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Abstract

We study the SIHR epidemiological model to describe the evolution of the COVID19 disease
and help the authorities to put in place effective strategies and controls. In this paper, we have
developped a numerical approach based on Lagrange polynomials to analyze the sensitivity
of input parameters (basic reproduction number, cure rate, hospitalization rate) on the evo-
lution of the system. The sensitivity analysis has been undertaken to identify the key model
parameters. Here, the quantity of interest is the endemic stationary state of the model which
is a function of uncertain parameters. Using Lagrange polynomials is a natural framework
for computing Sobol indices. Furthermore, we consider a sinusoidal and logistic infection
rate and give simulations of the model SIHR with deterministic parameters and when the
parameters follow the uniform law.

Keywords: COVID19; SIHR model; Lagrange polynomial; Stochastic collocation method; Sobol
indices; Simulations.
2010 Mathematics Subject Classification:

1 Introduction

The corona virus disease (COVID-19) is a worldwide infectious disease [1, 2], caused by a new
strain of coronavirus. CO stands for corona, VI for virus, and D for disease. Formerly, this disease
was referred to as 2019 novel coronavirus or 2019-nCoV. The COVID-19 virus is a new virus
linked to the same family of viruses as Severe Acute Respiratory Syndrome (SARS) and some
types of common cold [12]. Corona-viruses are a large family of viruses that can be pathogenic
in humans and animals. We know that, in humans, several corona-viruses can cause respiratory
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infections whose manifestations range from a simple cold to more serious illnesses such as Middle
East respiratory syndrome (MERS) where dromedary camels were thought to be the intermediate
source for the transmission of the virus [22, 35, 3]. The novel corona virus was first identified by
health authority of Wuhan province of China [19, 20]. Symptoms can include fever, cough and
shortness of breath. In more severe cases, infection can cause pneumonia or breathing difficulties.

The simplest way to model epidemic spread in populations is to classify people into different pop-
ulation groups or compartments. Compartmental models are governed by a system of differential
equations that follow the population over time, dividing them into different groups based on risk
or infection status. They are able to predict the various properties of pathogen spread, can estimate
the duration of epidemics, and can be used to understand how different situations or interventions
can impact the outcome of pathogen spread. The Kermack-Mckendric SIR model is a very well
established model and is widely used for various epidemics [34]. To do this, the SIR, SIRS and
SEIR models have been developed which highlight the crucial role played by the R0 parameter,
describing the average number of new infections due to a sick individual [30, 21]. The course of a
disease depends on several parameters (infection rate, cure rate, hospitalization rate, vaccination,
etc.). The aim of this research is to study the influence of these parameters on the spread of the
epidemic. For this, we study the sensitivity analysis applied to the epidemiological model.

The sensitivity analysis studies how disturbances on the input variables of the model generate dis-
turbances on the output variable. The author interested in a reference work can refer to [4, 15, 7].
Indeed, by studying how the response of the model reacts to variations in its input variables, the
sensitivity analysis makes it possible to answer a number of questions: What are the variables that
most contribute to the variability of the model response? What are the least influential variables?
Which variables, or which groups of variables, interact with which others? To answer these ques-
tions, we use the Sobol indices. These indices make it possible to predict the consequences on the
evolution of a disease according to the variation of the parameters of the model in order to put in
place strategies to prevent disease (vaccination, prevention campaign, etc.).

To calculate the Sobol indices, applied to the numerical approximation of differential equations,
we use the stochastic collocation method. The solution of the differential equation is represented
by means of Lagrange polynomials. The coefficients of the polynomial basis are functions of time
and can be calculated by solving a system of deterministic ordinary differential equations. Numer-
ical examples are presented to illustrate the accuracy and efficiency of the proposed method.

Our main goal of this work is to extend the classical deterministic susceptible-infectious-removed
(SIR) epidemic model by adding a hospitalized compartment and develop the stochastic colloca-
tion method to study the sensitivity analysis in the input parameters of the epidemiological model
(cure rate, basic reproduction number, hospitalization rate, ... etc) on the course of the disease with
an infection rate depending on time. The SIHR model appears in several research works, in partic-
ular the article [16], [31] and [28]. We assume that these parameters are not precisely known and
that they can therefore be modeled as random variables with known laws. We calculate the Sobol
indices of order 1 and 2 for each parameter in the endemic stationary state and we consider that
the parameters follow the uniform law. The organization of the paper is as follows: in section
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2, we introduce the model, describe the parameter estimation procedure, study the aymptomatic
stability of disease-free and endemic equilibrium points and predict the evolution of the disease
with a sinusoidal infection and a logistic infection. In section 3 and 4, we introduce the theory
on sensitivity analysis and the stochastic collocation method. In section 5, we calculate the Sobol
indices of the endemic stationary state to know the influences of the input random variables on
the output variable and we simulate the model with two different infection rate and two different
basic reproduction number when the parameters follow the uniform law. Details of calculations of
stationnary Sobol indices are given in the appendix.

2 The SIHR epidemiological model

Disease models play an important role in understanding and managing the transmission dynamics
of various pathogens. We can use them to describe the spatial and temporal patterns of disease
prevalence, as well as to explore or better understand the factors that influence infection inci-
dence. Modeling is a key step in understanding what treatments and interventions can be most
effective and what specific factors need to be considered when trying to eradicate disease. Some
recent studies provided different guidelines by introducing basic reproduction number, education
and socio-economic index and lock-down strategies [17, 9]. To understand the complex dynamics
underlying disease transmission, epidemiologists often use a set of models called compartmental
models. Developed in the early 20th century, these models stratify a population into groups, gen-
erally based on their risk or infection status. Underlying these models is a system of differential
equations that track the number of people in each category over time.

We note S̃t (respectively, Ĩt, H̃t and R̃t) the number of the susceptible in the population (respec-
tively, the number of the infected, hospitalized, recovered in the population N ), and

Nt = S̃t + Ĩt + H̃t + R̃t

where Nt is the population at time t.

We consider that the mortality from the covid of infected people and hospitalized people is the
same.

The SIHR model is represented by the proportion of each compartment in the population in the
following system of differential equations:

dSt
dt

= τ − µSt − β(t)StIt

dIt
dt

= β(t)StIt − (ν + µ+ γ + α)It

dHt

dt
= αIt − (ν + µ+ λ)Ht

dRt
dt

= γIt + λHt − µRt.

(1)
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with St =
S̃t
Nt
, It =

Ĩt
Nt
, Ht =

H̃t

Nt
and Rt =

R̃t
Nt

and the initial condition S0 > 0, I0 > 0, H0 ≥
0, R0 ≥ 0 where the interpretation of parameters is presented in Table 1.

Notations Interpretations
τ Birth rate of class S
µ Natural death rate
ν Death rate of infection
β(t) Transmission infection rate
γ Recovery rate of class I
λ Recovery rate of class H
α Hospitalized rate

Table 1: Parameters and their descriptions.

2.1 The dynamics of SIHR model

System dynamics is a methodology and a mathematical modeling technique to frame, understand
and discuss complex issues and problems. System dynamics is an aspect of systems theory as a
method to understand the dynamic behavior of complex systems. The model with multiple com-
partments is a useful tool to predict the nature of recent most dangerous disease. In this section,
we study a model of four compartments SIHR. The key objectives of this section are as follows:
firstly, we establish the basic reproduction rate using the method next generation matrix and an-
alyze the stability of the disease-free and the endemic equilibrium points of the model using the
basic reproduction number to understand the severity. Secondly, we perform simulations of the
course of the disease with an infection rate that depending on time.

The model (1) is continuous and Lipschizien in R4
+. From the existence and uniqueness of the

solution to the ordinary differential equation, the model admits a unique solution for any initial
value (S0, I0, H0, R0) ∈ R4

+. From the equation of I in (1), we have:

It = I0 exp

(∫ t

0

[
β(u)Su − (ν + µ+ γ + α)

]
du

)
,

therefore It > 0 for all t > 0. Then we have
dHt

dt
> −(ν + λ)Ht, so Ht > 0 for all t > 0 and

H0 > 0.
In the same way, we have Rt > 0 and St > 0 for all t > 0. The system (1) is positive that means
that the solution remains positive for any trajectory initialized at positive conditions.

We consider Kt = St + It +Ht +Rt and adding equations in (1), we have

dKt

dt
= τ − µKt − ν(It +Ht).
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The dynamics of the model (1) should be studied in the closed region:

Λt =

{
(St, It, Ht, Rt) ∈ R4 : Kt 6

τ

µ
with (S0, I0, H0, R0) ∈ R4

+

}
. (2)

Lemma 2.1. The closed region Λt is a positively invariant set for the COVID-19 model (1)

Proof. We have
dKt

dt
= τ − µKt − ν(It +Ht) 6 τ − µKt (3)

By solving (3) and using the initial condition, we get

Kt 6 K0e
−µt +

τ

µ

(
1− e−µt

)
.

We conclude that Kt 6
τ

µ
if K0 6

τ

µ
. Thus, Λt is a positively invariant set under the inputs and

outputs presented in the COVID-19 model (1).

We note that in reality the rate of infection varies with the control measures that are put in place.
The article [32] considers the infection rate as a function that depends on several parameters

β(t) =
β0

1 + exp
(
λm(t− d−m/2)

) , (4)

where d is the time when the control measures start to be effective, β0 is the initial decline, m
represents the duration of a process where the epdemic is near to vanish, λm is chosen as

2 log((1− ε)/ε)
m

and ε is fixed to be 0,01.

The logistics function (4) can be written in another simpler way:

β(t) =
β0

1 + exp
(
− k(t− t0)

) (5)

where k is the intensity of beta convergence towards 0 and t0 is the day of implementation of the
control measures.
The article [26] considers the following function for the infection rate:

β(t) = β0

[
1 + ε sin

(
2π

T
t+ φ0

)]
, (6)

where ε is the amplitude, T the period and φ0 the initial phase.

In reality, the infection rate β probably never jumps from one value to another. Rather, it contin-
uously changes and might go up and down several times, e.g. if social distancing measures are
loosened and then tightened again. One can choose various function for β.

In this study we consider (5) and (6) for the evolution of the model (1).
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2.1.1 The basic reproduction number

The basic reproduction number R0, also called the basic reproduction rate or rate, is an epidemi-
ological metric used to describe the contagiousness or transmissibility of infectious agents. This
number is the average number of susceptible an infected person will infect at the start of the epi-
demic.

This parameter describing the average number of new infections due to a sick individual, plays
a crucial role. If this number is less than 1 then the epidemic will tend to die out. In this case,
the disease-free equilibrium (DFE) will be locally asymptotically stable and the disease cannot
persist in the population. On the other hand, it may persist or even spread to the whole popu-
lation if R0 > 1. This implies that the disease-free equilibrium (DFE) is unstable. Using next
generation matrix [23, 8] and [25], the basic reproduction of (1) can be found. Since the DFE is
E0 =

(
τ
µ , 0, 0, 0

)
, the basic reproduction number can be computed using the analytical approach.

We now consider the following model equivalent to the model (1)

dKt

dt
= τ − µKt − νIt − νHt

dIt
dt

= β(t)(Kt − It −Ht −Rt)It − (ν + µ+ γ + α)It

dHt

dt
= αIt − (ν + µ+ λ)Ht

dRt
dt

= γIt + λHt − µRt.

(7)

to calculated the reproduction number and study the stability.

Let F =

(
τ

β(t)KtIt

)
represents the rate of new infection matrix and

V =

(
µKt + ν(It +Ht)

β(t)(It +Ht +Rt)I + (ν + γ + α)It

)

denotes the transfert rate matrix of the individuals. Let us define F = ∂F
∂xj

(E0) and V = ∂V
∂xj

(E0)

with x1 = Kt and x2 = It. The reproduction number for the COVID-19 model given by (7) can
be calculated from the relation R0(t) = ρ(FV −1) with ρ the spectral radius of FV −1, and is
found to be

R0(t) =
β(t)τ

µ(ν + µ+ γ + α)
(8)

To find the endemic equilibrium state of the model, we set

dKt

dt
= 0,

dIt
dt

= 0,
dHt

dt
= 0,

dRt
dt

= 0
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Solving the above system, we get the endemic equilibrium state E∗ = (K∗, I∗, H∗, R∗), where

K∗ =
τ

µ
− ν(µ+ ν + γ + α)

µ(µ+ ν + λ)
I∗, H∗ =

α

µ+ ν + λ
I∗, R∗ =

γ(µ+ ν + λ) + λα

µ(ν + µ+ λ)
I∗

I∗ =
µ+ ν + γ + α

β(t)Cα,γ,λ,µ,ν

(
R0(t)− 1

)
,

Cα,γ,λ,µ,ν = 1 +
ν(ν + µ+ λ+ α)

µ(µ+ ν + λ)
+

α

ν + µ+ λ
+
γ(µ+ ν + λ) + λα

µ(µ+ ν + λ)
.

2.1.2 Stability of the disease-free equilibrium state and the endemic equilibrium state

In this section, we shall establish the stability of the equilibrium states. First, we give the Jacobian
matrix for any point of the model (7)

J(E) =



−µ −ν −ν 0

β(t)It β(t)(Kt − It −Ht −Rt)− β(t)It − (ν + µ+ γ + α) −β(t)It −β(t)It

0 α −(ν + µ+ λ) 0

0 γ λ −µ


.

Theorem 2.1. The DFE will be locally asymptotically stable ifR0(t) < 1.

Proof. The Jacobian matrix corresponding to the system (7) at DFE point E0 =
(
τ
µ , 0, 0, 0

)

J(E0) =



−µ −ν −ν 0

0 β(t)τ
µ − (ν + µ+ γ + α) 0 0

0 α −(ν + µ+ λ) 0

0 γ λ −µ


.

The characteristic polynomial of the matrix J(E0) is

P (X) = (−µ−X)2

(
− (ν + µ+ λ)−X

)(
(ν + µ+ γ + α)(R0(t)− 1)−X

)
The roots of the characteristic polynomial are X1 = −µ < 0 , X2 = −(µ + ν + λ) < 0 and
X3 = (ν + γ + α)(R0(t) − 1) < 0 because R0(t) < 1. This concludes the disease free
equilibrium is locally asymptotically stable ifR0(t) < 1.

Theorem 2.2. The disease free equilibrium is globally asymptotically stable ifR0(t) 6 1.

7



Proof. For R0 < 1 see the article [27].

If we considerR0(t) = 1, we have β(t)τ
µ = (ν + µ+ γ + α) and

dVt
dt

=
dIt
dt

=
(
β(t)(Kt − It −Ht −Rt)− (ν + µ+ γ +α)

)
It =

(
β(t)St − (ν + µ+ γ +α)

)
It

For dVt
dt = 0, we have St = τ

µ . By Lasalle invariance principle [18], the DFE point is globally
asymptotically stable.

Theorem 2.3. The endemic equilibrium state E∗ = (K∗, I∗, H∗, R∗) is locally asymptotically
stable if R0(t) > 1.

Proof. For the prove, see the article [27].

2.2 Parameter estimation and simulations

This epidemic is deadlier than the 21st century seasonal flu epidemics in France. You have to go
back to 1957-1958 and 1968-1969 to find epidemics of seasonal that claimed more lives in France
than Covid-19. As of 19 November 2020, the reports related to Covid-19 in medico-social estab-
lishments published daily by the National Public Health Agency show a total of 47,127 deaths and
2,086,288 confirmed positive cases by polymerase chain reaction (PCR).

The total population in France is N = 64821957. According to the report cases about COVID-19
infection at october 1, we can see that:

S0 = 64806884/64821957, I0 = 13970/64821957, H0 = 626/64821957, R0 = 474/64821957.

We have estimated the important model parameters using the France infection cases from 01th
october to 15th november, 2020 which are given in Table 2.

Parameter value:01 October-15 November
τ 714000/64821954=0.011
µ 599000/64821954=0.00924
ν 0,0002
γ 0.423254705
λ 0.05732
α 0.0336454691

Table 2: Parameters estimations.

The R0 (initial virus reproduction rate) is calculated from a population that is fully susceptible
to be infected (that has not yet been vaccinated or immunized against an infectious agent). It
corresponds to the product of three factors: R0 = A × B × C, the risk of contracting the virus
during contact, the number of contacts in a unit of time and the number of days an infected person
is contagious (up to 14 days for coronavirus).
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In the case of the coronavirus, which is a very contagious virus, this R0 was before confinement
at 3 or more. For the same virus, the R0 can vary from one population to another depending on
population density, susceptibility and other factors. WithR0 given, we have

β0 =
µ(µ+ ν + γ + α)

τ
R0.

In Figure (1) and (2), we consider the transmission rate with sinusoidale function (6) for two
different basic reproduction rateR0 = 3 in Figure (1) andR0 = 0.95 in Figure (2) .

Figure 1: Evolution of the system with sinusoidal transmission rate: R0 = 3, ε = 0.1, T = 50(days),
φ0 = π/3.

Figure 2: Evolution of the system with sinusoidal transmission rate: R0 = 0.95, ε = 0.1, T = 50(days),
φ0 = π/3.

In Figure (3) and (4), we consider the transmission rate with logistic function (5) for two different
basic reproduction rateR0 = 3 in Figure (3) andR0 = 0.95 in Figure (4) .
In Figure (1) and (3), we see exactly the same evolution of the system with two different transmis-
sion rates. We notice that there will be one wave after 15 days.
We observe in Figure (1) and (3), that the susceptible population is decreasing with time and more
people are getting exposed. Since infected population is increasing, there is a large number of
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Figure 3: Evolution of the system with logistic transmission rate: R0 = 3, k = 1.5, t0 = 10.

Figure 4: Evolution of the system with logistic transmission rate: R0 = 0.95, k = 1.5, t0 = 10.

infected individuals over time which can lead to an outbreak in a very short time. If we analyze
the rest of the population dynamics, we see that the infected population grew faster in the first 20
days, which shows the spread of the epidemic over time.

In Figure (2) and (4), for R0 = 0.95 < 1, we note that the population increases linearly and that
the number of infected and hospitalized decreases until approaching to zero. We see exactly the
same evolution of the system with two different transmission rates.

We note that with a reproduction rateR0 equal to 0.95, the epidemic will not last over time.

To compare the two evolutions with the two different rates, for an R0 = 3 we have a peak of
infectivity in the population after 15 days, see figures (1) and (3). In contrary, there is not a peak
of infectivity in the population for an R0 = 0.95 and an epidemic that will not last over time, see
figures (2) and (4).

We have theoretically shown that if R0 > 1 then the epidemic will spread over time and with
R0 < 1 there will be no propagation and the epidemic will quickly disappear.
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Now we are going to show, with the two different basic reproduction rates and with different initial
conditions, that there is an existence of a periodic global attraction orbit.
We observe in the figures (5) and (6), with two different R0 (3 or 0.95), that for different initial
conditions the corresponding orbits converge towards a limit cycle.

R0 = 3 Rf0 = 0.95

Figure 5: T=50 days. Periodic infection parameter β(t) as in (6). N = 64821957, S0 = 64806884/N =
0.9997; ε = 0.1; and φ0 = π/3. Orbits with initial conditions : I0 = 13970/N = 0.00021;H0 =
626/N = 9.6 ∗ 10−6;R0 = 474/N = 7.3 ∗ 10−6; -(a) , I0 = 20000/N = 0.0003; H0 = 2000/N =
3∗10−5;R0 = 1000/N = 1.5∗10−5; -(b), I0 = 30000/N = 0.00046;H0 = 4000/N = 6∗10−5;R0 =
3000/N = 4.5 ∗ 10−5; -(c).

In the figures (5) and (6), for an R0 < 1, we notice that the total number of the population begins
with 1 and increases over time while the number of infected decreases until it approaches to zero.
For an R0 > 1, we notice that the total number of the population starts with 1 and decreases over
time while the number of infected increases drastically and decreases rapidly until it approaches
to zero.

R0 = 3 Rf0 = 0.95

Figure 6: Logistic infection parameter β(t) as in (5). N = 64821957, S0 = 64806884/N = 0.9997; k =
1.5; and t0 = 10. Orbits with initial conditions : I0 = 13970/N = 0.00021;H0 = 626/N = 9.6 ∗
10−6;R0 = 474/N = 7.3 ∗ 10−6; -(a) , I0 = 20000/N = 0.0003; H0 = 2000/N = 3 ∗ 10−5; R0 =
1000/N = 1.5 ∗ 10−5; -(b), I0 = 30000/N = 0.00046; H0 = 4000/N = 6 ∗ 10−5; R0 = 3000/N =
4.5 ∗ 10−5; -(c).
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We conclude that with two different transmission rates (sinusoidale or logistic), with different ini-
tial starting conditions, with two different values of R0, the evolution of the disease will stabilize
and converge towards the same points of equilibrium.

3 Sensitivity analysis

During the development, construction or use of a mathematical model, sensitivity analysis can
prove to be a valuable tool. It is possible to group the sensitivity analysis methods into three
classes: screening methods, which consist of a qualitative analysis sensitivity of the output vari-
able to the input variables, local analysis methods [33] , which quantitatively assess the impact
of a small variation around a given value of the inputs and finally the global sensitivity analysis
methods which are interested in the variability of the output of the model in the whole of its range
of variation. Global sensitivity analysis studies how the variability of inputs affects that of output,
by determining how much of the variance of output is due to a given input or set of inputs. While
the local sensitivity analysis is more concerned with the value of the response variable, the global
sensitivity analysis is concerned with its variability. The author interested in a reference work can
refer to [4, 15, 7]. In this work, we use the global sensitivity namely the Sobol indices.

Sobol’s sensitivity indices are used when considering the following model:

Y = g(X) = g(X1, ..., Xp) (9)

with X ∈ IX ⊂ Rp the input random vector and Y ∈ IY ⊂ R the output variable. The input
variablesXi, with i = 1, ..., p, are independent and the function g of this model may not be known
explicitly.

For such a model, there are 2p−1 indices, one for each variable and each interaction of variables.
These indices belong to the category of global indices, since they represent the proportion of the
variance explained by the input variable concerned. They allow us to measure the influence of
the uncertainties of the input variables on the output variable Y. More specifically, they can give
us information about: the input variables that generate the most variability on the output variable
Y , variables which have little influence on the Y output, the interactions between input variables
which have an impact on the output Y .

For the calculation of the Sobol indices, we use the following conditional formulas for the contin-
uous case:

E(Y |X = x) =

∫
IY

yfY |X=x(y)dy =

∫
IY

y
fX,Y (x, y)

fX(x)
dy (10)

V(Y |X = x) = E(Y 2|X = x)−
(
E(Y |X = x)

)2 (11)

and we need the following theorem.
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Theorem 3.1. Let X and Y be two random variables, continuous or discrete, such that E(|Y |) <
∞, then the expectation of Y satisfies:

E(Y ) = E
(
E(Y |X)

)
.

For all random variables X and Y , the variance of Y satifies:

V(Y ) = E
(
V(Y |X)

)
+ V

(
E(Y |X)

)
. (12)

In formula (12), we notice that the variance V(E(Y |X)) increases with the influence ofX . Indeed,
if X has a strong influence on Y , it also has one on its variance . By fixing X , we then have the
variance of Y |X which is on average smaller than Y . And the more this influence increases, the
more the expectation E(V(Y |X)) decreases. According to formula (12), we thus have the vari-
ance V(E(Y |X)) which increases with the decrease in E(V(Y |X)). It is precisely this variance
which is used in the calculation of the so-called first order Sobol indices defined in the following
definition:

Definition 3.1. We denote by Si the part of the variance of Y to the variable Xi:

Si =
V
(
E(Y |Xi)

)
V(Y )

i = 1, ..., p. (13)

This first-order indice therefore gives us an evaluation of the influence of an input variable Xi on
the output variable Y . The Si indices, between 0 and 1, is high when the influence of Xi is large.

Then, higher order Sobol indices, assess the importance of the combined effects of several input
variables on the output variable. We find their expression from a decomposition of the variance, in
the same way as for the first order indices. This variance decomposition is based on the Hoeffding-
Sobol decomposition of a function [14]. This is generally presented with input variables of law
U([0, 1]), but it is also true in the general case [6, 5].

Definition 3.2. Hoeffding-Sobol decomposition
Let g : I = I1 × ... × Ip ⊂ Rp → R a squared integrable function with respect to the joint
density function f : I → R+ of p variables (X1, ..., Xp). It is assumed that these variables are
independent. Then we have g in (9) which admits a unique decomposition of the form:

Y = g(x1, ..., xp) = h0 +

p∑
i=1

hi(xi) +
∑

16i6j6p

hi,j(xi, xj) + ....+ h1,...,p(x1, ..., xp) (14)

where 

h0 = E(Y )

hi(xi) = E(Y |Xi = xi)− h0

hi,j(xi, xj) = E(Y |Xi = xi, Xj = xj)− hi(xi)− hj(xj)− h0

....

(15)
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for all k = 1, ..., s ∫
IX

hi1,...,is(xi1 , ..., xis)fXik (xik)dxik = 0, (16)

fXik is density of Xik .

We deduce from the conditions (16) and the independence of the variables
(
Xi

)
16i6p that the

functions hU (with U ⊆ {1, ..., p}) are orthogonal:∫
IX

hU (xu)hV (xV )f(x)dx = 0,

if U 6= V , with U, V ⊆ {1, ..., p}.

To obtain sensitivity indices for several variables of order greater than 1, we use the decomposition
of the variance:

V(Y ) =

( n∑
i=1

Vi

)
+

∑
16i<j6n

Vi,j + ...+ V1,...,n, (17)

where



Vi = V
(
E(Y |Xi)

)
Vi,j = V

(
E(Y |Xi, Xj)

)
− Vi − Vj

.....

V1,...,n = V(Y )−
∑n

i=1 Vi −
∑

16i<j6n Vi,j − ...−
∑

16i1<i2<...<in16n

Vi1,...,in−1

Definition 3.3. By equations (13), (16) and (17) we obtain the formulas of the various Sobol
indices of orders greater than 1:

Si,j =
V(hi,j(Xi, Xj))

V(Y )
=

V
(
E(Y |Xi, Xj)

)
V(Y )

− Si − Sj ,

Si,j,k =
V(hi,j,k(Xi, Xj , Xk))

V(Y )
=

V
(
E(Y |Xi, Xj , Xk)

)
V(Y )

− Si − Sj − Sk − Si,j − Si,k − Sj,k,

....

S1,...,p =
V(hi,j,k(X1, ..., Xp))

V(Y )
=

V
(
E(Y |X1, ..., Xp)

)
V(Y )

−
∑

U⊆{1,...,p}

SU .

(18)

Corollary 3.1. By decomposing the variance, equation (17), we have the sum of the sensitivity
indices equal to 1.
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These sensitivity indices can easily be interpreted: the more indice Si ( respectively Si,j,k) will be
close to 1, the greater the influence of variable Xi (respectively of variables Xi, Xj , Xk).

We can also study the total sensitivity indice for the variable Xi. This represents the sum of the
sensitivity indices involving the variable Xi. We note STi =

∑
j∈Ii Sj , where Ii represents all the

sets of indices containing the indice i.

Sobol indices are easier to compute from a meta-model. This is why we introduce Lagrange’s
polynomial in the next section.

4 The Stochastic collocation method (SCM)

We denote by (Ω,F ,P) the probability space, where as usual Ω is the set of possible outcomes,
F is a σ-algebra over Ω and P is a function F → [0; 1] that gives a probability measure on
F . Consider an R-valued random variable X of support I ⊂ R that describes input uncertainties.
We assume that the probability law of X is known and that it is defined by a probability density
function p(x), x ∈ I .
We describe in this section, a method called the stochastic collocation method (SCM). This method
makes it possible to represent a random variable Y of unknown distribution as a function of a
random variable X of known distribution in the form.

Y =
n∑
i=1

yiLi(X) (19)

where {Li(x)}ni=1 are Lagrange polynomial basis and {yi}ni=1 the real numbers. If a relation
Y = f(X) exists then yi = f(xi) and relation (19) becomes the projection of f on the basis of
Lagrange polynomials.

Before describing the method, we will recall two concepts that are important. These two notions
are the interpolation polynomials and the quadrature rule.

Let Pn denote the linear space of polynomials of degree less or equal to n. Let (n + 1) distinct
points x0, x1, ..., xn and corresponding values y0, y1, ..., yn, then there exists a unique polyno-
mial P ∈ Pn such that P (xi) = yi. Lagrange establishes a representation of such polynomials
under the form

P (x) =

n∑
i=0

yiLi(x),

where

Li(x) =

n∏
j=0|j 6=i

x− xj
xi − xj

, i = 0, ..., n. (20)

This equality shows that the quality of the approximation depends only on the choice of the points
xi, for more details see [11].
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Designing a set of points is not easy and for numerical simulations, it is convenient to choose points
xi which correspond to quadrature rules because they present good approximation properties. We
recall here that a quadrature rule is written as a weighted sum as follows∫

I
f(x)p(x)dx ≈

n∑
i=0

ωif(xi) (21)

where ωi are the quadrature weight and xi are the quadrature points and p(x) is a positive function
that corresponds to a probability density of support I . We choose xi and ωi so that the relation
(21) is exact when f is a polynomial of degree less than or equal to 2n − 1, for more details see
[13, 24, 29].
For more information on the stochastic collocation method see [10] which applies the method with
random variables and stochastic processes.
The method is illustrated on the following example:

Example 4.1. We consider a function with four variables which depends on time:

St(β, α, γ, λ) =

N∑
i,j,k,l=0

Si,j,k,l(t)Li(β)Lj(α)Lk(γ)Ll(λ) (22)

assume (22) satisfies the differential equation (1), we obtain :

N∑
i,j,k,l=0

dSi,j,k,l(t)

dt
Li(β)Lj(α)Lk(γ)Ll(λ) =τ − β

( N∑
i,j,k,l=0

Si,j,k,l(t)Li(β)Lj(α)Lk(γ)Ll(λ)

)
×

( N∑
i∗,j∗,k∗,l∗=0

Ii∗,j∗,k∗,l∗(t)L∗i (β)L∗j (α)L∗k(γ)L∗l (λ)

)

− µ1

N∑
i,j,k,l=0

Si,j,k,l(t)Li(β)Lj(α)Lk(γ)Ll(λ)

(23)

We set β = βm , α = αn , γ = γp and λ = λq for these particular values we have

Li(βm) = δim, Lj(αn) = δjn, Lk(γp) = δkp , Ll(λq) = δlq

where δim is the Kronecker symbol.

The equation (23) becomes

dSmnpq
dt

= τ − βmSmnpqImnpq − µ1Smnpq (24)

Similar equations can be written for the other components of the differential equation.
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Furthermore, it can be shown that

E[S(t, β, α, γ, λ)] =
N∑
i=0

N∑
j=0

Sijkl(t)

∫ ∫
Li(β)Lj(α)Lk(γ)Ll(λ)p(β)p(α)p(γ)p(λ)dβdαdγdλ

=
N∑

i,j,k,l=0

ωiωjωkωlSijkl(t) (25)

and

(
S(t, β, α, γ, λ)

)2
=

N∑
i,j,k,l,i∗,j∗,k∗,l∗=0

Sijkl(t)Si∗j∗k∗l∗(t)Li(β)Lj(α)Lk(γ)Ll(λ)Li∗(β)Lj∗(α)Lk∗(γ)Ll∗(λ)

becomes after simplification:

E
[(
S(t, β, α, γ, λ)

)2]
=

N∑
i,j,k,l=0

ωiωjωkωl

(
Sijkl(t)

)2

(26)

Then, the variance writes :

V(S) = V
[
(S(t, β, α, γ, λ)

]
= E

[(
S(t, β, α, γ, λ)

)2]− [E[S(t, β, α, γ, λ)]
]2 (27)

Now we will calculate the Sobol indices for S. We recall the Sobol indice Sβ:

Sβ =
V
(
E(S|β)

)
V(S)

=
E
[(
E(S|β)

)2]− [E(E(S|β)
)]2

V(S)

We have

E(S|β) =
∑
i,j,k,l

Sijkl(t)Li(β)

∫ ∫ ∫
Lj(α)Lk(γ)Ll(λ)p(α)p(γ)p(λ)dαdγdλ

=
∑
i,j,k,l

Sijkl(t)Li(β)ωjωkωl

and its square(
E(S|β)

)2
=

∑
i,j,k,l,i∗,j∗,k∗,l∗

Sijkl(t)Si∗j∗k∗l∗(t)ωjωkωlLi(β)ωj∗ωk∗ωl∗Li∗(β)

Then, the mean of the squared term is

E
[(
E(S|β)

)2]
=

∑
i,j,k,l,i∗,j∗,k∗,l∗

Sijkl(t)Si∗j∗k∗l∗(t)ωjωkωlωj∗ωk∗ωl∗

∫
Li(β)Li∗(β)p(β)dβ

=
∑

i,j,k,l,j∗,k∗,l∗

Sijkl(t)Sij∗k∗l∗(t)ωiωjωkωlωj∗ωk∗ωl∗
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And the last term E
(
E(S|β)

)
= E(S) is given by (25).

For the other Sobol indices of order 1, we do exactly the same.
Now we are going to calculate the Sobol indice of order 2. As for the indices of order 1, we will
just calculate a single indice of order 2 and the other indices are done in exactly the same way.
We recall the Sobol indice Sβ,α:

Sβ,α =
V
(
E(S|β, α)

)
V(S)

=
E
[(
E(S|β, α)

)2]− [E(E(S|β, α)
)]2

V(S)
− Sβ − Sα

With

E(S|β, α) =
∑
i,j,k,l

Sijkl(t)Li(β)Lj(α)

∫ ∫
Lk(γ)Ll(λ)p(γ)p(λ)dγdλ

=
∑
i,j,k,l

Sijkl(t)Li(β)Lj(α)ωkωl

For the square, we have:(
E(S|β, α)

)2
=

∑
i,j,k,l,i∗,j∗,k∗,l∗

Sijkl(t)Si∗j∗k∗l∗(t)Li(β)Lj(α)Li∗(β)Lj∗(α)ωkωlωk∗ωl∗

The expectation of the squared term:

E
[(
E(S|β, α)

)2]
=

∑
i,j,k,l,i∗,j∗,k∗,l∗

Sijkl(t)Si∗j∗k∗l∗(t)ωkωlωk∗ωl∗

∫
Li(β)Li∗(β)p(β)dβ

∫
Lj(α)Lj∗(α)p(α)dα

=
∑

i,j,k,l,k∗,l∗

Sijkl(t)Sijk∗l∗(t)ωkωlωk∗ωl∗ωiωj .

And finally the last term: E
(
E(S|β, α)

)
= E(S) is given by (25)

For the Sobol indices of order 1 and 2 for S, I , H and R we do exactly the same.

5 Numerical application

In this section, we simulate the compartments (S, I,H,R) of the model (1) with two different
infection rate and two different reproduction number when the parameters follows the uniform law
and we give the Sobol indices for the endemic stationary state defined by the following system:

S∗ = S∗(R0, α, γ, λ) =
τ

µ×R0

I∗ = I∗(R0, α, γ, λ) =
τ

µ+ ν + γ + α

(
1− 1

R0

)
H∗ = H∗(R0, α, γ, λ) =

ατ

(µ+ ν + λ)(µ+ ν + γ + α)

(
1− 1

R0

)
R∗ = R∗(R0, α, γ, λ) =

γτ(µ+ ν + λ) + λατ

µ(µ+ ν + λ)(µ+ ν + γ + α)

(
1− 1

R0

)
,

(28)
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We set µ2 = µ + ν and note X = (X1, X2, X3, X4) = (R0, α, γ, λ) the random input variables
of the system (28).
For the rest, we consider that (R0, α, γ, λ) follow the uniform law U [aXi , bXi ].

The calculation of R0 is important to evaluate the epidemiological situation in a department or a
region. Estimates of the weekly reproduction number are based on the numbers of positive PCR
tests for SARS-COV-2, on emergency room visits for suspected COVID-19 and from hospitaliza-
tions. The value of R0 was above 3 before the November 2020 lockdown . The goal of control
efforts is to reduce R0 below the cutoff value of 1 and as close to 0 as possible, thereby bringing
an outbreak under control. On November 19, three weeks after the start of lockdown in France,
the R0 rate was less than 1 in metropolitan France in the three data sources: from the SI-DEP vi-
rological data R0 = 0.65, from the passages to emergencies R0 = 0.87 and from hospitalization
dataR0 = 0.95. All three reproduction rates are down from pre-containment estimates.

In this study, the sections (5.1) and (5.2), we consider the initial value ofR0 = 3 before lockdown
and the sections (5.3) and (5.4) consider the final value of Rf0 = 0.95 after lockdown to see the
impact of the input variables when they follow the uniform law on the evolution of the system over
time.
In Table (3), we give the values of the different parameters with their confidence intervals. We
have chosen 95% forR0 before the lockdown and 75% forR0 after the lockdown so that we have
exactly the same values obtained theoretically. For R0 = 3, the smaller the confidence interval,
the more we have a good approximation of reality and for Rf0 = 0.95, the larger the interval, the
better we approximate the theoretical calculations.

Parameter Values confidence interval [aXi , bXi ]

R0 3 [2.85;3.15] at 95%

Rf0 0.95 [0.7;1.2] at 75%
α 0.0336454691 [0.030 ;0.037] at 90%
γ 0.423254705 [0.38;0.46] at 90%
λ 0.05732 [0.0515;0.0630] at 90%

Table 3: Parameters estimations.

In Table (4) we give the Sobol indices of the stationary endemic state with R0 = 3 that we
calculated in an analytical way (see formulae in the Appendix).
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Sobol Indices X∗ = S∗ X∗ = I∗ X∗ = H∗ X∗ = R∗

X∗R0
1 0.069946 0.025106 0.98471

X∗α 0 0.005864 0.34415 0.0012
X∗γ 0 0.92393 0.33147 0.010134
X∗λ 0 0 0.29659 0.0013
X∗R0,α

0 1.22 ∗ 10−6 7.22 ∗ 10−5 0.012711
X∗R0,γ

0 1.933 ∗ 10−5 6.936 ∗ 10−5 0.0027712
X∗R0,λ

0 0 6.2 ∗ 10−5 2.7205 ∗ 10−5

X∗α,γ 0 6.49 ∗ 10−5 0.0008 0.005536
X∗α,λ 0 0 0.0008 0.012712
X∗γ,λ 0 0 0.0008 0.0027721

Table 4: Sobol indices withR0 = 3 calculated analytically .

In section (5.1), we compute the Sobol indices with a sinusoidal transmission rate (6) and in the
section (5.2) with a logistic transmission rate (5). And we compare with the indices which are
obtained analytically in table (4).

5.1 Sobol indice with sinusoidal transmission rate before lockdown

In this subsection, first we give in the table (5) the steady state Sobol indices using the stochatic
collocation method defined in section (4) and the influences of all variable on each compartment
withR0 before the lockdown and sinusoidal transmission rate.

Sobol Indices X∗ = S∗ X∗ = I∗ X∗ = H∗ X∗ = R∗

X∗R0
0.9970 0.0700 0.0252 0.9882

X∗α 0.0000 0.0059 0.3407 0.0012
X∗γ 0.0012 0.9237 0.3347 0.0074
X∗λ 0.0000 0.0000 0.2967 0.0014
X∗R0,α

0.0000 0.0000 0.0001 0.0000
X∗R0,γ

0.0001 0.0002 0.0001 0.0001
X∗R0,λ

0.0000 0.0000 0.0001 0.0000
X∗α,γ 0.0001 0.0001 0.0008 0.0001
X∗α,λ 0.0000 0.0000 0.0009 0.0000
X∗γ,λ 0.0000 0.0000 0.0008 0.0000

Table 5: Sobol indices calculated numerically withR0 = 3 and sinusoidale transmission rate.

In Figures (7), (8), (9) and (10), we have the compartment simulations for each parameter. The
Sobol indices Sα, Sλ, Iα, Iλ, Rα and Rλ that remain close to zero over time, the have not been
plotted.
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Figure 7: Evolution of compartment SUSCEPTIBLE to the variability of input variables.

Figure 8: Evolution of compartment INFECTED to the variability of input variables

Figure 9: Evolution of compartment HOSPITALIZED to the variability of input variables.

Figure 10: Evolution of compartment RECOVERED to the variability of input variables.
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In Table (5), we notice the variableR0 strongly influences the compartments of susceptible S and
recovered R at 99%, it influences the compartments of infected I at 7% and hospitalized H at 2%.
We also find, in the Figure (9), that the variables α and λ only influence the compartment of hos-
pitalized H people. The variable γ influences the compartments of infected I at more than 92%
and hospitalized H people at more than 33%, see Table (5).

According to the Sobol indices, we can clearly see that the parameters that most influence the
compartment of the infected are γ andR0 see Figure (8).

We see in the Figure (9), that all the input variables influence the compartment of hospitalized
people with different intensity.

The Sobol indices of order 2 also inform us that the combined effects on the compartments remains
weak. For example in the Table (5) the influence of α and γ on H is 0.08%. All the compartment
simulations for the 2nd order indices are given in the Figures (11), (12), (13) and (14).

Figure 11: Evolution of the compartment SUSCEPTIBLE in relation to the variability of the mixed-
variables.

Figure 12: Evolution of the compartment INFECTED in relation to the variability of the mixed-variables.
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Figure 13: Evolution of the compartment HOSPITALIZED in relation to the variability of the mixed-
variables.

Figure 14: Evolution of the compartment RECOVERED in relation to the variability of the mixed-
variables.

5.2 Sobol indice with logistic transmission rate before lockdown

In this subsection, first we give in the table (6) the steady state Sobol indices using the stochatic
collocation method defined in section (4) and the influences of all variable on each compartment
withR0 before the lockdown using a logistic transmission rate.
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Sobol Indices X∗ = S∗ X∗ = I∗ X∗ = H∗ X∗ = R∗

X∗R0
0.9999 0.0710 0.0252 0.9846

X∗α 0.0000 0.0058 0.3429 0.0011
X∗γ 0.0000 0.9223 0.3306 0.0129
X∗λ 0.0000 0.0000 0.2985 0.0013
X∗R0,α

0.0000 0.0000 0.0001 0.0000
X∗R0,γ

0.0001 0.0008 0.0002 0.0001
X∗R0,λ

0.0000 0.0000 0.0001 0.0000
X∗α,γ 0.0000 0.0001 0.0008 0.0000
X∗α,λ 0.0000 0.0000 0.0009 0.0000
X∗γ,λ 0.0000 0.0000 0.0008 0.0000

Table 6: Sobol indices calculated numerically withR0 = 3 and logistic transmission rate.

Figures (15), (16), (17) and (18), show the compartment simulations for each parameter. The
Sobol indices Sα, Sλ, Iα, Iλ, Rα and Rλ that remain close to zero over time, so they have not
been represented.

Figure 15: Evolution of compartment SUSCEPTIBLE to the variability of input variables.

Figure 16: Evolution of compartment INFECTED to the variability of input variables.
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Figure 17: Evolution of compartment HOSPITALIZED to the variability of input variables.

Figure 18: Evolution of compartment RECOVERED to the variability of input variables.

In Figures (15) and (18), we notice that the variable R0 strongly influences the compartments of
susceptible S and recovered R at 99%, it influences the compartments of infected I at 7.1% and
hospitalized H at 2.52%, see Table (6).
We also find that the variables α and λ only influence the compartment of hospitalized H people
(see Figure (17)). The variable γ influences the compartments of infected I at more than 92% and
hospitalized H people at more than 33%, see table (6).

According to the Sobol indices, we can clearly see that the parameters that most influence the
compartment of the infected are: γ and R0. This influence is well represented in Figure (16),
which clearly shows that the input variables which influences the compartment of infected persons
are γ andR0.

We see in the Figure (17), that all the input variables influence the compartment of hospitalized
people with different intensity.
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The Sobol indices of order 2 also inform us that the combined effects on the compartments remains
weak. For example the influence of α and γ on I is 0.08%. All the compartment simulations for
the 2nd order indices are given in the Figures (19), (20), (21) and (22).

Figure 19: Evolution of the compartment SUSCEPTIBLE in relation to the variability of the mixed-
variables.

Figure 20: Evolution of the compartment INFECTED in relation to the variability of the mixed-variables .

Figure 21: Evolution of the compartment HOSPITALIZED in relation to the variability of the mixed-
variables.
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Figure 22: Evolution of the compartment RECOVERED in relation to the variability of the mixed-
variables.

5.3 Sobol indice with sinusoidal transmission rate after lockdown

In Table (7) we give the Sobol indices of the stationary endemic state with Rf0 = 0.95 that we
calculated in an analytical way (see formulae in the Appendix).

Sobol Indices X∗ = S∗ X∗ = I∗ X∗ = H∗ X∗ = R∗

X∗R0
1 0.99663 0.99023 0.9999

X∗α 0 3.7442 ∗ 10−6 6.0829 ∗ 10−4 7.6964 ∗ 10−8

X∗γ 0 5.8994 ∗ 10−4 5.8587 ∗ 10−4 4.6120 ∗ 10−7

X∗λ 0 0 5.2422 ∗ 10−4 5.9159 ∗ 10−8

X∗R0,α
0 1.7486 ∗ 10−5 0.0028407 2.9197 ∗ 10−6

X∗R0,γ
0 0.0027550 0.0027360 2.8682 ∗ 10−6

X∗R0,λ
0 0 0.0024481 2.7627 ∗ 10−7

X∗α,γ 0 4.1472 ∗ 10−8 1.4287 ∗ 10−6 2.5197 ∗ 10−7

X∗α,λ 0 0 1.5038 ∗ 10−6 5.7850 ∗ 10−7

X∗γ,λ 0 0 1.4484 ∗ 10−6 1.2615 ∗ 10−7

Table 7: Sobol indices withRf0 = 0.95 calculated analytically .

In section (5.3), we compute the Sobol indices with a sinusoidal transmission rate (6) and in the
section (5.4) with a logistic transmission rate (5). And we compare with the indices which are
obtained analytically in table (7).
In this subsection, first we give in the table (8) the steady state Sobol indices using the stochatic
collocation method defined in section (4) and the influences of all variable on each compartment
withR0 after the lockdown using a sinusoidal transmission rate.
In figure (23), we have the compartment results for each parameter. Only SR0, IR0, HR0 and
RR0 are represented. The others indices remain close to zero over time.
In table (8), we notice that variableR0 strongly influences all compartments S, I,H andR at 99%.
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Sobol Indices X∗ = S∗ X∗ = I∗ X∗ = H∗ X∗ = R∗

X∗R0
0.9996 0.9944 0.9873 0.9997

X∗α 0.0000 0.0000 0.0009 0.0000
X∗γ 0.0000 0.0014 0.0015 0.0000
X∗λ 0.0000 0.0000 0.0009 0.0000
X∗R0,α

0.0000 0.0001 0.0025 0.0000
X∗R0,γ

0.0001 0.0036 0.0038 0.0001
X∗R0,λ

0.0000 0.0000 0.0025 0.0000
X∗α,γ 0.0000 0.0000 0.0000 0.0000
X∗α,λ 0.0000 0.0000 0.0000 0.0000
X∗γ,λ 0.0000 0.0000 0.0008 0.0000

Table 8: Sobol indices calculated numerically withRf0 = 0.95 and sinusoidale transmission rate.

Figure 23: Influence ofR0 on each compartment.

5.4 Sobol indice with logistic transmission rate after lockdown

In this subsection, first we give in the table (9) the steady state Sobol indices using the stochatic
collocation method defined in section (4) and the influences of each variable on each compartment
withR0 after the lockdown using a logistic transmission rate.
In figure (24), show the compartment results for each parameter. Indices that remain close to zero
over time have not been represented.
In Table (9), we notice the variableR0 strongly influences all compartments S, I,H andR at 99%.
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Sobol Indices X∗ = S∗ X∗ = I∗ X∗ = H∗ X∗ = R∗

X∗R0
0.9999 0.9938 0.9868 0.9999

X∗α 0.0000 0.0000 0.0009 0.0000
X∗γ 0.0000 0.0014 0.0016 0.0000
X∗λ 0.0000 0.0000 0.0009 0.0000
X∗R0,α

0.0000 0.0000 0.0027 0.0000
X∗R0,γ

0.0000 0.0046 0.0046 0.0000
X∗R0,λ

0.0000 0.0000 0.0025 0.0000
X∗α,γ 0.0000 0.0002 0.0041 0.0000
X∗α,λ 0.0000 0.0000 0.0024 0.0000
X∗γ,λ 0.0000 0.0000 0.0008 0.0000

Table 9: Sobol indices calculated numerically withRf0 = 0.95 and logistic transmission rate.

Figure 24: Influence ofR0 on each compartment.

Remark 5.1. For R0 > 1, we need more than 500 days to have the convergence of the transient
regime towards the point of stationary equilibrium.
For R0 < 1, we need at most 150 days to have the convergence of the transient regime towards
the point of stationary equilibrium.

6 Conclusion

In this research work, we have formulated a generalized SIHR model to study the dynamics and
analyze the epidemic of COVID-19 to describe the evolution of the COVID-19 disease in France
in the period from 01 October to 15 November. Knowing that the patient evolves over time, we
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consider that the transmission rate (6) and (5) is a function which depends on time and that it is
periodic.

We investigate the dynamics of the model and the stability of free-disease and endemic equilib-
rium states. To fit the proposed model to the reported cumulative data of COVID-19 outbreak in
France, we have estimated the model parameters using the real cases of COVID-19 in France. We
have observed that with an R0 = 3, the epidemic will continue to extend over time even after a
peak in the number of infected. We also observed that for an R0 = 0.95 < 1, the disease which
decreases and the simulations show us that the system converges towards the free-disease equilib-
rium state.

We also studied the sensitivity analysis of the parameters (R0, α, γ, λ) on the evolution of the
disease when they follow the uniform law. For that, we have used the method of stochastic col-
locations to calculate the Sobol indices and to see which variables are the most influencial. We
have observed that for an R0 = 0.95 < 1, the basic reproduction rate R0 is the only parameter
which acts on the evolution of the system (compartments). To reduce the evolution of the disease,
everything must be done to reduce the value ofR0.

We also suggest that the reduction of the outbreak evolution and the peak prevalence are possible
by decreasing the risk of contracting the virus during contact and the number of contacts in a unit
of time.

References

[1] World Health Organization. Updated WHO advice for international traffic in relation
to the outbreak of the COVID-19. Geneva: WHO 2020 ; Available from: https://
www.who.int/ith/COVID- 19 .

[2] World Health Organization, Clinical Management of Severe Acute Respiratory Infection
When Infection is Suspected, 2020. Available from: https://www.who.int/publications-detail/
.

[3] World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV),
2019, https://www.who.int/news-room/fact-sheets/detail/.

[4] A. Saltelli, K. Chan and E.M. Scott,Sensitivity Analysis , 2000.

[5] A.W. Vaart,Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathemat-
ics. Cambridge University Press, 1998 : https://doi.org/10.1017/CBO9780511802256

[6] B. Efron and C. Stein, The jackknife estimate of variance. The Annals of Statistics 9, 3 (1981),
586-596.

[7] B. Iooss, Revue sur l’analyse de sensibilité globale de modèles numériques, hal-00503179, 7
Dec 2010.

30



[8] C. Castillo-Chavez, B. Song, Dynamical model of tuberculosis and their applications, Math-
ematical Biosciences and Engineering, 1(2), 361–404, (2004).

[9] C. Castillo-Chavez and Z. Feng, Mathematical models for the disease dynamics of tuberculo-
sis. Advances in Mathematical Population Dynamics-Molecules, Cells and Man. 1996; 1–28.

[10] C. Chauvière, H. Djellout, An efficient spectral method for the numerical solution to stochas-
tic differential equations, hal-01666095, 18 Dec 2017.

[11] D. Gottlieb and S.A. Orszag, Numerical analysis of spectral methods: theory and appli-
cations, Society for Industrial and Applied Mathematics, Philadelphia, 1977, CBMS-NSF
Regional Conference Series in Applied Mathematics, No. 26.

[12] G. Chowell , P.W. Fenimore, M.A. Castillo-Garsow and al., SARS outbreak in Ontario, Hong
Kong and Singapore: the role of diagnosis and isolation as a control mechanism, Los Alamos
Unclassified Report LA-UR-03-2653, 2003.

[13] G. Dahlquist and A.K. Bjorck, Numerical methods in scientific computing, Vol. I. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.

[14] I.M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Mod-
elling and Computational Experiment 1 (1993), 407-414.

[15] J. Jacques, Pratique de l’analyse de sensibilité : comment évaluer l’impact des entrées aléa-
toires sur la sortie d’un modèle mathématique, 25 mars 2011.

[16] J. Li , Y. Hu, and Zhen., Rumor Spreading of an SIHR Model in Heterogeneous Networks
Based on Probability Generating Function, Hindawi Complexity Volume 2019, Article ID
4268393, https://doi.org/10.1155/2019/4268393.

[17] J. Murray, Mathematical Biology, third edition, Springer-Verlag, Heidelberg.

[18] J.P. LaSalle , An invariance principe in the theory of stability , Center for Dynamical Systems,
Brown University, APRIL, 1968 .

[19] J.T. Wu, K. Leung, G.M. Leung, Nowcasting and forecasting the potential domestic and
international spread of the 2019-nCoV outbreak originating inWuhan, China, 29 February
2020.

[20] J.T. Wu, K. Leung, M. Bushman, N. Kishore, R. Niehus, P.M. de Salazar and al., Estimat-
ing clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature
Medicine. (2020). DOI: 10.1038/s41591-020-0822-7.[20]

[21] J. Wallinga and M. Lipsitch,How generation intervals shape the relationship between growth
rates and reproductive numbers, Proc. R. Soc. B (2007) 274.

[22] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York (2015)

31



[23] O. Diekmann, J.A.P. Heesterbeek and M.G. Roberts, The Construction of Next Generation
Matrices for Compartmental Epidemic Models, Journal of The Royal So- ciety Interface.
2009; 7(47): 873–885.

[24] P.J. Davis and P. Rabinowitz, Methods of numerical integration, second edition, Computer
Science and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1984.

[25] P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic
equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-
48.

[26] S. Boatto, C. Bonnet, B. Cazelles and F. Mazenc, SIR model with time dependent infectivity
parameter : approximating the epidemic attractor and the importance of the initial phase, 8
Jan 2018, Id: hal-01677886.

[27] S. Jiao and M. Huang,An SIHR epidemic model of the COVID-19 with general population-
size dependent contact rate, Published: 28 August 2020, AIMS Mathematics, 5(6):
6714–6725, DOI:10.3934/math.2020431.

[28] S. K. Biswas, J. K. Ghosh, S. Sarkar, and U.Ghosh, COVID-19 Pandemic in India: A Math-
ematical Model Study, May 30, 2020,doi:10.20944/preprints202005.0508.v1.

[29] S. Rahman,Extended Polynomial Dimensional Decomposition for Arbitrary Probability Dis-
tributions., J. Eng. Mech. 135, 12 (2009), 1439-1451.

[30] S.T.R. Pinho, C.P. Ferreira, L. Esteva, F.R. Barreto, V.C. Morato e Silva and M.G.L. Teixeira,
Modelling the dynamics of dengue real epidemics, Phil. Trans. R. Soc. A, 28 December 2010,
368, 5679–5693.

[31] T. Tiana, W. Luoa, Y. Jianga, M. Chena , C. Wenb, W. L. Pana, and
X. Wang, The Effects of Stringent Interventions for Coronavirus Pandemic.,
https://doi.org/10.1101/2020.05.16.20103879.

[32] T. Tian, J. Zhang, S. Lin, Y. Jiang, J. Tan, Z. Li, X. Wang,Data-driven analysis on
the simulations of the spread of COVID-19 under different interventions of China. :
https://doi.org/10.1101/2020.05.15.20103051

[33] T. Turanyi., Sensitivity analysis of complex kinetic system, tools and applications, Journal of
Mathematical Chemistry, 5 :203–248, 1990.

[34] W.O. Kermack and A.G. McKendrick,A Contribution to the Mathematical Theoryof Epi-
demics, Proceedings of the Royal Society. 1927; 115(772): 700–722

[35] Z. Ma and J. Li, Dynamical Modeling and Anaylsis of Epidemics, World Scientific, (2009) .

32



A Appendix: Sobol indices calculations

In this section, we give the explicit expressions of Sobol indices computed for the stationary state
of the model (1). To simplify the equations, we consider the following notations and primitives:

Notations

• T1(X) = (µ2 +X) ln(µ2 +X),

• T2(X) = (µ2 +X)2 ln(µ2 +X),

• T3(X) = (µ2 +X)
(

ln(µ2 +X)
)2
,

• T4(X) = ln(µ2 +X)

•
∫
X2
(

ln(X)
)2
dX =

X3

3

[(
ln(X)

)2 − 2

3
ln(X) +

2

9

]
,

•
∫
X
(

ln(X)
)2
dX =

X2

2

[(
ln(X)

)2 − ln(X) +
1

2

]
,

•
∫ (

ln(X)
)2
dX = X

[(
ln(X)

)2 − 2 ln(X) + 2
]
,

•
∫
X ln(X)dX = X2

2

(
ln(X)− 1

2

)
• dα = bα − aα , dγ = bγ − aγ , dλ = bλ − aλ and dR0 = bR0 − aR0 .

(29)

A.1 Sobol indices for S∗

Definition A.1. The Sobol indices of order 1 and 2 for S∗ are defined:

S∗Xi =
V
(
E(S∗|Xi)

)
V(S∗)

i = 1, ..., 4 (30)

S∗Xi,Xj =
V
(
E(S∗|Xi, Xj)

)
V(S∗)

− S∗Xi − S
∗
Xj . (31)

To calculate the Sobol indices for S∗, we will need:

E
(

1
R0

)
=

ln(bR0)− ln(aR0)

dR0

E
(

1
R2

0

)
=

1

bR0 × aR0

E(S∗) =
τ

µ1

(
ln(bR0)− ln(aR0)

dR0

)
V(S∗) =

(
τ
µ1

)2
[

1
aR0
×bR0

−
(

ln(bR0
)−ln(aR0

)

dR0

)2
]
.

(32)
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We obtain:

S∗R0
=

V(E(S∗|R0))

V(S∗)
=

V(S∗)

V(S∗)
= 1,

the other Sobol indices for S∗ are zero.

A.2 Sobol indices for I∗

Definition A.2. The Sobol indices of order 1 and 2 for I∗ are defined:

I∗Xi =
V
(
E(I∗|Xi)

)
V(I∗)

i = 1, ..., 4 (33)

I∗Xi,Xj =
V
(
E(I∗|Xi, Xj)

)
V(I∗)

− I∗Xi − I
∗
Xj . (34)

Sobol indices of order 1

First of all we calculate,

E
(

1

µ2 + γ + α

)
=

1

dα × dγ

[
T1(bα + bγ)− T1(aα + bγ)− T1(bα + aγ) + T1(aα + aγ)

]
,

(35)

The mean of I1 becomes:

E(I∗) = τE
(

1

µ2 + γ + α

)(
1− E(

1

R0
)

)
= τE

(
1

µ2 + γ + α

)(
1− ln(bR0)− ln(aR0)

dR0

)
. (36)

To calculate the variance of I1, we need:

E
(

1

(µ2 + γ + α)2

)
=

1

dα × dγ

[
−T4(bα+bγ)+T4(aα+bγ)+T4(bα+aγ)−T4(aα+aγ)

]
, (37)

E

((
1− 1

R0

)2
)

= 1 + 2
ln(aR0)− ln(bR0)

dR0

+
1

aR0 × bR0

. (38)

With the equations (37), (38) and (36), the variance of I∗ is then equal

V(I∗) = τ2E
(

1

(µ2 + γ + α)2

)
E

((
1− 1

R0

)2
)
−
(
E(I∗)

)2
. (39)

For Sobol indices of order 1 of I∗, we will need:
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
ER0(I∗) = τ (1− 1/R0)E

(
1

µ2+γ+α

)
,

Eγ(I∗) = τEγ( 1
µ2+γ+α)E (1− 1/R0)

Eα(I∗) = τEα
(

1
µ2+γ+α

)
E(1− 1/R0).

(40)

with

Eγ
(

1

µ2 + γ + α

)
=
T4(γ + bα)− T4(γ + aα)

dα
.

Eα
(

1

µ2 + γ + α

)
=
T4(α+ bγ)− T4(α+ aγ)

dγ
. (41)

We obtain

I∗R0
=

V(E (I∗|R0))

V(I∗)
=
τ E
(

1
µ2+γ+α

)
V
(
1− 1/R0

)
V(I∗)

. (42)

Sobol indice for α:

I∗α =
V
(
E(I∗|α)

)
V(I∗)

=

(
τ E(1− 1/R0)

)2V(T4(α+ bγ)− T4(α+ aγ)
)

d2
γ V(I∗)

(43)

Now we calculate,

V
(
T4(α+bγ)−T4(α+aγ)

)
= E

[(
T4(α+bγ)−T4(α+aγ)

)2]
−
[
E
(
T4(α+bγ)−T4(α+aγ)

)]2

.

(44)
The second term of (44) :

E
(
T4(α+ bγ)− T4(α+ aγ)

)
=

1

dα

[
T1(bα + bγ)− T1(aα + bγ)

− T1(bα + aγ) + T1(aα + aγ) + aγ − bγ
]
. (45)

The first term of (44):

E
[(
T4(α+ bγ)− T4(α+ aγ

)2]
= E

[(
T4(α+ bγ)

)2]
+ E

[(
T4(α+ aγ)

)2]
− 2E

[
T4(α+ bγ)× T4(α+ aγ)

]
(46)

Thanks to the primitive of (ln(x))2, the first two terms of (46) are easy to calculate:
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E
[(

ln(µ2 + α+ bγ)

)2]
=

1

dα

[
T3(bα + bγ)− T3(aα + bγ)− 2T1(bα + bγ) + 2T1(aα + bγ) + 2dα

]
,

E
[(

ln(µ2 + α+ bγ)

)2]
=

1

dα

[
T3(bα + aγ)− T3(aα + aγ)− 2T1(bα + aγ) + 2T1(aα + aγ) + 2dα

]
,

We consider F1(α) a primitive of the function ln(µ2 + α+ bγ) ln(µ2 + α+ aγ). We obtain

E
[

ln(µ2 + α+ bγ)× ln(µ2 + α+ aγ)

]
= F1(bα)− F1(aα). (47)

With (45), (46) and (47), we have (44) which gives us the Sobol indice I∗α.

We redo exactly the same work for the Sobol indice I∗γ : you just have to permute α and γ.

I∗γ =
V
(
E(I∗|γ)

)
V(I∗)

=

(
τ E(1− 1/R0)

)2

V
(
T4(γ + bα)− T4(γ + aα)

)
d2
α V(I∗)

.

Sobol indices of order 2

We start with the indice I1,α,γ :

I∗α,γ =
V
(
E(I∗|α, γ)

)
V(I∗)

(48)

We known that :

E(I∗|α, γ) =
τ

µ2 + γ + α
E(1− 1/R0) =

τ

µ2 + γ + α

(
1− ln(bR)− ln(aR)

dR0

)
The Sobol indice I∗α,γ :

I∗α,γ =

(
τ(1− ln(bR0)− ln(aR0)

dR0

)

)2V(1/(µ2 + α+ γ))

V(I∗)
,

The term V(1/(µ2 + α+ γ)) which is equal to:

V(1/(µ2 + α+ γ)) = E
(

1

(µ2 + γ + α)2

)
−
(
E(

1

µ2 + γ + α
)

)2

,

is calculated using the equations (35) and (37).
For the Sobol indice I∗α,R0

, we calculate first:

E(I∗|α,R0) = τ(1− 1/R0)
T4(α+ bγ)− T4(α+ aγ)

dγ
.
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We finally obtain:

I∗α,R0
=
τ2

d2
γ

V
(
(1− 1/R0)(T4(α+ bγ)− T4(α+ aγ))

)
V(I1)

,

We calculate the term :

V
(

(1− 1

R0
)(T4(α+ bγ)− T4(α+ aγ))

)
= E

[
(1− 1/R0)2

]
E
[(
T4(α+ bγ)− T4(α+ aγ)

)2]
−
[
E(1− 1/R0)

]2[
E
(
T4(α+ bγ)− T4(α+ aγ)

)]2

With E
[(
T4(α+ bγ)− T4(α+ aγ)

)2] which is given by (46), E
[
(1− 1/R0)2] which is given by

(32) et E
(
T4(α+ bγ)− T4(α+ aγ)

)
which is given by (45).

We redo exactly the same work for the Sobol index I∗γ,R0
:

E(I∗|γ,R0) = τ(1− 1/R0)
T4(γ + bα)− T4(γ + aα)

dα
.

Finally we obtain :

I∗γ,R0
=
τ2

d2
α

V
(
(1− 1/R0)(T4(γ + bα)− T4(γ + aα))

)
V(I1)

,

A.3 Sobol indices for H∗

Definition A.3. The Sobol indices of order 1 and 2 for H∗ are defined:

H∗Xi =
V
(
E(H∗|Xi)

)
V(H∗)

i = 1, ..., 4 (49)

H∗Xi,XJ =
V
(
E(H∗|Xi, Xj)

)
V(H∗)

−H∗Xi −H
∗
Xj . (50)

First we calculate the mean and the variance of H∗,

E
(

1

µ2 + λ

)
=
T4(bλ)− T4(aλ)

dλ
,

E
(

1

(µ2 + λ)2

)
=

1

(µ2 + bλ)(µ2 + aλ)
, (51)

The mean H∗ is obtained:

E(H∗) = τ E
(

1

µ2 + λ

)
E
(

1− 1/R0

)
E
(

α

µ2 + γ + α

)
,
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with

E
(

α

µ2 + γ + α

)
=

1

2× dα × dγ

[
T2(bγ + bα)− T2(bγ + aα)− T2(aγ + bα) + T2(aγ + aα)

]
− µ2 + bγ
dα × dγ

[
T1(bγ + bα)− T1(bγ + aα)− dα

]
(52)

+
µ2 + aγ
dα × dγ

[
T1(aγ + bα)− T1(aγ + aα)− dα

]
− 1

2
.

For the variance of H∗:

V(H∗) = τ2E
(

1

(µ2 + λ)2

)
E
[
(1− 1/R0)2

]
E
(

α2

(µ2 + γ + α)2

)
−
(
E(H∗)

)2

with

E
(

α2

(µ2 + γ + α)2

)
= E

(
(1− γ + µ2

µ2 + γ + α
)2

)
(53)

=
1

dα × dγ

∫ ∫ (
1− 2

µ2 + γ

µ2 + γ + α
+

(µ2 + γ)2

(µ2 + γ + α)2

)
dαdγ.

The second term of (53) is equal to:∫ ∫
µ2 + γ

µ2 + γ + α
dαdγ =

1

2

[
T2(bγ + bα)− T2(aγ + bα)− T2(bγ + aα) + T2(aγ + aα)

]
− bα

[
T1(bγ + bα)− T1(aγ + bα)

]
+ aα

[
T1(bγ + aα)

− T1(aγ + aα)

]
+

1

2
dα × dγ .

The third term: just use the following decomposition

(µ2 + γ)2 = (µ2 + γ + aα − aα)2 = (µ2 + γ + aα)2 − 2(µ2 + γ + aα)aα + a2
α (54)

and we obtain :

∫ bγ

aγ

∫ bα

aα

(µ2 + γ)2

(µ2 + γ + α)2

)
dαdγ =

∫ bγ

aγ

(µ2 + γ)2
[
− 1

µ2 + γ + bα
+

1

µ2 + γ + aα

]
dγ

= −
∫ bγ

aγ

(µ2 + γ)2

µ2 + γ + bα
dγ +

∫ bγ

aγ

(µ2 + γ)2

µ2 + γ + bα
dγ

= −b2α
(
T4(bγ + bα)− T4(aγ + bα)

)
+ a2

α

(
T4(bγ + aα)− T4(aγ + aα)

)
− dα × dγ .
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Sobol indices of order 1

For Sobol indices H∗R0
and H∗λ, we calculate firstly:

E(H∗|R0) = τ(1− 1/R0)E
(

1

µ2 + λ

)
E
(

α

µ2 + γ + α

)
,

E(H∗|λ) =
τ

µ2 + λ
E
(

1− 1/R0

)
E
(

α

µ2 + γ + α

)
.

and we have:

H∗R0
=

V
(
E(H∗|R0)

)
V(H∗)

=

(
τE
(

1

µ2 + λ

)
E
(

α

µ2 + γ + α

))2V(1/R0)

V(H∗)
,

H∗λ =

V
(
E(H∗|λ)

)
V(H∗)

=

(
τE(1− 1/R0)E

(
α

µ2 + γ + α

))2V(1/(µ2 + λ))

V(H∗)

We have already calculated all the terms in the equations (32), (51) and (52).

For Sobol indices H∗γ et H∗α, we calculate:

Eγ(H∗) = τE(1− 1/R0)E
(

1

µ2 + λ

)
Eγ
(

α

µ2 + γ + α

)
,

E(H
∗|α) = ταE(1− 1/R0)E

(
1

µ2 + λ

)
Eα
(

1

µ2 + γ + α

)
.

We will need the following means:

Eγ
(

α

µ2 + γ + α

)
= E

(
α

µ2 + γ + α
|γ
)

= 1− µ2 + γ

dα

(
T4(γ + bα)− T4(γ + aα)

)
,

Eα
(

1

µ2 + γ + α

)
= E

(
1

µ2 + γ + α
|α
)

=
1

dγ

(
T4(α+ bγ)− T4(α+ aγ)

)
. (55)

We also calculate the following two variances:

V
[
Eγ
( α

µ2 + γ + α

)]
= E

[(
Eγ
( α

µ2 + γ + α

))2]− [EEγ( α

µ2 + γ + α

)]2

.

V
[
αEα

( 1

µ2 + γ + α

)]
= E

[(
αEα

( 1

µ2 + γ + α

))2]− [E(αEα( 1

µ2 + γ + α

))]2

(56)

= E
[
α2
(
Eα
( 1

µ2 + γ + α

))2]− [E(αEα( 1

µ2 + γ + α

))]2

.
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with EEΣ = E[E(X|Σ)] = E(X).

To calculate the first variance, just calculate the first term:

E
[(
Eγ
( α

µ2 + γ + α

))2]
= E

[[
1− µ2 + γ

dα

(
T4(γ + bα)− T4(γ + aα)

)]2]
= E

[
1− 2

µ2 + γ

dα

(
T4(γ + bα)− T4(γ + aα)

)
+

(µ2 + γ)2

d2
α

(
T4(γ + bα)− T4(γ + aα)

)2] (57)

For the second term of (57), we obtain:

E
[
(µ2 + γ)T4(γ + bα)

]
= E

[
T1(γ + bα)

]
− bαE

(
T4(γ + bα)

)
=

1

2 ∗ dg
[
T2(bγ + bα)− T2(aγ + bα)− 1

2
bγ(bγ + 2µ2 + 2bα)

+
1

2
aγ(aγ + 2µ2 + 2bα)

]
− bα

[
T1(bγ + bα)− T1(aγ + bα)− dγ

]
.

E
[
(µ2 + γ)T4(γ + aα)

]
= E

[
T1(γ + aα)

]
− aαE

(
T4(γ + aα)

)
=

1

2× dγ

[
T2(bγ + aα)− T2(aγ + aα)− 1

2
bγ(bγ + 2µ2 + 2aα)

+
1

2
aγ(aγ + 2µ2 + 2aα)

]
− aα

[
T1(bγ + aα)− T1(aγ + aα)− dγ

]
.

For the third term of (57), we develop the term squared then we first calculate the term

E
[
(µ2 + γ)2

(
T4(γ + bα)

)2]
= E

[
(µ2 + γ + bα − bα)2

(
T4(γ + bα)

)2]
= E

[(
(µ2 + γ + bα)2 − 2bα(µ2 + γ + bα) + b2α

)(
ln(T4(γ + bα)

)2]
= E

[
(µ2 + γ + bα)2

(
T4(γ + bα)

)2]
− 2bαE

[
T3(γ + bα)

]
+ b2αE

[(
T4(γ + bα)

)2]
.

To continue the calculations, we use the primitives of functions X2(ln(X))2, X(ln(X))2 and
(ln(X))2 which are given in (29)
We do the same for the term E

[
(µ2 + γ)2

(
T4(γ + aα)

)2].
To complete the calculation of (57), we consider the function

F2(x) =

∫
x2
(

ln(x+A) ln(x+B)
)
dx (58)
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for all A and B two reals. The last term of (57) then becomes :

E
[
(µ2 + γ)2

(
ln(µ2 + γ + bα) ln(µ2 + γ + aα)

)]
= F2(bγ)− F2(aγ),

with A = bα and B = aα.

For the second variance, we start by calculating the first term:

E
[(
αEα

( 1

µ2 + γ + α

))2]
=

1

d2
γ ∗ dα

∫
α2
(
T4(α+ bγ)− T4(α+ aγ)

)2
dα (59)

With:

∫
α2
(
T4(α+ bγ))2dα =

∫
(µ2 + α+ bγ)2

(
T4(α+ bγ))2dα

+ (µ2 + bγ)2

∫ (
T4(α+ bγ))2dα+ 2(µ2 + bγ)

∫
T3(α+ bγ)dα

=
1

3

[
X3
(
(ln(x))2 − 1

3
ln(X) +

1

9

)]bα
aα

+ (µ2 + bγ)

[
X2
(
(ln(X))2 − ln(X) +

1

2

)]bα
aα

+ (µ2 + bγ)2

[
X
(
(ln(X))2 − 2 ln(X) + 2

)]bα
aα

with X = µ2 + α+ bγ
For ∫

α2
(
T4(α+ aγ))2dα,

we do exactly the same way aγ instead of bγ .

For the last term ∫
α2
(

ln(µ2 + α+ bγ) ln(µ2 + α+ aγ))dα,

we use the function (58).
The second term of the second variance in (56)[

E
[
αEα

( 1

µ2 + γ + α

)]]2

=
1

d2
γ × d2

α

[ ∫
α
(
T4(α+ bγ)− T4(α+ aγ)

)
dα

]2

(60)

Knowing that :
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∫
α
(

ln(µ2 + α+ bγ)− ln(µ2 + α+ aγ)
)
dα =

[
X2

2

(
ln(X)− 1

2

)
− (µ2 + bγ)

(
X ln(X)−X

)]bα
aα

(61)

−
[
Y 2

2

(
ln(Y )− 1

2

)
− (µ2 + aγ)

(
Y ln(Y )− Y

)]bα
aα

,

with X = µ2 + α+ bγ and Y = µ2 + α+ aγ .

Thus we conclude the Sobol indice H∗γ and we redo exactly the same procedures to assess the
Sobol indice H∗α.

H∗γ =

V
(
E(H∗|γ)

)
V(H∗)

=

(
τE
( 1

µ2 + λ

)
E
(

1− 1/R0

)2V
[
Eγ
(

α
µ2+γ+λ

)]
V(H∗)

H∗α =

V
(
E(H∗|α)

)
V(H∗)

=

[
τE
(

1

µ2 + λ

)
E(1− 1/R0)

]2V
[
αEα

(
1

µ2+γ+λ

)]
V(H∗)

Sobol indices of order 2
For Sobol indices H∗R0,α

and H∗R0,γ
:

H∗R0,α =
V
(
E(H∗|R0, α)

)
V(H∗)

=

[
τE
( 1

µ2 + λ

)]2V
[
α(1− 1/R0)Eα

(
1

µ2+γ+α

)]
V(H∗)

H∗R0,γ =
V
(
E(H∗|R0, γ)

)
V(H∗)

=

[
τE
( 1

µ2 + λ

)]2V
[
(1− 1/R0)Eγ

(
α

µ2+γ+α

)]
V(H∗)

we have already calculated in (32),(51),(55),(37) and (56) all the terms that are present.

For Sobol indices H∗R0,λ
and H∗α,γ :

H∗R0,λ =
V
(
E(H∗|R0, λ)

)
V(H∗)

=

[
τE
( α

µ2 + γ + α

)]2V
[

1
µ2+λ(1− 1/R0)

]
V(H∗)

H∗α,γ =
V
(
E(H∗|α, γ)

)
V(H∗)

=

[
τE(1− 1/R0)E

( 1

µ2 + λ

)]2V
[

α
µ2+γ+α

]
V(H∗)

we have already calculated all the terms in (52), (53), (32) and (51).
For Sobol indices H∗α,λ et H∗γ,λ :
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H∗α,λ =
V
(
E(H∗|α, λ)

)
V(H∗)

=

[
τE(1− 1/R0)

]2V
[

α
µ2+λEα

(
1

µ2+γ+α

)]
V(H∗)

H∗γ,λ =
V
(
E(H∗|γ, λ)

)
V(H∗)

=

[
τE(1− 1/R0)

]2V
[

1
µ2+λEγ

(
α

µ2+γ+α

)]
V(H∗)

we have everything we need in (32), (51), (41) and (56).

A.4 Sobol indices for R∗

Definition A.4. Sobol indices of order 1 and 2 for R∗ are defined:

R∗Xi =
V
(
E(R∗|Xi)

)
V(R∗)

i = 1, ..., 4 (62)

R∗Xi,XJ =
V
(
E(R∗|Xi, Xj)

)
V(R∗)

−R∗Xi −R
∗
Xj . (63)

Remark A.1. The expression of R∗ is written in the following form:

R∗ =
τ

µ

(
γ

µ2 + γ + α
+

λ

(µ2 + λ)

α

µ2 + γ + α

)(
1− 1

R0

)
. (64)

First we calculate the mean and the variance of R∗,

E
(

λ

µ2 + λ

)
= E

(
1− µ2

µ2 + λ

)
= 1− µ2

T4(bλ)− T4(aλ)

dλ
, (65)

E
( λ2

(µ2 + λ)2

)
=

1

dλ

[
dλ − 2µ2

[
T4(bλ)− T4(aλ)

]
+ µ2

2

dλ
(µ2 + bλ)(µ2 + aλ)

]
.

For E
(

1− 1
R0

)
see (32). For E

(
α

µ2+γ+α

)
see (52). And for E

(
γ

µ2+γ+α

)
just permute α and γ

in (52).
With these results, we have

E(R∗) =
τ

µ

[
E
(

γ

µ2 + γ + α

)
+ E

(
λ

(µ2 + λ)

)
E
(

α

µ2 + γ + α

)]
E
(

1− 1

R0

)
For the variance of R∗, we calculate E

(
(R∗)2

)
:
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E
(
(R∗)2

)
=
τ2

µ2
E
(

(1− 1

R0
)2

)
E
[( γ

(µ2 + γ + α)

)2
+
( λ

(µ2 + λ)

α

(µ2 + γ + α)

)2
+ 2

λ

(µ2 + λ)

α

(µ2 + γ + α)

γ

(µ2 + γ + α)

]
=
τ2E

(
(1− 1

R0
)2
)

µ2

[
E
( γ2

(µ2 + γ + α)2

)
+ E

( λ2

(µ2 + λ)2

)
E
(

α2

(µ2 + γ + α)2

)
+ 2E

(
λ

(µ2 + λ)

)
E
(

α

(µ2 + γ + α)

γ

(µ2 + γ + α)

)]
with E

[( γ
µ2+γ+α

)2] et E
[(

α
µ2+γ+α

)2] which are given in (53) and E
(
(1− 1

R0
)2
)

given in (38).

Now let’s calculate the last term:

E
(

αγ

(µ2 + γ + α)2

)
=

1

dα × dγ

∫ bα

aα

α

∫ bγ

aγ

γ

(µ2 + γ + α)2
dγdα

=
1

dα × dγ

∫ bα

aα

α
[(
T4(bγ + α)− T4(aγ + α)

)
(66)

− (µ2 + α)
( 1

µ2 + bγ + α
− 1

µ2 + aγ + α

)]
dα

We calculate the first term:∫ bα

aα

α
(
T4(bγ + α)− T4(aγ + α)

)
dα =

∫ bα

aα

[
T1(α+ bγ)− (bγ + µ2) ln(µ2 + bγ + α)

]
dα

−
∫ bα

aα

[
T1(α+ aγ)− (aγ + µ2) ln(µ2 + aγ + α)

]
dα.

To continue it is necessary to use the primitives of ln(x) et x ln(x). For the second term:∫ bα

aα

α(µ2 + α)

µ2 + bγ + α
dα =

∫ bα

aα

[
α− bγ

(
1− µ2 + bγ

µ2 + bγ + α

)]
dα

=
1

bα − aα
[
α2/2− bγ

(
α− (µ2 + bγ) ln(µ2 + bγ + α)

)]bα
aα
.

And the same for the last term we replace bα by aα.

Sobol indices of order 1

For Sobol indices R∗R0
and R∗λ, we have the following result for the mean:

E(R∗|R0) =
τ(1− 1/R0)

µ

[
E
(

γ

µ2 + γ + α

)
+ E

(
λ

µ2 + λ

)
E
(

α

µ2 + γ + α

)]
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E(R∗|λ) =
τ

µ
E(1− 1

R0
)

[
E
( γ

µ2 + γ + α

)
+

λ

µ2 + λ
E
( α

µ2 + γ + α

)]
All these terms are well calculated. So the Sobol indices are:

R∗R0
=

V
(
E(R∗|R0)

)
V(R∗)

=
τ2

µ2

[[
E
( γ

µ2 + γ + α

)
+ E

( λ

(µ2 + λ)

)
E
( α

µ2 + γ + α

)]]2V
(

1
R0

)
V(R∗)

R∗λ =
V
(
E(R∗|λ)

)
V(R∗)

=
τ2

µ2

(
E(1− 1

R0
)

)2V
[[
E
( γ
µ2+γ+α

)
+
(

λ
µ2+λ

)
E
(

α
µ2+γ+α

)]]2

V(R∗)

where V
(

1
R0

)
and V

(
λ

µ2+λ

)
are given in (32) et (65).

For Sobol indices R∗γ and R∗α, we start by calculating the mean:

E(R∗|γ) =
τ

µ1

[
γEγ

(
1

µ2 + γ + α

)
+ E

( λ

(µ2 + λ)

)
Eγ
( α

µ2 + γ + α

)]
E(1− 1

R0
)

E(R∗|α) =
τ

µ1

[
Eα
( γ

µ2 + γ + α

)
+ E

( λ

(µ2 + λ)

)
αEα

( 1

µ2 + γ + α

)]
E(1− 1

R0
)

To facilitate the calculation and the notations, we consider

M1 = E
(

λ

µ2 + λ

)
Q1 = γ Eγ

(
1

µ2 + γ + α

)
+ E

(
λ

µ2 + λ

)
Eγ
(

α

µ2 + γ + α

)
Q2 = Eα

(
γ

µ2 + γ + α

)
+ E

(
λ

µ2 + λ

)
αEα

(
1

µ2 + γ + α

)
For expressions Eα and Eγ see (55).

To calculate V
(
Q1

)
, just calculate E

[(
Q1

)2] ( E
[
Q1

]
can be easily computed)

E
[(
Q1

)2]
=

1

d2
α

E
[(

(γ −M1(µ2 + γ))(T4(γ + bα)− T4(γ + aα)
)

+M1 × dα
)2]

. (67)

After simplification we find: ‘

E
[(
Q1

)2]
=

1

d2
α

E
[(

(T4(γ + bα)− T4(γ + aα)
)2(

γ(1−M1)−M1µ2

)2]
,

+
2M1

da
E
[(

(T4(γ + bα)T4(γ + aα)
)(
γ(1−M1)−M1µ2

)]
+M2

1 .

45



To calculate the second term, it suffices to reduce under the form X ln(X).

E
[(

(T4(γ + bα)
)(
γ(1−M1)−M1µ2

)]
=

(1−M1)

dg

[
1

2

[
T2(bγ + bα)− T2(aγ + bα)

]
− (µ2 + bα)

[
T1(bγ + bα)− T1(aγ + bα)

]
+

1

4

(
− bγ(bγ + 2µ2 + 2bα) + aγ(aγ + 2µ2 + 2bα)

)
+ dγ

]
−M1µ2

dg

[
T1(bγ + bα)− T1(aγ + bα)− dg

]
.

E
[(

(T4(γ + aα)
)(
γ(1−M1)−M1µ2

)]
=

(1−M1)

dg

[
1

2

[
T2(bγ + aα)− T2(aγ + aα)

]
− (µ2 + aα)

[
T1(bγ + aα)− T1(aγ + aα)

]
+

1

4

(
− bγ(bγ + 2µ2 + 2aα) + aγ(aγ + 2µ2 + 2aα)

)
+ dγ

]
−M1µ2

dg

[
T1(bγ + aα)− T1(aγ + aα)− dγ

]
.

We make the difference and we get:

Q3 = E
[(

(T4(γ + bα)− T4(γ + aα)
)(
γ(M1 − 1)−M1µ2

)]
=

(1−M1)

dg

[
1

2

[
T2(bγ + bα)− T2(aγ + bα)− T2(bγ + aα) + T2(aγ + aα)

]
− (µ2 + bα)

[
T1(bγ + bα)− T1(aγ + bα)

]
+ (µ2 + aα)

[
T1(bγ + aα)− T1(aγ + aα)

]
− 1

2
dα × dγ

]
− M1µ2

dγ

[
T1(bγ + bα)− T1(aγ + bα) + T1(bγ + aα)− T1(aγ + aα)

)]
.

For the first term, we considerF3(X) a primitive of the function
(

ln(X+A)−ln(X+B)
)2(

X.C+

D
)2. Finally we have,

E
[(
Q1

)2]
=

1

d2
α

(
F3(bγ)− F3(aα)

)
+

2M1

dα
Q3 +M2

1

with A = µ2 + bα, B = µ2 + aα, C = dα −M1 and D = −M1µ2.
Finally, we obtain :

V
[
E(R∗|γ)

]
=
τ2

µ2

[
E(1− 1/R0)

]2[
E
(
Q2

1

)
−
[
E
(
Q1

)]2]
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The Sobol indice R∗γ :

R∗γ =
V
[
E(R∗|γ)

]
V(R∗)

The Sobol indice R∗α: we proceed in the same way with:

V
[
E(R∗|α)

]
=
τ2

µ2

[
E(1− 1/R0)

]2[
E
(
Q2

2

)]
−
[
E
(
Q2

)]2]
,

R∗α =
V
[
E(R∗|α)

]
V(R∗)

For the calculation of E
(
Q2

2

)
we proceed as for E

(
Q2

1

)
knowing that :

E
[(
Q2

)2]
=

1

d2
γ

E
[(

(α.M1 − (µ2 + α))(T4(α+ bγ)− T4(α+ aγ)
)

+ dγ
)2]

. (68)

Sobol indices of order 2

We consider some notations of known expressions:

• K0 = E
(

1
µ2+γ+α

)

• K1 = E
(

γ
µ2+γ+α

)
• K2 = E

(
α

µ2+γ+α

)
• K1,1 = E

(
γ2

(µ2+γ+α)2

)

• K2,2 = E
(

α2

(µ2+γ+α)2

)

• K3 = E
[
(1− 1/R0)2

]

• K4 = E
[
1− 1/R0

]

• K5 = E
[

λ2

(µ2+λ)2

]

• K6 = E
[

λ
µ2+λ

]

• K7 = E
(

αγ

(µ2 + γ + α)2

)
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• K8 = Eα
(

γ
µ2+γ+α

)

• K8,8 = Eα
(

1
µ2+γ+α

)

• K9 = Eγ
(

α
µ2+γ+α

)

• K9,9 = Eγ
(

1
µ2+γ+α

)

• K10 = E
[(
Eγ
(

α
µ2+γ+α

))2]

• K11 = E
[(
Eα
( γ
µ2+γ+α

))2]

• K12 = E
[(
Eγ
(

1
µ2+γ+α

))2]

• K13 = E
[(
Eα
(

1
µ2+γ+α

))2]
K0 is given by(35), K1 and K2 are given by (52), K3 is given by (38), K4 is given by (32), K5

and K6 are given by (65), K7 is given by (66), for K8 and K9 are given by (55), for K8,8 and K9,9

are given byr (41), K1,1 and K2,2 given by (53), for K10 and K11 are given by (57), for K12 and
K13 are given by (55).

We start with the indice R∗R0,λ
. We have:

E
(
R∗|R0, λ

)
=
τ

µ

(
1− 1/R0

)(
K1 +

λ

µ2 + λ
K2

)
The variance of the previous term:

V
[
E
(
R∗|R0, λ

)]
=
τ2

µ2

[
K3E

[(
K1 +

λ

µ2 + λ
K2

)2]− [K4

(
K1 +K6.K2

)]2]
Then :

R∗R0,λ =
V
[
E
(
R∗|R0, λ

)]
V(R∗)

For the Sobol indice R∗α,γ . We have :

E
(
R∗|α, γ

)
=
τ

µ
K4

(
γ

µ2 + γ + α
+

α

µ2 + γ + α
K6

)
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Its variance is equal:

V
[
E
(
R∗|α, γ

)]
=
τ2K2

4

µ2

[(
K1,1 +K2

6K2,2 + 2K6K7

)
− (K1 +K6K2)2

]

R∗α,γ =
V
[
E
(
R∗|α, γ

)]
V(R∗)

For the Sobol indice R∗R0,α
.

E
(
R∗|R0, α

)
=
τ

µ

(
1− 1/R0

)(
K8 + αK6K8,8

)
Its variance is equal:

V
[
E
(
R∗|R0, α

)]
=
τ2

µ2

[
K3E

(
K2

8 +α2K2
6K

2
8,8 + 2αK6K8K8,8

)
−K2

4 (K1 +K6E(αK8,8))2

]
,

because E(K8) = K1 and E(αK8,8) is given by (61).

As E(K2
8 ) = K11 then the variance becomes:

V
[
E
(
R∗|R0, α

)]
=
τ2

µ2

[
K3

(
K11+K2

6E[α2K2
8,8]+2K6E[αK8K8,8]

)
−K2

4 (K1+K6E(αK8,8))2

]
,

The term E[α2K2
8,8] is given in (59) and we now calculate E[αK8K8,8].

E[αK8K8,8] = E
[
α
(
1− µ2 + α

dγ

[
T4(α+ bγ)− T4(α+ aγ)

]) 1

dγ

[
T4(α+ bγ)− T4(α+ aγ)

]]
=

1

dγ
E
[
α
[
T4(α+ bγ)− T4(α+ aγ)

]]
− 1

d2
γ

E
[
α(µ2 + α)

[
T4(α+ bγ)− T4(α+ aγ)

]2]

The term E
[
α
[
T4(α + bγ) − T4(α + aγ)

]]
is given in (61). For the second term, we do exactly

the same way we treated the term in (59).
We note P1 = E[α2K2

8,8], P2 = E[αK8K8,8] et P3 = E(αK8,8) The Sobol indice R∗R0,α
:

R∗R0,α =
V
[
E
(
R∗|R0, α

)]
V(R∗)

=
τ2

µ2

[
K3

(
K2

11 +K2
6P1 + 2K6P2

)
−K2

4 (K1 +K6P3)2

]
V(R∗)

For the Sobol indice R∗R0,γ
,

E
(
R∗|R0, γ

)
=
τ

µ

(
1− 1/R0

)(
γK9,9 +K6K9

)
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Its variance is equal:

V
[
E
(
R∗|R0, γ

)]
=
τ2

µ2

[
K3E

(
γ2K2

9,9 +K2
6K

2
9 + 2γK6K9,9K9

)
−K2

4 (E(γK9,9) +K6K2)2

]
,

We note U1 = E(γK9,9) is given in (61). The term E(K2
9 ) = K10. We also note U2 = E[γ2K2

9,9]
which is given in (59) and we calculate U3 = E[γK9K9,9] the same way as (61). The Sobol indice
R∗R0,γ

:

R∗R0,γ =
V
[
E
(
G1|R0, γ

)]
V(G1)

=
τ2

µ2

[
K3

(
U2 +K2

6K10 + 2K6U3

)
−K2

4 (U1 +K6K2)2

]
V(R∗)

For the Sobol indice R∗α,λ,

E
(
R∗|α, λ

)
=
τ

µ
K4

(
K8 +

λ

µ2 + λ
αK8,8

)
Its variance is equal:

V
[
E
(
R∗|α, λ

)]
=
τ2

µ2
K2

4

[
E
(
K2

8 +
λ2

(µ2 + λ)2
α2K2

8,8 + 2αK8K8,8
λ

µ2 + λ

)
− (K1 +K6P3)2

]
=
τ2

µ2
K2

4

[(
K11 +K5P1 + 2P2K6

)
− (K1 +K6P3)2

]
.

The Sobol indice R∗α,λ:

R∗α,λ =
V
[
E
(
R∗|α, λ

)]
V(R∗)

=
τ2

µ2
K2

4

[(
K11 +K5P1 + 2P2K6

)
− (K1 +K6P3)2

]
V(R∗)

For the Sobol indice R∗γ,λ,

E
(
R∗|γ, λ

)
=
τ

µ
K4

(
γK9,9 +

λ

µ2 + λ
αK9

)
Its variance is equal:

V
[
E
(
R∗|γ, λ

)]
=
τ2

µ2
K2

4

[
E
(
γ2K2

9,9 +
λ2

(µ2 + λ)2
K2

9 + 2γK9K9,9
λ

µ2 + λ

)
− (U1 +K6k2)2

]
=
τ2

µ2
K2

4

[(
U2 +K5K10 + 2U3K6

)
− (K1 +K6P3)2

]
.

The Sobol indice R∗γ,λ:

R∗γ,λ =

V
[
E
(
R∗|γ, λ

)]
V(R∗)

=
τ2

µ2
K2

4

[(
U2 +K5K10 + 2U3K6

)
− (K1 +K6P3)2

]
V(R∗)
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