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ABSTRACT 

 
One of the major criteria for the scientificity of a research 

study is reproducibility. In this paper, we will present the 

main definitions around reproducibility. We will examine to 

what extent computer science and simulation works are 

concerned. Anyone wishing to produce quality scientific 

work will pay attention to the numerical reproducibility of 

his simulation results. Significant differences can be 

observed in the results if the practitioner does not apply best 

practices. In addition to reproducibility, we first need 

repeatability to debug our simulation software. We will see 

that even for parallel stochastic simulations, it is possible to 

reproduce the same numerical results by implementing a 

rigorous method tested with a billion threads. It is possible to 

check parallel results with their sequential counterpart before 

scaling, thus gaining confidence in the proposed simulation 

results.  

 
 

INTRODUCTION 

 

Karl Popper is a major reference in epistemology. He had a 

profound impact on the production of knowledge in many 

fields (Popper 2005). Recent drifts in scientific practices 

have led society to realize the importance of the criteria of 

scientificity that Popper had put forward for experimental 

Science. One of the major criteria is the reproducibility of 

scientific experiments. In 2005, John Ioannidis, of Stanford 

University, suggested provocatively in an article in PloS 

Medicine that “most scientific results are false” and he 

explained that it is because many of them are impossible to 

reproduce (Ioannidis 2005). 

 

Ten years after, the Guardian reported on the work financed 

in Great Britain by the fund for scientific excellence. Even 

there, the reproducibility rate for scientific work in the 

medical field was extremely weak (around 11%). A recent 

manifesto in one of the Nature journal series declared that 

reproducing scientific results is difficult and time-consuming, 

but it is essential for the advancement of Science, thus the 

effort has to be shared between the authors, the laboratories 

and the scientific community (Munafò et al. 2017).  

 

In Computer Science we could expect much better 

"performances" because our machines and our software 

stacks are always supposed to be deterministic. However, an 

extensive study, dating from the same period, showed that 

the reproducibility of our research works in Computer 

Science hardly exceeded 30% (Collberg and Proebsting 

2016) (Bisgambiglia and Hill 2022). Indeed, obtaining the 

results presented in computer-based research study is often 

problematic due to limited documentation. Moreover, the 

main reason why we cannot reproduce the results of a 

computer based research study is clearly the lack of access to 

the source code. Computer simulations have developed to the 

point of becoming a valuable if not an essential tool for the 

production of knowledge and decision support. For complex 

systems, it is the only tool available to explore what our mind 

could not imagine. In this context, even elementary 

deterministic models surprisingly and flagrantly show the 

limits of our knowledge (Zwirn 2000; 2006). This 

emphasizes the importance of simulations to explore the 

functioning of these so-called complex systems (Wolfram 

2018). For instance, Christopher Langton proposed with his 

“ant” a two-dimensional cellular automaton with an 

excessively simple set of rules whose surprising behavior in 

3 phases can only be observed through a simulation: 

symmetrical, chaotic and then infinitely drifting (Gajardo et 

al. 2002). Though many decision processes rely on computer 

simulation results, their progress in terms of ergonomics and 

ease of use leads to the fact that they can be used without 

enough hindsight on the underlying mechanisms: be it the 

resolution or discretization methods, the pseudo-random 

number generators used, event schedulers, concurrency 

management mechanisms, compilation mechanisms, etc. This 

is mainly because the software stack that allows an 

application to be used is assumed to be mastered. But this is 

not always the case for too many sophisticated scientific  

applications. Nowadays, in many modern software chains or 

workflows, it is no longer "obvious" to obtain two identical 

software during two successive builds (Lamb and Zacchiroli 

2021). 

 

We will first present the main definitions encountered in 

reproducible research. This field is quite new for computer 

scientists since reproducibility was considered granted. In the 

past twenty years, we have seen an evolution in the 

terminology which is sometimes confusing. Then, we will 

address the reasons why we could fail to reproduce our 

simulation results in the context of High Performance 

Computing.  Eventually, we will present a technique enabling 

the production of comparable results even with parallel 

stochastic simulations. When stochastic simulations are used, 

this technique is able to face the ‘silent errors’ impacting top 

supercomputers. 



 

REPRODUCIBLE RESEARCH AND COMPUTER 

SCIENCE 

 
First, we want to define the notion of computer repeatability. 

It means that we want bitwise identical results. If you don’t 

have this property, how do you debug? 

 

It is sometimes called bitwise reproducibility which adds 

confusion, we will discuss the terminology evolution. As said 

above, this property is essential for debugging, but it has only 

a little to do with reproducibility in the epistemological sense 

used by Popper. If we lose run-to-run repeatability on the 

same machines, our computers are worthless – they lose their 

key deterministic property. This case is very rare for 

common applications, but unfortunately in the case of High 

Performance Computing (HPC) this is occurring more often 

than we would like to, and we have to “fight” to come back 

to a reliable hardware/software couple enabling the 

restoration of confidence in what the simulation outputs. 

 

Reproducing a result in the epistemological sense means that 

a different laboratory, starting the experiment from scratch, 

would get the same scientific conclusion (and not exactly the 

same results). It means you have a corroboration which 

increases your confidence in the work achieved by some 

independent pairs. Your scientific results and the scientific 

conclusion obtained by other authors statistically match. The 

important thing is to have an independent team following the 

same protocol. But you can obtain even more confidence 

when other things have changed in the way the study has 

been conducted.Another machine, another computer 

language, another software stack or method enabling the 

finding of the same scientific conclusion for the same 

problem. This is augmenting the confidence we have in a 

scientific finding and it will lead to a new set of definitions as 

presented later. 

 

An important pioneering work was carried out at Stanford by 

Claerbout and Karrenbach in 1992, an update can be found 

in (Schwab et al. 2000) to discover the initial definitions. 

More recently, the work of Stodden at MIT (Stodden 2009) 

and our work (Hill 2015) discussed definitions in the context 

of scientific computing. The terms “reproduce” and 

“replicate” often meant different things and sometimes were 

found interchangeable even with the same authors. A paper 

by Drummond in 2009 in the machine learning field added  

confusion. At the same time, following Claerbout, Donoho 

and Stodden (Donoho et al. 2009), reproducible research in 

Computer Science linked the production of research papers 

to the data and all the software tools allowing a reader to find 

the results that are presented. All what is needed in addition 

to the research paper is called the research artifact : the entire 

software system or workflow used to run the digital 

experiments and produce results, the input datasets, the 

output raw data collected during the experiments and the 

software used for analysis and needed to obtain the final 

results. Even though this is very interesting and essential, this 

is limiting the epistemological meaning of reproducibility 

where many things can change to corroborate the scientific 

results, including input data, methods and tools,… 

 

Following this, a recent change in terminology was made by 

the ACM (Association for Computing Machinery) thanks to 

discussions with NISO (National Information Standards 

Organization). NISO recommended to ACM a harmonization 

with what is found not only in Computer Science but in the 

whole Scientific Community. This introduced a recent swap 

in the terms “reproducibility” and “replicability” to meet 

their recent and current version of Artifact Review and 

Badging. The reference (ACM 2020) gives the URL to find 

the full and current definitions. They are inspired by the 

International Vocabulary of Metrology since  the result of an 

experiment can be seen as a measurement on a virtual entity 

(VIM 2012). All this evolution in terminology has been 

carefully reviewed by Lorena Barba in a paper dedicated to 

terminology (Barba 2021). We cannot establish experimental 

results if they can’t be reproduced. The new definitions 

proposed by ACM in 2020 distinguish again the three terms,  

can of course still be discussed since the concern for 

reproducible research is rather new for computer 

experiments :  

 

Repeatability  

 

For the current ACM definition, repeatability implies that a 

computer scientist can repeat calculation and should find 

each time the same result with a stated precision (the same 

team and the same experimental setup). 

 

Reproducibility  

 

The latest ACM definition for reproducibility, says that a 

person or a group of researchers independent from the initial 

author (or group of authors) is able to obtain, with a stated 

precision, the same result with thanks to the initial author’s 

artifact (a different team trying to obtain the same results 

using the same experimental setup).  

 

Replicability  

 

This term replicability is considered as rather new for many 

computer scientists (and dictionaries…). It means that a new 

team should obtain the same result, with a stated precision, 

using artifacts which they develop completely independently 

(a different team working with a different experimental 

setup).  

 

The notion of “same results” remains vague. With a stated 

precision it fits with the requirements for measurements 

which inspired ACM, but it fails to meet the debugging 

requirements, essential for software development. This last 

point requires bitwise identical results from run-to-run when 

dealing with repeatability. Digital computers are built to be 

deterministic. 

 
WHY DO WE LOSE REPEATABILITY AND 

REPRODUCIBILITY ?  

 

We have already mentioned that the main reason why there is 

a lack of reproducibility in computer science is due to the 

fact that authors rarely share their code (and data). The 



second important reason comes from our limit to implement 

real numbers and mathematical operations with bit registers. 

One can see the famous paper from Goldberg : “What every 

computer scientist should know about floating-point 

arithmetic” to understand the IEEE 754 standard (and its new 

updates in 2008 and 2019). This standard represents real 

numbers with fractions and comes with fast hardware 

implementations. However, the accumulation of rounding 

errors can impact some complex floating-point computing, 

particularly in high performance computing. Compensated 

summation algorithms like the one proposed by Kahan and 

his colleagues significatively reduces such errors and most of 

them can be parallelized. Recent works in this field were 

proposed by (Blanchard et al. 2020) and (Lange 2022). 

 

Still with floating points, it is also sometimes, if not often, 

forgotten that the order in which floating point additions and 

multiplications are executed matters. While mathematically 

such operations are associative in the set of real numbers, it 

is not the case in the space of fractions. Optimization of the 

Intel C++ Compiler uses associativity-based transformations 

by default and this can impact your result (particularly with 

compensated sums). It is important to control the compiler 

options to be sure that the order of operations will follow the 

source code. For instance we can find advices in the Intel 

compiler documentation to improve numerical 

reproducibility. Indeed, many software or hardware 

optimizations could influence the final result. This is 

particularly true with the dynamic execution mechanism 

included in modern processors. The reordering proposed by 

such optimization could lead to repeatability problems from 

run-to-run when using floating point operations. 

Reproducibility and repeatability problems are often: 

 

 related to the implementation in different programming 

languages, 

 related to different compilers or compiler options even 

when the same programming language is used, 

 linked to environment : different operating systems or 

different virtual machines or containers, different 

versions of compilers, compiler options, libraries,… 

 due to a limited knowledge of the pseudorandom number 

used (poor or dated generators which do not meet 21st 

century computing requirements), bad or poor 

initialization of the pseudorandom number generator 

status, bad or inadapted parallelization technique used for 

the pseudorandom number generator. 

 related to hardware diversity : GP-GPUs, FPGAs, MPPA, 

Manycore of the Intel Xeon Phi type with a k1OM 

architecture instead of a regular x86 architecture (even 

when using the same compiler, the same language and the 

same operating system), 

 observed from one execution to another on the same 

microprocessor while all the rest of the computer context 

is strictly identical! This is the worst case scenario, where 

we lose run-to-run reproducibility and unfortunately it is 

being observed more and more frequently due to dynamic 

execution on modern CPU architectures. 

 

In the next section, we will give some good practice which 

enables the mastering of parallel stochastic simulations. With 

a rigorous method it is possible to keep the expected 

reproducibility, the statistical quality of the results by 

avoiding correlations between the parallel computations. 

 

THE DESIGN OF REPRODUCIBLE PARALLEL 

STOCHASTIC SIMULATIONS 

 
The “deterministic” nature of “stochastic” simulations 

 

We sometimes read in high performance computing 

magazines that it is normal to obtain different results for the 

same parallel stochastic simulations because of stochasticity. 

It is important to remember that pseudorandom numbers, 

though they simulate randomness, are deterministic 

programs. They are precisely designed to be repeatable in 

order to be able to debug stochastic programs (Monte Carlo 

simulations and all their derivatives). In the context of so-

called “in order” processors (which could become rare), the 

hardware at our disposal does not dynamically change the 

order of instructions and can be considered deterministic. 

Development environments and compilers are also designed 

to be still deterministic unless we explicitly ask the compiler 

to try "unsafe" optimizations. Thus we should be able to 

obtain identical results from one stochastic simulation to the 

other when the input data are the same. Not being able to 

reproduce its results from one execution to another highlights 

either a hardware or software problem, or a lack of rigor in 

the scientific design of the study.  

 

A short list of modern and parallelizable high quality 

generators with ‘independent’ streams 

 

The algorithms that we have selected below all offer a 

reliable technique according to the best statistical test 

batteries for distributing random numbers in a parallel 

environment : TestU01 (L'Ecuyer and Simard 2007). We 

have already identified and detailed these techniques in (Hill 

et al. 2013), but only some of them can be applied on a GPU 

platform. Here is a selection of some interesting generators: 

 Mersenne Twister (Matsumoto and Nishimura 1998) is  a 

generator which quickly became a reference. Despite 

some known defaults (don’t use it for cryptography), it is 

fast for simulations (faster version exists with SIMD 

instructions). Its huge period 219937 makes it interesting 

for partitioning with various techniques for exascale 

machines cores and for experimental designs in high 

dimensions. 

 MRG32k3a (L’Ecuyer 1999). This concise algorithm was 

intended to be implemented directly on floating-point real 

numbers. Its data structure only stores 6 values in double 

precision. It is possible to divide the initial sequence into 

264 adjacent streams each containing 2127 elements. Its 

optimized implementation on modern Intel C/C++ type 

compilers is up to 15 times slower than Mersenne Twister 

with recent Intel Xeons and an Intel compiler. 

MRG32K3a remains suitable for HPC when the 

proportion of calculation associated with the volume of 

pseudo-random number drawings is low. 

 MLFG6331_64 (Mascagni and Srinivasan 2004). It is a 

64-bit nonlinear Multiplicative Lagged Fibonacci 

Generator (MLFG) type generator. With a period of 2124, 



it can provide, like MRG32k3a, more than 260 parallel 

streams thanks to a parameterization mechanism. 

 Phylox and Threefry (Salmon et al. 2011). Salmon and 

his colleagues proposed three cryptographically inspired 

generators for CPU and GPU at the 2011 supercomputing 

conference. They also rely on the technique of 

parametrization to solve the problem of distribution of 

stochastic fluxes within parallel applications.  

 

For parallel stochastic simulations we need indenpendent 

streams to carry out (simulate) ‘independent’ experiments. 

There will never be any mathematical proof of this 

‘independence’, the proof of the dependence being the source 

code of the generator itself. However, the best 

mathematicians have worked on techniques that allow us to 

assign different ‘independent’ random streams for different 

elements of parallel computing with one of the following two 

approaches (1) partitioning of a single random stream and (2) 

producing multiple independent streams. In the latter case, 

the independent fluxes are obtained by parameterization 

techniques designed depending on the “family” of 

generators. Much more details dealing with distribution and 

parallelization techniques can be found in (Hill et al. 2013).  

 

A METHOD FOR REPEATABLE PARALLEL 

STOCHASTIC SIMULATIONS 

 

In (Hill 2015) we proposed a method allowing the 

repeatability of the results from parallel stochastic 

simulations. With this method, it is possible to compare the 

results of the parallel program with a sequential version of 

the program which serves as a reference (at a smaller scale). 

To obtain repeatable results, we give the following 

recommendations to designers: 

 

 use an object-oriented simulation approach (Hill 1996); 

 use a high quality generator such as those mentioned 

above; 

 use of a fine parallelization technique for retained 

pseudorandom number generator; 

 use a “parallel” design for the sequential program which 

serves as a reference. 

 

This last part is key to gain confidence in the parallel version 

of the simulation. It has to be tested at small scales, for 

instance at the scale of a node in a parallel machine. The 

details of the method is given hereafter: 

 

1. First, design a sequential program with its input data set 

that will serve as a reference. The key is based on the fact 

that this design of the sequential program must be done 

by thinking parallel from the start. All the “stochastic 

objects” of this sequential simulation can be designed to 

be executed independently and therefore when going 

parallel, the result will not be impacted. Each stochastic 

object identified has its own stream of pseudorandom 

numbers with a precise initial status to replay the 

simulation. 

2. The set of “independent” stochastic streams must be 

produced using one of the techniques previously 

discussed in (Hill et al. 2013). As specified above, all the 

initial statuses of the stochastic flows used should be 

archived in the initial state of the simulation, so as to be 

able to reproduce the same sequence for each simulated 

stochastic object. 

3. The parallel execution will be based on a mapping of the 

independent stochastic objects over a number N of 

computing units (or PE, Processing Elements). Whatever 

the number of PEs, the stochastic flows are specific to 

each object and will be initialized with their own status, 

the same statuses used in the sequential simulation. 

4. At a small scale (typically the scale of a node of a parallel 

machine), check that parallel executions on different 

numbers of Processing Elements give the same primary 

results as the reference sequential execution when the 

same input dataset is used. 

5. When the previous stage of the method is achieved. The 

simulation can be mapped to many nodes.  

6. When intermediate results are obtained in parallel, the 

reduction phase can use compensated sums when needed. 

The computing of the final reduction should respect the 

same order of operations which was used by the 

sequential program (the Processing Element ID can help 

to keep the same order each time we compute the 

reduction). Thus the calculation of an average and its 

confidence interval can lead to the same floating point 

result..  

 

Using this method ensures that the results of stochastic 

parallel simulations are repeatable, enabling thorough 

debugging. This property is very important for many 

scientists working in sensitive fields: medicine, nuclear 

safety, finance, etc. We applied this method successfully 

since 2015 within the framework of the LabEx Clervolc and 

the Tomuvol project : Muonic simulations for Computed 

Tomography of volcanoes. When using large batches of 

parallel independent stochastic simulations on huge top 

machines, silent or ‘soft’ errors (alpha particles for instance) 

are impacting some computing nodes. They can be detected 

statistically and removing as ‘bad’ elementary results 

(measures) to save the entire computing; a full deterministic 

code would have failed.  

 

CONCLUSION  

 

This article aims at increasing the sensitivity of our scientific 

community to the need for reproducibility. It aims to increase 

the quality of our publications and save the time spent trying 

to reproduce the results of studies that are not sufficiently 

documented. We have seen the evolution in the terminology 

of this field in the past twenty years and we have given a 

focus on High Performance Computing (HPC) with the case 

of stochastic parallel simulations. Monte Carlo simulations 

are very common, particularly in Physics where we have 

proposed reproducible approaches, with a year of data 

collected on the Worldwide LHC Computing Grid (Boyer et 

al 2022a). We have proposed a method which enables the 

repeatability and reproducibility of scientific results and in 

addition we are able to compare the sequential and parallel 

results. We will end this conclusion with a warning related to 

the use of hybrid machines using different computing 

hardware architectures (in particular calculation 



accelerators). We addressed this case with classic Xeon 

processors and the initial manycores (Xeon Phi) still in use 

on some supercomputers (Boyer et al. 2022b). Without 

cautions, the differences in the results can reach several 

orders of magnitude. With regard to GP-GPUs, Taufer notes 

that these architectures do not easily allow obtaining 

satisfactory numerical reproducibility (Taufer et al. 2010). 

There is still a lot to do to achieve reproducible research with 

hybrid computing.  
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