Number of zeros of exponential polynomials in zero residue characteristic
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Let L be a complete ultrametric field of residue characteristic 0 and let F (x) = P k i=1 fi(x)exp(ωix), with ωi ∈ L, |ωi| < 1. The number of zeros of F in the unit disk is bounded by n -1.

Notations:

We denote by L a complete field wit respect to an ultrametric absolute value, with residue characteristic 0 and we denote by v the valuation linked to L as v(x) = -log(|x|) [START_REF] Amice | Les nombres p-adiques[END_REF]. Next, we denote by K an algebraically closed field K complete with respect to an ultrametric absolute value with zero residue characteristic. Given r > 0, we denote by

d L (0, r) the disk {x ∈ L | |x| ≤ r} and by d K (0, r) the disk {x ∈ K | |x| ≤ r}.
In an algebraically closed field K complete with respect to an ultrametric absolute value with residue characteristic p > 0, the number of zeros of a sum of exponential polynomials was examined in several papers. Following [START_REF] Van Der Poorten | Zeros of p-adic exponential polynomials[END_REF] and [START_REF] Waldschmidt | Propriétés arithmétiques des valeurs de fonctions méromorphes algébriquement indépendantes[END_REF], the best estimation was given in [START_REF] Van Der Poorten | Hermite interpolation and p-adic exponential polynomials[END_REF] and this was also given in [START_REF] Robba | Nombre de zéros des fonctions exponentielles polynômes[END_REF]. Here we will follow the method of [START_REF] Van Der Poorten | Zeros of p-adic exponential polynomials[END_REF] in order to examine a similar problem on the field L which might apply to fields such as Levi-Civita fields [START_REF] Shamseddine | A brief survey of the study of power series and analytic functions on the Levi-Civita fields[END_REF].

Given r > 0, we denote by by H(d(0, r)) the K-algebra of anaytic elements in d K (0, r), i.e. the set of power series ∞ j=0 λ j x j converging in d K (0, r) [START_REF] Krasner | Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie des nombres[END_REF].

The radius of convergence of the exponential function exp

(x) = ∞ j=0 x j j! is 1
in the field K and the fuction converges in all d K (0, 1) [START_REF] Amice | Les nombres p-adiques[END_REF], [START_REF] Escassut | p-adic Analytic Functions[END_REF].

Theorem M: Let L be an ultrametric complete field of residue characteristic 0 and let

F (x) = k i=1 f i (x)exp(ω i x) where each ω i ∈ L satisfies v(ω i ) > 0, each f i lies in L[x] and deg(f i ) = m i -1. Let n = k i=1 m i .
Then the number N of zeros of F in the disk d L (0, 1), taking multiplicity into account, satisfies N ≤ n -1.

Before proving Theorem M, we have to recall the following Theorem A that is Theorem B.13.7 in [START_REF] Escassut | p-adic Analytic Functions[END_REF] together with some notations and classical properties: 

Notation: Let r > 0 and let f (x) = ∞ j=0 a j x j ∈ H(d K (0, r)) [3]. Then
D n F = c 1 D n-1 F + c 2 D n-2 F + ... + c n F where (2) k i=1 (x -ω i ) mi = x n -c 1 x n-1 -c 2 x n-2 -... -c n .
Expanding F as a power series, we have

F (x) = ∞ h=0 a h x h = ∞ h=0 b h h! x h , |x| < 1.
From the differential equation ( 1), we have the recurrence

(3) b h+n = c 1 b h+n-1 + ... + c n b h , h = 0, 1, 2, .... Let = min 1≤i≤n v(ω i ).
Since the radius of convergence of the exponential exp(x) is 1 in a field of residue characteristic 0 [START_REF] Amice | Les nombres p-adiques[END_REF], [START_REF] Escassut | p-adic Analytic Functions[END_REF], the series F converges in d K (0, 1), hence it lies in H(d K (0, 1)), and therefore we can put t = ν + (F, 1). Without loss of generality, we can suppose that |a t | = 1. Thus we have |a t | = 1 and |a h | < 1 ∀h > t. Consequently by Theorem M the number of zeros of F in d K (0, 1) is t. From (2), we can see that v(c j ) ≥ j (j = 1, 2, ..., n). Now, by assumption we have v(a h ) ≥ 0 and v(a

h ) = v(b h ) -v(h!) = v(b h ) because v(h!) = 0 ∀h, hence v(b h ) ≥ 0 (h = 0, 1, ...). By (3), we have v(b n ) ≥ min 1≤j≤n (v(c j ) + v(b n-j )) > min 1≤j≤n ( j + v(b n-j )) ≥ .
Then, by (3) with h = 1, 2, ... we have v(b h+n-1 ) > h , hence

v(a h+n-1 ) > h -v((n -1 + h)!) = h ∀h ≥ 1.
Thus for every h ≥ 1, we have v(a h+n-1 ) > 0, hence t ≤ n -1. Consequently, the number of zeros of F in d(0, 1) is bounded by (n -1), which ends the proof when the field L is algebraically closed.

Consider now the general case, when L is not supposed to be algebraically closed. The field L then admits a unique algebraically closed extension complete with respect to an ultrametric absolute value that continues this of L (see for example Theorem A.5.14 !n [START_REF] Escassut | p-adic Analytic Functions[END_REF]). Then F (x) has continuation in the disk d K (0, 1) and has at most n -1 zeros in d K (0, 1) taking multiplicity into account, hence of course it has at most n -1 zeros in the disk d L (0, 1) taking multiplicity into account.

  lim j→+∞ |a j |r j = 0 and we denote by ν + (r, f ) the unique integer t such that |a t |r t = sup j∈N |a j |r j > |a j |r j ∀j > t [1], [2]. 1 Theorem A: Let r > 0 and let f ∈ H(d K (0, r)). The number of zeros of f in d K (0, r) is equal to ν + (f, log r), (taking multiplicity into account). Proof of Theorem M: Let us first suppose that the field L is algebraically closed and hence is K. Denoting by D the derivation d dx , then F satisfies a relation of the form (1)