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Homogenization of ferrofluid flow models in porous media
with Langevin magnetization law

Youcef Amirat*, Kamel Hamdache!

Abstract

The paper is concerned with the homogenization of the equations describing the flow
of a ferrofluid through a heterogeneous porous medium §2 in the presence of an applied
magnetic field. We discuss two models where the magnetization M is parallel to the
magnetic field H. In the first one M and H satisfy the relation M = Ao lo,H in Q,
where Ao is a positive constant and 1 s is the characteristic function of Qf (the pore
space). In the second model, M and H satisfy the Langevin magnetization law M =
MSL(TT\‘H\)le H, where L is the Langevin function given by L(z) = tanlhz — %, M,
is the saturation magnetization and b; is a positive physical constant. The velocity
and the pressure satisfy the Stokes equation with a Kelvin magnetic force. We perform
the homogenization of the equations of each of the two models. Using the two-scale
convergence method, we rigorously derive the homogenized equation for the magnetic
potential and determine the asymptotic limit of the magnetization. Then we rigorously
derive a Darcy law.

Keywords. Ferrofluid flow in porous media; Stokes equations; Langevin magnetization law;
homogenization; two-scale convergence; Darcy law

1 Introduction

Magnetic fluids (also called ferrofluids) are colloidal suspensions of nanoscale magnetic par-
ticles in a carrier fluid. Since their physical properties can be easily influenced by an external
magnetic field, they have found a wide variety of applications in technology, industry and
medicine, see [44]. A potential application of ferrofluids is found in the subsurface envi-
ronmental engineering, in which externally applied magnetic fields are used to direct and
control the flow of ferrofluids under the ground, see [39]. In the past years, ferrofluid flow in
porous media has been the subject of various experimental and numerical studies, see [28]
and the references therein.

An important tool for modeling flows in heterogeneous porous media is the homoge-
nization theory, that allows to derive equations describing the macroscopic behavior of the
flows, from the equations of fluid mechanics valid in the pore space. The most widely
used methods for the derivation of macroscopic equations for periodic heterogeneous porous
media are the method of multiscale expansions [10, 11, 13, 45], the two-scale convergence
method [3, 34, 36], and the periodic unfolding method [17]. Ene and Sanchez-Palencia [23]
derived the Darcy law, from the Stokes system, by using a formal multiscale expansion.
The rigorous mathematical derivation of the Darcy law was given by Tartar [47], using the
method of oscillating test functions. The explicit expression for the pressure extension was
given by Lipton and Avellaneda [33]. Several works have been devoted to the derivation of
Darcy’s law [2, 4, 18, 27, 33]. Homogenization techniques have been developed to treat more
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general problems: porous medium with double porosity [8], nonlinear filtration law [7, 35],
multiphase flows [5], non-Newtonian flows [12], interface problems [29], MHD flows [6, 25],
etc.

In the present paper we study the homogenization of the equations describing the flow
of a ferrofluid through a porous medium in the presence of an applied magnetic field. We
consider two simple models where the magnetization is parallel to the magnetic field: a
linear model and a nonlinear model.

2 Problem formulation

We consider the flow of a ferrofluid through a porous medium in the presence of an applied
magnetic field. The porous medium is denoted by €2, a smooth bounded and simply con-
nected domain of R3, and is composed of a solid part and a pore space that is filled by
the ferrofluid. The solid part is denoted by g, the pore space by Qy, and the fluid/solid
interface is denoted by I'. We assume for simplicity that €2 is strictly included in €.

We denote by U the velocity of the fluid acting in €2y, H, the applied magnetic field, M
the magnetization in the fluid which vanishes outside Q¢, H; the demagnetizing magnetic
field, and B the magnetic induction given by

pwr(Hg+ Hqo+ M) in Qyp,
B = Ms(Hd + Ha) in Qsa
po(Hg + Hy) in Rg\Qa
where pg, ps and g are the magnetic permeabilities in €2, 2, and in vacuum, respectively.
We assume that pr, s and po are positive constants. We denote by H the magnetizing

magnetic field defined by
H=H;+H,.

The magnetic induction and the (magnetizing) magnetic field are assumed to satisfy the
equations of magnetostatics

divB=0, curlH =0 in R (1)
It results from (1) that on the solid-liquid interface I = 9§25 we have that
[Hxvp]=0, [B-vr]=0 onT. (2)

Here vr is the unit normal vector to I' pointing from g to Qf. The brackets [-] stand for
the jump across the solid-fluid interface. More precisely, denoting by vy and v, the values
of v on either side of the surface I', respectively, in the fluid and solid domains, we set
[v] = vy — v,. Equation (2); expresses the continuity of the tangential component of the
magnetic field H and (2)2 expresses the continuity of the normal component of the magnetic
induction. We also have

[Hxv]=0, [B-v]=0 ondQ (3)

where v is the unit outward normal vector to 0€.
We assume that Hy =0 in R?\ , then we derive from (3) the boundary condition

pr(H+ M) v =poH, - v on 0.

We assume that the magnetic field and the magnetization are parallel [38] (Section 2.2), [44]
(Section 2.7) and [46]. We consider two cases, in the first one M and H satisfy the relation

M =X 1g,H inQ (4)



where A is a positive constant and 1g, is the characteristic function of €2y. This case leads
to a linear model. In the second case, M and H satisfy the Langevin magnetization law
[1, 43]

L(by |H]|) 1 1
M=M———1q,H Lz)=——7+———, z€R, 5
|H| s (z) tanh(z) =« “ (5)
where L is the Langevin function, M, is the saturation magnetization, b; = L% m is the

kBT ?
magnetic moment of the particule, 7" denotes the temperature and kp is the Boltzmann’s

constant. We assume that M, and b; are positive constants. This case leads to a nonlinear

model. Some other relations are used in practical situations, for example M and H satisfy

the relation [39]

arctan(by|H|)
|H|

with a1 and b; positive constants. This case leads to a nonlinear model.

M:al IQfH,

2.1 The linear model
Assume that M and H satisfy relation (4). Let u denote the function defined a.e. in © by

/_Lf(l-i-/\o) n Qf,
p= { . (6)
fs in €,

then we have B = y H and H is a solution of

div(puH)=0, curlH=0 inQ,
wr(l+X)H - v=poH, v on Q.

Since  is simply connected, there is p € H!({2) such that H = Vi, see for instance [26]
(Theorem 2.9, p. 31). Then ¢ is a solution of

div(uVe) =0 in €,

(1 +X)Vo-v=pyH, v on 09, / p(zr)dr =0. 0
Q

The constraint of zero mean on ¢ is imposed in order to ensure the uniqueness of solutions
of this problem.

The fluid velocity U and the pressure p satisfy the incompressible Stokes equations in
the absence of inertial terms

{ —nAU +Vp=ps(M-V)H +g, divU =0 in Qy,

(8)
U =0 on 09y,

where 7 is the dynamic viscosity, ¢ the external force and the term py(M - V)H represents
the Kelvin body force.

2.1.1 Local description and adimensionalization

We assume that the porous medium has a periodic microstructure. Let [ and L denote the
characteristic sizes of the heterogeneities and the domain 2, respectively. We set ¢ = % and
assume ¢ << 1 small enough.

Let Y = (0,1)3 denote the unit cell. Let Y, (the solid part) be a closed smooth subset
of Y with a strictly positive measure. The fluid part is given by Yy = Y'\Y,. We denote for
each k € Z3:

YE=Y +k YF=Y.i+k YF=Yj+k,



then define the sets

E_ T k Eo_ T k ko T k
XE_{x.gLEY}, XE,S_{;U.ELGYS}, Xe,f—{x. er}.

The physical (i.e. dimensional) solid and fluid regions are defined as
X =uUpXE,, X5=R:\X:

Obviously, X is a closed subset of R* and X§ is an open subset of R®. Moreover, X7 is a
connected domain, while X¢ is formed by separate closed subsets of R3. We assume that
is an open simply connected domain of class C?. We introduce the fluid and solid domains

s=0\ | x5, =0\,
kels

where
IF={k:Xt, cQ}

The solid-fluid interface I', is defined by

=0y, IF=T+k, I";E:{x:g%el“k}, e =Tk

For convenience, the interface between the solid and fluid domains Q NI is still denoted
re.

In order to express equations (4), (6)—(8) in dimensionless form, we introduce a change
of variables:

¥ =z/L, U =Ujue, p' =p/pey M'=M/m,., H = H/h,,
H:;, = Ha/hm g/ :g/gcv #; = Ml//J’ZC (7’ = S»fvo)v (9)

where the variables indexed by ¢ denote reference values and the variables with the prime
superscript denote dimensionless values, respectively. We denote by ' and I' the image
of Q and T, respectively, under the change of variable x — 2’. We choose m. = h. and
Hse = phfe = Hoc. Using the above change of variables, equation (4) reads

M'=Xlg H' in . (10)
The dimensionless equations of magnetostatics are
div'(W'H') =0, curl' H' =0 in
{ pr(1+Xo)H v =poH; -v on 0,
and equation (7) becomes
div'(W'V'¢') =0 in &,
(L4 X)) V' v = ppHy - v on 0, //gp’(m)dmzo,

where ¢’ is the magnetic potential associated with H', i.e. H = V'¢’. We have

Nc i | Peor s Hpmche R 27, /
— A —= == (M"- H
2 AU +TVD 7 M-V)H + 9.4,
e e 7. pfui .
dividing by == we obtain

1

Rem(M’.V’)H’+FTg’ in Qf,

1
AU+ BuV'p =
Toe + FEuV



with )
L : Lg.
Re:%, Bu= p°2, em:pfu;, Fr= g°2.
U prug prhe prug
Here, Re is the Reynolds number, Rm is the magnetic Reynolds number, Eu is the Euler
number and Fr is the Froude number. In the sequel we take Re = E%, Fr = Re,, = Fu=1,

then obtain the dimensionless Stokes equations

—E2AU VY = (M -V)H +g i,
div' U’ =0 in (12)
U'=0 on 9%,

In what follows we omit the prime index.

2.1.2 Problem (Pf)

Our objective is to perform an asymptotic analysis of equations (10)—(12), as € — 0. Let us
note that in the Stokes equation (12), the Kelvin force is a nonlinear function of H, since
(M-V)H = %V(|H\2)7 as we will see below. Then our study will focus on the asymptotic
behavior of |H|?.
We introduce the following formulation of the problem. The magnetization M€ is given
by
MEZ)\()lQEfHE in Q, (13)

where 1Q? is the characteristic function of Q? We can write

= freni(2)-1),

where X is the characteristic function of Yy; clearly, x ¢ is a Y-periodic function. Let p®
denote the periodic function defined a.e. in 2 by

@) =n (%), (14)

€
with the period € in the variable x, where

pp(L+Xo), ify €Yy,

wy) = { (15)

s, if yevs.
The magnetic field H¢ is such that H® = V° where ¢° is a solution of
div(ufVe®) =0 in Q,
uEV® v = pogHy - v on 09, / ¢ (x)dz = 0.
Q
Using (13) and equation curl H¢ = 0, there holds that

((M®-V)H) = Xo((H® - V)H ) = N Y _H50;Hi = Xo Y _ H;0pH:
J J
|H|?

A
=Ao§)ak< ; >=;ak<|HE|2>,
J

then the Kelvin body force can be written as pus(M® - V)H® = uf%v (|H5\2) . Because of
its gradient structure the latter term can be included in the new pressure

Ao
e =p8—uf7|H6|27 (17)



then we obtain that the pair (U¢, ¢%) satisfies the Stokes system
—2AU* +Vg =g in 05,

divU¢ =0 in Q?, (18)
U® =0 on 005, / ¢ (z)dx = 0.

@5

Problem (Pf) is formed by equations (13)—(18). We are interested in describing the asymp-
totic behavior, when ¢ tends to 0, of the magnetic field H®, the magnetization M¢®, the
velocity U and the pressure p®.

Our goal is the rigorous derivation of a Darcy law including some effect of the applied
magnetic field. Clearly, problems (16) and (18) are decoupled; the homogenization of the
second order linear elliptic equation (16) is classical, as well as the homogenization of the
Stokes system (18), see for instance [4, 27, 45, 47]. But relation (17) gives rise to the study
of a nonlinear problem. Let H® = Vp® and let Q° be the extension of ¢° as defined in
Lemma 12 (below). According to (17) we define P in Q by P = Q° + pup 32 |H®|%.

Our new result is the regularity of the magnetic field H¢. We prove, by using Meyers’
theorem for Neumann problem that, under the assumption H, € H!(R3), there exists a
real number pys > 2, such that, for all 2 < r < inf{pys,6}, H® € L"(Q2), and the sequence
(H¢) is bounded in L"(2), see Theorem 1 (below). This implies that the sequence (|H¢|?) is
bounded in L"/2(Q); note that the exponent r/2 > 1 is essential for applying the two-scale
convergence to the sequence (|H¢|?). Let Ho(x,2/¢) be a corrector for H*(x), see Lemma 4

(below). Applying the two-scale convergence, we have |H¢|? = |Ho(z,y)|?. Tt results that

P* 2 Py (o) = Q&) + iy 2 o)
A
P? = P(x) = Q(x) + py 5 (L + A)Ve() - Vip(x),

where A is the constant matrix given by (37), and Vo(z) = [, Ho(x,y) dy. Then we derive
a Darcy law, with an additional term representing the effect induced by homogenization,
see Theorem 2 and Remark 1 (below).

Let us mention the paper [31] dealing with the linear case. Using the representation
H = Vv for the magnetic field and a formal upscaling technique, the authors derived the
macroscopic flow from the description of the physical mechanisms at the pore scale. Our
result is in agreement with the model they derived.

Let us also mention some recent works (derived by means of formal power series ex-
pansions) where additional terms arising from local variations of fields have been taken
into account in the context of Darcy’s flow [40], linear elasticity [41], and electromagnetic
composites [21].

2.2 The nonlinear model

Assume that M and H satisfy relation (5). Let pu denote the function defined a.e. in by

iy (1+MSM) in Qy,

= |H| (19)

ps in g,
then we have B = 4 H and H is a solution of
div(pH)=0, culH =0 inQ,

L(bi|HJ)

————~ | H -v=ppH, v on df.
|H| )



Let ¢ € H*(Q2) the magnetic potential associated to H, i.e. H = V; ¢ is a solution of
div(pVe) =0 in €,

L(b1|V))
[Vl

(20)

uf(1+MS )V@-V:uoHa~y on 01, /(p(a:)dx:().
Q

The constraint of zero mean of ¢ is imposed in order to ensure the uniqueness of solutions
of this problem.
The fluid velocity U and the pressure p satisfy the Stokes equations

—nAU +Vp=pu;(M-V)H+g, divU =0 in Qy,
(21)
U =0 on 09y.
The Kelvin body force can be written as
L(by|H
/Lf(M . V)H = HUf Ms(ﬁ__"’Dle (H . V)H = Uf MSL(b1|H|)1Qf V(|H|)
Using that
¥ M, sinh(b1x)
/O M,L{bis)ds = 5 *In (T) VzeRy,
we can write
where x : R? — R denote the function defined by
M, sinh(b1(€]) 3
R(€) = 2 n (S e e 3, 22
=3 (g ), v (22)

As in the linear case the term representing the Kelvin body force can be included in the new
pressure ¢ = p — upk(H). Then we rewrite equation (21) as

—nAU +Vg=g, divU =0 in Qy,
(23)

U=0 on 0Qy.

We use the change of variables (9) to express equations (5), (19)—(23) in dimensionless
form. For notational convenience we take m. = h, = 1. Omitting the prime index we obtain
the following equations. The magnetization M¢ is given by

L(by|He)

M* = M,
|He|

lo: H® in Q. (24)

Let p® denote the function defined a.e. in € by

Lb:JH)Y e
R &

M €
je in Q,

and let ¢° € H'(Q) such that H® = V¢®; ¢° is a solution of the nonlinear differential
equation

div(ucVe®) =0 in Q,

b1|Vepl)

L (26)
MO+M(NW

)V(pa-yzuoHa~u on 01, /(pa(x)dac:O.
Q



The pair (U®, ¢°) satisfies the Stokes system
—2AU* +Vg =g in 05,
divUs =0 in 03,

U® =0 on 005, / ¢ (z)dx = 0.
95

The function ¢¢ is linked with the pressure p® par the relation
¢ =p° — pgr(H). (28)

We denote by problem (Pg;) the system formed by equations (24)—(28). We are interested
in describing the asymptotic behavior, when € tends to 0, of the magnetization M€, the
magnetic field H¢, the velocity U® and the pressure p°.

Here again, our goal is the rigorous derivation of a Darcy law including an effect of the
applied magnetic field. Problems (26) and (27) are decoupled, problem (26) is a nonlinear
differential equation, and problem (27) is identical to problem (18) considered in the linear
case. Let Q)¢ be the extension of ¢¢ as defined in Lemma 12 (below), we define P in {2 by
P® = Q° + pyr(H®) where £ is given by (22).

We show that the nonlinear differential operator in (26) is strictly monotone, coercive
and hemicontinuous. This allows us to prove that the variational equation associated to (26)
has a unique solution ¢° € H*(£2) and that ¢ is uniformly bounded in H'(f2), see Lemma 2
(below). Using the monotonicity of the differential operator and the two-scale convergence
method we derive a two-scale homogenized equation, then deduce the homogenized equation
of the magnetic potentiel as well as the two-scale limit of the magnetization and its weak
limit in L2(€2), see Theorem 3 (below). Using a corrector for the magnetic field, we deduce
the asymptotic behaviour of the sequence pyk(H®). Then we rigorously derive a Darcy law,
see Theorem 4 (below). To our knowledge this result is new.

The remainder is organized as follows: In Section 3 we state our main results. Theorems
1 and 2 are concerned with the asymptotic analysis of the linear problem (P;) and Theorems
3 and 4 are concerned with the asymptotic analysis of the nonlinear problem (PZ;). Section
4 is devoted to the proofs and Section 5 concludes the paper.

3 Main results

We make the following assumptions:
al  is an open simply connected domain of class C?;

a2 Y, is a closed simply connected domain of class C? with a strictly positive measure,
and such that Y; C Y

a3 s is the Y-periodic functions in L>(R3), given by (6), satisfying 0 < co < pu < ¢5';
ad g € L2(Q);
ab H, € H'(R3).
We introduce the classical function spaces in the theory of the Navier-Stokes equations
Z5(Q) = {v e 2(,R*) : divo=0 in Qs },
V = closure of Z,(Qy) in H'(Qy).

Here 2(Q2f,R3) is the space of infinitely differentiable functions with compact support in
Q and valued in R?. As is well known,

V={ve Hi(Qy): dive =0 in Qs}.



We also introduce the space
H{(Q)={¢v e H(Q): /sz(x) dx = 0}.

Due to the Poincaré-Wirtinger inequality, there exists a constant ¢ (depending only on 2)
such that

lellzz) < cllVelia), Ve € Hy(Q).

3.1 Two-scale convergence

To describe the asymptotic analysis of problems (P;) and (P:;) we use the two-scale con-
vergence method [3, 34, 36]. We denote by C5,.(Y) the space of infinitely differentiable

per
functions in R® which are Y-periodic, by Cpe,(Y) the Banach space of continuous and

Y -periodic functions, and by W4(Y) (1 < g < o) the closure of C° (Y) in the W4(Y)-

per per
norm. Eventually, 2(£2, Cp¢,.(Y)) denotes the space of infinitely smooth and compactly
supported functions in €2 with values in the space Cpg,.(Y).

A sequence (u®) of functions in LI(Q2), 1 < g < oo, is said two-scale convergent (in L9)
to a function ug(z,y), up € LI(Q xY), as e — 0, if

lim [ w®(x)¢ (a:, E) dr = / uo (2, y)p(z, y) dudy,
Q € QxY

e—0

for any test function ¢ € 2(Q,C2.(Y)); we will write u® = uo(x,y). Note that for the

per

space of admissible test functions, the space C(€2, Cp2,(Y)) can be also used.
It is a crucial property of the two-scale convergence that for any bounded sequence (u®)

of L1()) there is a subsequence, still denoted (u®), and a function ug(z,y), ug € L1(Q xY),
such that ue 22 uo(x,y), see [3, 34, 36]. Let also cite the following properties [3, 34, 36]:

(i) If (uf) is a bounded sequence of W4(£2), there is a subsequence, still denoted (uf),
and there are functions u € Wh4(Q), u! € LI(Q; WLe(Y)), such that

per

u® — u in WhH9(Q) weak, uf 2 u(z), Vu® 2 Vu(z) + Vyu'(z,y).

(#) If (u®) is a bounded sequence of L7(€2), such that (¢Vu®) is bounded in L7(2), then
there is a subsequence, still denoted (<), and a function ug(z,y), uo € LI(Q; Wpd(Y)),
such that

us 2 uo(z,y), eVu® 2 Vyuo(z,y).

3.2 Main results in the linear case

The weak formulation of problem (16) is
S el [ Ve Vodo= [ o, vido, YoeH'Q),  (20)
Q a0

where 1€ is defined by (14), (15). By the Lax-Milgram theorem and the Poincaré-Wirtinger
inequality, there exists a unique solution to (29).
The weak formulation of problem (18) is

Usev, & VUE~Vvda:=/ g-vdx, YveV. (30)
95 @5

Under assumption a4, this problem has a unique solution.
We define a constant (homogenized) matrix x/f by

e ow* :
it = | my) | ik + 5 () ) dy, i,k=1,2,3, (31)
Y Yi
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where w*(y) denotes a scalar Y-periodic function which solves the cell problem
div, (1) V() = div, (u() ") Y, [ wt)dy=o. (32
Y

Here e* denotes the k-th standard basis vector of R3. Clearly, problem (32) has a unique

weak solution w* € H;ET(Y), where H;ET( ) denotes the space of functions in H} (R?)
which are Y-periodic. Let ¢ be a solution of the homogenized equation
pe B, [ IV Vodi = [ Hovide, woeH'(®@), (3
Q oQ

where 17/ is a constant matrix defined by (31). Note that u// is symmetric and positive
definite. Let ¢! be the function defined by

3
xyzzai wb(y), (z,y) € QxY. (34)
k=1

Clearly, o' € L*(Q; H!,,.(Y)) and we have

per

—divy (u(y) (Ve(z) + Vye'(z,9))) =0 inY.

Let (e')1<i<3 denote the canonical basis of R®. We introduce the differential systems in Y7,
for1 <i<3: 4 _ 4
—Ayw'(y) + Vyr'(y) =€ inYy,

divywi(y) =0 in Yf, (35)
w'ay, =0, fY y)dy = 0.

Clearly, problem (35) has a unique solution (w’, %) € H..,.(Yy) x L*(YF).
We now state our first main result.

Theorem 1. Under assumptions al-ab, let ¢ be a solution of problem (29), and H® =
V©. Then the sequence (HF) two-scale converges to Hy(z,y) = V(z) + Vyp! (z,y) where
o(z) is a unique solution of the homogenized equation (33), and o*(x,y) is defined by (34).
We have ¢ € H*(Q) and o' € H' (Q; W, .5(Y)). Moreover:

(i) There exists a real number ppyr > 2, such that, for all2 < r < inf{pyr,6}, H* € L"(Q),
the sequence (H€) is bounded in L™(Q), and Ho(z,y) €e L"(Q x Y).

(i) We have

£12 28
[H|? = ao(z,y) = [V (2)* + 2Vp(a) - Vyo! (2,y) +[Vye' (2,) )

|He|> = a(z) = |[Vo(x)|? +/ \Vygol(x,y)|2 dy weakly in LT/Q(Q).
Y

Our second main result is the following.

Theorem 2. Under assumptions al-a5 and notations of Theorem 1, let M be the function
defined by (13), (U%,¢°) a solution of problem (18), p° the function linked with ¢° par
relation (17), Q° the extension of ¢° as defined in Lemma 12 (below). We define P® in Q
by P* = QF + pya¢|H|%. Then:

(i) the sequence (M*) two-scale converges to Mo(x,y) and converges weakly in L?(2) to
M(z) = [, Mo(x,y)dy, where My € L"(Q x Y), for all 2 < r < inf{pas,6}, is given by

Mo(z,y) = Mo x7(y) Ho(z,y)

and x5(y) is a Y-periodic function defined in'Y as the characteristic function of Y;.
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(ii) There exist funtions Uy € L*>(Q;HL,,.(Y)), Q € L*(Q), Py € L"/?(Q x Y) such that

per
Us 2 Uo(z,y), eVU* 22 V,Uo(z,y), QF — Q strongly in L*(Q),
s A
P* 2 Py(a,y) = Q(x) + uf70 ao(z,y),
P? — P(x) := Q(z) + Pn(z) weakly in L'/?(2),
where P,, is the magnetic pressure given by
Ao Ao
Pn(@) = pr alz) = pp—o (I + AVep(z) - Vo(z)
and A = (Aij)i<ij<3 15 a symmetric and positive definite matriz given by
Aij / v,w' V! (y)dy, (w* defined by (32)).

The pair (Up, Q) is such that

Up=0 mQxY,, divyUp=0 inQxY,
div (/ Uo(+,y) dy) =0 1inQ, (/ Uo(+,y) dy) -v=0 on 04,
Y Y
Uo(z,y) Y-periodic for a.e. x €, / Q(z)dx =0,
Q

and is a solution of

/ VUl 0) -V as0) iy / Q(a) divy C(z, y) dedy

Yy
/ / ((x,y) dzdy,
Yy

V¢ e 2(Q,Ce.(Y)), with¢=01in Q xY; and div, ((z,y) =0 in Q x Y.

per

Moreover,

3
. oPrP 0P,
=30 (50 - g @0+ 52 @) zeyeyy,
/ Uo(z,y)dy = K (g(z) — VP(z) + VPp(z)), z€Q, (Darcy law)
Yy
where K = (Kj)1<i j<3 s the permeability matriz given by
K;; = V,w'Vyw! dy = / w;» dy, (w" defined by (35)).
Yy ) Yy
The permeability matriz K is symmetric and positive definite.

The proofs of Theorems 1 and 2 are given in Section 4.

(38)

Remark 1. We can rewrite the Darcy law (41) in the following form. From Theorem 1 (ii)

and (36) we have

A A
Pr(2) = u 5 V(@) P + up 5 AV (2) - Vep(a),
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where p(x) is a unique solution of the homogenized equation (33), and A is a matriz defined
by (37). Define

F(x) = V(p(m), M(x) = Aoﬁ(l'), gK(x) = Mf(ﬁ . V)F (.Z’),

R(z) = 12 AV () - Vip(a).
We have V (up22[Vo(2)[?) = py (M - V)H (z) = gk (), then (41) takes the form
| Ut dy = K(o(@) + gxc(@) = VP(@) + VRW)).

where KNV R(x) represents the effect induced by homogenization.
Remark 2. [t results from (38) and (41) that the pressure P satisfies the differential equa-

tion
— div(K(V(P - Py)) = —div(Kg) inQ,

KNV(P—-P,) - v=Kg-v on 0.
The weak formulation of this problem is

P e H} (),
/KV(P—Pm)-v¢dx:/Kg-v¢dx, Vi € HY(Q).
Q Q

Clearly, this problem has a unique solution.

Remark 3. Theorem 2 can be generalized to the case where the load g also depends on the
variable y = x/e. Let g € L*(Q; Cper(Y)?). Define g*(x) = g(x,2). We have ||g°||L2() <
lgllz2(0:cpe, (v)3)- The Stokes system
2 o .
—e"AU® +Vq¢© =g° in QF,
divU® =0 in Qjc,

Us =0 on 005, / ¢°(x)dx = 0.
Qs

has a unique solution (U¢,q°%). We extend U by zero in Q\ Q% and still denote by U the
extended function. Let Q° be the extension of ¢° as defined in Lemma 12 (below). We define
P in Q by P = Q° +uf)‘2—°|H8|2. We have

VU Lz < ¢, [[U%lze) < ¢, 1Q%lLz) < ¢

where ¢ is a constant independent of €. Using the two-scale convergence, we show that the
sequence (U®,Q°) two-scale converges to the unique solution (Up,Q) € L*(;H},,.(Y)) x
L2(Q) of the two-scale homogenized problem

— AyUs(z,y) + VQ(z) + V, Q' (x,y) = g(z,y) in Qx Y,
Up=0 inQxY,, divy,Uy=0 inQxY,

div(/yUo(-,y)dy)zo in Q, (/YUO(-,y)dy)-u:o on 99,

Uo(z,y), Q' (x,y) Y-periodic for a.e. x €,
/Q(m)dxzo, / Q' (z,y)dy =0 fora.e x €.
Q Y
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Let (w°,7%) € L*(Q; HJ,,.(Y)) x L*(Q x Yy) the unique solution of the cell problem
—Ayw(z,y) + Vyr(z,y) = gla,y) in Qx Yy,
divy W°(z,y) =0 in Q x Yy,

w0|ay_§ =0, / 7%z, y)dy =0 for a.e. x € Q.
Yy

We show that

3
Ua(o) = (o) + Y w) (@) ) zeyey

=1

Using that
P? — P(z) := Q(z) + Pn(z) weakly in L'/?(Q),

with P, = Q + ,uf%\V<p|2 +pf %AV@ -V, we derive the Darcy law

/ Uo(a:,y)dyz/ w(z,y)dy + K(— VP(z) + VP, (2)), z €
Yy Yy

3.3 Main results in the nonlinear case

Let a: Y x R® — R? be defined by

w(y)E + Xf(y)Ms% ¢ forae. yey, forall £ € R?\ {0},
ane =y (43)
i =0,

where x is the characteristic function of Yy and fi the Y-periodic function defined in Y by

_ { Wy a.e. in Yy,

44
s a.e. in Ys. (44)

We have the following result.
Lemma 1. The function a(y, ) defined by (43) satisfies the following properties:
(i) a(y,0) =0 for a.e. y€Y;
(ii) a(y,§) is Lipschitz continuous with respect to &, i.e. there exists a constant ¢ such that
la(y, &) — aly, &) < clér = &, for a.e. y €Y, for all &,& € R;
(iii) a(y,&) is monotone and coercive, more precisely,

(a(yagl)_a(yvé-Z))'(gl_52) Z lnf{/‘l’f7/‘1’8}|£1 _52‘27 fO’f' a.e. y & Ya fO’f‘ all 51752 € R3'

The weak formulation of problem (26) reads

s, [

[ (LVe @) Vodo= [ ol vide, Ve HN®). (@)

o0

We have the following result.

Lemma 2. Problem (45) has a unique solution ¢=. Moreover, the sequence (p°) is bounded
in H} (Q).
#
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The proofs of Lemmas 1 and 2 are provided in Section 4. Problem (27) is identical to
problem (18) whose weak formulation is

UseV, ¢ VUE~Vvd;z::/ g-vdx, YvelV.
Q3 Q5

Let us mention that homogenization of nonlinear problems of the form
—diva (g,VUE) =f inQ, ueW,"(Q), (46)

where f € W=L"(Q), 1 < r < oo, and a(y,&) is a Y-periodic function in y and satisfies
suitable assumptions of uniform Lipschitz continuity and uniform strict monotonicity in &,
have been studied in [3, 9, 14, 15, 16, 20, 34]. In these papers, oscillating test functions
are used to derive the homogenized equation. A corrector result has been proven in [19].
Let us also mention a paper on homogenization of boundary value problems for monotone
operators in perforated domains with rapidly oscillating boundary conditions of Fourier type
[42].

We now state our third main result. Using the two-scale convergence method we derive
a two-scale homogenized equation. In addition we derive the homogenized equation of the

magnetic potentiel as well as the two-scale limit of the magnetization and its weak limit in
L2(Q).

Theorem 3. Under assumptions al-a5, let a be defined by (43), ¢° a solution of problem
(45), H® = V¢°, and let M*¢ be the function defined by (24). Then:

(i) The sequence (¢°) of solutions of problem (45) converges weakly in Hﬁ1 () to a function
¢ and the sequence (H®) two-scale converges to Ho(x,y) = V(x)+Vyp1(x,y), where
(¢, 1) is the unique solution in Hﬁl (Q) x L2(Q; H,,.(Y)) of the two-scale equation

per

| | 4. Ve 9, 01(w.0)- (Vo) + Vyin(o.9)) dody = [ pot,-vodo, (47)

o0
for any ¢ € HY(Q), ¢1 € L?(Q; HL, (Y)). Moreover,

per

a®(z) =a (g, V@E(x)) = a(y, Vo(z) + Vyei(z, y))7

a(x) — a*(z) := / a(y, Vo(z) + Vyer(z,y)) dy in L*(Q) weak.
Y
1 e function ¢ s a unique solution in of the homogenized equation
The f %) l Hﬁ1 Q) of the h d

/ b(Ve(z)) - Vo(z)dr = / poH, - vpdo, Vo € HY(Q). (48)
Q 20
The operator b : R? — R3 is defined for every € € R? by
e) = [ aly&+ V(. 8)dy (49)
Y

where w(-, &) is a unique (up to an additive constant) solution in H, . .(Y) of the cell
problem

[ a4 Vyu. ) Vo) dy =0 forallve By (V). (50)

Y

(iii) The sequence (M¢) two-scale converges to Mo(x,y) and converges weakly in 1L2(Q) to
M(z) = [, Mo(x,y) dy where My € L*(Q X Y) is given by

Mo(x,y) = py xy(y) w(Ho(z,y))

and x¢(y) is a Y -periodic function, defined in'Y as the characteristic function of Yy,

and w : R3 — R3 is defined by w(€) = MS%§ if € #0 and w(0) = 0.
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We now study the asymptotic behaviour of the sequence ppx(H¢) where « is defined by
(22). To this aim we use a corrector for the magnetic field. Following [19], we introduce
a sequence (m.) of approximations of the identity map in L2(Q) such that m.® is a step
function for every ® € LL2(Q2). More precisely, for every ¢ > 0 and every ® € L%(Q), we
define a function m.® : R? — R3 by

med(@) = @) [ o) ay (51)
i€l el JY?

where Y = e(i+Y) (fori € Z3), I. = {i € Z® : Y} C Q} and 14 is the characteristic
function of a set A C R3. Let us note that, as e — 0, we have [48] (Chapter 8)

m.® — & a.e. in Q and strongly in L?(Q). (52)
We define a function h: Y x R3 — R? by

where for every & € R?, w(-,£) is a unique (up to an additive constant) solution in H},,.(Y)

of the cell problem (50). Let us note that w(-,£) can be extended by periodicity to a function
of H}, (R?) and that problem (50) is equivalent to div,(a(z,& + V,w(z,€))) = 0 in D'(R3).

loc
Finally, we set

he(@,§) = £+ Vyw(2,€), (2,6) € R x B, (54)
Our fourth main result is the following.

Theorem 4. Under assumptions al-a5 and notations of Theorem 3, let (U%,q°) be a
solution of problem (27), p® the function linked with ¢° par relation (28), Q° the extension
of ¢¢ as defined in Lemma 12 (below). We define P° in Q by P° = Q° 4+ pyx(H®) where k
is defined by (22). Then:

(i) We have
Hé(z) — he (2, (m:V)(2)) — 0 a.e. in Q and strongly in L*(Q),
where he(z,€) is defined by (54).
(i1) We have from Theorem 2 (ii)
U B Ug(z,y), VU BV, Up(z,y), Q= Q strongly in L*(%),
where the pair (Up, Q) satisfies (38) and is a solution of problem (39).
(iii) Define
R©) = | Rl )y, VEER, (55)
where h(-,§) is defined by (53). We have
Pf — P(z) = Q(x) + ppri(x)  weakly in L*(1), (56)
with k1(z) = kK°(Ve(x)), = € Q. Moreover,

3
oo = 3 wit) ((0) = G )+ Git@)) . weyeyy (o)
/Y Uo(z,y)dy = K (g(x) — VP(x) + psVki(z)), x €. (Darcy law)  (58)

The proofs of Theorems 3 and 4 are given in Section 4.
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4 Proofs

4.1 Proof of Theorem 1
4.1.1 Limit of the magnetic field

We have the following result whose proof is immediate.

Lemma 3. Let (¢°) be the sequence of solutions of equation (29). Then (¢°) converges
weakly in Hﬁl(Q) to the solution ¢ of the homogenized equation (33). Moreover, the sequence

(V¢®) two-scale converges to V() + Vo' (z,y) where o' (z,y) is given by (34) and we
have

/ / ) (Vo) + Voo (2.)) - (Vi) + Voo (@, 9)) dz = o /6 Hyevpdo, (39)

) € H}(Q)x € L2(; HY,, (V).

per

We have the following result.

Lemma 4. Let (¢°) be the sequence of solutions of (29), ¢(x) be defined by (33) and
¢ (x,y) by (34). Then

Vet (z) — V(z) — V! (m, g) —0 inL*(Q). (60)
Remark 4. The function Vo(z) + V! (x, f) is a corrector for H¢(x).
5
Proof of Lemma 4. We have

- [ V@) = Ve - it (0.2 e
< [ (st~ 5,0 (2 2) (51015t =)
_ /Q 1 @)V (2) - Vit () — 2 /Q p(@0)Vet (@) (Vo) + Vo' (2, ) ) do
+ /Q pe () (V(p(:}:) + Vyp! (mu g)) : (V‘P(l') + V! (x, g)) dz,
where p_ = inf{ps(1+ Ao), s }. We have from (29)

/Afv@s.vwdx:/ poHo - v ¢© do,
Q o

then
lim [ pu*Ve® - Ve©dr = / woH, - vdo.
Q a0

e—0

Using (34) we have

| r@ve @) (Vo) + 9,6t (.2)) do
_ /Q 1 () Vs (z) - (V(p(l‘) + kzgj_l a%(x)vyw’f (Zf)) dz,
then, passing to the two-scale limit we get
lim [ p®(x)Ve®(z) - (Vg&(m) + V! (x, g)) dx
= [ | 1) (V@) + 9" .0)- (wx) #3022 gt <y>> drdy
k=1

e—0 Q
// z) + Vyo' (2,9)) - (Vo(@) + Vye' (z,y)) dzdy.
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We have

then, passing to the two-scale limit we get

lim u “(x) (Vga( )+ V! <:E, g)) . (Vgo(x) + V0! (m, g)) dz

-/ / D)+ Voo (2.9)) - (Vole) + Voo (2.9)) dudy.

We then get

i | ’w(x)fw(w)fvwl (& 9)[ @

/ [ #0) (V) + V0! () - (V) + V6 (20)) oy + [ ol -vipdo

o0

where we used (59) in the last equality. Then (60) follows and the proof of Lemma 4 is
achieved. 0

4.1.2 Regularity and two-scale convergence of (|H?|?)

We have the following result.

Lemma 5. The solution w* of problem (32) belongs to WLS(Y).

per

Proof. We extend by periodicity the function w* to R? and still denote by w* the extended
function. We take a cut-off function § € 2(R3) such that = 1 in a neighborhood of Y. Let
Y denote an open smooth bounded domain containing the support of 8. We set u = w*.
We have

—div(pVu) = — div(pw*Ve) — div(pdVw®)
= —div(pw*Ve) — 0 div(uVuw®) — uve - Va*
= — div(pw®V0) + 6 div(pe®) — uVo - Vuw*. (61)

Using the continuous Sobolev embedding HY(Y) < 116(17), we have that pw*Ve e LS(Y).
Moreover, pe* € LS(Y) and pVl - Vu* € LQ(Y). Using the Sobolev embedding

W, 6/5( Y) — LAY 7), it holds that L2(Y) — W~15(Y). Thus the right-hand side of (61)
belongs to W~=16(Y). We also have v = 0 on the boundary Y of Y. Applying the result
in [22] we obtain that u € W, °(Y). Therefore w* € W16(Y). The proof of the lemma is
complete. O

We have the following result.

Lemma 6. Under assumption a5, let ¢ be the solution of the homogenized equation (33),
and o' defined by (34). Then p € H%(Q) and o' € HY(Q; WLS(Y)).

per

Proof. The function ¢ is a weak solution of the equation

—div(pIVp) =0 in Q, pIVe v=pgH, v on dQ, /@(x)dx:(),
Q
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Under assumption a5, H, - v € H/2 (09), then by a classical result on the regularity of the
solution of an elliptic equation with Neumann condition, we have ¢ € H?().
We have from (34)

3 3
;6(‘0 k ’ ;a@ (y)7

where w¥(y) € H, (V) (k = 1,2,3) and solves the cell problem (32). Thanks to the H?2-

per
regularity of ¢ and Lemma 5, we have o' € HY(Q; WLS(Y)). This completes the proof of

per

Lemma 6. O
We have the following result.

Lemma 7. There is a number 2 < pys such that for all 2 < r < ppr, H® € L7(R2), and the
sequence (HF) is bounded in L™ ().

Proof. Let us rewrite problem (29) as a homogeneous Neumann problem. Consider the
equation
—Ap=divH, inQ, Vp-v=H, -v on Q.

Under assumption a5, and the continuous Sobolev embedding H!(Q2) < L®(Q), this equa-
tion has a weak solution p € W'6(Q) satisfying ||[Vp|lLea) < c( )| He, ||]Ls(g see [37]

(Lemma 4.27). We impose [, p(z)dz = 0, then define p = (1+/\ TP and o = ¢t —p.
We have o
Vp <c(Q)————||H, 62
Vet < ) s o (62)

We also have

—div(p®Ve®) = div(p®Vp) in Q,

L+ X))V v = (us(L+A)Ve® —pup(1+Xo)Vp) - v

= (s (1 + X)Ve® = 1oVp) - v

= (pr(1+Xo)Ve® — poH,) - v =0 on 0.

Then ¢° belongs to Hlil (©2) and satisfies a homogeneous Neumann problem
—div(ueVe®) = div(pfVp) in Q,
pEVeE - v =0 on 0N.

The weak formulation of this problem is
¢ € Hy (), /vaaf Vi dr = f/QMEVﬁ- Vipdr, Vi€ HY(Q). (63)
Let f € (H'(Q2))" be defined by
b yaniey = = [ WV5-Vode, Vi€ H'(Q). (64)

We have that Vp € L5(Q), then f € (Wh%/5(Q))" and satisfies f, D)y, mr@) = 0.
Note that (W6/5(Q)) c (H'(Q))'). The operator T which associates with every function
H, € L%(Q) the solution @° of (63) can be decomposed as follows: T' = T3 o Ty o T; where
T is the linear operator defined by T1(H,) = Vp € L5(Q) for all H, € L5(Q), Ty is the
linear operator defined by T5(Vp) = f € (W'6/5(Q))’, with f given by (64) and T is the
linear operator defined by T5(f) = u® for all f € (W/5(Q)) with (f, 1)z (), 11 () =0,
where u® is the unique solution to

u® € Hﬁl(Q), / MEVUE -Vipdxr = <f, w>(H1(Q))’,H1(Q))a V’(/J S Hl(Q)
Q
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Thanks to (62) the operator Ty is continuous from L°(£2) to L%(Q2) with a norm bounded by
c(9) w We easily verify that the operator Tj is continuous from L(Q) to (W6/5(Q))’
with a norm bounded by a constant depending only on ¢y and 2. For the operator T3 we can
apply Meyers’ theorem for Neumann problem, proved in [24]: There is a real number py; > 2
such that for all 7, 2 < r < pys, the operator T is linear continuous from (W16/5(Q))’ to
WLr(Q). Moreover, the norm of T3 only depends on ¢y and €2, and pp; on ¢ and ©Q, not
on f. This implies that ¢ € W (Q) and that (¢°) is bounded in W"(Q). We conclude
that H¢ € L"(€2) and the sequence (H¢) is bounded in L"(€2). The proof of Lemma 7 is
complete. O

We have the following result.
Lemma 8. The sequence (|H®|?) is bounded in L"/?(Q) and we have
2s
[H?|? = V() * +2Ve(z) - Vyo' (2,9) + [Vye'! (2,9) 2

where o(z) and @' (z,y) are defined by (33) and (34), respectively. We also have
HP = V@) + [ [V} @) dy weably in L7/2(9).
Y

Proof. By Lemma 7, there exists r > 2 such that (|H¢|?) is bounded in L™/2(£2). Then there
is a function a(z,y) € L™/?(2 x Y) and a subsequence, still indexed by ¢, such that

|H#|? 2 a(z,y).
Writing H® = a° + b°, with a®(z) = H®(z) — (Vo(z) + Vo' (z,2), b°(z) = Ve(z) +
Vygol (a?, %) , we have
[H(2)|* = |a®(2)* + 2a°(2) - 0° () + [b° ().

Thanks to Lemma 6, we have that Vipo(z) and V¢! (z,y) belong to L6(Q) and L5(Q x ),
respectively. Moreover, Vo' (z,2) is bounded in L6(Q x Y). Let ¢ € 2(Q,Cp2.(Y)). We
have

[ le@ie (2 2)|de < max jotol [ lof@)Pas,

(z,y) QXY
then

lim/Q ’\as(x)|21/1 (1:, %) ‘ dz =0,

e—0

thanks to Lemma 4. Consequently, |a|? 2. Using the Cauchy-Schwarz inequality we have

J

T
@ (@) @) (2, 2)|de < max__[i(e,y)llac oo 1z,
€ (z,y)€QXY

then

lim
e—=0 Jo

€ 5 £z ‘ —
a® (2)b° (x) (m, s) dx =0,
consequently, a®b® 22 0. We have
croN2 2 . 1 z 1 TN |2
b(@)* = V(@) 2 +2Ve(@) - Vo' (2. 2) +19,6" () I

We have from (34) that
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Passing to the two-scale limit there holds that
2s
b7 = oz, y) = [Vo(@)? +2Ve(2) - Vyp! (2,y) + [Vye' (2,9) 7.

Consequently, |H#|2 22 ag(z,y) and |[H?|> = a(z) = Jy ao(z, y) dy weakly in L™/2(€2). Since
each extracted sequence of (H®) has the same limit, we deduce that the whole sequence
converges. The proof of Lemma 8 is complete. O

4.2 Proof of Theorem 2
4.2.1 Homogenization of the Stokes equations

The homogenization of the Stokes equations has been studied by Tartar, using the method
of oscillating test functions, and by Allaire, using the two-scale convergence method. Here
we present the results and refer to [4, 47] for the proofs. We first mention a version of
the Poincaré inequality [47] which is used for proving uniform estimates of the solution of
problem (30).

Lemma 9. There exists a positive constant c, depending only on Yy, such that, for evrey
v €V, we have

[vlle2 (o) < cel Vol (oy)-
Then we easily show the following estimates of the velocity.
Lemma 10. Under assumptions al-a5, the velocity U¢ satisfies the uniform estimates
VU l2 ) < cllgllLz), 11U ]IL2) < cllgliiz)s (65)
where ¢ is a constant independent of €.

Remark 5. The function U® can be extended by zero in §\ Q5 because of its zero trace on

BQ? It is well known that extenston by zero preserves LY and Wé’q norms for 1 < q < oo.

A uniformly bounded extension of the pressure to the whole domain 2 was introduced
by Tartar [47]; he has defined a restriction operator satisfying the following properties.

Lemma 11. There is a restriction operator
R. : Hj(Q) — Hi(Q37) (1< q<o0)

such that
W e H(l)(ch) = R.W =W,

(elements of H(l)(Qjc) are extended by 0 to )

divW =0 —> divR.W = 0,
[BW lL2(s) < clWllee(o) + ce[ VW L2 (e,

C
IVEW lliz(s) < ZI1Wllez@) + el VW iz,

where ¢ is a constant independent of €.
Then the following result was derived [47].
Lemma 12. There is an extension Q° of ¢° which satisfies, for any W € 2(,R?),

52/ VU - VR.W dx — / Q° divW dx = / gR-W dzx.
Q Q Q
Moreover, there is a constant ¢ independent of € such that

Q%2 @y/r + IVQ|l-1(0) < cllgllLz (-
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Remark 6. Following [33] one can define the extension of ¢¢ by

€

- g
¢ i Q5

g
= 1
@ (@) —_— ¢ (x)dx in each Y,
k £,8
‘Y57f| Yk,

where Y1y = (Yy + k) and Y2, = &(Y; + k).

Then we can pass to the limit in the Stokes equations. We have from [47] that there is a
subsequence, not relabelled for convenience, and a function ) such that Q° — @ in L?(£2)
strong. We extend the function U¢ by zero in Q \ Q2% and use the same notation for the

extended function. We deduce from (65) that U¢ and eVU? are bounded in L?(£2). Then
there is a subsequence, not relabelled for convenience, and a function U°(x,y) € L2(Q x Y),
such that

Us BUz,y), eVU° BV, Uz,y).

Using appropriate test functions one can derive the equations (38) and (39) satisfied by U°
and Q. Finally, we have

3
= ij(y) (gj(x) - gg(@) , TEQ yeYy, (66)
/Y U%x,y)dy = K (g(x) —VQ(x)), = €Q, (Darcy law) (67)

where K = (K;j)1<i,j<3 is the permeability matrix defined by (42).

4.2.2 End of the proof of Theorem 2
We have from (13) that (M¢) is bounded in L"(£2), then

2s
M*® = Mo(z,y) = Mo xr(y) Ho(x,y),

M® — M(x) = /\0/ xf(y) Ho(z,y)dy weakly in L"(€2).
Y
We have clearly
— P(g) — Ao _ 2 1 2
Qz) = P(z) — pr~ alz), alz) =[Ve(z)]" + Y|Vy<P (z,y)|" dy.

Using (34) we have that

3
a(x)—|V<p(:c)|2+/Y|k21§;p( 2Vt (y)|* dy
:23:|8<p(x)’2+23: /ij - V,wF(y) dy
— ' Ox; = 8:5] 8xk
3
:Z(HA” ()] +ZAJ,€ (“)xk( 2),

then a(z) = (I +A)Ve(z) - Vo(z) where A is the matrix given by (37), hence relation (36).

To finish the proof of Theorem 2, it remains to establish relations (40) and (41). These
are direct consequences of (66) and (67), respectively, together with the relationship P(z) =
Q(z) + P.(x). The proof of Theorem 2 is complete.
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4.3 Proofs of Lemmas 1 and 2
4.3.1 Proof of Lemma 1

(i) Clearly, a(y,0) =0 for a.e. y €Y.
(ii) Let us introduce the functions u,v : R — R by

v(z) =

M,L(bz)  ifz#0, L
X
0 ifz=0

1 n 1
sinh®(z) %’

L'(z) >0, V>0, lim L(z)=1, lim L'(z)=0,
T—r+00 T—+00
1 1 1 1

b — =2 —2? + O(aP).
soh(z) T2 37T BY T (%)

0<L(z)<1, Vx>0, L'(z)=

1 1
forx —0: L(z)=-2——z°+0(x?),

We easily verify that u € C'(R) and there exists a constant ¢ such that |u'(x)| < ¢, for all
x € R. Let us verify that v € C*(R). We have for x — 0

biz  (byz)3

o(z) —v(0)  MAEOD I M IMb +0()  Mbie )
- - = T o),
x x x 45
then v is derivable at = 0 and v’(0) = 0. For = # 0 we have
1 1
’ b (7sinh2(b1w) + (blx)Q) - L(blx) M, —by by L(bll‘)
v'(z) = M, 5 = - + 2
x z |sinh*(byz)  (b17) x

=0(x?) =0, forxz—0.

Finally we have

YR RO
v'(z) = (68)
0 ifx =0,

and v € C'(R). We deduce from (68) that there exists a constant ¢ such that |v'(z)| < ¢,
for all x € R. Then u and v are Lipschitz continuous on R.
Now define the function w : R3 — R3 by

w(€) = (wil)hzics, wi€) =v(€)&, VE R

Let us show that w is Lipschitz continuous. We have
Jw; &i&;
9¢; 4

where d;; is the Kronecker symbol. Let éj be the vector of R? whose components are all 0
except the jth which equals &;. For { = 0, the partial derivative of w; with respect to §; is

(&) =" (I€) =32 +v(€Ddis, YE#0

wi) —wil0) _ o wil@) oy w8DE g - Lot

Bwi
0¢;

Moreover for £ # 0, Eliélj < %|§ |, then

(0) =

= lim =
§—0 & §—-0 & &0 &

()] < el e + e
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Since v is bounded as well as |£[v'(|£]), it results that there exists a constant ¢ such that

< 3,5 = .
S| < veeR (Li=1.29)

We conclude that w is Lipschitz continuous. Since a(y,§) = f(y)€ + prxr(y)w(E), for all
(y,€) € Y x R3, where [i is defined by (44), we deduce that a(y, &) is Lipschitz continuous
with respect to . Point (i) is proven.

(iii) Let F : Y x R® — R be the function defined by

i) Uy, (Sub)

F(y,&) = =217 + npxr(y) , €]

: ) if € +£0.

We have

a(y,§) = VeF(y, &) if £#0.
The Hessian matrix H(y, &) = (Hi;(y,§)) of the function £ — F(y,§) is given by H;;(y,&) =
%&yj@' For £ # 0 we have

dai(&) - Lile]) o bulélL (bal€]) = L(bal€D) Y &€
o€, —u(y)équu.fo(y)Ms( g Cu T €]2 ) €]
B L(b i€ / Y
= ly)8i + s (y) M (é'gl) (6 - Efﬁ) + s () Maby L (b1|f|)f§§-

Let n € R3. Since [£]?|n|? — (£-1)? > 0 and L' (b1|¢[?) > 0 we deduce that

(M. ©mn) = iw)lnf? = inf{as, Yl
It results that the function & — a(y, £) is strictly monotone and satisfies for all 1, & € R3,

(a(y,&) —a(y,&)) - (& — &) > inf{uy, ps & — &7,

then £ — a(y, &) is monotone and coercive. Point (i) is proven. The proof of Lemma 1 is
achieved.

4.3.2 Proof of Lemma 2
We define the operator A : H}(Q) — (H} (Q))" by

(A0 = [ a(L.V(@)) - Vi@ e, Vg € HI@) x HI@. (69

where a(+, -) is defined by (43). Using the Holder inequality, we easily verify that the operator
A is well-defined. Define

l(iﬁ):MO/SQHa'deS, vy e HA Q).
Clearly I € (H}())".

(i) Let us show that the operator A is strictly monotone [30](Chapter IIT), [32](Chapter
2, Section 2). Let @1, o € HJ (). Using Lemma 1 (iii) we have

(Algr) — Alga), o1 — pa) = iz, s} / V1 — Vipa? da.

This inequality, together with the Poincaré-Wirtinger inequality, shows that the operator A
is strictly monotone.
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(#1) Let us now check that the operator A satisfies the coerciveness property:

(Alp), 9)

— 400 as ||p|| g — +oo. 70

We have
(A(¢), @) > mf{yig, s} /Q Vel de; Ve HL(Q),

then using the Poincaré-Wirtinger inequality there holds that (A(y), @) > c||<p\|i11(9) where
]

¢ is a constant independent of €, hence (70).

(iii) It is clear that A is hemicontinuous. We conclude, see e.g. [32] (Chapter 2, Section
2), [30] (Chapter TII), that there is a unique ¢ € H, () such that A(yp) = 1.

(iv) Taking ¢ = ¢° in (45) there holds that

inf{jis, g} /Q V62 de < (A(p), ¢°) = po /a H,vgtdo

Using the Poincaré-Wirtinger inequality and the trace theorem, we deduce that the sequence
(¢°) is bounded in Hﬁ1 (€2). The proof of Lemma 2 is complete.

4.4 Proof of Theorem 3

4.4.1 Proof of (i)

Define .
€ _ - £
a®(x) =a (g,Vgp (x))
where a(y, £) is defined by (43). We have from (26) that
diva® =0 in Q,
(71)
a®-v=pgHg v on 0.

We have from Lemma 2 that (¢°) is bounded in H(Q) and we easily verify that (a%) is
bounded in L?(Q2). Then there are subsequences, still indexed by ¢, and functions ¢ € H, ﬁl (Q),
o1(z,y) € L*(Q, H.,,.(Y), and ag(z,y) € L*(2 x Y), such that (¢°) converges to ¢ weakly

per
in H'(Q), (V¢°) two-scale converges to V() + Vo1 (z,y), and a two-scale converges to
aop(z,y). As is classical we have that

divyag =0 in Q2 xY,

div (/ a0(~7y)dy> =0 in Q, (/ ao(-,y)dy> ‘v =poHy v on 99,
Y Y

aop(z,y) Y-periodic for a.e. z € Q.

In order to express ag(x,y) in terms of ¢(z) and o1 (x,y) we consider the test function
15 _ € E 15 _ f
V(2) = V(@) +10(e, (2)), v5(@) = v(@) +2vn (2, D)

with ¥ € 2(Q), ¥1 € 2(Q,C2,.(Y)), ® € 2(Q,C2,.(Y)), and t a positive real number.

per per

Using the monotonicity of the operator A (defined by (69)), we have

/Q (ae(x) —a (g, \1/5(37))) (Ve (x) — ¥ (z)) dx > 0. (72)

Using (71) and the Green formula we have

/Q a®(z) - (Ve (z) — V& (x)) dx = po /asz Ho - v(p® — o) do — /Q a®(z) - t®(w, (E> da

3
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then (72) becomes
1o /39 H,  v(p® —9Y%)do — /Qas(x) D (x, (g) dz
- / a (g, \Ila(x)) (Ve (z) = U5 (z)) dz > 0. (73)
Q
Let us write the last term of (73) as
/Qa (2 v5@) - (Ve (@) — ¥ (@) do = I} + I,
with
I = /Q @ (2. 90°@) —a (2. 90@) + V01 (0, 2) + 1002, (2) )] - Ve (@) - v5(@)) da,
5= /Qa (g,vw(x) + Vi1 (:c, g) + tP(x, (%)) (Ve (z) — U () da.

We can pass to the limit in I5, as e — 0, since a(y, Vi (z) + V1 (z,y) +t®(x,y)) belongs
to L2,,.(Y;C(Q)). Indeed

per

5 — /gz/ya(y,Vz/J(x) + Vi (z,y) +t0(z,y))-

~(V(p(@) = ¥(x) + Vy(pr(z, y) — di(z,y)) — t®(x,y)) dzdy.
We have by Lemma 1

() o (5o Tt ) s (2)
<c ‘\Ile(x) - (Vw(x) + Vyih (x, g) +1® (x, g))’
= ceVa (a:, g) .

Here and in the sequel we denote by ¢ a positive constant independent of €. Using the
Cauchy-Schwarz inequality it then holds that |I§| < ce, since (V¢©) and (¥¢) are bounded
in L2(Q). Therefore, passing to the two-scale limit in (73) as ¢ — 0, yields

Aﬂmﬁ&-Ww—¢0¢r—l;éﬂday%ﬂﬂayﬂw@

—//Emvww+wmww+wmw»
QJY

- (Vip(z) = 9(2) + Vy(p1(2,y) — (2, y)) — 1®(2,y)) dedy > 0.

Now we take in the previous inequality ¢ = ¢ — ¢, 1 = p1 —td1, ¢ = d(z) € 2(Q) and
¢1 = ¢1(x,y) € Z(Q,Cpe,.(Y)). After dividing by ¢, there holds that

/aQuoHa-V@bdo—/ﬂ/yao(m,y)-<I’(Ly)dﬂrdy
—//m%w¢4wm+wwrmmwm+@@m»
QJY

. (Vfb(x) +Vyo1(z,y) — @(m,y)) dxdy > 0.

Letting t — 0, it results that

/09 woH, - védo —/Q/Yao(x,y) - ®(z, y)dzdy
_ /Q /Y a(y, Ve(z) + Vyei(z,y)) - (V¢(aﬁ) + Vyoi(z,y) — @(m,y)) dady = 0,
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for any ¢ € 2(Q), ¢1 € 2(Q,C2.(Y)) and ® € 2(Q,C,.(Y)). We deduce that

per per

ao(w,y) = a(y, Vep(a) + Vysm(:v,y))

and
[ [ atw.Vela) + Vogrten) - (Vola) + Vyon(on) dody = [ o vodo, (74)
QJY o0

for any ¢ € 2(Q), ¢ € 2(Q,C2 (Y)). Using a density argument we deduce that (74) holds

per

for any ¢ € H'(Q), ¢1 € L*(Q, Hp,. (V).

per

Using the strict monotonicity of the operator A (defined by (69)), we easily show that
the variational equation (74) has a unique solution (¢, 1) in Hﬁl (Q)x L*(Q, H},,.(Y)). This

per
implies that the whole sequence (¢°) converges. We also have that the whole sequence (a%)

two-scale converges to ag(z,%). Then (a) converges in L?(Q2) weak to a*(z) = [, ao(z,y) dy.
Clearly, the mean null condition [, p(z) dz = 0 is satisfied. The proof of (i) is complete.

Remark 7. We have shown in the above proof that the sequence (a (f, VQDE(:L')) ) two-scale
converges to a(y, Vo(z) + Vyer(z,y)).

4.4.2 Proof of (ii)

We have from (i) above that

a®(z) =a (%,V@E(:r)) —a*(z) = /Ya(y7Vg0(:r) + Vypi(z,y)) dy in L*(Q) weak

and
/ a*(z) - Vo(z)dx = / poH, - vdo, Yo € HY(Q). (75)
Q o

Moreover, taking ¢ = 0 and ¢1 € Hpe,(Y) in (47) we obtain that ¢(x) and ¢1(z,y) satisfy
the cell problem

[ 0.V + Vyer(a.) - Vyr)dy =0, forall 61 € Hon(V). (76)
Then, according to the definition of the operator b (see (49) and (50)) it holds that
W) = [ o Viole) + Vyor(a,0) dy = ' (o)
and (75) reads
/Qb(w(x)) Vo(z)dx = /aQ poH, - vodo, for all ¢ € HY(Q),

which is equation (48). We prove as in [20] that the operator b satisfies the following
properties:

(i) b(0) =0;

(ii) b is Lipschitz continuous, i.e. there exists a constant ¢ such that
[b(&1) = b(&2)] < clér — &, for every &1, & € RY;
(#) b is monotone and coercive, more precisely,

(b(&1) = b(&2)) - (&1 — &) > inf{pug, s }|& — &, for every &1,& € R®.

It results that equation (48) has a unique solution in H, (Q). Point (ii) is proven.



27

4.4.3 Proof of (iii)

Thanks to Remark 7 we have that a (£, Ve () 2 a(y, Ho(z,y)). Using that a(y,§) =

B(y)E + py xp(y) M, L(IEFD ¢, we deduce that

L(bal¢])
€]

£,

s (D) w(Ve (@) 22 i s () w(Hole,y), w(E) = M,

and the result follows readily. The proof of Theorem 3 is complete.

4.5 Proof of Theorem 4
4.5.1 Proof of (i)

In [19] the authors studied the homogenization of a nonlinear problem of the form (46)
(with a Dirichlet boundary condition). They constructed a corrector [19] (Theorem 2.1).
The same arguments allow to prove that their result is also valid for our problem.

Theorem 5. Let ¢° be a solution of problem (45), H* = V¢°, h. be defined by (54), and
let @ be a solution of problem (48). Then

H® — ho(-,(mVg)) = 0 a.e. and strongly in L?(Q).
4.5.2 Proof of (ii)
Problem (27) is the same as problem (18) then we have from Theorem 2 (ii)
U® B Ug(z,y), VU BV, Up(z,y), Q° —Q strongly in L*(Q),

where the pair (Up, Q) satisfies (38) and is a solution of problem (39).

4.5.3 Proof of (iii)

Let  be the function defined by (22). We have %(5) = MSL(b1|§|)|% then gg(f)’ < M,
? :

J
j = 1,2,3, which implies that x is Lipchitz continuous. Moreover, |k(§)] < M||, then
(k(H¢)) is bounded in L?(2) since (H¢) is bounded in L2().

We have from Theorem 5 that

HE(z) — he(z,(mV)(x)) — 0 ae. in Q and strongly in L*(Q),

then
k(H®(2)) — k(he (2, (M-V)(x))) = 0 a.e. in Q and strongly in L?(0),

since k is Lipchitz continuous. We are then led to study the limit of n(h5(~, (mEVga))), as
e—0.
Let £1,& € R3 and let h(y, €) be the function defined by (53). Using Lemma 1 and the

relation

/Y (aly, h(y,€1)) — alys h(y, £))) - (h(y,€1) — by, &2)) dy

~ [ @l h(0:60) ~ aly. o 1) - (€ ) o

we deduce that

/ h(y, &) — hly, &) dy < / Ih(y, &1) — hly, )16 — Ealdy,
Y Y
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hence, using the Cauchy-Schwarz inequality,

R(€1) = hes€)llLeyy < clén — &l (77)

Here and in the sequel we denote by ¢ a positive constant independent of €. Let us now
consider the function x° given by (55). Since  is Lipschitz continuous, we deduce by using
(77) that

IK0(61) — KO(€2)] < / Ik (h(y, €1)) — r(hly, &))|dy < c/ Ih(y,&1) — h(y, &)|dy
Y Y
< cl|h(-, &) = h(-, &) ey < & — &, VL& € R (78)

Let us now study the limit of x(h(:,(m:Vy))), as ¢ — 0. Since for every { € R?,
y = k(h(y,€)) € L*(Y) and (he(:,€)) is e-periodic it holds that

K (he (-, €)) = K°(€) weakly in L*(Q), for every £ € R®. (79)

Let us prove that
k(he(-,moW)) = £°(U) weakly in L2(€), (80)

for every ¥ € IL2(Q2). To this aim we use the following result [19] (Lemma 3.5).
Lemma 13. Let ® € L?(Q) and let ¥ be a step function of the form

j=1

with n; € R3\ {0}, Q; CC Q, |0Q;] =0,Q,; NQx =0 for j # k. Then

lim sup [|he (-, me®) — he (-, V)lLa(e) < ell® = W) (81)
e—

where the constant c is independent of € and n.

To prove (80) we first note that, by (79),
K (he(- W) — kO(¥) weakly in L?(€),

for every step function ¥ € L2(). Let then ¥ € L2(Q). For every § > 0, there exists a
step function n(x) = Y7, 7;1lq,(z) with n; € R®\ {0}, Q; CC Q, [0Q;] = 0,2, N =0
for j # k, such that

W —7llL2(@) < 6. (82)

Let us write

+ [K°(n) — w°(9)] (83)
By (79) we have that
k(he(-,m)) — £°(n) weakly in L*(Q). (84)
Since « is Lipchitz continuous there is a constant ¢ independent of € such that
|6 (he(z, (m0)(2))) — K(he(z,n(2)))| < ¢|he(z, (MY)(2)) — he(z,n(z))], ae. in .
Using Lemma 13 and the previous inequality we deduce that
tim sup | (e (-, me®) — k(e ()l @) < el € = iz < o0 (85)

e—0

where in the last inequality we used (82).
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Let us now consider |[x°(n) — £°(¥)]|12(q). We deduce from (78) that

|6 (n(x)) — K° (P (2))[Pdz < C/ n(z) = ¥(z)|*dz < c8” (86)
Q Q
where we used (82) in the last inequality. From (83)—(86) we deduce (80). Applying (80)
with ¥ = Vi and using Theorem 4 (ii) we obtain (56).

To finish the proof of Theorem 4, it remains to establish relations (40) and (41). These
are direct consequences of (57) and (58), respectively, together with the relationship

Q) = P(x) — psra(x),  ri(z) = 6" (Ve(@)).

Point (iii) is proven and the proof of Theorem 4 is complete.

5 Concluding remarks

We considered the equations describing the flow of a ferrofluid through a heterogeneous
porous medium 2 in the presence of an applied magnetic field. We discussed two models
where the magnetization M is parallel to the magnetic field H: a linear model and a nonlinear
model where the magnetization and the magnetic field satisfy the Langevin law. The velocity
and the pressure satisfy the Stokes equation with a Kelvin magnetic force. Choosing the
characteristic parameters of the flow as Re = E%, Fr = Re,, = Eu = 1, we investigated
in each of the two models the homogenization of the differential system with the use of
the two-scale convergence method. We rigorously derived the homogenized equation for the
magnetic potential and determined the asymptotic limit of the magnetization. Then we
rigorously derived a Darcy law.

Let us mention that the analysis done for the Langevin model can be applied by using
similar arguments to the model where the magnetization and the magnetic field satisfy the

relation
arctan(by|H|)

|H|
where a; and by are positive constants and 1g ;I8 the characteristic function of the pore
space {1¢. The extension of this study to take a more general law, e.g. M = f(H), is limited

to the cases where we can homogenize the nonlinear problem satisfied by the potential ¢
associated with the magnetic field H and that (f(H) - V)H has a gradient structure.

M=a, lo, H,
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