
HAL Id: hal-04045230
https://uca.hal.science/hal-04045230v2

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reproducibility of simulations and High Performance
Computing
David R.C. Hill

To cite this version:
David R.C. Hill. Reproducibility of simulations and High Performance Computing. ESM 2022, Euro-
pean Simulation and Modelling Conference, Oct 2022, Porto, Portugal. pp.5-9. �hal-04045230v2�

https://uca.hal.science/hal-04045230v2
https://hal.archives-ouvertes.fr

REPRODUCIBILITY OF SIMULATIONS

AND HIGH PERFORMANCE COMPUTING

David R.C. Hill

Clermont-Auvergne-INP, CNRS, Mines de Saint-Étienne

Université Clermont-Auvergne

LIMOS UMR 6158 – ISIMA – F-63000 Clermont-Ferrand, FRANCE.

E-mail: David.Hill@uca.fr

KEYWORDS

Reproducibility, Repeatability, Replicability, Simulation,

High Performance Computing.

ABSTRACT

One of the major criteria for the scientificity of a research

study is reproducibility. In this paper, we will present the

main definitions around reproducibility. We will examine to

what extent computer science and simulation works are

concerned. Anyone wishing to produce quality scientific

work will pay attention to the numerical reproducibility of

his simulation results. Significant differences can be

observed in the results if the practitioner does not apply best

practices. In addition to reproducibility, we first need

repeatability to debug our simulation software. We will see

that even for parallel stochastic simulations, it is possible to

reproduce the same numerical results by implementing a

rigorous method tested with a billion threads. It is possible to

check parallel results with their sequential counterpart before

scaling, thus gaining confidence in the proposed simulation

results.

INTRODUCTION

Karl Popper is a major reference in epistemology. He had a

profound impact on the production of knowledge in many

fields (Popper 2005). Recent drifts in scientific practices

have led society to realize the importance of the criteria of

scientificity that Popper had put forward for experimental

Science. One of the major criteria is the reproducibility of

scientific experiments. In 2005, John Ioannidis, of Stanford

University, suggested provocatively in an article in PloS

Medicine that “most scientific results are false” and he

explained that it is because many of them are impossible to

reproduce (Ioannidis 2005).

Ten years after, the Guardian reported on the work financed

in Great Britain by the fund for scientific excellence. Even

there, the reproducibility rate for scientific work in the

medical field was extremely weak (around 11%). A recent

manifesto in one of the Nature journal series declared that

reproducing scientific results is difficult and time-consuming,

but it is essential for the advancement of Science, thus the

effort has to be shared between the authors, the laboratories

and the scientific community (Munafò et al. 2017).

In Computer Science we could expect much better

"performances" because our machines and our software

stacks are always supposed to be deterministic. However, an

extensive study, dating from the same period, showed that

the reproducibility of our research works in Computer

Science hardly exceeded 30% (Collberg and Proebsting

2016) (Bisgambiglia and Hill 2022). Indeed, obtaining the

results presented in computer-based research study is often

problematic due to limited documentation. Moreover, the

main reason why we cannot reproduce the results of a

computer based research study is clearly the lack of access to

the source code. Computer simulations have developed to the

point of becoming a valuable if not an essential tool for the

production of knowledge and decision support. For complex

systems, it is the only tool available to explore what our mind

could not imagine. In this context, even elementary

deterministic models surprisingly and flagrantly show the

limits of our knowledge (Zwirn 2000; 2006). This

emphasizes the importance of simulations to explore the

functioning of these so-called complex systems (Wolfram

2018). For instance, Christopher Langton proposed with his

“ant” a two-dimensional cellular automaton with an

excessively simple set of rules whose surprising behavior in

3 phases can only be observed through a simulation:

symmetrical, chaotic and then infinitely drifting (Gajardo et

al. 2002). Though many decision processes rely on computer

simulation results, their progress in terms of ergonomics and

ease of use leads to the fact that they can be used without

enough hindsight on the underlying mechanisms: be it the

resolution or discretization methods, the pseudo-random

number generators used, event schedulers, concurrency

management mechanisms, compilation mechanisms, etc. This

is mainly because the software stack that allows an

application to be used is assumed to be mastered. But this is

not always the case for too many sophisticated scientific

applications. Nowadays, in many modern software chains or

workflows, it is no longer "obvious" to obtain two identical

software during two successive builds (Lamb and Zacchiroli

2021).

We will first present the main definitions encountered in

reproducible research. This field is quite new for computer

scientists since reproducibility was considered granted. In the

past twenty years, we have seen an evolution in the

terminology which is sometimes confusing. Then, we will

address the reasons why we could fail to reproduce our

simulation results in the context of High Performance

Computing. Eventually, we will present a technique enabling

the production of comparable results even with parallel

stochastic simulations. When stochastic simulations are used,

this technique is able to face the ‘silent errors’ impacting top

supercomputers.

REPRODUCIBLE RESEARCH AND COMPUTER

SCIENCE

First, we want to define the notion of computer repeatability.

It means that we want bitwise identical results. If you don’t

have this property, how do you debug?

It is sometimes called bitwise reproducibility which adds

confusion, we will discuss the terminology evolution. As said

above, this property is essential for debugging, but it has only

a little to do with reproducibility in the epistemological sense

used by Popper. If we lose run-to-run repeatability on the

same machines, our computers are worthless – they lose their

key deterministic property. This case is very rare for

common applications, but unfortunately in the case of High

Performance Computing (HPC) this is occurring more often

than we would like to, and we have to “fight” to come back

to a reliable hardware/software couple enabling the

restoration of confidence in what the simulation outputs.

Reproducing a result in the epistemological sense means that

a different laboratory, starting the experiment from scratch,

would get the same scientific conclusion (and not exactly the

same results). It means you have a corroboration which

increases your confidence in the work achieved by some

independent pairs. Your scientific results and the scientific

conclusion obtained by other authors statistically match. The

important thing is to have an independent team following the

same protocol. But you can obtain even more confidence

when other things have changed in the way the study has

been conducted.Another machine, another computer

language, another software stack or method enabling the

finding of the same scientific conclusion for the same

problem. This is augmenting the confidence we have in a

scientific finding and it will lead to a new set of definitions as

presented later.

An important pioneering work was carried out at Stanford by

Claerbout and Karrenbach in 1992, an update can be found

in (Schwab et al. 2000) to discover the initial definitions.

More recently, the work of Stodden at MIT (Stodden 2009)

and our work (Hill 2015) discussed definitions in the context

of scientific computing. The terms “reproduce” and

“replicate” often meant different things and sometimes were

found interchangeable even with the same authors. A paper

by Drummond in 2009 in the machine learning field added

confusion. At the same time, following Claerbout, Donoho

and Stodden (Donoho et al. 2009), reproducible research in

Computer Science linked the production of research papers

to the data and all the software tools allowing a reader to find

the results that are presented. All what is needed in addition

to the research paper is called the research artifact : the entire

software system or workflow used to run the digital

experiments and produce results, the input datasets, the

output raw data collected during the experiments and the

software used for analysis and needed to obtain the final

results. Even though this is very interesting and essential, this

is limiting the epistemological meaning of reproducibility

where many things can change to corroborate the scientific

results, including input data, methods and tools,…

Following this, a recent change in terminology was made by

the ACM (Association for Computing Machinery) thanks to

discussions with NISO (National Information Standards

Organization). NISO recommended to ACM a harmonization

with what is found not only in Computer Science but in the

whole Scientific Community. This introduced a recent swap

in the terms “reproducibility” and “replicability” to meet

their recent and current version of Artifact Review and

Badging. The reference (ACM 2020) gives the URL to find

the full and current definitions. They are inspired by the

International Vocabulary of Metrology since the result of an

experiment can be seen as a measurement on a virtual entity

(VIM 2012). All this evolution in terminology has been

carefully reviewed by Lorena Barba in a paper dedicated to

terminology (Barba 2021). We cannot establish experimental

results if they can’t be reproduced. The new definitions

proposed by ACM in 2020 distinguish again the three terms,

can of course still be discussed since the concern for

reproducible research is rather new for computer

experiments :

Repeatability

For the current ACM definition, repeatability implies that a

computer scientist can repeat calculation and should find

each time the same result with a stated precision (the same

team and the same experimental setup).

Reproducibility

The latest ACM definition for reproducibility, says that a

person or a group of researchers independent from the initial

author (or group of authors) is able to obtain, with a stated

precision, the same result with thanks to the initial author’s

artifact (a different team trying to obtain the same results

using the same experimental setup).

Replicability

This term replicability is considered as rather new for many

computer scientists (and dictionaries…). It means that a new

team should obtain the same result, with a stated precision,

using artifacts which they develop completely independently

(a different team working with a different experimental

setup).

The notion of “same results” remains vague. With a stated

precision it fits with the requirements for measurements

which inspired ACM, but it fails to meet the debugging

requirements, essential for software development. This last

point requires bitwise identical results from run-to-run when

dealing with repeatability. Digital computers are built to be

deterministic.

WHY DO WE LOSE REPEATABILITY AND

REPRODUCIBILITY ?

We have already mentioned that the main reason why there is

a lack of reproducibility in computer science is due to the

fact that authors rarely share their code (and data). The

second important reason comes from our limit to implement

real numbers and mathematical operations with bit registers.

One can see the famous paper from Goldberg : “What every

computer scientist should know about floating-point

arithmetic” to understand the IEEE 754 standard (and its new

updates in 2008 and 2019). This standard represents real

numbers with fractions and comes with fast hardware

implementations. However, the accumulation of rounding

errors can impact some complex floating-point computing,

particularly in high performance computing. Compensated

summation algorithms like the one proposed by Kahan and

his colleagues significatively reduces such errors and most of

them can be parallelized. Recent works in this field were

proposed by (Blanchard et al. 2020) and (Lange 2022).

Still with floating points, it is also sometimes, if not often,

forgotten that the order in which floating point additions and

multiplications are executed matters. While mathematically

such operations are associative in the set of real numbers, it

is not the case in the space of fractions. Optimization of the

Intel C++ Compiler uses associativity-based transformations

by default and this can impact your result (particularly with

compensated sums). It is important to control the compiler

options to be sure that the order of operations will follow the

source code. For instance we can find advices in the Intel

compiler documentation to improve numerical

reproducibility. Indeed, many software or hardware

optimizations could influence the final result. This is

particularly true with the dynamic execution mechanism

included in modern processors. The reordering proposed by

such optimization could lead to repeatability problems from

run-to-run when using floating point operations.

Reproducibility and repeatability problems are often:

 related to the implementation in different programming

languages,

 related to different compilers or compiler options even

when the same programming language is used,

 linked to environment : different operating systems or

different virtual machines or containers, different

versions of compilers, compiler options, libraries,…

 due to a limited knowledge of the pseudorandom number

used (poor or dated generators which do not meet 21st

century computing requirements), bad or poor

initialization of the pseudorandom number generator

status, bad or inadapted parallelization technique used for

the pseudorandom number generator.

 related to hardware diversity : GP-GPUs, FPGAs, MPPA,

Manycore of the Intel Xeon Phi type with a k1OM

architecture instead of a regular x86 architecture (even

when using the same compiler, the same language and the

same operating system),

 observed from one execution to another on the same

microprocessor while all the rest of the computer context

is strictly identical! This is the worst case scenario, where

we lose run-to-run reproducibility and unfortunately it is

being observed more and more frequently due to dynamic

execution on modern CPU architectures.

In the next section, we will give some good practice which

enables the mastering of parallel stochastic simulations. With

a rigorous method it is possible to keep the expected

reproducibility, the statistical quality of the results by

avoiding correlations between the parallel computations.

THE DESIGN OF REPRODUCIBLE PARALLEL

STOCHASTIC SIMULATIONS

The “deterministic” nature of “stochastic” simulations

We sometimes read in high performance computing

magazines that it is normal to obtain different results for the

same parallel stochastic simulations because of stochasticity.

It is important to remember that pseudorandom numbers,

though they simulate randomness, are deterministic

programs. They are precisely designed to be repeatable in

order to be able to debug stochastic programs (Monte Carlo

simulations and all their derivatives). In the context of so-

called “in order” processors (which could become rare), the

hardware at our disposal does not dynamically change the

order of instructions and can be considered deterministic.

Development environments and compilers are also designed

to be still deterministic unless we explicitly ask the compiler

to try "unsafe" optimizations. Thus we should be able to

obtain identical results from one stochastic simulation to the

other when the input data are the same. Not being able to

reproduce its results from one execution to another highlights

either a hardware or software problem, or a lack of rigor in

the scientific design of the study.

A short list of modern and parallelizable high quality

generators with ‘independent’ streams

The algorithms that we have selected below all offer a

reliable technique according to the best statistical test

batteries for distributing random numbers in a parallel

environment : TestU01 (L'Ecuyer and Simard 2007). We

have already identified and detailed these techniques in (Hill

et al. 2013), but only some of them can be applied on a GPU

platform. Here is a selection of some interesting generators:

 Mersenne Twister (Matsumoto and Nishimura 1998) is a

generator which quickly became a reference. Despite

some known defaults (don’t use it for cryptography), it is

fast for simulations (faster version exists with SIMD

instructions). Its huge period 219937 makes it interesting

for partitioning with various techniques for exascale

machines cores and for experimental designs in high

dimensions.

 MRG32k3a (L’Ecuyer 1999). This concise algorithm was

intended to be implemented directly on floating-point real

numbers. Its data structure only stores 6 values in double

precision. It is possible to divide the initial sequence into

264 adjacent streams each containing 2127 elements. Its

optimized implementation on modern Intel C/C++ type

compilers is up to 15 times slower than Mersenne Twister

with recent Intel Xeons and an Intel compiler.

MRG32K3a remains suitable for HPC when the

proportion of calculation associated with the volume of

pseudo-random number drawings is low.

 MLFG6331_64 (Mascagni and Srinivasan 2004). It is a

64-bit nonlinear Multiplicative Lagged Fibonacci

Generator (MLFG) type generator. With a period of 2124,

it can provide, like MRG32k3a, more than 260 parallel

streams thanks to a parameterization mechanism.

 Phylox and Threefry (Salmon et al. 2011). Salmon and

his colleagues proposed three cryptographically inspired

generators for CPU and GPU at the 2011 supercomputing

conference. They also rely on the technique of

parametrization to solve the problem of distribution of

stochastic fluxes within parallel applications.

For parallel stochastic simulations we need indenpendent

streams to carry out (simulate) ‘independent’ experiments.

There will never be any mathematical proof of this

‘independence’, the proof of the dependence being the source

code of the generator itself. However, the best

mathematicians have worked on techniques that allow us to

assign different ‘independent’ random streams for different

elements of parallel computing with one of the following two

approaches (1) partitioning of a single random stream and (2)

producing multiple independent streams. In the latter case,

the independent fluxes are obtained by parameterization

techniques designed depending on the “family” of

generators. Much more details dealing with distribution and

parallelization techniques can be found in (Hill et al. 2013).

A METHOD FOR REPEATABLE PARALLEL

STOCHASTIC SIMULATIONS

In (Hill 2015) we proposed a method allowing the

repeatability of the results from parallel stochastic

simulations. With this method, it is possible to compare the

results of the parallel program with a sequential version of

the program which serves as a reference (at a smaller scale).

To obtain repeatable results, we give the following

recommendations to designers:

 use an object-oriented simulation approach (Hill 1996);

 use a high quality generator such as those mentioned

above;

 use of a fine parallelization technique for retained

pseudorandom number generator;

 use a “parallel” design for the sequential program which

serves as a reference.

This last part is key to gain confidence in the parallel version

of the simulation. It has to be tested at small scales, for

instance at the scale of a node in a parallel machine. The

details of the method is given hereafter:

1. First, design a sequential program with its input data set

that will serve as a reference. The key is based on the fact

that this design of the sequential program must be done

by thinking parallel from the start. All the “stochastic

objects” of this sequential simulation can be designed to

be executed independently and therefore when going

parallel, the result will not be impacted. Each stochastic

object identified has its own stream of pseudorandom

numbers with a precise initial status to replay the

simulation.

2. The set of “independent” stochastic streams must be

produced using one of the techniques previously

discussed in (Hill et al. 2013). As specified above, all the

initial statuses of the stochastic flows used should be

archived in the initial state of the simulation, so as to be

able to reproduce the same sequence for each simulated

stochastic object.

3. The parallel execution will be based on a mapping of the

independent stochastic objects over a number N of

computing units (or PE, Processing Elements). Whatever

the number of PEs, the stochastic flows are specific to

each object and will be initialized with their own status,

the same statuses used in the sequential simulation.

4. At a small scale (typically the scale of a node of a parallel

machine), check that parallel executions on different

numbers of Processing Elements give the same primary

results as the reference sequential execution when the

same input dataset is used.

5. When the previous stage of the method is achieved. The

simulation can be mapped to many nodes.

6. When intermediate results are obtained in parallel, the

reduction phase can use compensated sums when needed.

The computing of the final reduction should respect the

same order of operations which was used by the

sequential program (the Processing Element ID can help

to keep the same order each time we compute the

reduction). Thus the calculation of an average and its

confidence interval can lead to the same floating point

result..

Using this method ensures that the results of stochastic

parallel simulations are repeatable, enabling thorough

debugging. This property is very important for many

scientists working in sensitive fields: medicine, nuclear

safety, finance, etc. We applied this method successfully

since 2015 within the framework of the LabEx Clervolc and

the Tomuvol project : Muonic simulations for Computed

Tomography of volcanoes. When using large batches of

parallel independent stochastic simulations on huge top

machines, silent or ‘soft’ errors (alpha particles for instance)

are impacting some computing nodes. They can be detected

statistically and removing as ‘bad’ elementary results

(measures) to save the entire computing; a full deterministic

code would have failed.

CONCLUSION

This article aims at increasing the sensitivity of our scientific

community to the need for reproducibility. It aims to increase

the quality of our publications and save the time spent trying

to reproduce the results of studies that are not sufficiently

documented. We have seen the evolution in the terminology

of this field in the past twenty years and we have given a

focus on High Performance Computing (HPC) with the case

of stochastic parallel simulations. Monte Carlo simulations

are very common, particularly in Physics where we have

proposed reproducible approaches, with a year of data

collected on the Worldwide LHC Computing Grid (Boyer et

al 2022a). We have proposed a method which enables the

repeatability and reproducibility of scientific results and in

addition we are able to compare the sequential and parallel

results. We will end this conclusion with a warning related to

the use of hybrid machines using different computing

hardware architectures (in particular calculation

accelerators). We addressed this case with classic Xeon

processors and the initial manycores (Xeon Phi) still in use

on some supercomputers (Boyer et al. 2022b). Without

cautions, the differences in the results can reach several

orders of magnitude. With regard to GP-GPUs, Taufer notes

that these architectures do not easily allow obtaining

satisfactory numerical reproducibility (Taufer et al. 2010).

There is still a lot to do to achieve reproducible research with

hybrid computing.

ACKNOWLEDGMENTS

We thank Benjamin Antunes M.Sc. and Dr. Alexandre Boyer

for their assistance with proof-reading.

REFERENCES

Barba L.A. 2018. “Terminologies for reproducible research”. arXiv

preprint arXiv:1802.03311.

Bisgambiglia P.A. and Hill D., 2022, "Reproductibilité numérique :

enjeux de crédibilité pour les expériences de simulation",

BULLETIN de la société informatique de France 1024. No.19,

137-144.

Blanchard P.; N.J. Higham and T. Mary. 2020. “A class of fast and

accurate summation algorithms”. In SIAM Journal on Scientific

Computing. Vol. 42 No.3., A1541–A1557.

Boyer A., C. Haen; F. Stagni and D.R.C. Hill. 2022. “DIRAC Site

Director: Improving Pilot-Job provisioning on grid resources”,

In Future Generation Computer Systems, Vol. 133, 23-38.

Boyer A.; C. Haen; F. Stagni and D.R.C. Hill. 2022. “A Subset of

the CERN Virtual Machine File System: Fast Delivering of

Complex Software Stacks for Supercomputing Resources”, In

International Supercomputing Conference. ISC High

Performance, LNCS, Vol. 13289, 354–371.

Collberg C. and Proebsting T.A. 2016. “Repeatability in computer

systems research”. Communications of the ACM, Vol. 59, No.3,

62-69.

Donoho D.L.; A. Maleki; I.U. Rahman; M. Shahram M. and

Stodden V. 2009. “Reproducible research in computational

harmonic analysis”. In Computing in Science & Engineering.

Vol. 11 No.1, 8–18.

Goldberg D. 1991. “What every computer scientist should know

about floating-point arithmetic”. In ACM computing surveys.

Vol. 23, No.1, 5-48.

Hill D.R.C. 1996. Object-Oriented Analysis and Simulation.

Addison-Wesley Longman.

Hill D.R.C.; J. Passerat-Palmbach; C. Mazel C. and M.K. Traore.

2013. “Distribution of random streams for simulation

practitioners”. In Concurrency and Computation: Practice and

experience. Vol. 25, No.10, 1427-1442.

Hill D.R.C. 2015. “Parallel Random Numbers, Simulation, and

Reproducible Research”. In IEEE Computing in Science and

Engineering. Vol. 17, No.4, pp. 66-71.

Ioannidis, J.P.A. 2005. “Why most published research findings are

false”. PLoS medicine, Vol. 2, No.8 : e124.

Lamb C. and Zacchiroli S. 2021. “Reproducible builds : Increasing

the integrity of software supply chains”. In IEEE Software. Vol.

39, No.2, 62-70.

Lange M. 2022. “Toward accurate and fast summation”. In ACM

Transactions on Mathematical Software. Vol. 48 No.3, 1–39.

L’Ecuyer P. 1999. “Good parameters and implementations for

combined multiple recursive random number generators”. In

Operations Research, Vol. 47, No.1, 159-164.

L’Ecuyer P. and R. Simard R. 2007. “TestU01: A C Library for

Empirical Testing of Random Number Generators”. In ACM

Transactions on Mathematical Software. Vol. 33, No.4., 40 p.

Mascagni M. and A. Srinivasan A. 2004. “Parameterizing Parallel

Multiplicative Lagged-Fibonacci Generators”, In Parallel

Computing. Vol. 30, 899-916.

Matsumoto M. and T. Nishimura T. 1998. “Mersenne Twister: A

623-dimensionnally equidistributed uniform pseudorandom

number generator”, In ACM Transactions on Modeling and

Computer Simulations: Special Issue on Uniform Random

Number Generation. Vol 8 No.1., 3-30.

Munafò M.R.; B.A. Nosek; D.V.M. Bishop; K.S. Button; C.D.

Chambers; N. Percie du Sert; U. Simonsohn, E-J.

Wagenmakers; J.J. Ware and J.P.A. Ioannidis. 2017. “A

manifesto for reproducible science”. Nature human behaviour,

Vol. 1, No1, 1-9.

Popper K. 2005. The logic of scientific discovery. Routledge, Basic

Books Inc. New York.

Salmon J.K.; M.A. Moraes; R.P. Dror and D.E. Shaw. 2011.

“Parallel random numbers: as easy as 1, 2, 3.”; In Proceedings

of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, 1-12

Schwab M., Karrenbach M. et Claerbout J. 2000. “Making

Scientific Computations Reproducible”. In Computing in

Science & Engineering. Vol. 2, No.6., 61–67.

Stodden V. 2009. “The reproducible research standard: Reducing

legal barriers to scientific knowledge and innovation”. In IEEE

Computing in Science & Engineering. Vol. 11, No.1, 35-40.

Taufer M.; O. Pardon; P. Saponaro and S. Patel. 2010. “Improving

Numerical Reproducibility and Stability in Large-Scale

Numerical Simulations on GPUs”. In IEEE International

Symposium of Parallel and Distributed Processing. 1–9

Wolfram S. 2018. “Complex Systems Theory”, In Emerging

syntheses in science. CRC Press, 183-190.

Zwirn H. 2000. Les limites de la connaissance, Odile Jacob.

Zwirn H. 2006. Les systèmes complexes. Coll. Mathématiques et

biologie, Odile Jacob.

WEB REFERENCES

ACM. 2020. Artifact Review and Badging Version 1.0 and link to

V.1.1 (current - August 24, 2020) https://www.acm.org/

publications/policies/artifact-review-badging (Accessed Oct. 5th

2022).

VIM. 2012. VIM: International Vocabulary of Metrology.

https://jcgm.bipm.org/vim/en/index.html (Accessed Oct. 5th

2022).

BIOGRAPHY

DAVID R.C. HILL is doing his research at the French

Centre for National Research (CNRS) in the LIMOS

laboratory (UMR 6158). He earned his Ph.D. in 1993 and

Research Director Habilitation in 2000 both from Blaise

Pascal University and later became Vice President of this

University (2008-2012). He is also past director of a French

Regional Computing Center (CRRI) (2008-2010) and was

appointed two times deputy director of the ISIMA

Engineering Institute of Computer Science – part of

Clermont Auvergne INP, #1 Technology Hub in Central

France (2005-2007 ; 2018-2021). He is now Director of an

international graduate track at Clermont Auvergne INP. Prof

Hill has authored or co-authored more than 250 papers and

has also published several scientific books. He recently

supervised research at CERN in High Performance

Computing.

