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Number of zeros of exponential polynomials in zero residue characteristic

by Alain Escassut

Abstract

Let L be a complete ultrametric field of residue characteristic 0 and
let F (x) =

Pk
i=1 fi(x)exp(ωix), with ωi ∈ L, |ωi| < 1. The number of

zeros of F in the unit disk is bounded by n− 1.

Notations: We denote by L a complete field wit respect to an ultrametric
absolute value, with residue characteristic 0 and we denote by v the valuation
linked to L as v(x) = − log(|x|) [1]. Next, we denote by K an algebraically closed
field K complete with respect to an ultrametric absolute value with zero residue
characteristic. Given r > 0, we denote by dL(0, r) the disk {x ∈ L | |x| ≤ r}
and by dK(0, r) the disk {x ∈ K | |x| ≤ r}.

In an algebraically closed field K complete with respect to an ultrametric
absolute value with residue characteristic p > 0, the number of zeros of a sum
of exponential polynomials was examined in several papers. Following [6] and
[8], the best estimation was given in [7] and this was also given in [4]. Here we
will follow the method of [6] in order to examine a similar problem on the field
L which might apply to fields such as Levi-Civita fields [5].

Given r > 0, we denote by by H(d(0, r)) the K-algebra of anaytic elements
in dK(0, r), i.e. the set of power series

∑∞
j=0 λjx

j converging in dK(0, r) [3].

The radius of convergence of the exponential function exp(x) =
∞∑

j=0

xj

j!
is 1

in the field K and the fuction converges in all dK(0, 1) [1], [2].

Theorem M: Let L be an ultrametric complete field of residue characteristic
0 and let F (x) =

∑k
i=1 fi(x)exp(ωix) where each ωi ∈ L satisfies v(ωi) > 0,

each fi lies in L[x] and deg(fi) = mi − 1. Let n =
∑k

i=1mi.
Then the number N of zeros of F in the disk dL(0, 1), taking multiplicity

into account, satisfies N ≤ n− 1.

Before proving Theorem M, we have to recall the following Theorem A that
is Theorem B.13.7 in [2] together with some notations and classical properties:

Notation: Let r > 0 and let f(x) =
∞∑

j=0

ajx
j ∈ H(dK(0, r)) [3]. Then

lim
j→+∞

|aj |rj = 0 and we denote by ν+(r, f) the unique integer t such that

|at|rt = supj∈N |aj |rj > |aj |rj ∀j > t [1], [2].
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Theorem A: Let r > 0 and let f ∈ H(dK(0, r)). The number of zeros of f
in dK(0, r) is equal to ν+(f, log r), (taking multiplicity into account).

Proof of Theorem M: Let us first suppose that the field L is algebraically

closed and hence is K. Denoting by D the derivation
d

dx
, then F satisfies a

relation of the form

(1) DnF = c1D
n−1F + c2D

n−2F + ...+ cnF

where

(2)
k∏

i=1

(x− ωi)mi = xn − c1xn−1 − c2xn−2 − ...− cn.

Expanding F as a power series, we have

F (x) =
∞∑

h=0

ahx
h =

∞∑
h=0

bh
h!
xh, |x| < 1.

From the differential equation (1), we have the recurrence

(3) bh+n = c1bh+n−1 + ...+ cnbh, h = 0, 1, 2, ....

Let ε = min1≤i≤n v(ωi). Since the radius of convergence of the exponential
exp(x) is 1 in a field of residue characteristic 0 [1], [2], the series F converges
in dK(0, 1), hence it lies in H(dK(0, 1)), and therefore we can put t = ν+(F, 1).
Without loss of generality, we can suppose that |at| = 1. Thus we have |at| = 1
and |ah| < 1 ∀h > t. Consequently by Theorem M the number of zeros of F in
dK(0, 1) is t. From (2), we can see that v(cj) ≥ jε (j = 1, 2, ..., n).

Now, by assumption we have v(ah) ≥ 0 and v(ah) = v(bh) − v(h!) = v(bh)
because v(h!) = 0 ∀h, hence v(bh) ≥ 0 (h = 0, 1, ...). By (3), we have

v(bn) ≥ min
1≤j≤n

(v(cj) + v(bn−j)) > min
1≤j≤n

(εj + v(bn−j)) ≥ ε.

Then, by (3) with h = 1, 2, ... we have v(bh+n−1) > hε, hence

v(ah+n−1) > hε− v((n− 1 + h)!) = hε ∀h ≥ 1.

Thus for every h ≥ 1, we have v(ah+n−1) > 0, hence t ≤ n − 1. Consequently,
the number of zeros of F in d(0, 1) is bounded by (n− 1), which ends the proof
when the field L is algebraically closed.

Consider now the general case, when L is not supposed to be algebraically
closed. The field L then admits a unique algebraically closed extension complete
with respect to an ultrametric absolute value that continues this of L (see for
example Theorem A.5.14 !n [2]). Then F (x) has continuation in the disk dK(0, 1)
and has at most n− 1 zeros in dK(0, 1) taking multiplicity into account, hence
of course it has at most n− 1 zeros in the disk dL(0, 1) taking multiplicity into
account.
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