 = yk + M(Axk+1 + Bzk+1)

where choosing ηk as below gives us two algorithmic versions:

ηk :=
{

xk for Jacobi version algorithm
xk+1 for Gauss–Seidel version algorithm

where V1 and V2 are chosen such that V1 and V2 are positive semi-definite matrices for the Gauss–Seidel version
and, V1 − AtMA and V2 − BtMB are positive semi-definite matrices for the Jacobi version.

We note that both algorithms result from applying the preconditioned proximal points (corresponding to two
appropriate positive semidefinite matrices, see [19]) to the following Lagrangian inclusion problem associated
with (1) (case h = 0):

Find (x, z, y) ∈ Rn × Rp × Rm such that 0 ∈ L(x, z, y), (VL)

where L is the maximal monotone map defined on Rn × Rp × Rm as

L(x, z, y) :=

 ∂f(x)
∂g(z)

0

 +

 0 0 At

0 0 Bt

−A −B 0

  x

z

y

 . (2)

The convergence of the previous algorithm is obtained from its relationship with the fixed point formulation
applied to particular 1/2-averaged maps1 (each version corresponding to different averaged map), in the same
way as ADMM is related to the Douglas–Rachford map (see [13] for instance).

We will use the same strategy below to propose new and generalized splitting algorithms by inspecting
averaged maps associated with model (1).

When a smooth part is added to the model, represented by a function h, the aim is to further improve
these algorithms by inserting forward gradient steps without destroying the splitting strategy. Condat [9]
(and independently Vũ [23]), has developed two forms of algorithms considering two different Primal-Dual
Forward–Backward Splitting (PDFB), whose corresponding Lagrangian maps have less variables than the map L

defined by (2).
One of these algorithms is (considering here the simplified formulation with B = −Ip×p):

▶ Condat–Vũ Algorithm, Form I.
x̃k+1 = (τ∂f + In×n)−1(xk − τ∇h(xk) − τAtyk)
ỹk+1 = (σ∂g∗ + Im×m)−1(yk + σA(2x̃k+1 − xk))
(xk+1, yk+1) = ρk(x̃k+1, ỹk+1) + (1 − ρk)(xk, yk)

The other one switches the roles of primal and dual variables:
▶ Condat–Vũ Algorithm, Form II.

ỹk+1 = (σ∂g∗ + Im×m)−1(yk + σAxk)
x̃k+1 = (τ∂f + In×n)−1(xk − τ∇h(xk) − τAt(2ỹk+1 − yk))
(xk+1, yk+1) = ρk(x̃k+1, ỹk+1) + (1 − ρk)(xk, yk)

1 A mapping G : X 7→ X is said to be α - averaged (for some α ∈ (0, 1)) if there exists a nonexpansive map N such that
G = αN + (1 − α)II see [4] for more details.
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Both algorithms include the relaxation parameter ρk, which is known to accelerate convergence for values in
(1, 2) (see [10]).

On the other hand, and without the relaxation effect (ρk = 1), Chambolle and Pock [8] have proposed a
Primal-Dual Splitting with Inertial step (IPDS) method, showing to be closely related to Condat–Vũ’s algorithm,
Form I, but with an inertial accelerating term as following:
▶ Inertial Chambolle–Pock Primal-Dual Algorithm, IPDS.

(xk
w, yk

w) = (xk, yk) + λk(xk − xk−1, yk − yk−1)
xk+1 = (τ∂f + In×n)−1(xk

w − τ∇h(xk
w) − τAtyk

w)
yk+1 = (σ∂g∗ + Im×m)−1(yk

w + σA(2xk+1 − xk
w))

The inertial parameter λk has indeed a different effect than the relaxation strategy; it has been introduced
in [1] and contains many similar features of Güler’s accelerated Proximal Point algorithm [15], the latter being
related with early Nesterov’s optimal gradient methods for convex minimization [18].

One of the feature of the generalized primal-dual splitting proposed in this paper is the inclusion of both the
relaxation (ρk) and inertial (λk) parameters in the primal updates, thus inspired by Alves et al. [2], where the
authors consider a Relative-error Inertial-Relaxed variant of the Proximal Point Algorithm to produce variants
of ADMM. Analogously, we will consider Inertial-Relaxed variants of fixed point formulations applied to different
averaged maps.

When h = 0, Condat–Vũ and Chambolle–Pock algorithms without relaxed or inertial terms can be deduced
from PPDS in Gauss–Seidel version (see [22]). More exactly: from the Gauss–Seidel version of PPDS (in the
case B = −Ip×p) and considering M = σIm×m, V1 = τ−1In×n − σAtA, V2 = 0, then, after a change of variables
(x̃k, z̃k, ỹk) = (xk+1, zk, yk), we can reobtain Condat–Vũ algorithm, form II. Analogously, interchanging the
order of f and g in the model, we obtain the switched version, i.e. Condat–Vũ algorithm, form I.

Alternately, another class of splitting algorithms for (1) (in the case B = −Ip×p, but with the three functions)
called Primal-Dual Three Operator (PD3O) has been analyzed by Yan [24], extending a former work by Davis
and Yin [12] who supposed A = In×n.
▶ PD3O Algorithm.

xk = (τ∂f + In×n)−1(zk)
yk+1 = (σ∂g∗ + Im×m)−1 (

(Im×m − τσAAt)yk + σA(2xk − zk − τ∇h(xk))
)

zk+1 = xk + τ∇h(xk) − τAtyk+1

Observe that in the case h = 0 and after the change of variables (x̃k, ỹk) = (xk, yk+1), PD3O gets back
to Condat–Vũ algorithm, form I, and is thus again a consequence of the PPDS scheme. In the general case,
Yan [24] showed that PD3O has a broader domain of convergence and a better numerical behavior compared
to Condat–Vũ’s algorithm. So we consider the extension of PD3O (instead of Condat–Vũ’s algorithm) for the
general model (1). The extended algorithm that will be developed includes in particular the switched version of
PD3O (similar to Condat–Vũ’s Algorithm, Form II) and its parallel version (similar to PPDS Jacobi version).

Davis–Yin’s 3 operator splitting [12] has been recently improved in [20] who proposed an adaptive stepsize
tuning to compensate the difficulty to estimate the Lipschitz constant. In [7, 6], the authors consider an extension
of Spingarn’s Partial Inverse method to the 3 functions model coupled by a subspace constraint. Quite recently,
a more intricate model with 4 operators is analyzed in [3] and inexact computations are allowed.

We should cite too [17] where the authors developed another class of splitting methods for a more general
model including (1) that extends PPDS in the Gauss–Seidel version. Finally, more composite models and different
extensions of Chambolle–Pock and Condat–Vũ’s schemes can be found in the recent survey by Condat et al. [10].

In summary, associated with the extended model (1), we will construct first order splitting algorithms that
unify PD3O (getting switched parallel versions) and the PPDS algorithms (inserting forward gradient steps),
including in all of them relaxed and inertial parameters. To achieve that goal first, in Section 2, we will construct
two types of averaged maps associated with our extended sequential and parallel splitting algorithms, respectively.
Then in order to include inertial and relaxation parameters, in Section 3 we rewrite an Inertial-Relaxed variant
of the corresponding fixed point applied to averaged maps. In Section 4, applying these variants of fixed point to
the averaged maps constructed in Section 2, we obtain the desirable general splitting algorithm that includes
Inertial-Relaxed terms. In Section 5, we choose special multidimensional scaling matrices parameters to better
tune the general algorithm obtained before, in order to show the equivalence with the existing algorithms. Finally
in the last section, a limited set of computational comparisons between the algorithms will be presented.



4 Inertial-relaxed splitting

2 Deriving three candidate averaged maps

Assimilating the sum of f and h as a unique function in model (1), under regularity conditions, the problem is
equivalent to the following saddle-point inclusion problem

Find (x, z, y) ∈ Rn × Rp × Rm such that 0 ∈ L(x, z, y) (VL)

where L is the map defined on Rn × Rp × Rm as

L(x, z, y) :=

 ∂f(x) + ∇h(x)
∂g(z)

0

 +

 0 0 At

0 0 Bt

−A −B 0

  x

z

y

 .

The difficulty here is the necessity to split the regularization steps between f, h, g and the composite effect
of matrices A and B. A direct application of the approach studied in [19] does not solve the difficulty, since
for any matrix D, the map GL

D = D(L + DtD)−1Dt which is 1
2 −averaged, does not separate the map ∇h(x).

Alternatively we can obtain an equivalent problem to (VL) which is amenable for the application of the Davis–Yin
α−averaged map [11], where α ∈ ( 1

2 , 1), building formally two distinct α−averaged maps which provide the
complete splitting even when ∇h(x) ̸= 0. These new maps are variants of GL

D, choosing D as the matrices Q

and Q̂ defined below in (11). On the other hand and regardless of the Davis–Yin map, we can obtain another
class of α−averaged map with a parallel splitting structure, developed below in (16).

2.1 Two averaged maps related to the Davis–Yin map
Following the strategy given by Davis and Yin [11] to identify a single averaged map associated with an explicit
3-operators inclusion, we will now reformulate (VL) above as a single inclusion with three operators, as seen in
the next proposition.

▶ Proposition 1. Let M an m × m symmetric positive definite matrix and V1 and V2 symmetric positive
semidefinite matrices of order n × n and p × p, respectively, such that V1 + AtMA is positive definite. Using the
notation w =

[ x
z
y

]
for the primal-dual space variables belonging to Rn+p+m, problem (VL) can be written as

0 ∈
(
AS−1A t

)−1 (w) +
[
(−B)T −1(−B t)

]−1 (w) + A
(

A tA
)−1

C
(

A tA
)−1

A t(w), (3)

where

A :=

 V
1
2

1 0
0 Ip×p

M
1
2 A 0

 , B :=

 −In×n 0
0 −V

1
2

2
0 M

1
2 B

 ,

and for any (x, ξ) ∈ Rn × Rp, (χ, z) ∈ Rn × Rp

S(x, ξ) :=
(

∂f(x)
0

)
, C(x, ξ) :=

(
∇h(x)

0

)
and T (χ, z) :=

(
0

∂g(z)

)
.

Proof. Following the lifting strategy introduced in [12], problem (1) is now lifted, adding the dummy variables
ξ ∈ Rp and χ ∈ Rn and using the notation (f1, f2)(x1, x2) = f1(x1) + f2(x2) and gets the following condensed
form:

min
(x,ξ,χ,z)∈F

(f + h, 0)(x, ξ) + (0, g)(χ, z)

where F is the set of all (x, ξ, χ, z) satisfying V
1
2

1 0
0 Ip×p

M
1
2 A 0

 (
x

ξ

)
+

 −In×n 0
0 −V

1
2

2
0 M

1
2 B

 (
χ

z

)
= 0.

Considering the notations given in the hypothesis, it holds that under regularity conditions, the last problem is
equivalent to the following inclusion problem (in its dual form), using w∗ ∈ Rn+p+m,

0 ∈ (−A)(S + C)−1(−A t)(w∗) + (−B)T −1(−B t)(w∗)
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The key trick now is to observe that the composite inclusion above is a valid dual formulation of a primal
inclusion which splits S and C, associated with the composite transformation AQA t, and it gives (now in Rn+p):

0 ∈ S(ŵ) + C(ŵ) + A t((−B)T −1(−B t))−1A(ŵ)

Now, since V1 + AtMA is invertible, then A is an injective matrix, so we have

0 ∈ S(ŵ) + A t
[
((−B)T −1(−B t))−1 + A(A tA)−1C(A tA)−1A t

]
A(ŵ)

taking again the dual, but using different dual variables denoted now by ŵ∗

0 ∈ (−I)(AS−1A t)(−I)(ŵ∗) +
[
((−B)T −1(−B t))−1 + A(A tA)−1C(A tA)−1A t

]−1 (ŵ∗)

It is now straightforward to perform a last dual inclusion associated with the former one to obtain the desired
equivalent inclusion problem. ◀

Observe now that the inclusion (3) obtained in Proposition 1 can be seen as a 3-operator setting, amenable
to the application of Davis–Yin’s framework [11], resumed below with S, T , C being the three operators by

0 ∈ S(w) + T (w) + C(w). (4)

The corresponding Davis–Yin’s operator, with parameter γ > 0, associated with the above inclusion, is
defined as

Dγ := I − JγT + JγS(2JγT − I − γC(JγT )), (5)

where JγT denotes the classical resolvent (I + γT )−1. In that sense, problem (4) is equivalent to finding a fixed
point of operator Dγ . When S and T are maximal monotone operators, and C is β−cocoercive2, that map Dγ

has nice properties: indeed, it is 2β
4β−γ −averaged (provided γ < 2β) and of full domain, properties ensuring the

convergence of fixed point algorithms applied to this map.
Back to the inclusion (3) obtained in Proposition 1, the Davis–Yin map with scalar parameter γ = 1 associated

with that inclusion generates two distinct maps denoted by G1 and G2 (where G2 is obtained switching the
position of

(
AS−1A t

)−1 and
[
(−B)T −1(−B t)

]−1):

G1 := I − JS + JT (2JS − I − C(JS)) and G2 := I − JT + JS(2JT − I − C(JT )), (6)

where S := (AS−1A t)−1, T = ((−B)T −1(−B t))−1 and C := A
(

A tA
)−1

C
(

A tA
)−1

A t .
On the other hand, the positive definiteness assumption on V1 + AtMA in Proposition 1 (which is equivalent

to A being injective) implies that S is maximal monotone and C is a β
∥(V1+AtMA)−1∥ −cocoercive map (since h is

convex and ( 1
β )-Lipschitz-differentiable). Similarly, the map T is too maximal monotone under the additional

assumption that V2 + BtMB is positive definite (equivalent to B injective). So, under both conditions (which
will be denoted by Hypo-M):

V1 + AtMA and V2 + BtMB are positive definite,

we get an alternative way to write both G1 and G2 as shown in the next proposition:

▶ Proposition 2. Under Hypo-M , the maps G1 and G2 are single valued, they apply Rn × Rp × Rm into itself,
and can be rewritten as:

G1(x, z, y) =

 V
1
2

1 (x̃ − r)
V

1
2

2 z̃

−M
1
2 Ax̃ − M

1
2 Bz̃ + y

 , G2(x, z, y) =

 V
1
2

1 x̂

V
1
2

2 ẑ

M
1
2 Ax̂ + M

1
2 Bẑ + y


where for G1

x̃ = (∂f + V1 + AtMA)−1
(

V
1
2

1 x + AtM
1
2 y

)
r̃ = (V1 + AtMA)−1∇h(x̃)

z̃ = (∂g + V2 + BtMB)−1
(

V
1
2

2 z + BtMA(r̃ − 2x̃) + BtM
1
2 y

)
.

2 An operator C on a Hilbert space H is β-cocoercive (or β-inverse-strongly monotone),β > 0, if ⟨Cx−Cy, x−y⟩ ≥ β∥Cx−Cy∥2, ∀
x, y ∈ H.
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and for G2

x̂ = (∂f + V1 + AtMA)−1
(

V
1
2

1 x − AtM
1
2 (y + 2M

1
2 Bẑ) − r̂

)
r̂ = ∇h

(
(V1 + AtMA)−1(V

1
2

1 x − AtMBẑ)
)

ẑ = (∂g + V2 + BtMB)−1
(

V
1
2

2 z − BtM
1
2 y

)
.

Proof. For a given operator Γ and an injective matrix K, the next expression can be easily deduced (see
Proposition 23.25(ii) in [4])

J (KΓ−1Kt)−1
= K(Γ + KtK)−1Kt. (7)

Under assumption Hypo-M , both matrices A and B are injective, and then considering (7) we can rewrite the
resolvent of S and T involved in (6), as JS = A(S + A tA)−1(A t) and JT = −B(T + B tB)−1(−B t), and using
that

(T + BtB)−1(p1, p2) = (p1, (∂g + V2 + BtMB)−1(p2))

(S + AtA)−1(p1, p2) = ((∂f + V1 + AtMA)−1(p1), p2)

we get

JT (x, z, y) =

 x

V
1
2

2 z

−M
1
2 Bz

 , JS(x, z, y) =

 V
1
2

1 x

z

M
1
2 Ax

 (8)

where z = (∂g + V2 + BtMB)−1(V 1/2
2 z − BtM1/2y) and x = (∂f + V1 + AtMA)−1(V 1/2

1 x + AtM1/2y). On the
other hand, we get also

C(x, z, y) =

 V
1
2

1 (V1 + AtMA)−1∇h[(V1 + AtMA)−1(V 1/2
1 x + AtM1/2y)]

0
M

1
2 A(V1 + AtMA)−1∇h[(V1 + AtMA)−1(V 1/2

1 x + AtM1/2y)]

 (9)

Then combining (8) and (9) in (6), we deduce the result. ◀ ◀

Observe that these new maps G1 and G2 can also be seen as a generalization of Davis–Yin maps, since they
maintain the averageness and splitting properties (Davis–Yin map can be recovered in the case A = In×n and
B = −Ip×p, considering V1 = 0, V2 = 0 and M = λIm×m which allows to restrict their domain to Rm). The
fixed point set of G1 and G2, which are related to sol(VL), areQ

 x∗

z∗

y∗

 −

 V
1
2

1 (V1 + AtMA)−1∇h(x∗)
0

M
1
2 A(V1 + AtMA)−1∇h(x∗)

 : (x∗, z∗, y∗) ∈ sol(VL)

 , (10)

and

Q̂(sol(VL)) := {(V
1
2

1 x∗, V
1
2

2 z∗, M
1
2 Ax∗ + M− 1

2 y∗) : (x∗, z∗, y∗) ∈ sol(VL)}, (11)

where Q and Q̂ are the matrices defined as

Q =

 V
1
2

1 0 0
0 V

1
2

2 0
0 −M

1
2 B −M− 1

2

 and Q̂ =

 V
1
2

1 0 0
0 V

1
2

2 0
M

1
2 A 0 M− 1

2

 . (12)

These matrices are also involved in the fixed point algorithms derived from G1 and G2 and in the corresponding
splitting algorithms, as we will show in Section 4.

The next proposition resumes the averageness properties of G1 and G2.
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▶ Proposition 3. Under Hypo-M . Considering that ∥(V1 + AtMA)−1∥ ∈ ]0, 2β[. Then, G1 and G2 are
α−averaged with full domain, where

α := 2β

4β − ∥(V1 + AtMA)−1∥
∈

]
1
2 , 1

[
.

Proof. The fullness of the domains of G1 and G2 is deduced from the maximality of ∂f and ∂g and the fullness
of the domain of ∇h.

We now show the α−averagedness of G1 and G2. As said before, since V1 + AtMA and V2 + BtMB are
positive definite, it holds that A and B are injective, following the maximal monotonicity of (AS−1A t)−1 and
((−B)T −1(−B t))−1. On the other hand, the cocoercivity property of C follows from the β−cocoercivity of C:

⟨C
(

A tA
)−1

A tu − C
(

A tA
)−1

A tv,
(

A tA
)−1

A tu −
(

A tA
)−1

A tv⟩

≥ β∥C
(

A tA
)−1

A tu − C
(

A tA
)−1

A tv∥2 = β∥∇h(DtD)−1Dtu − ∇h(DtD)−1Dtv∥2

≥ β̂∥D(DtD)−1∇h(DtD)−1Dtu − D(DtD)−1∇h(DtD)−1Dtv∥2 = β̂∥Cu − Cv∥2,

where Dt =
(

V
1/2

1 AtM1/2
)

and β̂ := β
∥(DtD)−1∥ = β

∥(V1+AtMA)−1∥ .
From these properties and the definition in (6), the relation above shows that G1 and G2 hold the averaged

properties of Davis–Yin 3−operator, provided 1 < 2β̂ (which is satisfied by hypothesis). ◀

2.2 A new averaged map with a parallel structure
We can easily obtain a splitting algorithm in a parallel form directly from the application of known algorithms
to a special reformulation of the composite model. For instance, rewriting the principal model (1) as a sum of
three blocks, namely:

Minimize(x,z)(f(x) + g(z)) + δ{(x,z):Ax+Bz=0}(x, z) + h(x) (13)

where δΩ denotes the characteristic function of a set Ω, i.e. δΩ(x) = 0, if x ∈ Ω and δΩ(x) = +∞, else.
Then, applying Davis–Yin algorithm to the functional setting (13), one obtains a splitting algorithm that

considers the calculation of proximal terms on f and g in a parallel way, but the iterations also require the
computation of the projection over the subspace {(x, z) : Ax + Bz = 0}.

Instead of using the methodology resumed in the former section, since PD3O for Jacobi version does not
require any implementation of a projection, we consider its extension in order to obtain a parallel algorithm. To
that purpose, we will need to construct another averaged map related to our principal model whose proximal
step subproblems on f and g can also be calculated in parallel ways. We will see too below that the computation
of the projection step which breaks the parallel features can be avoided.

Unlike G1 and G2 which were obtained from Davis–Yin’s 3 operator splitting, the construction of the new
required average map is deduced from P := Ŝ(L + ŜtŜ)−1Ŝt, an 1

2 −averaged map as developed below, associated
with PPDS for the Jacobi version (see [19]) with h = 0 (recall that L, defined in (2), is the maximal monotone
operator associated to the subdifferential of the Lagrangian of the initial problem). In Proposition 4 below, one
can notice the adaptation of P to our general problem (1).

Let M be a m × m symmetric positive definite matrix and R1 and R2 symmetric positive semidefinite
matrices of order n × n and p × p respectively, such that R1 + 2AtMA and R2 + 2BtMB are positive definite
matrices (these hypotheses are denoted below by Hypo-M ).

We consider the map G3, that applies Rn × Rp × Rm × Rm into itself, defined as

G3(x̂, ẑ, ŵ, ŷ) =


R

1
2
1 x

R
1
2
2 z

M
1
2 Ax − M

1
2 Bz

M
1
2 Ax + M

1
2 Bz + ŷ


where

x = (∂f + R1 + 2AtMA)−1
(

R
1
2
1 x̂ + AtM

1
2 (ŵ − ŷ) − r

)
r = ∇h

(
(R1 + 2AtMA)−1(R

1
2
1 x̂ + AtM

1
2 ŵ)

)
z = (∂g + R2 + 2BtMB)−1

(
R

1
2
2 ẑ + BtM

1
2 (−ŵ − ŷ)

)
.
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Notice that the evaluation of this map at any point just considers the parallel calculations of the subproblems
related to f and g, and it is not necessary to compute explicitly the projection on the coupling subspace
{(x, z) : Ax + Bz = 0}. The fixed points of G3 are also related to sol(VL) and contained in

Ŝ(sol(VL)) = {(R
1
2
1 x∗, R

1
2
2 z∗, M

1
2 Ax∗ − M

1
2 Bz∗, M− 1

2 y∗) : (x∗, z∗, y∗) ∈ sol(VL)} (14)

where Ŝ is a matrix defined as

Ŝ =


R

1
2
1 0 0

0 R
1
2
2 0

M
1
2 A −M

1
2 B 0

0 0 M− 1
2

 . (15)

In what follows, we show that G3 is an averaged map, beginning with a partial result. Denote by G the map
that applies Rn × Rp × Rm into itself and is defined by

G(x̃, z̃, ỹ) :=

 x

z

MAx + MBz + Mỹ


where

x = (∂f + R1 + 2AtMA)−1 (
x̃ − AtMỹ − r̃

)
r̃ = ∇h

(
(R1 + 2AtMA)−1x̃

)
z = (∂g + R2 + 2BtMB)−1 (

z̃ − BtMỹ
)

.

After calculations, this map has the following properties which help us to show later the averaged properties
of G3.

▶ Proposition 4. Under the Hypo-M hypotheses, it holds that

G3 = ŜGŜt. (16)

Moreover, for any u := (x̂, ẑ, ŷ), the following inclusion is valid:

L (Gu) + ŜtŜ (Gu) ∋ u +

 −∇h(η)
0
0

 (17)

where η = (R1 + 2AtMA)−1 (x̂).

Proof. The equivalence G3 = ŜGŜt is easily found using the definitions of these maps. To show the second part,
given u := (x̂, ẑ, ŷ), considering (x, z, ν) = Gu, it holds that

∂f(x) + Atν + (R1 + AtMA)x − AtMBz ∋ x̂ − ∇h
(
(R1 + 2AtMA)−1 (x̂)

)
(18)

∂g(z) + Btν − BtMAx + (R2 + BtMB)z ∋ ẑ (19)
−Ax − Bz + M−1ν = ŷ

Then the last relations show the desirable result. ◀

Using the last proposition, we show the averaged properties of G3.

▶ Proposition 5. Let again assume that the Hypo-M hypotheses are satisfied. Considering that
∥(R1 + 2AtMA)−1∥ ∈ ]0, 2β[, the map G3 is α−averaged with full domain, where α := 2β

4β−∥((R1+2AtMA)−1∥ ∈
] 1

2 , 1[.

Proof. To make the formulation easier, we use the following notations: µ1 = (x̂1, ẑ1, ŷ1) and µ2 = (x̂2, ẑ2, ŷ2).
The evaluations of GŜtŜ using µ1 and µ2 are, for i = 1, 2:

GŜtŜµi =

 xi

zi

MAxi + MBzi + ŷi

 ,
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where

xi := (∂f + R1 + 2AtMA)−1 (
(R1 + AtMA)x̂i − AtMBẑi − Atŷi − ∇h(ηi)

)
ηi := (R1 + 2AtMA)−1 (

(R1 + AtMA)x̂i − AtMBẑi

)
zi := (∂g + R2 + 2BtMB)−1 (

(R2 + BtMB)ẑi − BtMAx̂i − Btŷi

)
.

From the inclusion (17) and considering u equal to ŜtŜµ1 or ŜtŜµ2, then using the monotonicity of operator
L i.e.〈

GŜtŜµ1 − GŜtŜµ2, ŜtŜ(µ1 − GŜtŜµ1) − ŜtŜ(µ2 − GŜtŜµ2)
〉

+
〈

GŜtŜµ1 − GŜtŜµ2,

 −∇h(η1) + ∇h(η2)
0
0

〉
≥ 0

and then using expression (16), we have:〈
G3Ŝµ1 − G3Ŝµ2, (Ŝµ1 − G3Ŝµ1) − (Ŝµ2 − G3Ŝµ2)

〉
+ ⟨x1 − x2, ∇h(η2) − ∇h(η1)⟩ ≥ 0 (20)

so that, rewriting the first term, we obtain the following inequality:

∥Ŝµ1 − Ŝµ2∥2 − ∥G3Ŝµ1 − G3Ŝµ2∥2 − ∥Ŝµ1 − G3Ŝµ1 − Ŝµ2 + G3Ŝµ2∥2

+ 2⟨x1 − x2, ∇h(η2) − ∇h(η1)⟩ ≥ 0 (21)

Now we find an appropriate upper bound for ⟨x1 − x2, ∇h(η2) − ∇h(η1)⟩ considering ∥Ŝµ1 − G3Ŝµ1 − Ŝµ2 +
G3Ŝµ2∥. Rewriting ⟨x1 − x2, ∇h(η2) − ∇h(η1)⟩ as

⟨η1 − η2, ∇h(η2) − ∇h(η1)⟩ + ⟨x1 − x2 + η2 − η1, ∇h(η2) − ∇h(η1)⟩

then, since ∇h is co-coercive and using Cauchy inequality, it holds that

⟨x1 − x2, ∇h(η2) − ∇h(η1)⟩ ≤ −β∥∇h(η2) − ∇h(η1)∥2 + 1
4β

∥x1 − x2 + η2 − η1∥2 + β∥∇h(η2) − ∇h(η1)∥2

= 1
4β

∥x1 − x2 + η2 − η1∥2 (22)

On the other hand, it holds that ∥Ŝµ1 − G3Ŝµ1 − Ŝµ2 + G3Ŝµ2∥ is equal to∥∥∥Ŝ
[
µ1 − GŜtŜµ1 − µ2 + GŜtŜµ2

]∥∥∥2
= ∥(p1, p2, p3, p4)∥2 (23)

where

p1 = R
1
2
1 (x̂1 − x1 − x̂2 + x2)

p2 = R
1
2
2 (ẑ1 − z1 − ẑ2 + z2)

p3 = M
1
2 A(x̂1 − x1 − x̂2 + x2) − M

1
2 B(ẑ1 − z1 − ẑ2 + z2)

p4 = M− 1
2 (−MAx1 − MBz1 + MAx2 + MBz2).

Denoting K =
(

R
1
2
1 AtM

1
2 AtM

1
2

)
, we have that

K(p1, p3, p4)t = KKt(η1 − η2 − x1 + x2),

and then using the last relation and (23), we obtain that

∥Ŝµ1 − G3Ŝµ1 − Ŝµ2 + G3Ŝµ2∥2 ≥ 1
∥(KKt)−1∥

∥x1 − x2 + η2 − η1∥2.

Therefore from (22), we obtain the desired upper bound

⟨x1 − x2, ∇h(η2) − ∇h(η1)⟩ ≤ ∥(KKt)−1∥
4β

∥Ŝµ1 − G3Ŝµ1 − Ŝµ2 + G3Ŝµ2∥2.
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Finally using this upper bound in (20) we obtain that

∥G3Ŝµ1 − G3Ŝµ2∥2 ≤ ∥Ŝµ1 − Ŝµ2∥2 − 1 − α

α
∥Ŝµ1 − G3Ŝµ1 − Ŝµ2 + G3Ŝµ2∥2

where

α := 2β

4β − ∥(R1 + 2AtMA)−1∥
.

Then, since for any s, s′ ∈ Rq there exists u1, u2 ∈ Rr such that ŜtŜu1 = Ŝts and ŜtŜu2 = Ŝts′, from the last
inequality and (16) we get that G3 is α−averaged. ◀

3 Inertial-relaxed fixed point algorithms

In practice, any variant of a basic fixed point algorithm applied to some averaged map will yield a valid variant
of the splitting algorithm related to it.

Considering a maximal monotone operator T , we describe here an Inertial-Relaxed variant of a fixed point
algorithm with relative error, inspired by a recent work of Alves et al. [2]. We recall first their variant of the
Proximal Point algorithm to solve the inclusion 0 ∈ T (x) for a given maximal monotone operator T , called
Relative Error Inertial Relaxed Hybrid Proximal Point (RIRHPP); it includes three parameters (θ driving the
relative error measure, λ the inertial parameter, and ρ the relaxation parameter:
▶ Relative-error Inertial-Relaxed HPP (RIRHPP).

Initialization: Choose z0 = z−1 ∈ Rr, λ, θ ∈ [0, 1[ and ρ ∈ ]0, 2[
For k = 0, 1, . . . do

Choose λk ∈ [0, λ[ (Inertial parameter) and define

wk = zk + λk(zk − zk−1)

Inexact Subproblem:
Find (z̃k, vk) ∈ Rr × Rr and ck ≥ 0 such that

vk ∈ T (z̃k), ∥ckvk + z̃k − wk∥2 ≤ θ2 (
∥z̃k − wk∥2 + ∥ckvk∥2)

(24)

If vk = 0, then STOP. Otherwise, choose ρk ∈ [0, ρ] (Relaxing parameter) and set

zk+1 = wk − ρk ⟨wk − z̃k, vk⟩
∥vk∥2 vk.

end for
Observe first that, without relative error (θ = 0), it can be checked easily that z̃k = JckT (wk). In the general

case, too, RIRHPP can be rewritten in terms of the resolvent of T :
Let JckT = (Ir×r + ckT )−1, then subproblem (24) is equivalent to solve (with ckvk = ςk − z̃k + wk).
Find (z̃k, ςk) ∈ Rr × Rr and ck ≥ 0 such that

z̃k = JckT (wk + ςk) ∥ςk∥2 ≤ θ2 (
∥z̃k − wk∥2 + ∥wk + ςk − z̃k∥2)

. (25)

so that this algorithm can be interpreted as a variant of a fixed point method applied to the resolvent of T . Then
we can extend this algorithm in order to find a fixed point of a 1−co-coercive map with full domain since, by
Minty’s Theorem, any 1−co-coercive map with full domain is the resolvent of a maximal monotone operator.

This fixed point variant can also be used applied to an α−average map. The following lemma shows that, to
find a fixed point of an α−averaged map, it is equivalent to find a fixed point of a 1−co-coercive map which is
constructed easily from the α−averaged one, assuming that we know the parameter α.

▶ Lemma 6. Set α ∈ ]0, 1[. It holds that F is an α−averaged map if and only if (1− 1
2α )I + 1

2α F is a 1−co-coercive
map. Moreover these maps have the same fixed points.

Proof. Let N be a nonexpansive map associated with F .

F = (1 − α)I + αN if only if
(

1 − 1
2α

)
I + 1

2α
F = 1

2(I + N)

which means that the transformed map is 1/2-averaged (or firmly nonexpansive) and equivalently 1-co-coercive.
Also x∗ = F (x∗) if and only if x∗ = (1 − 1

2α )x∗ + 1
2α Fx∗. ◀
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Thus, given the problem of finding a fixed point of an α−averaged map F with full domain, we consider
alternately (1 − 1

2α )I + 1
2α F a 1−co-coercive map with full domain, which has the same fixed points. Thus, one

can extend algorithm RIRHPP for an α−averaged map with full domain. In summary, one obtains the following
algorithm where, for sake of simplicity, we do not include the relative error feature of (RIRHPP) and consider
fixed inertial-relaxed parameters:

▶ Inertial-Relaxed Fixed Point (IRFP).

Initialization: Choose z0 = z−1 ∈ Rn, also (λ, ρ) ∈ ]0, 1[ × ]0, 2[ satisfying H1 and let ρ̂ := ρ
2α , where α is the

averagedness parameter of F .
For k = 0, 1, 2, . . . do

Choose λ ∈ [0, λ [ and define (inertial term)

wk = zk + λ(zk − zk−1) (26)

Choose ρ ∈ ]0, ρ̂ ] and calculate (relaxed term of fixed point algorithm)

zk+1 = (1 − ρ)wk + ρF (wk). (27)

end for

We consider similar conditions on the bounds λ and ρ as those given in [2] for RIRHPP i.e.
H1. (λ, ρ) ∈ ]0, 1[ × ]0, 2[ and the upper bound ρ is a function of λ given by

ρ = 2(λ − 1)2

2(λ − 1)2 + 3λ − 1
. (28)

In the case that no inertial term is used (λ = 0), we bound the relaxation parameter by ρ < 2 so that ρ < 1
α

(which is known to guarantee convergence in that case).

▶ Proposition 7. Set λ and ρ satisfying H1. Given F an α−averaged map with full domain with at least one
fixed point, then the sequences {wk} and {zk} computed by algorithm (IRFP) both converge to the same fixed
point of F .

The convergence of IRFP can be directly derived from [2] since the algorithm can be seen as an application of
RIRHPP to a special 1−co-coercive map as shown in Lemma 3.1 above, but we give in the annex an equivalent
direct proof.

4 Inertial-relaxed splitting algorithms

Based on the averaged maps constructed in Section 2 and the variants of the fixed point algorithm IRFP
developed in the previous section, we obtain generalized splitting algorithms, including the Inertial and Relaxation
parameters, to solve the composite model (1).

4.1 Splitting algorithms in the Gauss–Seidel version

Considering first the map G1, we will obtain a splitting algorithm which, without inertial nor relaxation tuning
parameters, goes back to PD3O (as we will see in Section 5). We obtain thus a different algorithm compared
to Condat–Vũ Algorithm, Form I, when h ̸= 0. This new algorithm is termed Multi-scaling Inertial-Relaxed
primal-dual algorithm, Form I :

▶ Multi-scaling Inertial-Relaxed primal-dual algorithm, Form I (MIRPD, Form I). Choose (x0, z0, y0, r0) =
(x−1, z−1, y−1, r−1) ∈ Rn × Rp × Rm × Rn, V1 ∈ Rn×n, V2 ∈ Rp×p and M ∈ Rm×m such that V1 + AtMA and
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V2 + BtMB are positive definite, and parameters (λ, ρ) ∈ ]0, 1[ × ]0, 2[ such that λ ∈ [0, λ] and ρ ∈ ]0, ρ
2α ], where

α := 2β

4β − ∥(V1 + AtMA)−1∥
.

(xk
w, zk

w, yk
w, rk

w) = (xk, zk, yk, rk) + λ(xk − xk−1, zk − zk−1, yk − yk−1, rk − rk−1) (29)

x̃k+1 = (∂f + V1 + AtMA)−1(V1xk
w − AtMBzk

w − Atyk
w − V1rk

w) (30)

ỹk+1 = yk
w + MAx̃k+1 + MBzk

w (31)

r̃k+1 = (V1 + AtMA)−1∇h(x̃k+1) (32)

z̃k+1 = (∂g + V2 + BtMB)−1(V2zk
w − BtMAx̃k+1 − Btỹk+1 + BtMAr̃k+1) (33)

(xk+1, zk+1, yk+1, rk+1) = ρ(x̃k+1, z̃k+1, ỹk+1, r̃k+1) + (1 − ρ)(xk
w, zk

w, yk
w, rk

w) (34)

Considering ξk = (xk − rk, zk, yk) and ξk
w = (xk

w − rk
w, zk

w, yk
w), the relation of this algorithm with IRFP

applied to the averaged map G1 is

Qξk
w = Qξk + λ(Qξk − Qξk−1) and Qξk+1 = (1 − ρ)Qξk

w + ρG1(Qξk
w). (35)

This relation allows us to obtain the following convergence result.

▶ Proposition 8. Set λ and ρ satisfying H1. and all scaling matrices satisfying the same conditions as in
Proposition 2. If sol(VL) is nonempty, then building the sequences (x̃k, r̃k, z̃k, ỹk) in (29)–(34), it holds that
(x̃k, z̃k, ỹk − MAr̃k) converge to some element of sol(VL).

Proof. From relation (35), we observe that this algorithm is related to IRFP applied to operator G1 which,
from Proposition 1, is α−averaged. Then by Proposition 7 and relation (10), we deduce that V

1
2

1 (xk
w − rk

w)
V

1
2

2 zk
w

−M
1
2 Bzk

w − M− 1
2 yk

w

 converge to

 V
1
2

1 [x∗ − W∇h(x∗)])
V

1
2

2 z∗

M
1
2 A[x∗ − W∇h(x∗)] − M− 1

2 y∗

 ,

where (x∗, z∗, y∗) ∈ sol(VL) and W = (V1 +AtMA)−1. Since (∂f +V1 +AtMA)−1 is single-valued and continuous,
from (30) we have that {x̃k} converges to (∂f + V1 + AtMA)−1(V1(x∗ − W∇h(x∗) + AtMA(x∗ − W∇h(x∗)) −
Aty∗) = x∗; thus, from (31) and (32), we obtain that {ỹk} and {r̃k} converge to MA(AtMA + V )−1∇h(x∗) + y∗

and (V1 + AtMA)−1∇h(x∗) respectively, and then, from continuity of (∂g + V2 + BtMB)−1 and (33), we have
that {zk} converges to z∗. ◀

Back now to the switched operator G2, we obtain the second form of the last splitting algorithm, switching the
order of action of the proximal steps, in the same manner as Condat–Vũ’s algorithm forms. This new algorithm,
without inertial nor relaxation tuning parameters, goes back to the Gauss–Seidel version of PPDS when h = 0.
▶ Multi-scaling Inertial-Relaxed primal-dual algorithm, Form II (MIRPD, Form II). Choose (x0, z0, y0) =
(x−1, z−1, y−1) ∈ Rn ×Rp ×Rm, V1 ∈ Rn×n, V2 ∈ Rp×p and M ∈ Rm×m such that V1 + AtMA and V2 + BtMB

are positive definite matrices, and parameters (λ, ρ) ∈ ]0, 1[ × ]0, 2[ such that λ ∈ [0, λ] and ρ ∈ ]0, ρ
2α ], where

α := 2β

4β − ∥(V1 + AtMA)−1∥
.

(xk
w, zk

w, yk
w) = (xk, zk, yk) + λ(xk − xk−1, zk − zk−1, yk − yk−1) (36)

z̃k+1 = (∂g + V2 + BtMB)−1(V2zk
w − BtMAxk

w − Btyk
w) (37)

ỹk+1 = yk
w + MAxk

w + MBz̃k+1 (38)

rk+1 = ∇h((V1 + AtMA)−1(V1xk
w − AtMBz̃k+1)) (39)

x̃k+1 = (∂f + V1 + AtMA)−1 (
V1xk

w − AtMBz̃k+1 − Atỹk+1 − rk+1)
(40)

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1 − ρ)(xk
w, zk

w, yk
w). (41)
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Analogous to the last algorithm, we have a relation with IRFP applied to G2. Considering ζk := (xk, zk, yk)
and ζk

w := (xk
w, zk

w, yk
w) it holds

Q̂ζk
w = Q̂ζk + λ(Q̂ζk − Q̂ζk−1) and Q̂ζk+1 = (1 − ρ)Q̂ζk

w + ρG2(Q̂ζk
w). (42)

▶ Proposition 9. Set λ and ρ satisfying H1, and keep the same hypotheses of Proposition 2. If sol(VL) is
nonempty, then for an arbitrary (x0, z0, y0) ∈ Rn × Rp × Rm, the sequence (x̃k, z̃k, ỹk) in (36)–(41) converges to
some element of sol(VL).

Proof. From relations (42), (11) and Proposition 7, it holds that Q̂ξk
w converge to a fixed point of G2, then we

have

Q̂

 xk
w

zk
w

yk
w

 =

 V
1
2

1 xk
w

V
1
2

2 zk
w

M
1
2 Axk

w + M− 1
2 yk

w

 converge to

 V
1
2

1 x∗

V
1
2

2 z∗

M
1
2 Ax∗ + M− 1

2 y∗

 ,

where (x∗, z∗, y∗) ∈ sol(VL), since (∂g + V2 + BtMB)−1 is a single-valued continuous map. From (37), we
obtain that {z̃k} converges to (∂g + V2 + BtMB)−1(V2z∗ − BtMAx∗ − Bty∗) = z∗. Then from (38) and (39),
it holds that {ỹk} and {rk} converge to y∗ and ∇h(x∗), respectively. In the same way, from the continuity of
(∂f + V + AtMA)−1, we deduce that {x̃k} converges to x∗. ◀

4.2 A splitting algorithm in the Jacobi version
Now considering G3, we will obtain a new splitting algorithm which goes back to the Jacobi version of proximal
primal-dual algorithms (PPDS) when h = 0 and with the scaling matrices V1 = R1 + AtMA, V2 = R2 + BtMB.
We call it Multi-scaling Inertial-Relaxed parallel primal-dual algorithm:
▶ Multi-scaling Inertial-Relaxed primal-dual algorithm, parallel version (MIRPD, Jacobi version). Choose (x0, z0, y0) =
(x−1, z−1, y−1) ∈ Rn×Rp×Rm, R1 ∈ Rn×n, R2 ∈ Rp×p and M ∈ Rm×m such that R1+2AtMA and R2+2BtMB

are positive definite, and parameters (λ, ρ) ∈ ]0, 1[ × ]0, 2[ such that λ ∈ [0, λ] and ρ ∈ ]0, ρ
2α ], where

α := 2β

4β − ∥(R1 + 2AtMA)−1∥
.

(xk
w, zk

w, yk
w) = (xk, zk, yk) + λ(xk − xk−1, zk − zk−1, yk − yk−1) (43)

rk = ∇h
(
(R1 + 2AtMA)−1((R1 + AtMA)xk

w − AtMBzk
w)

)
(44)

x̃k+1 = (∂f + R1 + 2AtMA)−1 (
(R1 + AtMA)xk

w − AtMBzk
w − Atyk

w − rk
)

(45)

z̃k+1 = (∂g + R2 + 2BtMB)−1 (
(R2 + BtMB)zk

w − BtMAxk
w − Btyk

w

)
(46)

ỹk+1 = yk
w + MAx̃k+1 + MBz̃k+1 (47)

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1 − ρ)(xk
w, zk

w, yk
w) (48)

Again this algorithm is related to IRFP applied to G3. Considering ςk = (xk, zk, yk) and ςk
w = (xk

w, zk
w, yk

w) it
holds

Ŝςk
w = Ŝςk + λ(Ŝςk − Ŝςk−1) and Ŝςk+1 = (1 − ρ)Ŝςk

w + ρG3(Ŝςk
w). (49)

▶ Proposition 10. Set λ and ρ satisfying H1. and with the same hypotheses as in Proposition 5. If sol(VL) is
nonempty, then for an arbitrary (x0, z0, y0) ∈ Rn × Rp × Rm, the sequence (x̃k, ỹk, ỹk) in (43)–(48) converges to
some element of sol(VL).

Proof. From relation (49), we observe that this algorithm is related to IRFP applied to operator G3 which, from
the hypotheses, is α−averaged. Then by Proposition 7 and relation (14), we deduce that

Ŝ

 xk
w

zk
w

yk
w

 =


R

1
2
1 xk

w

R
1
2
2 zk

w

M
1
2 Axk

w − M
1
2 Bzk

w

M− 1
2 yk

w

 converge to


R

1
2
1 x∗

R
1
2
2 z∗

M
1
2 Ax∗ − M

1
2 Bz∗

M− 1
2 y∗

 ,
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where (x∗, z∗, y∗) ∈ sol(VL). From the continuity of ∇h and (44), we have that {rk} converges to ∇h(x∗); then
since (∂f + R1 + 2AtMA)−1 and (∂g + R2 + 2BtMB)−1 are single-valued continuous maps from (45) and (46),
we obtain that {x̃k} and {z̃k} converges to x∗ and z∗ respectively. It holds that {yk

w} converges to y∗, then
from (47) we have {ỹk} converges to y∗. ◀

▶ Remark 11. When neither inertial nor relaxed parameters are considered (λ = 0 and ρ = 1) in MIRPD,
Form II and MIRPD, Jacobi version, these algorithms yield a clear extension of PPDS. Defining (xk, zk, yk) :=
(x̃k, z̃k+1, ỹk+1) and (xk, zk, yk) := (x̃k, z̃k, ỹk) in the above algorithms, we obtain the following new version of
PPDS applied to model (1).
▶ Proximal-Gradient primal-dual Algorithm (PGPDS).

rk = (V1 + AtMA)−1∇h
(
(V1 + AtMA)−1(V1xk − AtMBzk)

)
xk+1 ∈ argmin

{
f(x) + 1

2 ∥A(x + rk) + Bzk + M−1yk∥2
M + 1

2 ∥x + rk − xk∥2
V1

}
zk+1 ∈ argmin

{
g(z) + 1

2 ∥Aηk + Bz + M−1yk∥2
M + 1

2 ∥z − zk∥2
V2

}
yk+1 = yk + M(Axk+1 + Bzk+1)

where choosing ηk as below gives us two algorithm versions:

ηk :=
{

xk for Jacobi version algorithm
xk+1 for Gauss–Seidel version algorithm

From Proposition 10 and 9 some conditions on matrices V1 and V2 need to be imposed in order to obtain
convergence: they are positive semi-definite for the Gauss–Seidel version and, for the Jacobi version, they are of
the form V1 = R1 + AtMA and V2 = R2 + BtMB, for some R1 and R2 positive semi-definite.

Reformulating MIRPD, Form II as PGPDS for Gauss–Seidel version algorithm allows us to obtain a clearer
comparison with iPADMM algorithm described in [17]. Concerning MIRPD, Form I, we show in Section 5 that
it is related to PD3O.

5 Resulting variants of Condat–Vũ and PD3O algorithms

Independently of the structure of matrices A and B, a practical tuning of the scaling parameters of the last
algorithms which are still inside the theoretical bounds for convergence can be defined as follows:

Let σ, τ, µ positive such that στ∥A∥2 ≤ 1, σµ∥B∥2 ≤ 1 and τ < 2β, consider

M = σIm×m, V1 = τ−1In×n − σAtA and V2 = µ−1Ip×p − σBtB (50)

for algorithm MIRPD, Form I and Form II.
Let σ̃, τ̃ , µ̃ positive such that 2σ̃τ̃∥A∥2 ≤ 1, 2σ̃µ̃∥B∥2 ≤ 1 and τ̃ < 2β, consider

M = σ̃Im×m, R1 = τ̃−1In×n − 2σ̃AtA and R2 = µ̃−1Ip×p − 2σ̃BtB (51)

for algorithm MIRPD, Jacobi version.
In order to compare Condat–Vũ and PD3O algorithms with the new algorithms of the last section, we

consider the case B = −Ip×p, and the special matrix parameters (50) and (51), obtaining the following specialized
algorithms.

Corresponding to MIRPD, Form I, with matrix parameters satisfying (50) and V2 = 0; using that (σT −1 +
Im×m)−1 = I −σ(T +σIm×m)−1, and considering ηk = σAxk +yk −σzk −σArk, ηk

w = σAxk
w +yk

w −σzk
w −σArk

w

and η̃k = σAx̃k + ỹk − σz̃k − σAr̃k, we get the following algorithm:
▶ Inertial-Relaxed Primal-Dual Three Operator, Form I (IRPD3O, Form I). Choose (x0, η0, r0) =
(x−1, η−1, r−1) ∈ Rn × Rm × Rn, σ and τ positive reals such that στ∥A∥2 ≤ 1 and τ < 2β, and reals λ

and ρ such that λ ∈ [0, λ] and ρ ∈ ]0, ρ
2α ], where α := 2β

4β−τ .

(xk
w, ηk

w, rk
w) = (xk, ηk, rk) + λ(xk − xk−1, ηk − ηk−1, rk − rk−1) (52)

x̃k+1 = (τ∂f + In×n)−1(xk
w − τAtηk

w − rk
w) (53)

r̃k+1 = τ∇h(x̃k+1) (54)

η̃k+1 = (σ∂g∗ + Im×m)−1(ηk
w + σA(2x̃k+1 − xk

w) + σArk
w − σAr̃k+1) (55)

(xk+1, ηk+1, rk+1) = ρ(x̃k+1, η̃k+1, r̃k+1) + (1 − ρ)(xk
w, ηk

w, rk
w). (56)
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Without inertial and relaxed terms and after the change of variables (xk, yk, zk) = (xk, ηk−1, xk−1 − τAtηk−1 −
rk−1), the last algorithm goes back to PD3O. Therefore this algorithm can be seen as resulting of the inclusion
of inertial and relaxed terms into PD3O.

Analogously, considering MIRPD, Form II, with matrix parameters satisfying (50) and V2 = 0, we obtain
the switched version of Inertial-Relaxed PD3O.
▶ Inertial-Relaxed Primal-Dual Three Operator, Form II (IRPD3O, Form II). Choose (x0, y0) = (x−1, y−1) ∈ Rn×Rm,
σ and τ positive real parameters such that στ∥A∥2 ≤ 1 and τ < 2β, and λ and ρ positive real parameters such
that λ ∈ [0, λ] and ρ ∈ ]0, ρ

2α ], where α := 2β
4β−τ .

(xk
w, yk

w) = (xk, yk) + λ(xk − xk−1, yk − yk−1) (57)

ỹk+1 = (σ∂g∗ + Im×m)−1(yk
w + σAxk

w) (58)

rk+1 = ∇h(xk
w − τAt(ỹk+1 − yk

w)) (59)

x̃k+1 = (τ∂f + In×n)−1(xk
w − τAt(2ỹk+1 − yk

w) − τrk+1) (60)

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1 − ρ)(xk
w, yk

w). (61)

The two forms of the last algorithm IRPD3O avoid the use of variable z compared to its source algorithm
MIRPD, and we can clearly notice the distinction with Condat–Vũ, form I and form II respectively, when h ̸= 0.

Comparing now the two forms of the last algorithm IRPD3O, Form II avoids using the previous values rk−1

and rk.
Alternatively, considering MIRPPD, with matrix parameters satisfying (51) and R2 = 0, we obtain an

algorithm that can be considered as the parallel version of PD3O, since MIRPPD is the Gauss–Seidel version of
MIRPD and the Form I of the last one is related to PD3O.
▶ Inertial-Relaxed parallel Primal-Dual Three Operator (IRPPD3O). Choose (x0, y0) = (x−1, y−1) ∈ Rn × Rm, σ̃

and τ̃ positive real parameters such that 2σ̃τ̃∥A∥2 ≤ 1 and τ̃ < 2β, and λ and ρ positive real parameters such
that λ ∈ [0, λ] and ρ ∈ ]0, ρ

2α ], where α := 2β
4β−τ̃ .

(xk
w, zk

w, yk
w) = (xk, zk, yk) + λ(xk − xk−1, zk − zk−1, yk − yk−1) (62)

rk = ∇h(xk
w − τ̃ σ̃AtAxk

w + σ̃τ̃Atzk
w) (63)

x̃k+1 = (τ̃ ∂f + In×n)−1(xk
w − τ̃At(σ̃Axk

w − σ̃zk
w + yk

w) − τ̃ rk) (64)

z̃k+1 = (∂g + 2σ̃Im×m)−1(σ̃zk
w + σ̃Axk

w + yk
w) (65)

ỹk+1 = yk
w + σ̃Ax̃k+1 − σ̃z̃k+1 (66)

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1 − ρ)(xk
w, zk

w, yk
w). (67)

The convergence of the last algorithms follows from Propositions 8, 9 and 10 respectively.

6 Numerical Results

We consider the problem (commonly referred as fused lasso) with the least squares loss as in [24]

min
x

1
2∥Qx − b∥2

2 + µ1∥x∥1 + µ2∥Ax∥1 (Pfl)

where Q is a q × n matrix, b ∈ Rq and A is a n − 1 × n matrix defined by

A =


−1 1

−1 1
· · · · · ·

−1 1


We take the values µ1 = 20 and µ2 = 200 for the weights in the objective function. Moreover, the matrix Q and
vector b are randomly generated, following Yan’s paper as described in [24]. We just consider the dimension
n = 400 and q = 40.

Since the problem (Pfl) has the structure of problem 1 (case B = −II), we apply algorithm IRPD3O and
IRPPD3O and we compare them with Condat–Vũ’s and Chambolle–Pock’s algorithms. For the evaluation, we
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consider the primal error, i.e. ∥xk − x∗∥, where x∗ is approximated as the primal value of the 18000−iteration of
PD3O algorithm.

We show first on Figure 1 the number of iterations needed to obtain a primal error less than 10−6 for
different values of the parameters τ and σ, without inertial-relaxed parameters (α = 0 and ρ = 1). We have
plotted a red line to show the theoretical limits of convergence (στ∥A∥2 ≤ 1, τ < 2

∥Q∥2 , for IRPD3O, and
2στ∥A∥2 ≤ 1, τ < 2

∥Q∥2 , for IRPPD3O). We consider a maximum number of 2000 iterations for each fixed pair
(τ, σ).

Figure 1 Number of iterations for an error of 10−6

The next figure shows the number of iterations (2000 as maximum) needed to obtain a primal error less than
10−6, for each (σ(τ), τ) in the curved red line (σ(τ) = 1

τ∥A∥2 , for IRPD3O, and σ(τ) = 1
2τ∥A∥2 , for IRPPD3O). In

Figure 2, we change the parameter τ and the relaxation parameter ρ without inertial term (λ = 0). In Figure 3,
we change the parameter τ and the inertial term λ without relaxation (ρ = 1).

Figure 2 Varying the relaxation parameter

Finally, we change the inertial and relaxation parameters, forcing the values to belong to the curved red line
of Figure 1

τ = γi

∥Q∥2 and σ = 1
τ∥A∥2
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Figure 3 Varying the inertial parameter

Figure 4 Varying λ and ρ

with γ1 = 1, γ2 = 1.5 and γ3 = 1.99. We evaluate the number of iterations (bounded by 2000) needed to obtain
a primal error less than 10−6; again, a red line is plotted on the 3-D surface for the theoretical bounds.

We observe that the three variants of PD3O have a larger theoretical area of convergence. Even the parallel
version has a light advantage with respect to Condat–Vũ Algorithms. Also notice that the tuning of the
Relaxation parameter yields more impact on the convergence of the algorithms than the Inertial parameter.
Finally the numerical results show the necessity to investigate the possibility of extending that theoretical area
of convergence, similarly to the study given in [16] when the model does not present a smooth part.

7 Conclusions

Associated with the composite model based on three types of functions, we have obtained two new averaged
splitting maps: the Gauss–Seidel type that generalizes the Davis–Yin averaged map, and the Jacobi type that
is a generalized parallel version of Davis–Yin averaged map. Then, similarly to the construction of ADMM
from the Douglas–Rachford map, but also considering a variant of the fixed point algorithm, we have obtained
three new splitting algorithms from these averaged maps, including in all of them Inertial-Relaxed parameters.
Choosing special scaling matrices parameters allows us to obtain algorithmic variants of PD3O, which we have
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compared numerically, showing the high sensitivity of the rate of convergence with respect to the relaxation
parameters, and also noticing the advantage of the variants of PD3O compared to Condat–Vũ Algorithms.

Observe that parallel implementations of a few algorithms have been mentioned but it remains to confirm
their respective speedups on real-life cases. Moreover, the numerical experimentation has revealed the high
sensitivity of the performance in terms of number of iterations with respect to the tuning of the different
parameters. Corresponding adaptive strategies to allow dynamic changes for the proximal and inertial parameters
are currently on study.

Appendix

We give here a direct proof of Proposition 7. We will need first the following technical result:

▶ Lemma 12. Let {rk} and {vk} be two sequences in [0, +∞[ and γ > 0 such that

rk + γvk ≥ vk+1, ∀ k ≥ 0.

a. For all n ∈ N, it holds
∑n

j=0 γjrn−j + γn+1v0 ≥ vn+1.
b. If γ = 1 and

∑
rk < +∞ then {vk} converges.

Proof.

a. Multiplying by γj > 0, it holds

γjrn−j ≥ γjvn+1−j − γj+1vn−j , ∀ j = 0, . . . , n

then the result is obtained summing.

b. From a it holds
∑

rk + v0 ≥
∑n

j=0 rj + v0 ≥ vn+1, then {vn} is bounded. Therefore the sequence
∑n

k=0(rk +
vk − vk+1) =

∑n
k=0 rk + v0 − vn+1 converges since it has nonnegative terms and it is bounded, deducing the

convergence of {vn}. Observe that, in this case, {vk} is a quasi-Fejer monotone sequence (see Lemma 5.31
in [4]). ◀

We can now present the proof of Proposition 7:

Proof of Proposition 7. Since F is α−averaged, then (1 − ρ)I + ρF is αρ−averaged with the same fixed point.
Then given x∗ any fixed point of F , and using (27), we have

∥wk − x∗∥2 ≥ ∥zk+1 − x∗∥2 + 1 − αρ

αρ
∥wk − zk+1∥2. (68)

From (26), we have wk − x∗ = (1 + λ)(zk − x∗) − λ(zk−1 − x∗), and using the property of ∥ · ∥2 we get

∥wk − x∗∥2 = (1 + λ)∥zk − x∗∥2 − λ∥zk−1 − x∗∥2 + λ(1 + λ)∥zk − zk−1∥2.

Defining φk := ∥zk − x∗∥2 and using the last equality in (68) and ρ ≤ ρ̂ , it holds

λ(φk − φk−1) + λ(1 + λ)∥zk − zk−1∥2 ≥ φk+1 − φk + 1 − αρ̂

αρ̂
∥wk − zk+1∥2. (69)

Since 1−αρ̂ = 1−ρ/2 > 0 and φ0 = φ−1, applying Lemma 12a with γ = λ, considering rk = λ(1+λ)∥zk −zk−1∥2

and vk = φk − φk−1, it holds
n∑

j=0
λjrn−j + φn ≥ φn+1

We will show later that
∑

∥zk − zk−1∥2 (equal to
∑

rk

λ(1+λ) ) indeed converges. Now, since λ ≤ λ < 1, applying
Lemma 12b with γ = 1 and considering r̃n =

∑n
j=0 λjrn−j and ṽn = φn, it holds that {φn} converges, which

from (69) also implies
∑

∥wk − zk+1∥2 < +∞. Therefore {zk} is bounded, {zk − zk−1} and {wk − zk+1} both
converge to zero. Later given z′ a cluster point of {zk}, from (26) and (27), we have z′ = (1 − ρ)z′ + ρF (z′) then
z′ is a fixed point of F , then considering z∗ = z′, we have that {∥zk − z′∥2} converges to zero which implies that
{wk} and {zk} both converge to z′.
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So it just remains to prove that
∑

∥zk − zk−1∥2 converges, when λ and ρ satisfy H1. From (26), we have
wk − zk+1 = (1 − λ)(zk − zk+1) + λ(zk − zk+1 + zk − zk−1), and using the property of ∥ · ∥2, it is true that

∥wk − zk+1∥2 = (1 − λ)∥zk − zk+1∥2 + λ∥2zk − zk+1 − zk−1∥2 − λ(1 − λ)∥zk − zk−1∥2

≥ (1 − λ)∥zk − zk+1∥2 − λ(1 − λ)∥zk − zk−1∥2,

Then, replacing in (69), and denoting η = λ(αρ̂)−1 + λ2(2 − (αρ̂)−1), it holds

λ(φk − φk−1) + η∥zk − zk−1∥2 ≥ φk+1 − φk + ((αρ̂)−1 − 1)(1 − λ)∥zk − zk+1∥2.

The last relation give us φk − φk−1 ≥ φk+1 − φk − η∥zk − zk−1∥2, so if η < 0, since φ1 = φ0, then {φk − φk−1}
is a decreasing sequence of nonnegative terms, deducing that

∑
∥zk − zk−1∥2 converges. Now we consider that

η ≥ 0, defining µk−1 := φk − λφk−1 + η∥zk − zk−1∥2, the last inequality is rewritten as

µk−1 ≥ µk + q(λ)∥zk − zk+1∥2 (70)

where q is a quadratic function defined by

q(λ) := (αρ̂)−1 − 1 − (2(αρ̂)−1 − 1)λ − (2 − (αρ̂)−1)λ2.

Since ρ < 2, then q(0) > 0, it holds that q(λ) is strictly positive when λ ∈ [0, λ̂(ρ̂)[, where λ̂(ρ̂) is the smallest or
largest positive root of q depending of the sign of the principal coefficient of q, which is equal to λ̂(ρ̂) = λ(ρ)
(recall that 2αρ̂ = ρ), with λ : (0, 2) → (0, 1) given by

λ(ρ) := 2(2 − ρ)
4 − ρ +

√
16ρ − 7ρ2

,

whose inverse function is ρ : (0, 1) → (0, 2) given by

ρ(λ) := 2(λ − 1)2

2(λ − 1)2 + 3λ − 1

Therefore if we choose (λ, ρ) ∈ (0, 1) × (0, 2) satisfying H1, since λ < λ, we have that q(λ) is strictly positive.
Then from (70), in order to prove that

∑
∥zk − zk−1∥2 converges, it is sufficient to show that {µk} is bounded

from below. So, from the definition of µk, using the fact that η ≥ 0 (otherwise {φk} is decreasing, deducing that
µk is bounded), it holds that µk + λφk ≥ φk+1, applying Lemma 12a with γ = λ and using the fact that µk is
decreasing (from relation (70)), it finally holds that n∑

j=0
λj

 µ0 + λn+1φ0 ≥ φn+1.

Since λ < 1, it holds that {φk} is bounded which implies the boundedness of {µk} ◀
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