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4 be ys Pay

Abstract. Trick-taking games are traditional card games played all over the world. There are many
such games, and most of them can be played online through dedicated applications, either for fun or for
betting money. However, these games have an intrinsic drawback: each player plays its cards according
to several secret constraints (unknown to the other players), and if a player does not respect these
constraints, the other players will not realize it until much later in the game.
In 2019, X. Bultel and P. Lafourcade proposed a cryptographic protocol for Spades in the random
oracle model allowing peer-to-peer trick-taking games to be played securely without the possibility of
cheating, even by playing a card that does not respect the secret constraints. However, to simulate
card shuffling, this protocol requires a custom proof of shuffle with quadratic complexity in the number
of cards, which makes the protocol inefficient in practice. In this paper, we improve their work in
several ways. First, we extend their model to cover a broader range of games, such as those implying
a set of cards set aside during the deal (for instance Triomphe or French Tarot). Then, we propose a
new efficient construction for Spades in the standard model (without random oracles), where cards are
represented by partially homomorphic ciphertexts. It can be instantiated by any standard generic proof
of shuffle, which significantly improves the efficiency. We demonstrate the feasibility of our approach by
giving an implementation of our protocol, and we compare the performances of the new shuffle protocol
with the previous one. Finally, we give a similar protocol for French Tarot, with comparable efficiency.

1 Introduction

Trick-taking Games. With the development of computers, many traditional games have been adapted into
electronic versions. The emergence of the Internet has naturally made it possible to play these games online
with opponents from all over the world. This is particularly the case for card games, and it is now possible
to play Poker, Bridge, Blackjack, Ramis, Triomphe, Écarté, Euchre or Tarot with human opponents at
any time and any place, thanks to the use of dedicated applications on computers or smartphones. While
these applications allow users to play for fun, many of them offer to play for money. In this case, there are
several security issues to consider, since an application that allows players to cheat would illegitimately make
honest players lose money. For this reason, several works, initiated in the seminal paper of Goldwasser and
Micali [15], have proposed cryptographic protocols allowing to play cards securely.

Trick-taking games are a family of card games that all have the same structure: the cards are dealt to
the players, then the game is divided into several rounds; in each round, players take turns playing a card,
and the player with the highest value card wins the round. However, players cannot play any card from their
hand and must follow several constraints defined by the rules. For example, in Whist and its variant Spades
(which appeared in the 40’s), players must play a card of the same suit as the first card of the round if they
can. There are many popular trick-taking games around the world such as Belote, Bridge, Tarot, Skat or
Whist. Some of them are gambling, and can be played in online casinos, such as Spades, Bourré or Oh Hell
Stackpot (a gambling version of Oh Hell).

Unlike other card games, trick-taking games allow players to cheat without it being immediately de-
tectable: since the players’ cards are hidden, it is not possible to know if a player respects the rules at the
time it plays its card. The cheating is detected later in the game, when the cheater plays a card it is not



supposed to have. In this case, the game is cancelled at the detriment of the other players which have lost
time and energy. In addition, trick-taking games are often played in teams, and the cheater’s teammates
must then take responsibility of the cheater’s behavior. While this may be embarrassing in the presence of
the other players, it is much easier to deal with online when players are anonymous. To avoid this situation,
online trick-taking game applications prevent illegal plays. However, to do this control, the application must
have access to the cards of all players, which must therefore trust the application by assuming that it is not
rigging the games.

Since such cheating is possible with a physical deck of cards, the classical cryptographic card game
protocols do not prevent it. In [6], Bultel and Lafourcade introduce the secure trick-taking game protocols,
which allows to detect when a player does not respect the rules of the game, without learning anything from
its cards. Such protocols have the following properties:
Unpredictability: the cards are dealt at random.
Theft and cheating resistance: a player cannot play a card that is not in its hand, and cannot play a

card that does not follow the rules of the game.
Hand and game privacy: players do not know the hidden cards of their adversaries at the beginning of

the game, then at each step of the game, the protocol does not reveal anything else than the cards that
have been played.

Unfortunately, the security model from [6] cannot be applied to games in which not all cards are used by
the players, because the challenger deduces the opponent’s hand from the knowledge of the honest players’
hands, which is not possible if cards are discarded. This excludes some very famous games, such as the
well-known French Tarot, the Skat game, considered as the national card game of Germany, as well as one
of the oldest trick-taking games, Triomphe, which dates back to the 15th century and is at the origin of
both the word trump and many other games, like Écarté and Euchre. As with Spades, for sake of clarity, we
choose to focus here on Tarot, but our approach is easily generalized.

Furthermore, the card distribution mechanism of the protocol in [6] suffers from two drawbacks inherent
to its design. In a nutshell, each player chooses a secret key sk and computes the corresponding public key pk
for each of its cards. It then alters its public key (and other parameters) using a random value, and shuffles
the generator/key pairs (with a proof of correctness). At the end of this step, each generator/key pair is
assigned a random card thanks to a random value the players need to agree on. The first issue is that this
approach is highly dependent on the random oracle model, the second is that the shuffle proof proposed
in [6] is not efficient since its complexity is in O(n2) in the number of cards, which is 32, 54, 78 or even 104
cards depending on the game.

Contributions. In this paper, we first extend the security model from [6] to cover the French Tarot (see
Section 4). French Tarot being the most complex of the games with Cards Set Aside, it is easy to simplify
our model to adapt it to other games having this property.

Then, we propose two new secure Trick-taking protocols based on a common idea (as in [6], for the sake of
clarity, we base one of our protocols on Spades, but it can be adapted to any game having the same structure,
such as Whist, Bridge, etc., the other is based on Tarot for similar reasons). Their card representations differ
from [6] (and is closer to classical cryptographic card game protocols), which allows us to address both of the
above drawbacks. Each card is encrypted by a key shared by all players using a partially homomorphic public
key encryption scheme, such that all shares are needed to decrypt a card. To shuffle the deck, the players
randomise and shuffle these encrypted cards in turn, then each player is given its encrypted cards, and each
player uses its key share to partially decrypt the other players’ cards. Thus, at the end of this process, the
cards are only encrypted by their owner’s key share. This method has the advantage of shuffling the cards
directly instead of shuffling keys associated with cards assigned a posteriori, so it is no longer necessary to
use a random oracle to assign the cards randomly. Moreover, the shuffle is done on a partially homomorphic
encryption scheme, and there are many efficient generic zero-knowledge proofs to prove the correctness of
such a shuffle in the literature with linear complexity in the number of ciphertexts [2,13,17]. This allows us
to instantiate our protocols much more efficiently than in [6], and to propose practical yet secure trick-taking
protocols. Details are given in Section 5 and proofs are presented in Appendix E. We also give a protocol
for Tarot, with similar complexity (see Section 6, and Appendix D and F).
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The goal is to reduce this additional cost to a point where cryptographic operations would no longer
cause delays during the game. The efficiency of our Trick-taking protocols is assessed in Appendix 7, along
with an implementation in Rust to demonstrate their practicality. Most of the complexity cost comes from
the proofs (that everything was done correctly), and especially in the shuffle phase (Proof 1 in Section 5).
A first improvement is that we can implement two designs for this proof. In order to show the advantage of
our approach, we evaluate the performance of our protocols when instantiated either with a specific proof
built from the same method (and a similar execution time) as [6] (5.64 s for the proof and 5.72 s for the
verification), or with the efficient generic proof proposed by Groth in [17] (234.70 ms for the proof and
175.23 ms for the verification), which is unapplicable to [6]. Provided with a linear execution time, usage
of this design makes our protocol practical even if used with more cards and/or more players as its overall
complexity is linear in the number of cards and in the number of players.

Related Work. There are several cryptographic protocols in the literature for securing online card games [1,
4, 10–12, 15, 19, 21, 23], but most of them do not prevent illegal moves in trick-taking games. To the best of
our knowledge, the only protocol with this property is [6]. It is also possible to use generic tools to obtain
similar properties such as multiparty computation [9] or proofs of circuits [14], but these approaches are
too generic and inefficient. Finally, another line of research, complementary to ours, studies ways to detect
cheating in trick-taking games by analysing the behavior of players [22]. The idea is to determine if a player
knows its opponent’s cards by analysing its playing style.

2 Technical Overview

2.1 Rules of Trick-Taking Games: the Example of Spades

The traditional version of Spades is played by 4 players divided into two teams of 2 players, but the rules
can be adapted for more players. It uses the traditional deck of 52 cards divided into the 4 Latin suits, which
are swords (spades ♠), cups (hearts ♡), coins (diamonds ♢) and clubs (♣) and its rules are as follows:

Draw. All 52 cards are handed out equally to each player for a total of 13 cards each. Each player then bids
on the number of tricks it plans to win.

A round. The first player of a new game is chosen randomly, the others following in a determined order.
The game consists of a sequence of rounds, requiring all 4 players to play a card in turn. In each round,
the suit of the first card played is called the leading suit and the player that plays the highest card wins
the tricks (the 4 cards played), and starts the next round.

Rank of cards. The cards of the same suit are ranked from highest to lowest as follows: Ace, King, Queen,
Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2. The cards of the spade suit have a higher value than the cards of the
leading suit.

Priority of cards. A player must play a card from the leading suit if it can. Otherwise, it can play any
card it wants. Note that since the players’ cards are hidden, the other players cannot check if a player is
following this rule at the moment it plays the card. We address this limitation (among others) with our
secure trick-taking game protocol.

Objective. If the number of tricks exceeds a team’s bet, its players win 10 points per trick, plus 1 point for
each additional trick, otherwise 0 points.

Most trick-taking games, including Bridge, Whist, Belotte, Bourré, Coinche, Pinochle, Ho Hell and many
others follow the same structure as Spades. The differences are in the number of players or cards, the way
scores are calculated, the ranking and the priority of the cards. The rules of priority can be complex, requiring
cards of higher and higher values for a given suit, or requiring a particular suit when a player does not have
a card of the leading suit. However, as a general rule, at the time the card is played, it is always possible to
determine which cards should have been played first if the player had had them. Our protocol is based only
on this property, so it can be easily generalized.
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2.2 The Particularity of French Tarot

By describing Spades, we have given a quite general framework, powerful enough to be adapted to almost
any trick-taking game. But one particular case has never been addressed: the case where a set of cards is set
aside during the deal, such as the dog (chien) in French Tarot. The dealing of this game generates another
hand: While played with 4 players, 6 cards are put aside in a fifth hand until the bets are over. Once the
cards are dealt, the bids start. The taker (the player that bets the highest) then plays against the 3 other
players and needs to obtain a certain amount of points in its tricks to win. A player that does not bid passes.
If all players pass, new cards are dealt. Presented below in increasing importance, the bids implies various
dealing procedures for the dog:
Petite (”small”): the ”dog” is revealed to all players and added to the hand of the taker. The latter

confidentially sets aside the same number of cards from its hand and puts them aside to form the
beginning of its score pile.

Garde (”guard”): same as petite, and points earned by the taker are double.
Garde sans (”guard without” the dog): the dog goes directly into the taker’s score pile, no one gets to see

it. The point multiplier is set to four.
Garde contre (”guard against” the dog): the dog goes directly into the opposing score pile. The score is

worth six times the base score.
The deck in Tarot consists of 78 cards of 3 types: 52+4 normal cards (Ace, King, Queen, Knight, Jack,

10 down to 2, nearly as in Spades) and 22 trumps (from 1 to 21, and an Excuse). Excuse, 1 (Petit) and 21 of
trumps are special cards and called the oudlers. On a petite or garde, the taker may not set aside in the dog
a king or a trump, except if it cannot discard anything else; In this case, the trumps put in the dog must be
displayed. In any case, it is forbidden to discard oudler trumps. Without entering into details of the game,
Tarot follows the general rule that at the time the card is played, it is always possible to determine which
cards should have been played first if the player had had them.

Note that unlike Tryomphe or Euchre, this game has very specific rules giving rise to several particular
cases. We treat the case of the French Tarot because its model and protocol can be adapted easily to other
games with cards set aside.

2.3 An Overview of our Protocols

To ensure that honest users can play online while no cheater can proceed for more than one round, our
trick-taking protocols (formally presented in Definition 3 and 4) require the following properties: First, at
each step of the game, the previous plays should have been valid for the rounds to continue. Secondly, no
player or central authority must have been trusted to reach the first requirement. Finally, maybe the most
important of the conditions, the algorithm has to be practical, since a significant computational overhead
would prevent any attempt of a player to play the game. To achieve this level of security, we choose a model
in which at each round, for each of the played cards, the players must provide a proof for each of their actions,
that their fellows verify before proceeding. These proofs have to be zero-knowledge, i.e., reveal nothing about
the players’ hands.

Card Dealing. Before playing, the cards must have been shuffled and drawn (proofs ensuring each player
that everything was executed correctly). We use randomisable encryption (that allows to randomise the
ciphertext). A first phase (graphically represented in Figure 1, for a standard set of cards) allows to give
each player its (encrypted) hand. A second phase allows it to recover its hand.
Setup. Each player Pi starts the game by (1.i) generating a key pair (pki, ski) from which a global public

key pk is generated. The canonical deck (with predefined order) is denoted as D = (id1, . . . , id52). Proofs
ensure that the keys were generated correctly.

Generation of the Ciphertexts. Each player (1.ii) computes ad hoc randomisable (ElGamal) ciphertexts
(c0,j)j=1,...,52 of all cards in D with the common public key pk.

Shuffle. To shuffle this set of encrypted cards, each player Pi in turn (1.iii) sequentially applies a random
permutation (δi,j) to the ciphertexts and randomise them using a secret random vector (ri,j) and the
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2♠ · · · A♠ · · · 2♢ · · · A♢
Adhoc

encryption
c0,1 · · · c0,13 · · · c0,37 · · · c0,52

(g, pk · idcard)

c4,1 · · · c4,13 · · · c4,37 · · · c4,52

ci,j = Rand(ci−1,δi(j), ri,j , pk)
Shuffles

Player’s 1 hand Player’s 4 hand

Fig. 1: Dealing cards in our trick-taking protocol. id : cards, pk : a public key, ri,j : random numbers,
permutations δi(j) ∈ J1, 52K for all i ∈ J0, 3K, j ∈ J1, 52K.

randomisation algorithm of ElGamal presented in Section 2.3. Each of these steps is associated with
a proof. Cards are now shuffled and distributed in between the players. For i ∈ {1, 2, 3, 4}, player Pi

receives the ciphertexts of indices in {13 · (i− 1) + 1, 13 · i}.
Hand Recovery. All players (2.i) broadcast some values θi,j (alongside a proof) for the 39 ciphertexts

they have not been attributed. This allows each player Pi to (2.ii) remove the randomness on the other
players’ keys on the ciphertexts to recover a vector of ciphertexts only encrypted by pki. Its cards remain
oblivious to the other players as they are still encrypted with its key. It can finally obtain its cards by
decrypting these values using ski.

Dog Generation. The rules of a trick-taking game may require some cards to be set aside during the shuffle.
To keep these cards secret, some ciphertext indices are associated to the dog and the matching θi,j may not
be revealed by the players. Unrevealed cards form the dog, based on the rules, they can later be revealed
(through a similar process as part 2 of the shuffle), permuted or shuffled with some other cards (as in 1.iii).
All outputs of these operations are produced alongside the associated proofs. As highlighted in Section 2.2,
in French Tarot, kings and trumps may not be placed in the dog unless it is impossible to proceed otherwise.
For later use, we define a set O ⊂ D ∈ Deck composed of the cards id that may not be discarded. To guaranty
that rules are followed, one has to prove that none of the cards placed in the dog do belong to O.

Card Playing. How a card is picked is not specified in our protocol, but it ensures that it follows the rules of
the game. When player Pi picks one of its cards to be played, it first proves that the played card is indeed
in its hand (by showing it matches one of its ciphertexts). Then it shows that the played card follows the
rules of the game: if it does not follow the leading suit, it has to prove that none of its remaining ciphertexts
encrypt cards that could have followed this suit. Immediate verification of the proofs by the other players
remove all potential doubts on the validity of the new play.

3 Cryptographic Tools

First we recall the Decision Diffie-Hellman hypothesis (DDH): Let G be a group. The DDH assumption states
that given (g, ga, gb, gz) ∈ G4, there exists no polynomial-time algorithm able to decide whether z = a · b or
not. Our schemes uses the ElGamal encryption scheme defined by the following algorithms:
KeyGen(K): Picks dk

$← Z∗
q (draw uniformly in the specified set) and computes ek = gdk. Returns (ek, dk).

Enc(m, ek): Draws y
$← Z∗

q , returns c = (c1 = gy, c2 = m · eky).
Dec(c, dk): Parses c as (c1, c2) and returns m = c2 · c−dk

1 .
ElGamal is IND-CPA secure (indistinguishable under chosen plaintext attack) under DDH [20], moreover it
is partially homomorphic and randomizable, which means that there exists an algorithm Rand that changes
a ciphertext c into a new ciphertext c′ of the same plaintext:
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Rand(c, r, ek): Parses c as (c1, c2) and returns c′ = (c′1 = c1 · gr, c′2 = c2 · ekr).
Our construction also uses Non-Interactive Zero-Knowledge Proofs of Knowledge (NIZKP) [16]. Let R a

binary relation and s, w two elements verifying (s, w) ∈ R. A (NIZKP) is a cryptographic primitive allowing
a prover knowing a witness w to show that w and s verify the relation R leaking no information on w.
Throughout this paper, we use the Camenisch and Stadler notation [7], i.e., ZK{w : (w, s) ∈ R} denotes
the proof of knowledge of w for the statement s and the relation R, and Ver(s, π) returns 1 if the proof π is
correct, 0 otherwise.

Let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R). A NIZKP is said to be sound when there is
no polynomial-time adversary A such that A(L) outputs (s, π) such that Ver(s, π) = 1 and s ̸∈ L with non-
negligible probability. It is said to be extractable when there exist a polynomial-time knowledge extractor Ext
and a negligible function ϵSoK such that, for any algorithm ASim(·,·) that outputs a fresh statement (s, π) with
Ver(s, π) = 1 such that A has access to a simulator that forges proofs for chosen statements, ExtA outputs
w such that (s, w) ∈ R having access to A with probability 1− ϵextract. It is said to be Zero-knowledge when
a proof leaks no information, i.e., there exists a polynomial-time algorithm Sim called the simulator such
that ZK{w : (s, w) ∈ R} and Sim(s) follow the same probability distribution.

4 Models for Trick-Taking Game Revisited

4.1 Formal Definitions of Trick-Taking Scheme and Protocol

Trick-taking schemes and protocols were formalised in [6], but their definitions miss the French Tarot. Here
we extend them to cover this additional game while staying consistent with the existing. We introduce a new
definition covering both the existing and our work, for that we merge algorithms DeckGen and GKeyGen as
it could have been in [6]. Only DeckGen is kept for the shuffle. In order to cover the dog in French Tarot, we
also add up an algorithm named MakeDog.

Trick-taking Game Scheme. In trick-taking games, a card is defined based on two attributes: a suit and
a number, such that id = (suit, val) ∈ Suits × Values is a card. A deck of k cards is modeled by a k-tuple
D = (id1, . . . , idk), where ∀i, j ∈ J1, kK, idi ̸= idj . The set of all possible decks is denoted by Decks. A deck D
might contains a subset O of cards that may not be discarded in the dog.

We first define trick-taking schemes, which contain all the algorithms that are used by the players. KeyGen
allows each player to generate its public/secret key. DeckGen is a protocol that distributes the cards.MakeDog
allows to manipulate a dog. GetHand determines the hand of a given player from its secret key and the game
key. Play allows a player to play a card, and to prove that it follows the rules of the game. Verif allows the
other players to check this proof. Finally, GetSuit returns the leading suit of the current round. Formally:

Definition 1. A trick-taking scheme W = (Init,KeyGen,VerifKey,DeckGen,GetHand,Play,Verif,GetSuit) be-
tween m participants is defined as follows:
Init(K): It returns a setup parameter setup.
KeyGen(setup): It returns a key pair (pk, sk).
DeckGen: It is a m-party protocol, where for all i ∈ J1,mK the ith party, denoted as Pi, takes as input

(ski, {pkl}1≤l≤m). This protocol returns a deck D and a game public key PK, or the bottom symbol ⊥.
GetHand(n, sk, pk,PK): It returns a set of cards H ⊂ D called a hand if the player index n matches the keys.
Play(n, id, sk, pk, st,PK): It takes as input a player index n ∈ J1,mK, a card id, a pair of secret/public key, a

global state st that stores the relevant information about the previous plays, the game public key PK and
returns a proof Π, and the updated global state st′.

Verif(n, id, Π, pk, st, st′,PK): It takes as input a player index n ∈ J1,mK, a card identity id, a proof Π gen-
erated by the algorithm Play, the global state st and the updated global state st′, the game public key PK
and returns a bit b. If b = 1, we say that Π is valid.

GetSuit(st): It returns a suit suit ∈ Suits from the current global state of the game st, where suit is the leading
suit for the current turn.

An additional algorithm can be added to trick-taking schemes to support a dog:
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MakeDog(n,PK): This is an m-party protocol outputting an updated game public key PK based on the previ-
ously derived key and a player index n.

Trick-taking Protocol. We now present the trick-taking protocol, which defines the order of execution of the
above algorithms. It is divided into three phases: keys generation, shuffle and splitting of the card, and finally
the game phase.

Definition 2. Let W be a trick-taking scheme potentially with a MakeDog algorithm and K ∈ N be a security
parameter. Let P1, . . . ,Pm be m polynomial-time algorithms. The trick-taking protocol instantiated by W
between P1, . . . ,Pm is the following protocol:

Keys generation phase: P1 runs setup← Init(K) and broadcasts setup. The players set st =⊥. Each player
Pi runs (pki, ski)← KeyGen(setup) and broadcasts pki.

Shuffle phase: All the players start by checking the other players’ proofs. Then P1 generates a deck D ∈
Decks and broadcasts it. The players generate PK by running the protocol DeckGen together. For all
i ∈ J1,mK, Pi runs Hi ← GetHand(n, sk, pk,PK). Then if instantiated, the players run MakeDog based
on the derived game public key PK and for a common index n.

Game phase: This phase is composed of k (sequential) steps (corresponding to the number of cards played
in a game). The players initialize the current player index p = 1. At each turn, Pp designates the player
which plays. Each step proceeds as follows:
– Pp chooses id ∈ Hp, then runs (Π, st′)← Play(p, id, skp, pkp, st,PK).
– For all i ∈ J1,mK \ {p}, Pp sends (id, Π, st′) to Pi.
– Each Pi then checks that Verif(p, id, Π, pkp, st, st

′,PK) = 1, otherwise, Pi sends error to Pp, which
repeats this step.

– If Verif(p, id, Π, pkp, st, st
′,PK) = 1, all players update the state st := st′, and update the index p that

points to the next player according to the rule of the game.

4.2 Security Properties

We now recall the security model of trick-taking protocols introduced in [6]. We give a high-level description
of its properties, the full formalism is given in Appendix B. Note that we adjusted some parts to make them
more generic to cover both the protocol of [6] and our Spades protocol (the model proposed in [6] being too
specific to the design of the related protocol). To formalise the security of our French Tarot protocol, that
does not fall within the general model, an ad hoc model is depicted at the end of this section and detailed
in Appendix C.

In general, we consider a security experiment where a challenger interacts with an adversary. The adver-
sary simulates the behaviour of a malicious player and its teammate, which we will refer to as an accomplice
(we therefore consider strong attacks where the adversary colludes with its teammate). The adversary chooses
the secret key of the malicious player and shares its public key after the challenger has sent the public keys
of the other three players, then the adversary chooses its accomplice, and the challenger reveals the key of
the accomplice to the adversary. They then perform the shuffle phase, where the adversary plays the role of
the malicious user and its accomplice, and the challenger simulates the behaviour of the other two players.
Note that the challenger knows the secret keys of three players, so it can determine their hands, and thus
deduce the hand of the malicious user. Finally, the adversary and the challenger simulate the game phase,
where the adversary plays the role of the malicious user and its accomplice, and the challenger plays the role
of the other two honest players. Of course, the security properties we describe must be proven regardless of
the algorithm the challenger uses to simulate the two honest players.

Theft and cheating resistance: A protocol is theft-resistant when a player cannot play a card that is not
in its hand. To attack the theft-resistance, the adversary must make the challenger accept a card that is
not in the hand of the malicious player during the experiment with non-negligible probability. A protocol is
cheating-resistant when a player cannot play a card that does not follow the rules of the game. To attack the
cheating-resistance in a trick-taking protocol, the adversary must make the challenger accept a card that is
not of the leading suit from the malicious player during the experiment with non-negligible probability, even
though it has such cards in its hand.
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Unpredictability: The unpredictability ensures that the cards are dealt at random. The adversary breaks this
property if it can alter the shuffle in such a way that a card chosen at the beginning of the experiment
ends up in one chosen hand with a significantly different probability than the usual distribution. Thus,
unpredictable holds if no adversary succeeds this attack for any chosen card with a significant advantage.
We have slightly modified this property to achieve a stronger version that the one originally presented in [6].
Here, our adversary chooses the card and the hand where it expects the card to be distributed.

Hand-privacy: The hand-privacy ensures that the players do not know the hand of the other players at the
beginning of the game. This time, the adversary has no accomplice, and the original experiment is truncated
before the game phase. The challenger then chooses two out of the three honest players, and randomly picks
one of their cards. To break the hand-privacy, the adversary must guess which player owns this card with a
non-negligible advantage.

Game-privacy: A protocol is game-private when at each step of the game phase, the players learn nothing
else than the previously played cards. This property is defined by a real/simulated experiment. In the real
setting, the adversary plays the real protocol with a challenger as in the experiment described above (again,
the adversary has no accomplice). In the ideal one, the protocol is simulated using the public parameters
of the honest users only. If there is a simulator such that the adversary cannot distinguish whether it is
playing a real or simulated experiment with a non-negligible advantage, then the protocol is game-private.
Intuitively, this means that a player could have simulated the protocol itself convincingly, which means that
an adversary does not learn anything private during the game. Note that the combination of hand-privacy
and game-privacy shows that the players have no information about the other players’ hands except for all
the cards they have already played.

Particularity of Dog’s Security. One would expect a dog (or any set of card set aside in general) to behave
as one of the player’s hands: it should not be possible to steal (covered by theft resistance), to predict
(unpredictability), to influence (theft-resistance) nor learn the cards in the dog (hand and game privacy)
at the end of the shuffle. Despite fitting the model in terms of required properties, games with dogs do not
allow us to rely completely on what exists. As specified above, the challenger must deduce the adversary’s
hand from its knowledge of the other three. With the dog, since some cards are not in the players’ hands,
this is no longer possible. The model must therefore be refined, at the expense of its genericity. Since the
hand can no longer be implicitly inferred, we need to add an extractable NIZK of the players’ secret keys to
the formal definition to allow the challenger to explicitly retrieve the hand of the adversary. A less ad hoc
model is left as an open problem.

In addition, to empower our adversary we let it decide which player takes and its bet. A second accomplice
is also granted. Based on the rules of the Tarot game, the security of the dog should be insured through an
additional property. The rules disallow to place some cards in the dog during the MakeDog algorithm. The
latter is ensured through a property that we call Dog security.

5 Our Spades protocol

We first define our new Spades protocol based on the randomisation of ElGamal. Here the deck D contains
52 cards, and each of the 4 players hands 13 cards.

Definition 3. Algorithms of our Spades scheme are instantiated as follows:

Init(K): It generates a group G of prime order q, a generator g ∈ G and returns setup = (G, q, g).

KeyGen(setup): It picks dk
$← Z∗

q and computes ek = gdk. Then a proof of knowledge Πek = ZK{dk : ek = gdk}
is computed and (sk = dk, pk = (ek, Πpk)) is returned.

DeckGen: It is a 4-party protocol, where for all i ∈ J1, 4K the ith party is denoted as Pi, and takes as input
his/her secret keys ski and the public keys of all the players {pkl}1≤l≤4. This protocol returns a game
public key PK, or ⊥.
Phase 1:
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– The canonical deck D ∈ Decks is initialized by each player.
– Each user parses D = (id1, . . . , id52) and computes pk =

∏4
i=1 eki, then for all j ∈ J1, 52K each player

computes c0,j ← (g, pk · idj) and set c0 ← (c0,j)1≤j≤52.
– For each i ∈ {1, 2, 3, 4}, each Pi does in turn: it picks at random a permutation δi ∈ J1, 52K52, and

(ri,j)1≤j≤52
$← (Z∗

q)
52. Pi then computes ci,j ← Rand(ci−1,δi(j), ri,j , pk) and generates a proof

πi,1 ← ZK
{
(δi, (ri,j)1≤j≤52) : ci,j = Rand(ci−1,δi(j), ri,j , pk)

}
. (1)

Finally, Pi sets ci ← (ci,j)1≤j≤52 and broadcasts (ci, πi,1).
– Each player verifies the proofs (πi,1)1≤i≤4.

Phase 2:
– For all i ∈ J1, 4K, player Pi parses c4 = (c4,j)1≤j≤52 and c4,j = (xj , yj).

– For all j ∈ J1, 52K\J13 · (i− 1) + 1, 13 · iK, each Pi computes θ(i,j) = xski
j ,

πi,2 ← ZK

{
ski :

∧
j∈J1,52K\J13·(i−1)+1,13·iK

θ(i,j) = xski
j ∧ pki = gski

}
, (2)

then Pi broadcasts (θ(i,j))j∈J1,52K\J13·(i−1)+1,13·iK and πi,2.
– For all i ∈ J1, 4K, for all l ∈ J1, 4K, for all j ∈ J13 · (l − 1) + 1, 13 · lK, each Pi computes c∗j ←(

xj ,
yj∏

1≤γ≤4;γ ̸=l θ(γ,j)

)
, and verifies the proofs (πγ,2)γ∈J1,4K\{i}.

– Each player returns PK← (c∗j )1≤j≤52.
GetHand(n, sk, pk,PK): The algorithm parses PK as (c∗j )1≤j≤52 and returns a hand H ← {Decsk(c∗j )}j∈J13·(n−1)+1,13·nK.
Play(n, id, sk, pk, st,PK): It parses PK = (c∗j )1≤j≤52 and the state element st = (α, suit, U1, U2, U3, U4). If

st =⊥ it sets four empty sets U1, U2, U3 and U4. Let t ∈ J13 · (n − 1) + 1, 13 · nK be the integer such
that id = Decsk(c

∗
t ). It sets U ′

n = Un ∪ {t}. Note that at each step of the game, the set Un contains the
indices of all the (c∗j )j∈J13·(n−1)+1,13·nK that have already been used by player n to play a card. For all
i ∈ J1, 4K\ {n}, it sets U ′

i = Ui.
If α = 4 or st =⊥ then it sets α′ = 1 and suit′ = id.suit. Else it sets α′ = α + 1 and suit′ = suit. The
index α states how many players have already played this round, so if α = 4, players start a new round.
Moreover, suit states which suit is the leading suit of the round, given by the first card played in the
round. This algorithm sets st′ = (α′, suit′, U ′

1, U
′
2, U

′
3, U

′
4). It generates

Π0 = ZK {sk : id = Decsk(c
∗
t )} , (3)

which proves that the played card id matches one of the ciphertexts in PK attributed to the player n. Let
L ⊂ J1, 52K be a set such that for all l ∈ L, suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards
that are not of the leading suit this round. Then it produces:
– If suit′ = id.suit or if |Un ∪ {t}| = 13, it sets Π1 ←⊥ (if the card id is of the leading suit, then the

player can play it in any case).
– If suit′ ̸= id.suit and |Un ∪ {t}| < 13, it generates

Π1 = ZK

{
sk :

∧
j∈J13·(n−1)+1,13·nK

j ̸∈Un∪{t}

∨
l∈L

idl = Decsk(c
∗
j )

}
. (4)

Which proves that the player n cannot play a card of the leading suit.
Finally, it returns the proof Π = (t,Π0, Π1), and the updated value st′.

Verif(n, id, Π, pk, st, st′,PK): It parses st as (α, suit, U1, U2, U3, U4), st
′ as (α′, suit′, U ′

1, U
′
2, U

′
3, U

′
4), the key

PK as (c∗j )1≤j≤52, and Π as (t, Π0, Π1). First checks if t ∈ J13 · (n − 1) + 1, 13 · nK, if not return 0.
If st =⊥, it sets four empty sets U1, U2, U3 and U4. Let L ∈ J1, 52K be a set such that for all l ∈ L,
suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards that are not of the leading suit. This algorithm
first checks that the state st is correctly updated:
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– If there exists i ∈ J1, 4K\ {n} such that U ′
i ̸= Ui, then it returns 0.

– If t ∈ Un or Un ∪ {t} ≠ U ′
n, then it returns 0.

– If α = 4 or st =⊥, and α′ ̸= 1 or suit′ ̸= id.suit, then it returns 0.
– If α ̸= 4 and suit ̸=⊥, and α′ ̸= α+ 1 or suit′ ̸= suit, then it returns 0.

This algorithm then verifies the ZKP to check that the player does not cheat by playing a card it has not,
or by playing a card that is not of the leading suit even though it could play a card of the leading suit.
– If Π0 is not valid then it returns 0.
– If suit′ ̸= id.suit and there exists an integer j ∈ J1, 13K such that (13 · (n− 1)+ j) ̸∈ Un and Π1 is not

valid then it returns 0.
If none of the previous checks fails, then this algorithm returns 1.

GetSuit(st): It parses st as (α, suit, U1, U2, U3, U4) and returns suit.

Security. This Spades protocol relies on the unpredictability of the randomness introduced by the players,
security of the ZKP and the DDH hypothesis.

Theorem 1. Given proofs of knowledge with soundness, extractability and zero-knowledge, our protocol is
theft-resistant, cheating-resistant, hand-private, unpredictable, and game-private under the DDH assumption.

For lack of space, the proof of this theorem is given in Appendix E whereas a discussion on the arguments
used to show each of the properties follows.

Theft-resistant. An adversary trying to play someone else’s card falls short due to the required ZKP.
While trying to play player Pi’s card, its ignorance of the secret key ski means that it needs to produce
such a proof for someone else’s card, i.e., a valid ZKP for a false statement, which is prevented by the
soundness of the ZKP. Such a move is only possible with negligible probability since the proof systems
are sound.

Cheating-resistant. We start by the same arguments as above: we invoke the soundness of the ZKP to
show that an adversary cannot influence the shuffle of the game. To play a card that is not of the leading
suit, assuming it has some cards of the leading suit at the time of playing the card, an adversary should
forge a proof of a false statement. Again, the soundness of the ZKP implies the inability of the adversary
to proceed.

Unpredictable. During the shuffle each action requires a ZKP to prove honesty in the execution. Soundness
of these proofs imply that our adversary must follow the shuffle protocol. It still has an influence via the
permutations and the randomisation it inputs. Two cases need to be considered, when the challenger is
the last to shuffle and when it is not. In the first case the random values outputted by the challenger will
vanish any attempt to cheat. However, in the second case, the adversary plays last. Based on the DDH we
show that in such a case the adversary does not learn anything about the shuffle cards before it proceeds
and cannot decide which value to pick. Hence, the rightfully executed shuffle yields the unpredictability
of its outcomes.

Hand-private. Turn by turn, using a random permutation and randomising the ciphertexts, the players
shuffle the deck during the execution of DeckGen. Assuming DDH hardness and thus the indistinguisha-
bility of the ElGamal encryption, we can conclude that the ciphertexts are completely unlinkable to
the card values. An adversary would be unable to learn any information from what it sees and in the
meantime ZKP ensure that it follows the protocol.

Game-private. We provide a simulator algorithm for our game. It shows random values instead of cipher-
texts and simulats its ZKP in order to link these values to some cards. Due to extractability of the ZKP,
we can build an adversary that would have high chances of breaking DDH if it were able to distinguish
this simulation from a real game.

6 Our French Tarot’s Protocol

We now show how to achieve a protocol that contains a dog through highlighting an instantiation of a
Tarot protocol. Adapted from our previously presented Spades scheme of Section 5, we need to address the
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MakeDog algorithm based on the rules of this game. We present this protocol for 4 players and a regular
deck of 78 cards. Based on the rules this leads to 18 cards for each player and a dog composed 6 cards. We
assume that cards indexed by i ∈ J73, 78K are reserved for the dog and that O contains the cards that may
not be discarded in the dog.

Definition 4. Our French Tarot protocol is defined similarly to Definition 3 (the few differences are implied
trivially by the specificity of the rules) except for the algorithm MakeDog defined as follows (see Appendix D
for details).

MakeDog: It is a 4-party protocol taking as input the index n of a player.

– For all i ∈ J1, 4K, player Pi parses c4 = (c4,j)1≤j≤78 and c4,j = (xj , yj).

– For all j ∈ J73, 78K, each Pi send θ(i,j) = xski
j , as well as a proof π′

i,2 ← ZK
{
ski :

∧
j∈J73,78K θ(i,j) = xski

j ∧ pki = gski
}
.

– For all i ∈ J1, 4K, j ∈ J73, 78K, each Pi recovers id∗j ←
(

yj∏
1≤γ≤4 θ(γ,j)

)
, the cards of the dog, and

verifies the proofs (π′
γ,2)γ∈J1,4K\{i}.

– Pn shuffles its cards with the dog: first sets c∗j = (g, pk · idj) for j ∈ J73, 78K, then let K = J18 ·
(n − 1) + 1, 18 · nK ∪ J73, 78K. It picks a permutation δ ∈ K24, and (rj)j∈K

$← (Z∗
q)

24, computes

c5,j ← Rand(c∗δ(j), rj , pk) for j ∈ K and a proof π5 ← ZK
{
(δ, (rj)j∈K) : c

∗
5,j = Rand(c∗δ(j), rj , pk)

}
.

For all j ∈ J1, 78K \ K, set c5,j ← c∗j . Player Pn sets c∗ ← (c5,j)1≤j≤78.
– Pn shows that it follows the rules and did not put unauthorized card in the dog by producing the proof:

Πn ←− ZK

{
skn :

∧
j∈J73,78K

∨
l/∈O

idl = Decskn(c5,j)

}
, (5)

then it sends (c∗, π5, Πn). If Pn has no choice but to put l trumps in the dog, then it cannot produce
this proof. Let j1, . . . , jl ∈ J73, 78K be the indices of these cards. In this case, Pn produces the tokens

θjk = xskn
jk

and the proofs πjk ← ZK
{
skn : θjk = xskn

jk
∧ pki = gski

}
for 1 ≤ k ≤ l. It also proves than

it cannot proceed otherwise:

Π ′
n ←− ZK

{
skn :

∧
j∈J18·(j−1)+1,18·jK

∨
l∈O

idl = Decskn(c5,j)

}
, (6)

and then produces proof 5, with j ∈ J73, 78K \ {j1, . . . , jl}. Player Pn then broadcasts (c∗, π5, Πn) and
(Π ′

n, {θjk , πjk}1≤k≤l).
– Each Pi for i ∈ J1, 4K \ {n}, checks all the received proofs and checks that for all j ∈ J1, 78K \ K,

c5,j = c∗l . In case Pn has revealed a card, Pi computes idjk ← yjk/θjk and checks idjk is an authorised
oudler.

– Each player returns PK← c∗.

Theorem 2. Given proofs of knowledge with soundness, extractability and zero-knowledge, our tarot protocol
is theft-resistant, cheating-resistant, hand-private, unpredictable, game-private and dog-secure under the DDH
assumption.

This theorem is based on similar arguments as exposed in Section 5. The proof is detailed in Appendix F.

7 Efficiency Analysis

Users of online card games want efficient and reliable tools. Waiting in between plays would inevitably lead
to a degraded game experience. We compare our protocol to the only other secure Spades protocol [6],
and we are able to reduce this waiting to a point where cryptographic operations would no longer cause
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delays during the game. To show these claims, we have implemented our protocol in Rust [18], based on the
well-known Curve25519 [5] elliptic curve as it is known for its efficiency. The benchmarks below have been
obtained using an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz processor without using parallelisation. No
other Tarot scheme exists in the literature, this one has a very similar execution time as the Spades protocol
as it keeps the same structure and uses the same type of proofs. Let n be the number of cards used during
a game.

Most of the computations are due to the numerous zero-knowledge (ZK) proofs. A first improvement is
that we can implement two designs for Proof 1 of the shuffle.

– Design (1): proof 1-out-of-n [8] based on Schnorr’s proof, complexity O(n2).
– Design (2): Groth proof of shuffle from [17], complexity O(n).

Since the second design proves shuffle of homomorphically encrypted elements, it cannot be used in [6].
In Figure 2, the time execution of these shuffles from 10 to 100 cards is presented.
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Fig. 2: Complexity Evaluation of the Zero-Knowledge Proofs for Proof 1 of our protocol varying from 10 to
100 cards.

We can refer to Table 1 for a benchmark of the ZK proofs. Instantiated with Design (1), we directly see
that our total execution time is going to be unpractical as it takes more than 5 seconds to execute the proof
of shuffle and that one proof needs to be executed for each of the players. Provided with a linear execution
time, usage of Design (2) makes our protocol practical even if used with more cards and/or more players
as its overall complexity is linear in the number of cards. The number of players does not influence the
complexity of the ZK proofs and the execution time of the shuffle depends linearly on it.

Numerous multiplications by a scalar and zero-knowledge proofs (leading to more multiplications) are
used in our protocol. We provide a theoretical comparison of our protocol with the Spades protocol of [6] in
Table 2, which records the number of elliptic curve point multiplications at each step of Spades protocols.
Note that totals for Play and Verif and a full execution of the game are well over-estimated as we consider
the worst possible plays. It is important to note that the ZK proofs in DeckGen dominates the computation
cost: The proofs of shuffle used in both [6] and Design (1) are the same 1-out-of-n proofs as above, and lead
to 43 160 multiplications by a scalar. With Design (2), we are thus able to drastically diminish the cost of
the DeckGen procedure.

On the whole, a full execution of DeckGen can be performed with Design (1) in about 20 seconds of
processor time for all 4 players, against 3 seconds with Design (2) at equivalent security level. It takes 178
milliseconds (ms) to recover each hand. A play takes about 270 ms of time and its verifications only 185 ms.
This analysis shows that this protocol is the most efficient secure Spades protocol existing to date. Our Tarot
protocol has a computation overhead of the same magnitude. Furthermore, these timings being of the same
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Design (1) Design (2)

Prove Verify Prove Verify

Execution of Proof 1 5.64 s 5.72 s 234.70 ms 175.23 ms

Prove Verify

Execution of Proof 2 586.38µs 1.14 ms

Execution of Proof 3 1.191 ms 2.69 ms

Execution of Proof 4 104.06 ms 103.99 ms

Table 1: Average execution time of the four ZKP for 52 cards.
Proofs’ number refers to formulas’ number of Section 5.

Note that (1) has similar execution time as previous work [6]

KeyGen DeckGen GetHand Play Verif GetSuit Total for a full game

[6] 13 43 862 598 1802 1828 0 79 139

Design (1) 2 43 680 13 1802 1828 0 61 209

Design (2) 2 4 458 13 1802 1828 0 21 806

Table 2: Elliptic curve point multiplications in each of the Spades algorithms (for one player).

order of magnitude than 1 RTT (Round-Trip Time), the overhead brought by securing the protocol seems
acceptable. Although the communication time has been ignored in this benchmark, some pre-computation
during communication time, mostly of the proofs, may compensate this limitation.

8 Conclusion

In this paper, we modify and expand the security model for trick-taking games. It encompasses the security
for a broader range of protocols and enables to put aside some cards after the shuffle and appoint them to a
player later in the game. Two new trick-taking schemes with security in the standard model are proposed.
These protocols can be instantiated with any proof of shuffle on partially homomorphic encryption, which
makes them efficient and usable.

Future work would consist in implementing them in real conditions, with real and not simulated interac-
tions between the players.
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A Cryptographic Background

In this section, we give more details on the definitions, the DDH assumption and zero-knowledge proofs.
An asymmetric encryption scheme is a mechanism allowing a user to send a plaintext p to a receiver

without revealing them to the public or any malicious actor. A sanitary recall is given in the upcoming
definition.

Definition 5 (Asymmetric Encryption Scheme). An encryption algorithm E is given by four algo-
rithms:

Setup(1K). This algorithm outputs params, the global parameters of the scheme.
KeyGen(params). This algorithm outputs the keys (dk, ek).
Encek(p). For a given plaintext p, a ciphertext c is returned.
Decdk(s). For a given ciphertext c, a plaintext p is returned.

An asymmetric encryption scheme has the following properties:

Correctness. For all K ∈ N, for all possible outputs of Setup(1K), for all possible pair of keys (dk, ek),
Decdk(Encek(p)) = p

Indistinguishability under Chosen Plaintext Attacks. (IND-CPA)
This property ensure that ciphertext leaks no information on the messages. Let E = (KeyGen,Enc,Dec)
be an encryption scheme and K its security parameter. Take A a probabilistic polynomial time algo-
rithm. Experiment ExpIND-CPA

E,A (K) is described in Figure 3. The property holds if for any polynomial time

adversary A, AdvIND-CPA
A (K) = |Pr[ExpIND-CPA

ϵ,A (K) = 1]− 1/2| ≤ negl(K).
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ExpIND-CPA
E,A (K)

params←− Setup(1K)
(dk, ek)←− KeyGen(params)
(m0,m1)←− A(params, ek)

b
$← {0, 1}

c←− Encek(mb)
b∗ ←− A(c)
Return b = b∗

Fig. 3: Experiment for IND-CPA.

The IND-CPA security of the ElGamal encryption scheme relies on the DDH problem. In the multi-users
settings a reduction to the same problem exists. Let Expn−IND-CPA

A (K) be the IND-CPA experiment with access
to a polynomial amount n(K) of independent oracles all providing ElGamal ciphertexts for different keys or
random elements depending on the value of an element b.

Property 1 (From [3]). Let EG = (KeyGen,Enc,Dec) be the ElGamal public-key encryption scheme as de-
scribed above. Then for any adversary A there exists an adversary D such that for any K ∈ N and any
polynomial n(K),

Advn−IND-CPA
EG,A (K) ≤ 2 · AdvDDH

D (K) +
1

2K−1
.

For qe(K) the number of total queries to each ElGamal encryption’s oracle, the running time of D is that of
A plus O(qe(K)n(K) · T exp

G (K)). Where T exp
G (K) represent the time for a single exponentiation in G.

This property gives guarantees on n− IND-CPA security of the ElGamal encryption used in our protocols, we
latter extend this property to prove security of our protocols.

B Formal Security Model of Trick-Taking Games

Security of trick-taking protocols requires the simulation of the honest players based on their knowledge of
the game (previous plays and their hand). This simulation is achieved using an algorithm called trick-taking
strategy, which decides which card to play based on the game situation.

Definition 6. A trick-taking strategy is a polynomial-time algorithm Strat that takes as input a tuple of
cards played (which represents all cards played at some point in a trick-taking game) and a set of cards hand
(which represents all cards of a player at the same point), a first player index p∗, a player index p, and that
returns a card id ∈ Hand which is valid according to the rules of the considered game.

Based on [6] we define an experiment where a challenger simulates a Trick-taking protocol to an adversary.
This experiment is used and refined to define the security properties of Trick-taking schemes: theft-resistant,
cheating-resistant, unpredictability, hand-privacy and game-privacy. These properties define the attacks that
should not be feasible by a polynomial-time adversary, regardless of the strategies used to simulate the other
players.

Only the algorithms were modified from [6] for this experiment, the purpose of this game remains the
same: simulating a Trick-taking scheme with an adversary. The adversary is allowed to take part of the game
as one of the four players and to take an accomplice. Note that in this experiment the adversary has access
to the private key of all players. The challenger cannot use the hand generation algorithm for the corrupted
player, because he does not know its secret key; however, the challenger can deduce the adversary’s hand
because it contains the 13 cards that are not in the hand of the three other users. After generating a shuffled
deck, the challenger and the adversary run the game phase, such that the adversary plays the role of the
corrupted user and its accomplice.
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Trick-taking Experiment:

Definition 7. Let W = (Init,KeyGen,DeckGen,GetHand,Play,Verif,GetSuit) be a Trick-taking scheme, S =
(Strat1,Strat2,Strat3,Strat4) be a tuple of strategies, and K ∈ N be a security parameter. Let A and C be two
polynomial-time algorithms. The Trick-taking experiment ExpTrickTW,S,A(K) instantiated by W and S between the
adversary A and the challenger C is defined as follows:

Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the pair (setup, st) to A, which
returns a corrupted user index ic ∈ J1, 4K. For all i ∈ J1, 4K\ {ic}, C runs (ski, pki)← KeyGen(setup) and
sends (ski, pki) to A, which returns the public key pkic and an accomplice index ia.

Shuffle phase: C and A generate PK by running the algorithm DeckGen together, such that A plays the
role of the players Pic and Pia , and C plays the role of the other players. If PK =⊥, then C aborts
and returns 0. Following this step C execute Hi ←− GetHand(i, ski, pki,PK) for i ∈ J1, 4K \ {ic}, and set
Hic = {idi}1≤i≤52 \(∪4i=1;i̸=ic

Hi).
Game phase: C initializes the first player index p∗ = 1, the current player index p = p∗, the corrupted play

index γ = 0, and played =⊥. For j ∈ J1, 52K:
If p ̸= ic and p ̸= ia: C runs id ← Stratp(played, Hp, p∗, p), then C runs (Π, st′) ← Play(p, id, skp, pkp,

st,PK). C sends (id, Π, st′) to A and updates st := st′.
If p = ia: C receives (id, Π, st′) from A. If Verif(ia, id, Π, pkia , st, st

′,PK) = 0, then C aborts and the
experiment returns 0. Else, C updates st := st′.

If p = ic: C increments γ := γ + 1, then receives (id, Π, st′) from A and sets (idic,γ , Πic,γ) = (id, Π). C
sets stγ = st and st′γ = st′. C sets suitic,γ = GetSuit(st). If Verif(ic, idic,γ , Πic,γ , pkic , stγ , st

′
γ ,PK) = 0,

then C aborts and the experiment returns 0. Else, C updates st := st′.
C then updates the index p that points to the next player according to the rule of the Trick-taking game,
parses played as (pl1, . . . , pln) (where n = |played|) and updates played := (pl1, . . . , pln, id).

Final phase: The experiment returns 1.

Theft-resistant

Definition 8. A Trick-taking scheme W is said to be theft-resistant if for any tuple of strategies S =
(Strat1,Strat2,Strat3,Strat4) and any polynomial-time adversary A which plays the Trick-taking experiment
instantiated by W and S, the probability that there exists γ ∈ J1, 13K verifying the two following conditions
is negligible.

– Verif(ic, idic,γ , Πic,γ , pkic , stγ , st
′
γ ,PK) = 1, i.e., the γth play of the adversary is accepted for the card

idic,γ and
– idic,γ /∈ Hic , i.e., the card idic,γ is not in the adversary’s hand.

Cheating-resistant

Definition 9. A Trick-taking scheme W is said to be cheating-resistant if for any tuple of strategies S =
(Strat1,Strat2,Strat3,Strat4) and any polynomial-time adversary A which plays the Trick-taking experiment
instantiated by W and S, the probability that there exists γ ∈ J1, 13K verifying the following is negligible.

– Verif(ic, idic,γ , Πic,γ , pkic , stγ , st
′
γ ,PK) = 1, i.e., the γth play of the adversary is accepted for the card

idic,γ ;
– idic,γ .suit ̸= suitic,γ and suitic,γ ̸=⊥ i.e., the suit of the card idic,γ is not the leading suit;
– There exists id ∈ Hic such that: ∀ l ≤ γ, idic,l ̸= id and id.suit = suitic,γ . i.e., the adversary has a card of

the leading suit in its hand that was not already played before the γth play.

Unpredictable

Definition 10. Let W be a Trick-taking scheme and K ∈ N be a security parameter. Let A and C be
two polynomial time algorithms. The unpredictable experiment ExpunpW,A(K) instantiated by W between the
adversary A and the challenger C is defined as follows:
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Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the pair (setup, st) to A, who
returns a corrupted user index ic ∈ J1, 4K. For all i ∈ J1, 4K\ {ic}, C runs (ski, pki) ← KeyGen(setup).
The challenger sends {pki}i∈J1,4K\{ic} to A, who returns its public key pkic and an accomplice index ia.
C finally sends skia to A who answer is a card id and a player index iguess ∈ {1, 2, 3, 4}.

Shuffle phase: C and A generate PK by running the algorithm DeckGen together, such that A plays the
role of the players Pic and Pia , and C plays the role of the other players. If PK =⊥, then C aborts and
returns a random bit following a Bernoulli distribution with parameter 1/4. Following this step C execute
Hi ←− GetHand(i, ski, pki,PK) for i ∈ J1, 4K \ {ic}, and set Hic = {idi}1≤i≤52 \(∪4i=1;i̸=ic

Hi).
Final phase: If id is in Higuess , then C returns 1, else it returns 0.

Definition 11. The Trick-taking scheme W is said to be unpredictable if for any adversary playing ExpunpW,A(K),

the probability that ExpunpW,A(K) returns 1 is negligibly close to 1/4.

Hand-Privacy

Definition 12. Let W = (Init,KeyGen,DeckGen,GetHand,Play,Verif, GetSuit) be a Trick-taking scheme and
k ∈ N be a security parameter. Let A and C be two polynomial time algorithms. The hand experiment
ExpHandW,A(K) instantiated by W between the adversary A and the challenger C is defined by:
Key generation phase: C runs setup ← Init(K). It sets st =⊥. It sends the pair (setup, st) to A, who

returns ic ∈ J1, 4K. For all i ∈ J1, 4K\ {ic}, C runs (ski, pki) ← KeyGen(setup) and sends pki to A, who
returns pkic .

Shuffle phase: C and A generate PK by running the algorithm DeckGen together, such that A plays the role
of Pic , and C plays the role of the three other players. If PK =⊥, then C aborts and returns a random
bit with uniform distribution. For all i ∈ J1, 4K\ {ic}, C runs Hi ← GetHand(i, ski, pki,PK), and sets
Hic = {idi}1≤i≤52 \(∪4i=1;i ̸=ic

Hi).

Challenge phase: C picks θ0 and θ1 in J1, 4K\ {ic} such that θ0 ̸= θ1. C picks b
$← {0, 1} and id

$← Hθb ,
and sends (id, θ0, θ1) to A, who returns b∗.

Final phase: If b = b∗, then C returns 1, else it returns 0.

Definition 13. A Trick-taking scheme W is hand-private if for any polynomial-time adversary A which
plays ExpHandW,A(K), the probability that the experiment returns 1 is negligibly closed to 1/2.

Game-privacy

Definition 14. For any K ∈ N, any Trick-taking scheme W , any quadruplet of strategies S, any adversary
D and any element K =

(
setup, {ski, pki}1≤i≤4;i ̸=ic

,PK
)
, ExpTrickTW,S,K,D(K) denotes the same experiment as

ExpTrickTW,S,D(K) except:
1. The challenger and the adversary use the setup and the keys in K instead of generating fresh setup and

keys during the experiment.
2. A has no accomplice.
A Trick-taking scheme W is said to be game-private if there exists a polynomial-time simulator Sim such
that for any tuple of strategies S and any polynomial-time 5-party algorithm D = (D1,D2,D3,D4,D5),
|Preal(D, k)− Psim(D, k)| is negligible, where

Preal(D, k) =

Pr


1← D5(vw) :

setup← Init(K); ic ← D1(setup);
∀i ∈ J1, 4K \ {ic}, (ski, pki)← KeyGen(setup);
pkic ← D2(setup, {pki}i∈J1,4K\{ic} , vw);

PK← DeckGenP1,P2,P3,P4where Pic = D3(vw);
K := (setup, pkic , {(ski, pki)}1≤i≤4;i̸=ic

,PK);

If PK =⊥, vw :=⊥;
Else b← ExpTrickTW,S,K,D4(vw)

(K);
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Psim(D, k) =

Pr

1← D5(vw) :

setup← Init(K); ic ← D1(setup);
∀i ∈ J1, 4K \ {ic}, (ski, pki)← KeyGen(setup);
pkic ← D2(setup, {pki}i∈J1,4K\{ic} , vw);

PK← DeckGenP1,P2,P3,P4where Pic = D3(vw);
If PK =⊥, vw :=⊥;
Else b← SimTrickT

W,S,D4(vw)
(k, setup, ic, {pki, }1≤i≤4 ,PK, vw);


and where vw denotes the view of D, i.e., all the values sent and received by each algorithm of D during its
interaction with the experiment.

C Adaptation of the Security Model to the French Tarot

In this section, a detail version of the model highlighted in Section 4.2 is given. This means giving a formal
definition of the experiments associated to each of the following properties: theft-resistant, cheating-resistant,
Unpredictability hand-privacy, game-privacy and dog security. For this purpose we uses Honest players sim-
ulations is defined in Section B, these algorithms are now considered in the context of French Tarot. Also,
bets are needed in Tarot, in our model, the taker and its bet is set up to the adversary’s choice.

Trick-taking Experiment:

Definition 15. Consider a Trick-Taking scheme W = (Init,KeyGen,DeckGen,GetHand,Play,Verif,GetSuit),
a tuple of strategies S = (Strati)

4
i=1, and a security parameter K ∈ N. Let A and C be two polynomial-time

algorithms. The Trick-Taking experiment ExpTrickTW,S,A(K) instantiated by W and S between the adversary A
and the challenger C is defined as follows:

Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the pair (setup, st) to A, which
returns a corrupted user index ic ∈ J1, 4K. For all i ∈ J1, 4K\ {ic}, C runs (ski, pki, Πpki)← KeyGen(setup)
and sends {ski, pki, Πpki}i∈J1,4K\{ic} to A, which returns the public key (pkic , Πpkic

) and two accomplice

indies i1a and i2a. C verifies the latest proof and extracts the secret key skic from A’s proof Πpkic
. C finally

sends ski1a and ski2a to A.
Shuffle phase: C and A generate PK by running the algorithm DeckGen together, such that A plays the role

of the players Pic and the two accomplice indies i1a and i2a C plays the role of the other players. If PK =⊥,
then C aborts and returns 0. Following this step C execute Hi ←− GetHand(i, ski, pki,PK) for i ∈ J1, 4K. A
return an index iDog and a binary value d ∈ {0, 1}. Protocol MakeDog is executed with C based on this
index if d = 1. If C is the taker, then it draws random permutation until it attains a valid setup. After
this execution, it updates the hand of player PiDog

with GetHand.
Game phase: C initializes the first player index p∗ = 1, the current player index p = p∗, the corrupted play

index γ = 0, and played = ∅. For j ∈ J1, nDK:
If p ̸= ic, i

1
a, i

2
a: C runs id← Stratp(played, Hp, p∗, p), then C runs (Π, st′)← Play(p, id, skp, pkp, st,PK).

Challenger C sends (id, Π, st′) to A and updates st := st′.
If p = i1a or p = i2a: C receives (id, Π, st′) from A. If Verif(ia, id, Π, pkia , st, st

′,PK) = 0, then C aborts
and the experiment returns 0. Else, C updates st := st′.

If p = ic: C increments γ := γ+1, then receives (id, Π, st′) from A and sets (idic,γ , Πic,γ) = (id, Π). C
sets stγ = st and st′γ = st′. C sets suitic,γ = GetSuit(st). If Verif(ic, idic,γ , Πic,γ , pkic , stγ , st

′
γ ,PK) = 0,

then C aborts and the experiment returns 0. Else, C updates st := st′.

C then updates the index p that points to the next player according to the rule of Trick-taking game,
parses played as (pl1, . . . , pln) (where n = |played|) and updates played := (pl1, . . . , pln, id).

Final phase: Then return 1.

For the winning condition of theft-resistant, cheating-resistant refer to Definitions 8 and 9.
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Unpredictability:

Definition 16. Let W be a Trick-Taking scheme based on a security parameter K ∈ N. Let A and C be two
polynomial time algorithms, let iguess ∈ {1, . . . , 5} referring to the four players and index 5 to the dog. The
unpredictable experiment ExpunpW,A(K, iguess) instantiated by W between the adversary A and the challenger C
is defined as follows:

Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the pair (setup, st) to A, which
returns a corrupted user index ic ∈ J1, 4K. For all i ∈ J1, 4K\ {ic}, C runs (ski, pki, Πpki)← KeyGen(setup).
The challenger sends {pki, Πpki}i∈J1,4K\{ic} to A, which returns its public information (pkic , Πpkic

) and

two accomplice indies i1a and i2a. C verifies the latest proof and extracts the secret key skic from A’s proof
Πpkic

. C finally sends ski1a and ski2a to A, the latest answers a card id.
Shuffle phase: C and A generate PK by running the algorithm DeckGen together, such that A plays the role

of the players Pic , Pi1a
and Pi2a

, and C plays the role of the other players. If PK =⊥, then C aborts and
returns 0. Following this step C execute Higuess ←− GetHand(iguess, skiguess , pkiguess ,PK). On aborts, C returns

a random bit following a Bernoulli distribution with parameter n
iguess
h /nD.

Final phase: If id is in Higuess , then C returns 1, else it returns 0.

Definition 17. A Trick-Taking scheme W is said to be unpredictable if for any adversary playing ExpunpW,A(K, iguess)

for all indices iguess ∈ {1, . . . , 5}, the sum
∑5

iguess=1

(
Pr[ExpunpW,A(K, iguess)]− n

iguess
h /nD

)
is negligible.

Hand-privacy:

Definition 18. Let W be a Trick-Taking scheme and K ∈ N be a security parameter. Let A and C be two
polynomial time algorithms. The hand-privacy experiment ExpHandW,A(K, iguess) instantiated by W between the
adversary A and the challenger C and for an index iguess ∈ {1, . . . , 5}, is defined by:

Key generation phase: C runs setup ← Init(K). It sets st =⊥. It sends the pair (setup, st, iguess) to A,
which returns ic ∈ J1, 4K \ {iguess}. For all i ∈ J1, 4K\ {ic}, C runs (ski, pki, Πpki) ← KeyGen(setup)
and sends the pairs {pki, Πpki}i∈J1,4K\{ic} to A, which returns (pki, Πpki). C verifies the latest proof and
extracts Pic ’s secret key if iguess = 5.

Shuffle phase: C and A generate PK by running the algorithm DeckGen together, such that A plays the role
of Pic , and C plays the role of the three other players. If PK =⊥, then C aborts and returns a random bit

following a Bernoulli distribution with parameter n
iguess
h /(nD−nic

h ). C runs Hi ← GetHand(i, ski, pki,PK)
for i = iguess if iguess ̸= 5, otherwise for all i ∈ J1, 4K and thus recovers Higuess = D \ ∪4i=1Hi.

Challenge phase: C picks b
$← {0, 1} and id

$← Higuess if b = 0 or id
$← D \Higuess and sends id to A, which

returns b∗.
Final phase: C returns b = b∗.

Based on the described game, we put forward the following definition for the security of hand-private in
the context of Tarot schemes.

Definition 19. A Trick-Taking scheme W is hand-private if for any polynomial-time adversary A which

plays ExpHandW,A(K, iguess) for all indices iguess ∈ {1, . . . , 5}, the sum
∑5

iguess=1

(
Pr[ExpHandW,A(K, iguess)]− n

iguess
h /(nD − nic

h )
)

is negligible.

Game-privacy: The modifications on this property allows complying with a model fitting the Tarot scheme. In
this definition, we will use K =

(
setup,

{
pki, ski, Πpki

}
1≤i≤4;i̸=ic

, (pkic , Πpkic
),PK

)
and add up the necessary

algorithms into the sequence of execution.

Definition 20. For any K ∈ N, any Trick-Taking scheme W , any quadruplet of strategies S, any adversary
D and any element K =

(
setup, (pkic , Πpkic

),
{
pki, ski, Πpki

}
1≤i≤4;i̸=ic

,PK
)
, ExpTrickTW,S,K,D(K) denotes the

same experiment as ExpTrickTW,S,D(K) except:
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1. The challenger and the adversary use the setup and the keys in K instead of generating fresh setup and
keys during the experiment.

2. A has no accomplice.
A Trick-Taking scheme W is said to be game-private if there exists a polynomial time simulator Sim such
that for any tuple of strategies S and any polynomial time 5-party algorithm D = (D1,D2,D3,D4,D5,D6),
|Preal(D, k)− Psim(D, k)| is negligible, where

Preal(D, k) =

Pr


1← D6(vw) :

setup← Init(K); ic ← D1(setup);
∀i ∈ J1, 4K \ {ic}, (ski, pki, Πpki)← KeyGen(setup);
(pkic , Πpkic

)← D2(setup, {pki, Πpki}i∈J1,4K\{ic}
, vw);

PK← DeckGenP1,P2,P3,P4where Pic is D3(vw); 0/1, n← D3(vw);
(a = 0/1, n)← D3(vw);
ifa = 1: PK← MakeDogP1,P2,P3,P4

(n,PK)where Pic is D4(vw);
K := (setup, (pkic , Πpkic

), {(ski, pki, Πpki)}1≤i≤4;i ̸=ic
,PK);

If PK =⊥, vw :=⊥;
Else b← ExpTrickTW,S,K,D5(vw)

(K);



Psim(D, k) =

Pr


1← D6(vw) :

setup← Init(K); ic ← D1(setup);
∀i ∈ J1, 4K \ {ic}, (ski, pki, Πpki)← KeyGen(setup);
(pkic , Πpkic

)← D2(setup, {pki, Πpki}i∈J1,4K\{ic}
, vw);

PK← DeckGenP1,P2,P3,P4where Pic is D3(vw); (a = 0/1, n)← D3(vw);
ifa = 1: PK← MakeDogP1,P2,P3,P4

(n,PK)where Pic is D4(vw);
If PK =⊥, vw :=⊥;
Else b← SimTrickT

W,S,D5(vw)
(k, setup, ic, {pki, Πpki}1≤i≤4

,PK, vw);



and where vw denotes the view of D, i.e., all the values sent and received by each algorithm of D during his
interaction with the experiment.

Dog Security:

Definition 21. Let W be a trick-taking scheme with a dog parametrised by a security parameter K ∈ N. Let
A and C be two polynomial time algorithms. The dog experiment ExpDog

W,A(K) instantiated by W between the
adversary A and the challenger C is defined as follows:

Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the pair (setup, st) to A, who
returns a corrupted user index ic ∈ J1, 4K. For all i ∈ J1, 4K\ {ic}, C runs (ski, pki, Πpki)← KeyGen(setup).
The challenger sends {pki, Πpki}i∈J1,4K\{ic} to A, who returns (pkic , Πpkic

) and two accomplice indices

i1a, i
2
a. C verifies the latest proof and extracts the secret key skic from A’s proof Πpkic

. If both operations
succeeded C finally sends ski1a and ski2a to A.

Shuffle phase: C and A generate PK by running the algorithm DeckGen together, such that A plays the role
of the players Pic ,Pi1a

and Pi2a
, and C plays the role of the remaining player. If PK =⊥ then C aborts

and returns 0. Then A outputs n and both executes MakeDog(n,PK) to output PK′. Following this step
C executes Hi ←− GetHand(i, ski, pki,PK

′) for i ∈ J1, 4K.
Final phase: If for all id ∈ D \ ∪4i=1Hi, id /∈ O, C returns 1, else it returns 0.

We say that a tarot protocol is dog-secure if a polynomial adversary has only negligible advantage to win the
above experiment.
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D Detailed Tarot Scheme

In this section we formally describe all algorithms of the French Tarot scheme of Definition 4, this in order
to prove the security the protocol in Section F.

Definition 22. Let K ∈ N be a security parameter. The Tarot protocol is a tulpe of algorithms composed by
the following algorithms:

Init(K): Same as in Definition 3.

KeyGen(setup): It picks dk
$← Z∗

q and computes ek = gdk. Then a proof of knowledge Πek = ZK{dk : ek = gdk}
is computed and (sk = dk, pk = ek, Πpk) is returned.

DeckGen: It is a 4-party protocol, where for all i ∈ J1, 4K the ith party is denoted as Pi, and takes as input its
secret keys and the public keys of all the players (pki, {pkl}1≤l≤4). This protocol returns a game public
key PK, or ⊥.
Phase 1:

– The canonical deck D ∈ Decks is initialized by each player.
– Each user parses D = (id1, . . . , id78) and computes pk =

∏4
i=1 pki, then for all j ∈ J1, 78K each player

computes c0,j ← (g, pk · idj) and set c0 ← (c0,j)1≤j≤78.
– For each i ∈ {1, 2, 3, 4}, each Pi does in turn: it picks at random a permutation δi ∈ J1, 78K78, and

(ri,j)1≤j≤78
$← (Z∗

q)
78. Pi then computes ci,j ← Rand(ci−1,δi(j), ri,j , pk) and generates a proof

πi,1 ← ZK
{
(δi, (ri,j)1≤j≤78) : ci,j = Rand(ci−1,δi(j), ri,j , pk)

}
.

Finally, Pi sets ci ← (ci,j)1≤j≤78 and broadcasts (ci, πi,1).
– Each player verifies the proofs (πi,1)1≤i≤4.

Phase 2:

– For all i ∈ J1, 4K, player Pi parses c4 = (c4,j)1≤j≤78 and c4,j = (xj , yj).

– For all j ∈ J1, 72K\J18·(i−1)+1, 18·iK, each Pi computes θ(i,j) = xski
j , πi,2 ← ZK

{
ski :

∧
j∈J1,72K\J18·(i−1)+1,18·iK θ(i,j) = xski

j ∧ pki = gski
}
,

then Pi broadcasts (θ(i,j))j∈J1,72K\J18·(i−1)+1,18·iK and πi,2.
– For all i ∈ J1, 4K, for all l ∈ J1, 4K, for all j ∈ J18 · (l − 1) + 1, 18 · lK, each Pi computes c∗j ←(

xj ,
yj∏

1≤γ≤4;γ ̸=l θ(γ,j)

)
, and verifies the proofs (πγ,2)γ∈J1,4K\{i}. For j ∈ J73, 78K let c∗j = c4,j.

GetHand(n, sk, pk,PK): The algorithm parses PK as (c∗j )1≤j≤78 and returns a hand H ← {Decsk(c∗j )}j∈J18·(n−1)+1,18·nK.
MakeDog: as specified in Definition 4.
Play(n, id, sk, pk, st,PK): It parses PK = (c∗j )1≤j≤78 and the state element st = (α, suit, U1, U2, U3, U4). If

st =⊥ it sets four empty sets U1, U2, U3 and U4. Let t ∈ J18 · (n − 1) + 1, 18 · nK be the integer such
that id = Decsk(c

∗
t ). It sets U ′

n = Un ∪ {t}. Note that at each step of the game, the set Un contains the
indices of all the (c∗j )j∈J18·(n−1)+1,18·nK that have already been used by player n to play a card. For all
i ∈ J1, 4K\ {n}, it sets U ′

i = Ui.
If α = 4 or st =⊥ then it sets α′ = 1 and suit′ = id.suit. Else it sets α′ = α + 1 and suit′ = suit. The
index α states how many players have already played this round, so if α = 4, players start a new round.
Moreover, suit states which suit is the leading suit of the round, given by the first card played in the
round. This algorithm sets st′ = (α′, suit′, U ′

1, U
′
2, U

′
3, U

′
4). It generates

Π0 = ZK {sk : id = Decsk(c
∗
t )} ,

which proves that the played card id matches one of the ciphertexts in PK attributed to the player n. Let
L ⊂ J1, 78K be a set such that for all l ∈ L, suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards
that are not of the leading suit this round. Then it produces:

– If suit′ = id.suit or if |Un ∪ {t}| = 18, it sets Π1 ←⊥ (if the card id is of the leading suit, then the
player can play it in any case ).

21



– If suit′ ̸= id.suit and |Un ∪ {t}| < 18, it generates

Π1 = ZK

{
sk :

∧
j∈J18·(n−1)+1,18·nK

j ̸∈Un∪{t}

∨
l∈L

idl = Decsk(c
∗
j )

}
.

This proof ensures that the cards that are encrypted in the c∗j are not of the leading suit, which proves
that the player n cannot play a card of the leading suit.

Finally, it returns the proof Π = (t,Π0, Π1), and the updated value st′.
Verif(n, id, Π, pk, st, st′,PK): It parses st as (α, suit, U1, U2, U3, U4), st

′ as (α′, suit′, U ′
1, U

′
2, U

′
3, U

′
4), the key

PK as (c∗j )1≤j≤78, and Π as (t, Π0, Π1). First checks if t ∈ J18 · (n − 1) + 1, 18 · nK, if not return 0.
If st =⊥, it sets four empty sets U1, U2, U3 and U4. Let L ∈ J1, 78K be a set such that for all l ∈ L,
suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards that are not of the leading suit. This algorithm
first verifies that the state st is correctly updated in st′ according to the Play algorithm:
– If there exists i ∈ J1, 4K\ {n} such that U ′

i ̸= Ui, then it returns 0.
– If t ∈ Un or Un ∪ {t} ≠ U ′

n, then it returns 0.
– If α = 4 or st =⊥, and α′ ̸= 1 or suit′ ̸= id.suit, then it returns 0.
– If α ̸= 4 and suit ̸=⊥, and α′ ̸= α+ 1 or suit′ ̸= suit, then it returns 0.

This algorithm then verifies the ZKP to check that the player does not cheat by playing a card it has not,
or by playing a card that is not of the leading suit even though it could play a card of the leading suit.
– If Π0 is not valid then it returns 0.
– If suit′ ̸= id.suit and there exists an integer j ∈ J1, 18K such that (18 · (n− 1)+ j) ̸∈ Un and Π1 is not

valid then it returns 0.
If none of the previous checks fails, then this algorithm returns 1.

GetSuit(st): It parses st as (α, suit, U1, U2, U3, U4) and returns suit.

E Proofs for the Spades Scheme

The proof of Theorem 1 follows from the lemmas of this section. We need to introduce a few notations in
order to prove our main result. Let G0 and G1 be two probability distributions and A a polynomial time
algorithm, we define the advantage of A in distinguishing in between two experiments as:

AdvindistG0,G1
(A) = |Pr[A(k,G0)]− Pr[A(k,G1)]|.

For the shake of simplicity, in the following proofs we will consider ϵsound = max(ϵπ∗
sound, ϵ

Π∗
sound), the max-

imum of the advantage that any probabilistic polynomial time adversary has against the soundness of the
proofs of knowledge used in the protocol. As all are considered negligible so is their maximum.

Most of the modifications in our game hope are done in the subpart of the game where C and A will
interact to execute the DeckGen algorithm, hence we will only highlight the modification in this algorithm
when nothing is changed in the rest of the protocol.

Lemma 1. If our Spades protocol is instantiated by proofs of knowledge that are sound and extractable
then it is theft-resistant. The adversary’s advantage against theft-resistance is bounded by Advth−res

W,S,A (K) ≤
(4 + 13) · ϵextract(K).

Proof. We use the following game hops to show theft-resistant security. We first recall the conditions to
break this property. There exists a play γ ∈ J1, 13K such that:

1 = Verif(ic, idi,γ , Πic,γ , pkic , stγ , st
′
γ ,PK), (7)

and idi,γ /∈ Hic . (8)

Game 0: This is the Trick-Taking experiment ExpExp
TrickT

W,S,A (K) with the winning conditions (7) and (8) as
describe in the definition of the property.
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Game 1: In this game, at the end of phase 1 of the DeckGen algorithm, C will use the extractor ExtA(πic,1)
in order to recover Pic ’s secret random values (δic , (ric,j)1≤j≤52). If this extraction fails the game is aborted,
otherwise C reproduce the protocol to checks if the result is the same. Game is also aborted if this is not true.
The difference of outputs between G0 and G1 only occur if Pic has outputted a valid zero-knowledge proof
of a false statement or if the extraction of the secret by the extractor fails. This has probability ϵextract(K)
of happening and a reduction breaking the soundness of the zero-knowledge proof is straight forward. As
it is assumed that no polynomial time adversary has non-negligible advantage against this property of the
NIZKP, the difference in between the games is negligible. Finally, AdvindistG0,G1

(A) ≤ ϵextract(K).
Game 2: The same modification can be applied for Pia .
Game 3: This step introduces changes in phase 2 of the DeckGen algorithm. For the proof provided by
the entity Pic , the challenger has extracts the secret skic = dkic . It can now check whether for all j ∈
J1, 52K \ J13 · (ic − 1) + 1, 13 · icK, the equality θ(ic,j) = x

dkic
j holds, if not, C abort the game. The rest of the

game remains unchanged. Soundness of the proof implies that the game has been modified by the negligible
chance that A has to forge a valid zero-knowledge proof πic,2 for a false statement. We directly obtain the

following inequality AdvindistG3,G4
(A) ≤ ϵextract(K).

Game 4: This is the same modifications as game G3 but this time for Pia . We reach the same negligible
changes as from Game 2 to Game 3.

In Game 4 any action of A during the shuffle phase is verified by the challenger. If the challenger
computation does not match the adversary’s ones, A losses. The values returned by the adversary throughout
the algorithm DeckGen are then consistent with the protocol and the cards are shuffled correctly. From
condition (8), idi,γ /∈ Hic , we can deduce that in case A wins their should exist i ∈ J1, 4K \ {ic} such that
Decdki(c

∗
t ) = idi,γ for some t ∈ J1, 52K \ J13 · (ic − 1) + 1, 13 · icK. But as the shuffle has been conducted

consistently, it is impossible to have a second ciphertext c∗t′ verifying Decdki(c
∗
t ) = Decdkic (c

∗
t′) = idi,γ with

t ̸= t′. Hence, condition 7 and 8 can only be reached by outputting a valid proof of a false statement
during the game phase. This can only be done with a negligible probability ϵsound(K) by a polynomial time
algorithm.
Game 5: When A plays a card (id, Π = (Π0, Π1, t)) associated to a cipher cj as Pic , C now decrypt the value
behind cj with skic and checks if this is coherent with the given proof Π0. The adversary can try to cheat

during any of the 13 turns it plays, hence by a hybrid argument we have AdvindistG5,G6
(A) ≤ 13 · ϵsound(K) and

as A has no way of winning this concludes the proof. ⊓⊔

Lemma 2. Instantiated by proofs of knowledge that are sound and extractable, our Spades protocol is
cheating-resistant. The adversary’s advantage against this property is at most AdvcheatW,S,A(K) ≤ 30 · ϵextract(K).

Proof. Let A be an adversary against the cheating resistance of the protocol. In order to break this property
it must output ic, idic,γ , Πic,γ , pkic , st

′
γ , for some γ ∈ J1, 13K, verifying the conditions:

1. 1 = Verif(ic, idic,γ , Πic,γ , pkic , stγ , st
′
γ ,PK),

2. idic,γ .suit ̸= suitic,γ and suitic,γ ̸=⊥
3. ∃ id ∈ Hic such that:

(a) ∀ l ≤ γ, idic,l ̸= id
(b) id.suit = suitic,γ

Condition 1 must always hold, otherwise the Trick-Taking experiment would abort during the game phase
when this play was received by the challenger. As we have just proven that our Spades protocol is theft-
resistant, we can assume that A will always play cards form the hand Hic on Pic ’s turn. We show that
AdvcheatA (K) is negligible for any probabilistic polynomial time adversary A by using the following sequence
of games.
Game 0: This is the Trick-Taking experiment with the winning conditions of the cheating-resistance stated
above.
Game 1: Game 0 is append with the modification up to Game 4 of the proof of Lemma 1. As argued
previously Advindistcheat,G0

(A) ≤ 4 · ϵextract(K).
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Game 2: After the shuffle, C is now decrypting Pic ’s hand by running GetHand with skic . Each time A
returns a play (idic,γ , Πic,γ = (Π0, Π1, t)) during a turn γ ∈ J1, 13K, the challenger check that given the
cards it knows, A was allowed to play this card. If it is not, C aborts the game and returns 0. In order to
justify the negligible gap in between Game 1 and Game 2, we make use of a sequence of 14 games. Set
G0 = H0, . . . ,H13 = G1 and for all γ ∈ J0, 13K, Hγ+1 is a copy of Hγ with an additional action of C. In
Hγ+1, once the condition 1 = Verif(ic, idic,γ , Πic,γ , pkic , stγ , st

′
γ ,PK) is passed on round γ, C executes the

above described verification by checking the hand of the player. In the case where it cannot find the cards
that was played, C abort the game.

In H13 = G1, the game is aborted if A forged a valid zero-knowledge proof of an incoherent play. For
each step AdvindistHγ ,Hγ+1

(A) ≤ ϵextract(K), hence

AdvindistHγ ,Hγ+1
(A) ≤ 2 · ϵextract(K).

Thus, we obtain an upper bound on the distinguishability of games G1 and G2:

AdvindistG1,G2
(A) ≤ 13 · (2 · ϵextract(K)).

Only valid proof of valid statements were produced during the experiment. Thus, the verification at each
step provides that for all t ∈ Uic , for all j ∈ J1, 13K we have a valid proof Πj reproduced by C. This implies
that all cards in Pic ’s hand none are of the leading suit i.e., for all id ∈ Hic such that ∀ l ≤ γ, idic,l ̸= id we
know that id.suit ̸= suitic,γ .

Hence, conditions 2 and 3 can no longer be verified if condition 1 holds in game 2. This concludes the
proof as no adversary would be able to win this game. Adding up the advantages, we obtain AdvcheatW,S,A(K) ≤
30 · ϵextract(K).

⊓⊔

Lemma 3. If our Spades protocol is instantiated by proofs of knowledge that are sound, extractable and
zero-knowledge, and assuming hardness of the DDH problem, then the protocol is unpredictable.

Proof. These proof uses the previous arguments invoked in the demonstration of indistinguishability. We
show that for each of the four indices iguess ∈ {1, 2, 3, 4}, the adversary has negligible chance make a better
guess than by picking randomly.
Game 0: This is the unpredictability experiment ExpunpW,S,A(K, iguess).
Game 1: In this game, at the end of phase 1 of the DeckGen algorithm, C will use the extractor in order to
recover Pic ’s secret random values (δic , (ric,j)1≤j≤52). From these values, C reproduce the protocol to checks
if the result is the same. Game is aborted if the extraction fails or if the results are not consistent with the
received values. As justified above this leads to AdvindistG0,G1

(A, iguess) = ϵextract(K).
Game 2: We are making the same modification but this time for Pia . Just like in the previous step,
AdvindistG1,G2

(A, iguess) = ϵextract(K).
Game 3: This step introduces changes in phase 2 of the DeckGen algorithm. For the proof provided by the
entity Pic at the beginning of the experiment, C has extracted the secret skic = dkic . It can now check whether

for all j ∈ J1, 52K \ J13 · (ic − 1) + 1, 13 · icK, the equality θ(ic,j) = x
dkic
j holds, if some of these equalities do

not match, C abort the game. The rest of the experiment remains unchanged. Soundness of the proof implies
that the game has been modified by the negligible chance that A has to forge a valid zero-knowledge proof
πic,2 for a false statement. We directly obtain the following inequality AdvindistG2,G3

(A) ≤ ϵextract(K).
Game 4: The same modification as in Game 3 is made regarding player Pia .

In order to finish this proof two scenario need to be investigated. The first one will assume that the last
player to shuffle is simulated by C, the second consider the case where this last player is controlled by the
adversary.

Case ic, ia ∈ {1, 2, 3}: In this case the entity P4 is run honestly by the challenger. This means that the last
shuffle, using δ4 is performed following the prescribed algorithm and δ4 picked at random. This completely
randomise the previous (potentially maliciously chosen) shuffles used by A. We can directly conclude the
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proof for this case as the last permutation is always random and will send each ciphertext c4,j (respectively
each card idj) uniformly to one of the 52 possible positions of our ordered set (c4,j)j∈J1,52K (resp. (idj)j∈J1,52K).
From the previous steps we know that A has followed the protocol, hence was not able to duplicate any
card. This concludes our case as it is impossible for A to predict the outputted values after the last random
permutation.

Case ic = 4 or ia = 4: We follow the following logic: given that the ElGamal encryption is IND-CPA, A
learns nothing on the cards underlying the ciphertexts, hence, A’s permutations cannot be chosen better
than random. For that we replace the values that A sees after C’s shuffle by random values, we latter remove
them in order for A to recover his cards. We are showing that sending random elements lead to a negligible
change due to the DDH hypothesis. Our scheme does not use the ElGamal encryption as a black box, thus
reduce ourselves to the DDH problem instead of using its IND-CPA security.
Game 5: During the key generation phase, C randomly chooses two index i1, i2 ∈ {1, 2, 3}. If A claims
one of these two role for ia or ic the game is aborted. This has probability 7/12 of happening, hence,
7/12 · AdvunpG4,A(K, iguess) = AdvunpG5,A(K, iguess).

For the rest of this proof we assume that ic = 4 or ia = 4.
Game 6: Let i1, i2 ∈ {1, 2, 3, 4} \ {ia, ic}, with i1 ≤ i2. We are now making some changes in the behaviours
of the challenger while acting as the honest player Pi1 . During part 1 of the DeckGen algorithm, on receiving

ci1−1, it parses it as (ci1−1,j)1≤j≤52 = (xj , yj)1≤j≤52. C will then draw a random vector (Zi1,j)1≤j≤52
$← G52

and the usual δi1 , (ri1,j)1≤j≤52. Then ci1,j ← Rand((xδi1 (j)
, Zδi1 (j)

· yδi1 (j)), ri1,j , pk) is computed. Then C
uses the simulator in order to obtain a proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, we return (ci1 , πi1,1) to
the adversary. The value Zi1,j completely hide the underlying message of the ciphertext as Zi1,j · yδi1 (j) =
(Z · idδi1◦...◦δ1(j)) ·pk

∑i1
l=1 rl , for some integers rl that are introduced through the randomness of the previous

players.
During the second phase of DeckGen we are making the following changes: in order to let the adversary

recover the values for its cards we compute θi1,j = Zδ4◦...◦δi1 (j) · dk
∑4

l=1 rδl◦...◦δ1(j)

i1
for j ∈ J1, 52K \ J13 · (i1 −

1) + 1, 13 · i1K. C parses c4 as (c4,j)j∈J1,52K and c4,j as (xj , yj), using the simulator the challenger produces
πi1,2 ←− Sim({θi1,j , xj}j , eki1), finally, sends ({θi1,j}j∈J1,52K\J13·(i1−1)+1,13·i1K, πi1,2) to A. The remaining part
of the game is unchanged.

Reduction: we define a sequence of games G4 = H0, . . . ,H52 = G5 where G4 denotes the Game 4 and
G5 the Game 5. For all j ∈ J1, 52K, let Hj be a challenge to A, where only the j first elements of ci1−1 are

modified using the random vector Z
$← G52. The elements out of this range stay still. Latter, knowing the

permutations δia and δic we will only modify the θi1,l, for which there exist k ≤ j such that l = δ4◦. . .◦δi1(K),
i.e., the elements associated by the permutations to the previous ones. This definition is coherent with the
equalities G4 = H0 and G5 = H52. In the first equality, no element is actually modified in H0 as j = 0, thus
it still the Game 4. The second one holds as for j = 52 we have applied the random value Z on the full
length of the ciphertext ci1−1, like in G5. Latter the challenger uses the values Z to compute the values θi1,l,
for 1 ≤ l ≤ 52. Hence, all actions conducted in G5 matches the one we are doing in H52.

We will provide a reduction in between games Hj and Hj+1 for all j ∈ J0, 51K. Consider the DDH triple
(X,Y, Z), where X = ga, Y = gb and Z is either gab or a random element of G. We will build an algorithm
B breaking the DDH problem based on a distinguisher D distinguishing in between games Hj and Hj+1.
Our adversary start by receiving a challenge triple (X,Y, Z) from the challenger CDDH. Then, it does the
following:

Key generation phase: First B receives the corrupted player index ic. Then B claims the DDH challenge
(X,Y, Z), it uses the first value to set its encryption key eki1 = X and generates the keys (ski2 , pki2),
(skia , pkia)←− KeyGen(K) for i2 and ia using the key generation algorithm. A zero-knowledge proof for the
encryption key of Pi1 is generated using the simulator, Πeki1

←− Sim(eki1) and we set pki1 = (eki1 , Πeki1
).

The key {pki}i=i1,i2,ia and iguess are sent to D. The distinguisher’s response should be the index ia with
the elements pkic , Πekic . The latest proof is checked, then dkia is sent by B and id and are received from
D.
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Shuffle phase: B is first checking the proof Πekic outputted by A, initialize the canonical deck D =
(id1, . . . , id52), computes pk = ek1 · ek2 · ek3 · ek4 and c0,j ← (g, pk · idj). And set c0 ← (c0,j)1≤j≤52.

Phase 1: For i in J1, 4K:
– If i ∈ {ic, ia}, D returns (ci, πi,1), then B checks the proof πi,1 that was outputted by the ad-

versary. Then it executes ExtA(πi,1) −→ (δi, (ri,)1≤l≤52). B executes c′i,l ← Rand(ci−1,δi(l), ri,l, pk)
and checks if ci,l = c′i,l for all l ∈ J1, 52K. If the proof does not verify or if the equality does not
hold then return a random bit from a Bernoulli distribution of parameter p = 1/4.

– If i = i1, on receiving ci1−1 = (ci1−1,l)1≤l≤52 = (xl, yl)1≤l≤52. B draws randomly the elements

(Zi1,l)1≤l≤52
$← Gj , δi1 , (ri1,l)1≤l≤52. Then ci1,l ← Rand((xδi1 (l)

, Zi1,δi1 (l)
· yδi1 (l)), ri1,l, pk) is

computed for all 1 ≤ l < j. We also compute ci1,j ← Rand((xδi1 (j)
, Z ·yδi1 (j)), ri1,j , pk) and ci1,l ←

Rand(ci1−1,δi1 (l)
, ri1,l, pk) for all j < l ≤ 52. Set ci1 = (ci1,l)1≤l≤52. Then B uses the simulator in

order to produce a zero-knowledge proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, (ci1 , πi1,1) is returned
to D.

– If i = i2, D executes the protocol as usual.

Phase 2: On receiving c4, B parses it as (c4,l)1≤l≤52 and each c4,l as (xl, yl). First we define δ = δ4◦. . .◦δi1 .
We set, θi1,δ(l) = Zi1,l for all 1 ≤ l < j, θi1,δ(j) = Z and θi1,δ(l) = ek

∑4
i=1 rδi◦...◦δ1(i)

i1
(= x

dki1
δ(l) ) for all

j < l ≤ 52 and given that dki1 is unknown but all the randomness have been extracted in phase 1.
B uses the simulator to obtain the proof πi1,2 ←− Sim({xl, θ(i1,l)}l∈J1,52K\J13·(i1−1)+1,13·i1K, eki1). Also,

the elements θ(i2,l) = x
dki2
l for l ∈ J1, 52K\ J13 · (i2−1)+1, 13 · i2K are computed with their associated

zero-knowledge proof

πi2,2 ← ZK

dki2 :
∧

l∈J1,52K\J13·(i2−1)+1,13·i2K

θ(i2,l) = x
dki2
l

 .

Values (θ(i1,l))l∈J1,52K\J13·(i1−1)+1,13·i1K, (θ(i2,l))l∈J1,52K\J13·(i2−1)+1,13·i2K, πi1,2 and πi2,2 are broad-
casted toD. Then, the adversary outputs the values (θ(ic,l))l∈J1,52K\J13·(ic−1)+1,13·icK, (θ(ia,l))l∈J1,52K\J13·(ia−1)+1,13·iaK

and πic,2, πia,2. For i = ic, ia, B verifies the proof πi,2, executes ExtA(πi,2) −→ dki, and computes

θ′(i,l) = xdki
l for all l ∈ J1, 52K \ J13 · (ic − 1) + 1, 13 · icK. It checks if θ′(i,l) = θ(i,l). If these equalities

do not hold then B returns a random bit. Then, for all l ∈ J1, 4K, for all l ∈ J13 · (l− 1) + 1, 13 · lK, B

computes c∗l ←

(
xl,

yl∏
1≤γ≤4;γ ̸=l

θ(γ,l)

)
. B send PK← (c∗l )1≤l≤52 to D as the result of this algorithm. If

the result obtain by D and B for PK is different or equal to ⊥, B returns a random bit.

Final phase: D returns a bit after these interactions; we forward this bit to the challenger of the DDH
problem.

Introducing the DDH challenge (X,Y, Z) in particularly Z in the jth element of ci1−1, we simulate game
Hj−1 if this element corresponds to the real Diffie-Hellman of X and Y . If this value was random we will
obtain a simulation of game Hj as ci1,δi1 (j) is given back to the adversary as a random value. Hence, this
reduction provides that if there exist an adversary distinguishing in between games Hj−1 and Hj , B is

breaking the DDH problem with same probability. This gives:AdvindistG4,G5
(A, iguess) ≤ 52 · AdvDDH(K).

Conclusion: Since we replay all actions of A, it has to follow the shuffle protocol, its capability are reduced
to apply chosen randomization values and permutation that could influence the final order of the cards. This
was already enough to conclude for the case where ic, ia ∈ {1, 2, 3}. We proceeded to further reduction in
the other cases. Indeed, the adversary could still gain an advantage if it was playing last during the first
phase of shuffle as it determines the final order of the cards. In Game 6, after Pi1 ’s turn, A sees only random
values when it shuffles. Hence, the adversary learns no information about the final dealing given that cards it
has to shuffle are in an unknown random order, thus, it cannot influence the outputs with some wise choice
on δic , δia and (ric,j)1≤j≤52, (ria,j)1≤j≤52. Here AdvunpG6,A(K) = 0. We have provided reductions that lead to
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Game 6 with each time a negligible upper bound in the adversary’s advantage against the indistinguishability
with the original game, this allows us to conclude that:

AdvunpW,A(K, iguess) ≤ 4 · ϵextract(K) + 12/7 · 52 · AdvDDH
A (K)

for each of the possible index. Hence, the sum for all index is also negligible. ⊓⊔

Lemma 4. Assuming hardness of the DDH problem. If our Spades protocol is instantiated by proofs of
knowledge that are sound, extractable and zero-knowledge, then it is hand-private.

Proof. The aborting condition PK =⊥ of the shuffle phase always generates a random bit, hence this gives
no advantage to our adversary. An adversary making the game abort each time will always lose, hence A
should allow derivation of the public information PK = {c∗j}j∈J1,52K with non-negligible probability. Unlink
in the previous experiments, our adversary A does not have an accomplice. Hence, A plays Pic and C the rest
of the players. Let us define a sequence of games in order to prove the hand-privacy of our Spades protocol.
Game 0: This is the hand-privacy experiment of definition 12.
Game 1: We want to make sure that the outputted values of A are following the requirement of the protocol.
This is the same arguments as stated before in proof of Lemma 3. A has no accomplice hence only the proofs
πic,1 and πic,2 need to be checked by C. This leads to AdvindistG1,G2

(A) ≤ 2 · ϵextract(K).
The remaining of the proof will focuses on hiding the underlying messages of the ciphertext such that

A cannot guess the order of the cards from the ciphertexts it sees. Let i1, i2, i3 ∈ {1, 2, 3, 4} \ {ic}, with
i1 < i2 < i3.
Game 2: We first make changes in the behaviours of the challenger while acting for the honest player Pi1 .
During part 1 of the DeckGen algorithm, on obtaining ci1−1, it parses it as (ci1−1,j)1≤j≤52 = (xj , yj)1≤j≤52.

C will then draw a random vector (Zi1,j)1≤j≤52
$← G52 and the usual δi1 , (ri1,j)1≤j≤52. Then ci1,j ←

Rand((xδi1 (j)
, Zδi1 (j)

· yδi1 (j)), ri1,j , pk) is computed. Then C uses the simulator in order to obtain a proof
πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, C returns (ci1 , πi1,1) to the adversary.

Then during the second phase of DeckGen, in order to let the adversary recover the values for cards

in its hand, C computes the θi1,j = Zδ4◦...◦δi1 (j) · ek
∑4

l=1 rδl◦...◦δ1(j)

i1
for j ∈ J13 · (ic − 1) + 1, 13 · icK, for all

j ∈ J1, 52K \ (∪i=i1,icJ13 · (i− 1)+ 1, 13 · iK) the θi1,j are draw randomly. We parse c4 as (c4,j)j∈J1,52K and c4,j
as (xj , yj). Then using the simulator the challenger produces πi1,2 ←− Sim({θi1,j , xj}j , eki1). Finally, C sends
({θi1,j}j∈J1,52K\J13·(i1−1)+1,13·i1K, πi1,2) to A. The remaining part of the game is conducted as previously.

Doing so, we completely hide the cards in the challenger’s hands to the adversary’s as C have outputted
random values θi1,j for j ∈ J1, 52K\(∪i=i1,icJ13·(i−1)+1, 13·iK) and that the c∗4,j with j ∈ J13·(i1−1)+1, 13·i1K
are hidden by some random values.

Reduction: This reduction is similar to one that was described previously explained in proof of Lemma 3.

Game 4: We proceed to the same modification for Pi2 .
Game 5: We proceed to the same modification for Pi3 .

Conclusion: Finally, as A sees only random values for the challenger’s hands, it has no other option than
returning values following the scheme specifications, doing better than randomness is impossible unless it is
able to decrypt the player’s cards. We can conclude to the total advantage of any adversary is less than:

Advh−priv
A (K, iguess) ≤ 3 · ϵsound(K) + 78 · AdvDDH(K).

⊓⊔

Definition 23 (n-IND-CPA). Let k be a security parameter. Let G be a multiplicative group of prime

order q and g ∈ G be a generator and (dk, ek)
$← KeyGen(K) an instance of keys. Given an instance of n

messages m1, . . . ,mn ∈ G, the n-indistinguishability under chosen plaintext attack (n-IND-CPA) problem

is to distinguish in between (Encek(mi))i∈J1,nK and (ri)
$← (G×G)n. The n-IND-CPA assumption states that

there exists no polynomial time algorithm that solves the n-IND-CPA problem with a non-negligible advantage
even if allowed to choose the input messages.

27



Property 2. For any n ∈ N, n-IND-CPA holds under the IND-CPA assumption (and then also under the DDH
assumption).

Proof. We use a hybrid argument. Consider the following problem:

(j, n)-IND-CPA problem: Let k be a security parameter. Let G be a multiplicative group of prime order q

and g ∈ G be a generator and (dk, ek)
$← KeyGen(K) an instance of keys. Let j ∈ N be such that 0 ≤ j ≤ n.

Given an instance of n messages {mi, hi,b}1≤i≤n such that for all i ∈ J1, nK, such that:

– if i ≤ j, hi,0
$← G2 and hi,1 ←− Encek(mi),

– else, hi,1
$← G2 and hi,0 ←− Encek(mi).

Let Adv(j,n)-IND-CPA(K) (resp. Advn-IND-CPA(K), AdvIND-CPA(K)) be the advantage of the best algorithm that
solves the (j, n)-IND-CPA (resp. n-IND-CPA, IND-CPA) problem. Let (j, n) be a couple of positive inte-
gers such that 0 ≤ j ≤ n − 1. For any adversary that solves the (j, n)-IND-CPA problem with advantage

Adv
(j,n)-IND-CPA
A (K), we build the algorithm B that tries to solve the IND-CPA problem.

Algorithm B(G, g, ek,m, h): This algorithm picks b′
$← {0, 1}, then for all i ∈ J1, nK\{j+1} it picks mi

$← G
and sets:

– if i ≤ j, it picks hi,0
$← G2 and sets hi,1 = Encek(mi)

– else, hi,1
$← G and hi,0 = gai·bi .

It sets mj+1 = m, and hj+1,1 = hj+1,0 = h. Then it runs the adversary: b∗
$← A({(gi,1, gi,2, hi,b)}1≤i≤n) and

returns b∗.
We then deduce that:

AdvIND-CPA
B (K) =

∣∣∣Adv(j,n)-IND-CPA
A (K)− Adv

(j+1,n)-IND-CPA
A (K)

∣∣∣ .
Hence,

AdvIND-CPA
B (K) ≥

∣∣∣Adv(j,n)-IND-CPA
A (K)− Adv

(j+1,n)-IND-CPA
A (K)

∣∣∣
which implies

n · AdvIND-CPA
A (K) ≥ Advn-IND-CPA

A (K).

This concludes the proof. ⊓⊔

Lemma 5. Instantiated by proofs of knowledge that are sound, extractable and zero-knowledge, our Spades
protocol is Game-private under the DDH assumption.

Proof. We first recall thatK = (setup, pkic , {ski, pki, Πek}1≤i≤4;i̸=ic ,PK) and consider the experiment ExpTrickTW,S,K,D(K)
modified according to the definition. This game will also be denoted as Game 0.
Game 1: We modify Game 0 and particularly the behaviours of the first honest player that we will call Pi1 .
The rest of the game remains the same. During part 1 of the DeckGen algorithm, on obtaining ci1−1, it

parses it as (ci1−1,j)1≤j≤52 = (xj , yj)1≤j≤52. C will then draw a random vector (Zi1,j)1≤j≤52
$← G52 and the

usual δi1 , (ri1,j)1≤j≤52. Then ci1,j ← Rand((xδi1 (j)
, Zδi1 (j)

· yδi1 (j)), ri1,j , pk) is computed. Then C uses the
simulator in order to obtain a proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, we return (ci1 , πi1,1) to the adversary.

Then during the second phase of DeckGen, in order to let the adversary recover the values for cards in

its hand, we will compute the θi1,j = Zδ4◦...◦δi1 (j) · ek
∑4

l=1 rδl◦...◦δ1(j)

i1
for j ∈ J13 · (ic − 1) + 1, 13 · icK, for all

j ∈ J1, 52K \ (∪i=i1,icJ13 · (i− 1)+ 1, 13 · iK) the θi1,j are draw randomly. We parse c4 as (c4,j)j∈J1,52K and c4,j
as (xj , yj). Then using the simulator the challenger produces πi1,2 ←− Sim({θi1,j , xj}j , eki1). Finally, we send
({θi1,j}j∈J1,52K\J13·(i1−1)+1,13·i1K, πi1,2) to A. The remaining part of the game is conducted as previously.

Doing so, we are completely hiding the cards in the challenger’s hands to the adversary’s as we have
outputted random values θi1,j for j ∈ J1, 52K \ (∪i=i1,icJ13 · (i − 1) + 1, 13 · iK) and that the c∗4,j with
j ∈ J13 · (i1 − 1) + 1, 13 · i1K are hidden by some random values.
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Construction of SimTrickT
W,S,A(vw) (K, setup, ic, {pki}1≤i≤4,PK, vw):

Key generation phase: The simulator try to deduce from vw the value dkic such that for all j ∈ J13 · (ic−
1) + 1, 13 · icK, idj′ = Decdkic (cj). The simulator does not abort at this point even if it cannot find dkic
correctly. It sets st =⊥. It sends (setup, st) to D1 and for all i ∈ J1, 4K \ {ic} latter sends (pki, Πeki) to
D2 where Πeki was produced using the simulator of the zero-knowledge proof.

Shuffle phase: C sends PK to the adversary D3. It computes Hic ←− GetHand(ic, skic , pkic ,PK) after ex-
tracting dkic ←− Ext(Πekic ) if it does not already know it. For all i ∈ {1, 2, 3, 4}\{ic}, the simulator picks

Hi at random such that |Hi| = 13 and Hi ⊂ {idl}1≤l≤52 \ (Hic ∪ (∪i−1
l=1,l ̸=ic

Hl)).
Game phase: The simulator sets γ = 0 and played =⊥. The simulator defines the first player index p∗ = 1

and set p = p∗. Then for all j ∈ J1, 52K:
If p ̸= ic: The simulator runs id ← Stratp(played, Hp, p∗, p), it parses st as (α, suit, U1, U2, U3, U4), then

it processes as the algorithm (Π, st′)← Play(p, id, skp, pkp, st,PK) except that:
– It picks t at random in J13 · (p− 1) + 1, 13 · pK.
– It computes Π0 using the simulator Π0 ← Sim(c∗t , id, ekp).
– If suit′ ̸= id.suit and |Ui ∪ {t}| ≠ 13, it computes Π1 using the simulator Sim to produce Π1 ←−

Sim({c∗j ,Decdkp(c∗j )}j ̸∈Un∪{t}, ekp). Otherwise, it set the proof Π1 =⊥.
Set Π = (t,Π0, Π1) and send (id, Π, st′) to A and updates st := st′. Finally, it updates the index
p that points the next player according to the rule of Spades. It then parses played as (pl1, . . . , pln)
(where n = |played|) and updates played := (pl1, . . . , pln, id).

If p = ic: The simulator processes as in Game 1.
Final phase: The simulator returns 0.

Assume that there exists a distinguisher D = (D1,D2,D3,D4,D5) such that |PGame 1(D, k)−Psim(D, k)| =
λ(K) where λ is non-negligible. We show how to build an algorithm B that solves the 52-IND-CPA problem
with non-negligible advantage.

First notice that the differences in between Game 1 and above defined simulator is the generation of
zero-knowledge proof and the random ciphertexts played as another card. The proof Π0 produced at each
turn of the challenger creates a association in between a random ciphertext c∗j with j ∈ J13 · (i−1)+1, 13 · iK
and a card idv ∈ {idl}1≤l≤52 \Hic that would be played according to the strategy.

Construction of B: It will interact an 52-IND-CPA challenger C52−IND-CPA and a tuple of algorithm D =
(D1,D2,D3,D4,D5) that is capable in distinguishing in between Game 1 and our simulator. We show that
building on D’s answer we can construct an adversary winning with non-negligible probability against the
indistinguishability of 52− IND-CPA. We denote the index of the honest player controlled by B by i1, i2, i3 ∈
{1, 2, 3, 4} \ {ic} such that i1 < i2 < i3.

Key generation phase: This algorithm sets st =⊥. It sends setup to D1 which returns the corrupted index
ic. Then B draw random values si for all i ∈ J1, 4K \ {ic} and sets eki = eksi , where ek is the key sent by
the challenger of the 52-IND-CPA game. It simulates Πeki ←− Sim(eki, g) for all i ∈ J1, 4K \ {ic} and sends
(setup, {pki, Πeki}i ̸=ic , vw) to D2 and obtains pkic = (ekic , Πekic ) as its answer. B checks the latest proof
Πekic and extracts the decryption key dkic .

Shuffle phase: B initialize the canonical deck D = (id1, . . . , id52), computes pk = ek1 · ek2 · ek3 · ek4 and
c0,j ← (g, pk · idj). It sets c0 ← (c0,j)1≤j≤52.
Phase 1: For all i ∈ J1, 4K:

– If i = ic, D returns (cic , πic,1), then B checks the proof πic,1 that was outputted by the adversary.

Then it executes ExtA(πic,1) −→ (δi, (ric,)1≤j≤52). B executes c′ic,j ← Rand(cic−1,δic (j)
, ric,j , pk)

and checks if cic,j = c′ic,j for all j ∈ J1, 52K. If the proof does not verify or if the equality does
not hold then B returns a random bit.

– If i = i1, when the adversary played before, B uses the previously extracted permutation to set
δ = δic else it sets δ to the identity if i1 = 1 and sends (idδj)j∈J1,52K) to C52−IND-CPA. The challenger

returns a vector (c′j)j∈J1,52K, B parses each c′j = (x′
j , y

′
j) and sets c′i1 = (x′

j , y
′
j = y

bi1+bi2+bi3
j ·
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x
′skic
j · id−b1−b2−b3+1

δ(j) ). B draws random elements δi1 and (ri1,j)1≤j≤52, for all j ∈ J1, 52K, set
ci1,j ← Rand(c′i1 , ri1,j , pk), set ci1 = (ci1,j)1≤j≤52. Then B uses the simulator in order to produce
a zero-knowledge proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, (ci1 , πi1,1) is returned to D.

– If i = i2, B executes the protocol as usual.
Phase 2: On receiving c4, B parses it as (c4,j)1≤j≤52 and each c4,j as (xj , yj). For player Pi1 , B sets

δ = δ4 ◦ . . . ◦ δ1, sets θi1,j
$← G∗ for all j ∈ J1, 52K \ (∪i=i1,icJ13 · (i − 1) + 1, 13 · iK), and θi1,j =

yj ·
(
idδ(j) · x

(dki2+dki3+dkic )
j

)−1

for all j ∈ J13·(ic−1)+1, 13·icK. Then algorithm B uses the simulator

to produce the proof πi1,2 ←− Sim({xj , θ(i1,j)}j∈J1,52K\J13·(i1−1)+1,13·i1K, eki1).

For i = i2, i3, B computes θ(i,j) = xdki
j for j ∈ J1, 52K \ J13 · (i− 1) + 1, 13 · iK and their proofs

πi,2 ← ZK

dki :
∧

j∈J1,52K\J13·(i−1)+1,13·iK

θ(i,j) = xdki
j ∧ pki = gski

 .

The values (θ(i,j))j∈J1,52K\J13·(i−1)+1,13·iK and πi,2 are broadcasted for all i = i1, i2, i3. D returns
(θ(ic,j))j∈J1,52K\J13·(ic−1)+1,13·icK and πic,2.

B verifies the proof πic,2, executes ExtA(πic,2) −→ dkic , and computes θ′(ic,j) = x
dkic
j for all j ∈

J1, 52K \ J13 · (ic − 1) + 1, 13 · icK. It checks if θ′(i,j) = θ(i,j), if false B returns a random bit.

Then, for all j ∈ J1, 4K, for all j ∈ J13 · (j − 1) + 1, 13 · jK, B computes c∗j ←

(
xj ,

yj∏
1≤γ≤4;γ ̸=l

θ(γ,j)

)
. B

send PK ← (c∗j )1≤j≤52 to D as the result of this algorithm. If the result obtain by D and B for PK
is different or equal to ⊥, B returns a random bit.

Game phase: B sets p equal to the first player index p∗ = 1, γ = 0 and played =⊥. For j ∈ J1, 52K:
If p ̸= ic: B runs id ← Stratp(played, Hp, p∗, p), then it processes as in the algorithm (Π, st′) ← Play(p,

id, skp, pkp, st,PK, D) except that:
– It chooses t at random instead than setting t to the coherent value.
– It computes proofsΠ0 andΠ1 as in the above defined simulator SimTrickT

W,S,A(vw)(K, setup, s, {pki}1≤i≤4 ,
PK, vw).

It sets Π = (t,Π0, Π1) and sends (Π, st′) to D4. Then it updates st := st′ and the index p that
points the next player according to the rule of Spades. It then parses played as (pl1, . . . , pln) (where
n = |played|) and updates played := (pl1, . . . , pln, id).

If p = ic: B processes as in ExpTrickTW,S,K,D(K).
Final phase The simulated experiment returns 1.

Finally, B runs b∗ ← D5(vw), where vw denotes all the values send and received by D during its interaction
with the simulated experiment, then B returns b∗.

Note that an adversary solving the 39-IND-CPA problem can solve the 52-IND-CPA problem.

Analysis: We distinguish two cases:

– The adversary forges a proof of a false statement during the DeckGen protocol. In this case, if D does
not produce a valid proof for the false statement, then PK = ⊥ so the experiment aborts, hence the
advantage of B is lower than 2 · ϵsound(K).

– The adversary does not forge a proof of a false statement during the DeckGen protocol. In this case, if
PK =⊥ then D5 has no information hence cannot do better than answering randomly. Now, assuming
that PK ̸=⊥ and b = 1, for all v ∈ J1, 52K, there exist i ∈ J1, 4K and j ∈ J13 · (i− 1) + 1, 13 · iK such that
idv = Decdki(c

∗
4,j).

In the following, we show that in this case, the advantage of B is lower than 2 · ϵ39−IND−CPA(K). If b = 1,
then the experiment is perfectly simulated, else, the simulator is perfectly simulated. We observe that:

Pr[B wins] =
1

2
(Pr[1← D5(vw)|b = 1] + Pr[0← D5(vw)|b = 0])

=
1

2
(Pr[1← D5(vw)|b = 1] + 1− Pr[1← D5(vw)|b = 0]) .
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Finally: ∣∣∣∣Pr[B wins]− 1

2

∣∣∣∣ = 1

2
· |Preal(D, k)− Psim(D, k)| =

λ(K)

2
.

The two cases imply that the advantage of B is lower than 2(ϵ39−IND-CPA(K) + ϵsound(K)), which concludes
the proof. ⊓⊔

F Proof for the Tarot Scheme

The Tarot protocol relies on the security model highlighted in Section 4.2 and formally described in Ap-
pendix C. Here we prove Theorem 2 by proving the lemmas of this section. As our Tarot protocol share
a common structure with our Spades protocol arguments are directly adapted form the previous security
considerations. Some part of the below proofs follows directly from previously presented reductions.

We assume that the adversary A determines the taker and its bets. Hence, it is able to simulate all type
of scenario at needs regarding the bets. Depending on the announcements two cases have to be distinguished:
When garde sans or garde contre is picked by A and the second case when petite or garde is chosen. In the
latest case, the shuffle protocol DeckGen continue through Part 4. Also, additional consideration need to be
done: the taker could be simulated by the adversary or by the challenger.

Lemma 6. If our Tarot protocol is instantiated by proofs of knowledge that are sound and extractable then
it is theft-resistant. The adversary’s advantage against theft-resistance is bounded by Advth−res

W,S,A (K) ≤ (11 +
18) · ϵextract(K).

Proof. This proof uses similar arguments as in the proof given for Lemma 1. Now players have 18 cards
in their hand, hence the hybrid arguments need to be adapted. Let iguess ∈ {1, . . . , 5} and the associated

experiment ExpExp
TrickT

W,S,A (K, iguess).

Game 0: This is the Trick-Taking experiment ExpExp
TrickT

W,S,A (K, iguess).
Game 1: A has to output a valid zero knowledge proof for Pic ’s key. Under soundness of the NIZKP used for
Πpkic

, we have that the extracted key skic verifies gskic = pkic . C check this equality and aborts the game if

this does not hold. Thus, AdvindistG0,G1
(A) ≤ ϵextract(K).

The three following games modify the behaviours of the challenger during the first phase of KeyGen.
Game 2: In this game we decrypt the elements (cic,j)1≤j≤78 using skic obtained previously. The challenger

aborts if {Decskic (cic,j)}1≤j≤78 ̸= D. Under soudness of the NIZKP, we obtain AdvindistG1,G2
(A) ≤ ϵextract(K).

Game 3: The same is done for Pi1a
, its key have been produced by the challenger, hence we do not rely on

the soudness of any proof before this.
Game 4: Same for Pi1a

. The three following games modify the behaviours of the challenger during the second
phase of KeyGen.
Game 5: Pic secret key skic underlying Pic ’s proof of phase 2 is extracted. C checks whether for all j ∈
J1, 72K \ J18 · (ic − 1) + 1, 18 · icK, the equality θ(ic,j) = x

skic
j holds, if not, C abort the game. We obtain

AdvindistG4,G5
(A) ≤ ϵextract(K).

Game 6: Same for Pi1a
.

Game 7: Same for Pi2a
.

Game 8: After the shuffle, C receive a player index iDog, and executes MakeDog with the adversary. During
this protocol, we can assess the right execution of the protocol by the various players controlled by A. On
receiving π′

ic,2
, we extract pki and reproduce the computations made by A and abort if it does not match.

Game 9: Same for Pi1a
.

Game 10: Same for Pi2a
.

The latest games guaranty that all the three maliciously controlled players have to behave according to the
protocol up to the reveal of the cards in the dog. Depending on the taker index n, if n ∈ {ic, i1a, i2a} we need
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the following game: Game 11: C extract the secret value underlying proof Πn or Πn,2 and reproduce the
computation. If this is not consistent with the return value it aborts.

In Game 11, C has reproduced all the actions of A through the three players it controls, hence the shuffle
have been produced according to the protocol unless the adversary was able to break soudness of one of the
ZKP.
Game 12: When A plays a card (id, Π = (Π0, Π1, t)) associated to a cipher cj as Pic , C now decrypt the
value behind cj with skic and checks if this is coherent with the given proof Π0. The adversary can try to

cheat during any of the 18 turns it plays, hence by a hybrid argument we have AdvindistG11,G12
(A) ≤ 18 ·ϵsound(K)

and as A has no way of winning this concludes the proof. ⊓⊔

Lemma 7. Instantiated by proofs of knowledge that are sound and extractable, our Tarot protocol is cheating-
resistant. The adversary’s advantage against this property is at most AdvcheatW,S,A(K) ≤ 47 · ϵextract(K).

Proof. Game 0: This is the cheating-resistance experiment (i.e., trick-taking experiment with the winning
condition associated to the cheating resistance).
Game 1: C copies the behaviours of the challenger in Game 11 in the proof of lemma 6, the winning condition
remains the one associated to the cheating resistance. As justified before, we obtain AdvindistG0,G1

(A) ≤ 11 ·
ϵsound(K).
Game 2: During Pic ’s plays, C that knows its hand verifies that the played card is indeed in the corrupted
player’s hand, instead of validating the ZKP. This implies a negligible modification ϵπ for each of the played
cards. The hybrid argument associated has been given previously. We achieve AdvindistG1,G2

(A) ≤ 18 · ϵsound(K).
Game 3: During Pic ’s plays, C checks that the played card follows the Tarot’s rules validating the ZKP
using the knowledge of Pic ’s hand instead of verifying the ZKP πic,2. This implies a negligible modification
ϵπ for each of the played cards. The hybrid argument associated has been given previously. We achieve
AdvindistG1,G2

(A) ≤ 18 · ϵsound(K).
At this stage of the game, it becomes impossible for A to plays invalid cards on Pic ’s turn as the challenger

always verifies if it has the card in its hand before accepting the play. This concludes the proof. We conclude
to AdvindistG0,G3

(A) ≤ 47 · ϵsound(K). ⊓⊔

Lemma 8. If our Tarot protocol is instantiated by proofs of knowledge that are sound, extractable and zero-
knowledge, and assuming hardness of the DDH problem, then the protocol is unpredictable and AdvUnp

W,A(K, iguess)

≤ 7 · ϵextract(K) + 78 · AdvDDH
A (K).

Proof. Let iguess ∈ {1, . . . , 5} and the associated experiment ExpUnpre
W,A (K, iguess). We provide a game hope

independent of the parameter iguess, this allows us to provide the same reduction for all cases.

Game 0: Let Game 0 be the is unpredicatability experiment ExpUnpre
W,A (K, iguess).

Game 1: A has to output a valid zero knowledge proof for Pic ’s key. Under soundness of the NIZKP used for
Πpkic

, we have that the extracted key skic verifies gskic = pkic . C check this equality and aborts the game if

this does not hold. Thus, AdvindistG0,G1
(A) ≤ ϵextract(K).

The three following games modify the behaviours of the challenger during the first phase of KeyGen.
Game 2: In this game we decrypt the elements (cic,j)1≤j≤78 using skic obtained previously. The challenger

aborts if {Decskic (cic,j)}1≤j≤78 ̸= D. Under soudness of the NIZKP, we obtain AdvindistG1,G2
(A) ≤ ϵextract(K).

Game 3: The same is done for Pi1a
, its key have been produced by the challenger, hence we do not rely on

the soudness of any proof before this.
Game 4: Same for Pi1a

. The three following games modify the behaviours of the challenger during the second
phase of KeyGen.
Game 5: Pic secret key skic underlying Pic ’s proof of phase 2 is extracted. C checks whether for all j ∈
J1, 72K \ J18 · (ic − 1) + 1, 18 · icK, the equality θ(ic,j) = x

skic
j holds, if not, C abort the game. We obtain

AdvindistG4,G5
(A) ≤ ϵextract(K).

Game 6: Same for Pi1a
.

Game 7: Same for Pi2a
.
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The latest games guaranty that all the three maliciously controlled players have to behave according to the
protocol up to the end of the KeyGen protocol. We now show that it is impossible for an adversary following
the prescripted operations to influence the outcome of the shuffle even when it controls all but one player.
We investigated two scenarios. The first one will assume that the last player to shuffle is the challenger, while
the second case is to consider the case where this last player is controlled by the adversary.

Case {ic, i1a, i2a} = {1, 2, 3}: P4 is run honestly executed, hence the last step of the shuffle maps the cards
randomly and distribute them uniformly to all players. This concludes our case as it is impossible for A to
predict the outputted values after the last random permutation nor to influence the position of the cards
afterwards.

Case 4 ∈ {ic, i1a, i2a}: The ElGamal encryption is an IND-CPA cipher, this means that under encryption,
A does not learn the cards underlying a ciphertext. We have shown that under this consideration, A’s
permutations cannot be chosen better than random as it cannot infer the value of the cards after an honest
shuffle. We prove this statement using the following game.
Game 8: Let iC ∈ {1, 2, 3} be the challenger’s index. We are now making some changes in the behaviours of
the challenger while acting as the honest player PiC . During part 1 of the DeckGen algorithm, on receiving

ciC−1, it parses it as (ciC−1,j)1≤j≤78 = (xj , yj)1≤j≤78. C will then draw a random vector (ZiC,j)1≤j≤78
$← G78

and the usual δiC , (riC,j)1≤j≤78. Then ciC,j ← Rand((xδiC (j), ZδiC (j) · yδiC (j)), riC,j , pk) is computed. Then C
uses the simulator in order to obtain a proof πiC,1 ←− Sim(ciC−1, ciC , pk). Finally, we return (ciC , πiC,1) to
the adversary. The value ZiC,j completely hide the underlying message of the ciphertext as ZiC,j · yδiC (j) =

(Z · idδiC◦...◦δ1(j)) ·pk
∑iC

l=1 rl , for some integers rl that are introduced through the randomness of the previous
players.

During the second phase of DeckGen we are making the following changes: in order to let the adversary

recover the values for its cards we compute θiC,j = Zδ4◦...◦δiC (j) · sk
∑4

l=1 rδl◦...◦δ1(j)

iC
for j ∈ J1, 78K \ J18 ·

(iC − 1) + 1, 18 · iCK. C parses c4 as (c4,j)j∈J1,78K and c4,j as (xj , yj). Then using the simulator it produces
πiC,2 ←− Sim({θiC,j , xj}j , pkiC ) and sends ({θiC,j}j∈J1,78K\J18·(iC−1)+1,18·iCK, πiC,2) to A. The remaining part of
the game is unchanged.

Reduction: A similar reduction has been presented to prove Lemma 3.
Due to the verification of the ZKP A has to follow the protocol and pick values to influence its outcome.

With the latest modifications, once C proceeds to its shuffle, it distributes the ciphertext uniformly and hide
them using random values. In Game 8, A is unable to do better that trying random values as it only sees
random values during the entire shuffle. We lead to the conclusion that AdvUnp

W,A(K, iguess) ≤ 7 · ϵextract(K) +
78 · AdvDDH

A (K) for each of the possible index. Hence, the sum on iguess ∈ {1, . . . , 5} is also negligible. ⊓⊔

Lemma 9. Assuming hardness of the DDH problem. If our Tarot protocol is instantiated by proofs of knowl-
edge that are sound, extractable and zero-knowledge, then it is hand-private.

Proof. This proof the same arguments as in the proof of Lemma 4, only the cardinal of the deck is modified,
and the index value is set in parameter of the experiment and not obtained from the adversary. The final
advantage for this lemma is:

Advh−priv
A (K, iguess) ≤ 3 · ϵsound(K) + 3 · 78 · AdvDDH(K).

Lemma 10. Instantiated by proofs of knowledge that are sound, extractable and zero-knowledge, our Tarot
protocol is Game-private under the DDH assumption.

Proof. LetK =
(
setup, (pkic , Πpkic

),
{
pki, ski, Πpki

}
1≤i≤4;i̸=ic

,PK
)
, we consider the experiment ExpTrickTW,S,K,D(K)

modified according to Definition 20. This game will be denoted as Game 0. In this experiment A controls
Pic and C controls the three other players that we index by i1 < i2 < i3.
Game 1: We modify the behaviours of the first honest player Pi1 . During part 1 of the DeckGen algo-
rithm, on obtaining ci1−1, it parses it as (ci1−1,j)1≤j≤78 = (xj , yj)1≤j≤78. C will then draw a random vector
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(Zi1,j)1≤j≤78
$← G78 and the usual δi1 , (ri1,j)1≤j≤78. Then ci1,j ← Rand((xδi1 (j)

, Zδi1 (j)
· yδi1 (j)), ri1,j , pk) is

computed. Then C uses the simulator in order to obtain a proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, we return
(ci1 , πi1,1) to the adversary.

Then during the second phase of DeckGen, in order to let the adversary recover the values of the cards

in its hand, we will compute the θi1,j = Zδ4◦...◦δi1 (j) · pk
∑4

l=1 rδl◦...◦δ1(j)

i1
for j ∈ J18 · (ic− 1)+ 1, 18 · icK, for all

j ∈ J1, 78K \ (∪i=i1,icJ18 · (i− 1)+ 1, 18 · iK) the θi1,j are draw randomly. We parse c4 as (c4,j)j∈J1,78K and c4,j
as (xj , yj). Then using the simulator the challenger produces πi1,2 ←− Sim({θi1,j , xj}j , pki1). Finally, we send
({θi1,j}j∈J1,78K\J18·(i1−1)+1,18·i1K, πi1,2) to A. The remaining part of the game is conducted as previously.

Doing so, we are completely hiding the cards in the challenger’s hands to the adversary’s as we have
outputted random values θi1,j for j ∈ J1, 78K \ (∪i=i1,icJ18 · (i − 1) + 1, 18 · iK) and that the c∗4,j with
j ∈ J18 · (i1 − 1) + 1, 18 · i1K are hidden by some random values.

With this we also need to modify the values that we return during theMakeDog algorithm when player Pic

takes. In the same way as before when C acts as Pi1 it produces values θi1,j = Zδ4◦...◦δi1 (j) · pk
∑4

l=1 rδl◦...◦δ1(j)

i1
for j ∈ J73, 78K. This value works just like in the shuffle DeckGen and uncover the random values that A sees
in the dog.

Construction of SimTrickT
W,S,A(vw)

(
K, setup, ic, {pki, Πpki}1≤i≤4,PK, vw

)
:

Key generation phase: The simulator starts by setting st =⊥ and sends (setup, st) to D1, for all i ∈
J1, 4K\{ic}, it sends (pki, Πpki) to D2 where Πpki was produced using the simulator of the zero-knowledge
proof. On receiving the pair (pkic , Πpkic

) it extracts the secret value skic from Πpkic
.

Shuffle phase: C sends PK to D3. It computes Hic ←− GetHand(ic, skic , pkic ,PK). If (1, n) was received
from D3, the simulator takes random cards for the dog, reveals them and produces the necessary proofs
π5 for all i ∈ J1, 4K \ {ic}. When n ̸= ic, first it draws hands for the three players it controls: For all
i ∈ {1, 2, 3, 4}\{ic}, the simulator picks Hi at random such that |Hi| = 18 and Hi ⊂ {idl}1≤l≤78 \ (Hic ∪
(∪i−1

l=1,l ̸=ic
Hl)∪H5). Then it keeps on picking random cards within Hn∪H5, where H5 represent the dog,

in order to produce a valid dog regarding the rules of Tarot. It then simulates the needed proofs.
Game phase: The simulator sets γ = 0 and played =⊥. The simulator defines the first player index p∗ = 1

and set p = p∗. Then for all j ∈ J1, 78K:
If p ̸= ic: The simulator runs id ← Stratp(played, Hp, p∗, p), it parses st as (α, suit, U1, U2, U3, U4), then

it processes as the algorithm (Π, st′)← Play(p, id, skp, pkp, st,PK) except that:
– It picks t at random in J18 · (p− 1) + 1, 18 · pK.
– It computes Π0 using the simulator Π0 ← Sim(c∗t , id, pkp).

– If suit′ ̸= id.suit and |Ui ∪ {t}| ≠ 18, it computes Π1 using the simulator Sim to produce Π1 ←−
Sim({c∗j ,Decskp(c∗j )}j ̸∈Un∪{t}, pkp). Otherwise, it set the proof Π1 =⊥.

Set Π = (t,Π0, Π1) and send (id, Π, st′) to A and updates st := st′. Finally, it updates the index
p that points the next player according to the rule of the French Tarot. It then parses played as
(pl1, . . . , pln) (where n = |played|) and updates played := (pl1, . . . , pln, id).

If p = ic: The simulator processes as in Game 1.
Final phase: The simulator returns 0.

Assume that there exists a distinguisherD = (D1,D2,D3,D4,D5,D6) such that |PGame 1(D, k)−Psim(D, k)| =
λ(K) where λ is non-negligible. We show how to build an algorithm B that solves the 78-IND-CPA problem
with non-negligible advantage.

First notice that the differences in between Game 1 and above defined simulator is the generation of
zero-knowledge proof and the random ciphertexts played as another card. The proof Π0 produced at each
turn of the challenger creates an association in between a random ciphertext c∗j with j ∈ J18 ·(i−1)+1, 18 · iK
and a card idv ∈ {idl}1≤l≤78 \Hic that would be played according to the strategy.

Construction of B: It will interact an 78-IND-CPA challenger C78−IND-CPA and a tuple of algorithm D =
(D1,D2,D3,D4,D5,D6) that is capable in distinguishing in between Game 1 and our simulator. We show
that building on D’s answer we can construct an adversary winning with non-negligible probability against
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the indistinguishably of 78−IND-CPA. We denote the index of the honest player controlled by B by i1, i2, i3 ∈
{1, 2, 3, 4} \ {ic} such that i1 < i2 < i3.

Key generation phase: This algorithm sets st =⊥. It sends setup to D1 which returns the corrupted index
ic. Then B draw random values si for all i ∈ J1, 4K \ {ic} and sets eki = eksi , where ek is the key sent by
the challenger of the 78-IND-CPA game. It simulates Πeki ←− Sim(eki, g) for all i ∈ J1, 4K \ {ic} and sends
(setup, {pki, Πeki}i ̸=ic , vw) to D2 and obtains pkic = (ekic , Πekic ) as its answer. B checks the latest proof
Πekic and extracts the decryption key dkic .

Shuffle phase: B initialize the canonical deck D = (id1, . . . , id78), computes pk = ek1 · ek2 · ek3 · ek4 and
c0,j ← (g, pk · idj). It sets c0 ← (c0,j)1≤j≤78.
Phase 1: For all i ∈ J1, 4K:

– If i = ic, D returns (cic , πic,1), then B checks the proof πic,1 that was outputted by the adversary.

Then it executes ExtA(πic,1) −→ (δi, (ric,)1≤j≤78). B executes c′ic,j ← Rand(cic−1,δic (j)
, ric,j , pk)

and checks if cic,j = c′ic,j for all j ∈ J1, 78K. If the proof does not verify or if the equality does
not hold then B returns a random bit.

– If i = i1, when the adversary played before, B uses the previously extracted permutation to set
δ = δic else it sets δ to the identity if i1 = 1 and sends (idδj)j∈J1,78K) to C78−IND-CPA. The challenger

returns a vector (c′j)j∈J1,78K, B parses each c′j = (x′
j , y

′
j) and sets c′i1 = (x′

j , y
′
j = y

bi1+bi2+bi3
j ·

x
′skic
j · id−b1−b2−b3+1

δ(j) ). B draws random elements δi1 and (ri1,j)1≤j≤78, for all j ∈ J1, 78K, set
ci1,j ← Rand(c′i1 , ri1,j , pk), set ci1 = (ci1,j)1≤j≤78. Then B uses the simulator in order to produce
a zero-knowledge proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, (ci1 , πi1,1) is returned to D.

– If i = i2, B executes the protocol as usual.
Phase 2: On receiving c4, B parses it as (c4,j)1≤j≤78 and each c4,j as (xj , yj). For player Pi1 , B sets

δ = δ4 ◦ . . . ◦ δ1, sets θi1,j
$← G∗ for all j ∈ J1, 78K \ (∪i=i1,icJ18 · (i − 1) + 1, 18 · iK), and θi1,j =

yj ·
(
idδ(j) · x

(dki2+dki3+dkic )
j

)−1

for all j ∈ J18·(ic−1)+1, 18·icK. Then algorithm B uses the simulator

to produce the proof πi1,2 ←− Sim({xj , θ(i1,j)}j∈J1,78K\J18·(i1−1)+1,18·i1K, eki1).

For i = i2, i3, B computes θ(i,j) = xdki
j for j ∈ J1, 78K \ J18 · (i − 1) + 1, 18 · iK and their proofs

πi,2 ← ZK
{
dki :

∧
j∈J1,78K\J18·(i−1)+1,18·iK θ(i,j) = xdki

j ∧ pki = gski
}
.

The values (θ(i,j))j∈J1,78K\J18·(i−1)+1,18·iK and πi,2 are broadcasted for all i = i1, i2, i3. D returns
(θ(ic,j))j∈J1,78K\J18·(ic−1)+1,18·icK and πic,2.

B verifies the proof πic,2, executes ExtA(πic,2) −→ dkic , and computes θ′(ic,j) = x
dkic
j for all j ∈

J1, 78K \ J18 · (ic − 1) + 1, 18 · icK. It checks if θ′(i,j) = θ(i,j), if false B returns a random bit.

Then, for all j ∈ J1, 4K, for all j ∈ J18 · (j − 1) + 1, 18 · jK, B computes c∗j ←

(
xj ,

yj∏
1≤γ≤4;γ ̸=l

θ(γ,j)

)
. B

send PK ← (c∗j )1≤j≤78 to D as the result of this algorithm. If the result obtain by D and B for PK
is different or equal to ⊥, B returns a random bit.

Once the DeckGen Algorithm has been executed, we proceed to MakeDog if needed. B starts as Pi1 ,

it produces θi1,j = yj ·
(
idδ(j) · x

(dki2+dki3+dkic )
j

)−1

for all j ∈ J73, 78K. For players Pi for i = i2, i3,

it produces θ(i,j) = xdki
j for j ∈ J73, 78K. Like in the previous step, it outputs alongside those values

the zero-knowledge proof πi,2 ←− Sim({xj , θ(i1,j)}j∈J1,78K\J18·(i1−1)+1,18·i1K, eki1) for i ∈ {i1, i2, i3}. Then
verifies the zero-knowledge proof produced by the adversary, extract them and replay them and returns
a random bit if it is not valid. If one of the players have been designated to take, it picks randomly a
valid dog from cards in Hi ∪H5, randomize the set of cipher associated from these cards as before and
then simulate both proofs π5 and Πn or Πn,2 depending on the case.

Game phase: B sets p equal to the first player index p∗ = 1, γ = 0 and played =⊥. For j ∈ J1, 78K:
If p ̸= ic: B runs id ← Stratp(played, Hp, p∗, p), then it processes as in the algorithm (Π, st′) ←

Play(p, id, skp, pkp, st,PK, D) except that:
– It chooses t at random instead than setting t to the coherent value.
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– It computes proofsΠ0 andΠ1 as in the above defined simulator SimTrickT
W,S,A(vw)(K, setup, s, {pki}1≤i≤4 ,

PK, vw).
It sets Π = (t,Π0, Π1) and sends (Π, st′) to D4. Then it updates st := st′ and the index p that points
the next player according to the rule of the French Tarot. It then parses played as (pl1, . . . , pln) (where
n = |played|) and updates played := (pl1, . . . , pln, id).

If p = ic: B processes as in ExpTrickTW,S,K,D(K).
Final phase The simulated experiment returns 1.

Finally, B runs b∗ ← D5(vw), where vw denotes all the values send and received by D during its interaction
with the simulated experiment, then B returns b∗.

Note that an adversary solving the 72-IND-CPA problem can solve the 78-IND-CPA problem.

Analysis: We distinguish two cases:

– The adversary forges a proof of a false statement during the DeckGen protocol. In this case, if D does
not produce a valid proof for the false statement, then PK = ⊥ so the experiment aborts, hence the
advantage of B is lower than 2 · ϵsound(K).

– The adversary does not forge a proof of a false statement during the DeckGen protocol. In this case, if
PK =⊥ then D5 has no information hence cannot do better than answering randomly. Now, assuming
that PK ̸=⊥ and b = 1, for all v ∈ J1, 78K, there exist i ∈ J1, 4K and j ∈ J18 · (i− 1) + 1, 18 · iK such that
idv = Decdki(c

∗
4,j).

In the following, we show that in this case, the advantage of B is lower than 2 · ϵ78−IND−CPA(K). If b = 1,
then the experiment is perfectly simulated, else, the simulator is perfectly simulated. We observe that:

Pr[B wins] =
1

2
(Pr[1← D5(vw)|b = 1] + Pr[0← D5(vw)|b = 0])

=
1

2
(Pr[1← D5(vw)|b = 1] + 1− Pr[1← D5(vw)|b = 0]) .

Finally: ∣∣∣∣Pr[B wins]− 1

2

∣∣∣∣ = 1

2
· |Preal(D, k)− Psim(D, k)| =

λ(K)

2
.

The two cases imply that the advantage of B is lower than 2(ϵ39−IND-CPA(K) + ϵsound(K)), which concludes
the proof. ⊓⊔

Lemma 11. Instantiated by proofs of knowledge that are sound, extractable and zero-knowledge, our Tarot
protocol is Dog-private under the DDH assumption.

Proof. As previously the main intuition is based on the fact that A has to outputs valid proof for each of its
actions.
Game 0: Let Game 0 be the is dog experiment ExpdogW,A(K, iguess).
Game 1: A has to output a valid zero knowledge proof for Pic ’s key. Under soundness of the NIZKP used for
Πpkic

, we have that the extracted key skic verifies gskic = pkic . C check this equality and aborts the game if

this does not hold. Thus, AdvindistG0,G1
(A) ≤ ϵextract(K).

The three following games modify the behaviours of the challenger during the first phase of KeyGen.
Game 2: In this game we decrypt the elements (cic,j)1≤j≤78 using skic obtained previously. The challenger

aborts if {Decskic (cic,j)}1≤j≤78 ̸= D. Under soudness of the NIZKP, we obtain AdvindistG1,G2
(A) ≤ ϵextract(K).

Game 3,4: The same is done for Pi1a
, its key have been produced by the challenger, hence we do not rely on

the soudness of any proof before this. Game 4: is the same for Pi1a
.

The three following games modify the behaviours of the challenger during the second phase of KeyGen.
Game 5,6,7: Pic secret key skic underlying Pic ’s proof of phase 2 is extracted. C checks whether for all

j ∈ J1, 72K \ J18 · (ic − 1) + 1, 18 · icK, the equality θ(ic,j) = x
skic
j holds, if not, C abort the game. We obtain
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AdvindistG4,G5
(A) ≤ ϵextract(K). Game 6 comprise the same modification for Pi1a

. Game 7 is the same modification
for Pi2a

.
We now modify the behaviours of the corrupted players during the MakeDog protocol.
Game 8,9,10: The first step of the MakeDog protocol requires the players to output θ(i,j) values alongside a
zero-knowledge proof. We proceed to the same modification as above for the cards in the dog for each of the
three corrupted players.
These two additional games are only required if one of the corrupted player takes.
Game 11: If the taker is corrupted it has to randomise its cards with the dog. First we extract δ5 and the
{rj}73≤j≤78 and replay the randomisation, if it does not match the outputted values the game is aborted.
Game 12: In addition to the previous modifications, we bypass proof Πn or Πn,2 (depending on the case)
and directly executes GetHand and verify that for all id ∈ d \ ∪4i=1Hi, id /∈ O. If not we abort the games and
return a random bit. ⊓⊔
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