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Homogenization of ferrofluid flow models in porous media

with Langevin magnetization law

Youcef Amirat∗, Kamel Hamdache†

Abstract

The paper is concerned with the homogenization of the equations describing the flow
of a ferrofluid through a heterogeneous porous medium Ω in the presence of an applied
magnetic field. We discuss two models where the magnetization M is parallel to the
magnetic field H. In the first one M and H satisfy the relation M = λ0 1ΩfH in Ω,
where λ0 is a positive constant and 1Ωf is the characteristic function of Ωf (the pore
space). In the second model, M and H satisfy the Langevin magnetization law M =

Ms
L(b1 |H|)
|H| 1Ωf H, where L is the Langevin function given by L(x) = 1

tanh x
− 1

x
, Ms

is the saturation magnetization and b1 is a positive physical constant. The velocity
and the pressure satisfy the Stokes equation with a Kelvin magnetic force. We perform
the homogenization of the equations of each of the two models. Using the two-scale
convergence method, we rigorously derive the homogenized equation for the magnetic
potential and determine the asymptotic limit of the magnetization. Then we rigorously
derive a Darcy law.

Keywords. Ferrofluid flow in porous media; Stokes equations; Langevin magnetization law;
homogenization; two-scale convergence; Darcy law

1 Introduction

Magnetic fluids (also called ferrofluids) are colloidal suspensions of nanoscale magnetic par-
ticles in a carrier fluid. Since their physical properties can be easily influenced by an external
magnetic field, they have found a wide variety of applications in technology, industry and
medicine, see [44]. A potential application of ferrofluids is found in the subsurface envi-
ronmental engineering, in which externally applied magnetic fields are used to direct and
control the flow of ferrofluids under the ground, see [39]. In the past years, ferrofluid flow in
porous media has been the subject of various experimental and numerical studies, see [28]
and the references therein.

An important tool for modeling flows in heterogeneous porous media is the homoge-
nization theory, that allows to derive equations describing the macroscopic behavior of the
flows, from the equations of fluid mechanics valid in the pore space. The most widely
used methods for the derivation of macroscopic equations for periodic heterogeneous porous
media are the method of multiscale expansions [10, 11, 13, 45], the two-scale convergence
method [3, 34, 36], and the periodic unfolding method [17]. Ene and Sanchez-Palencia [23]
derived the Darcy law, from the Stokes system, by using a formal multiscale expansion.
The rigorous mathematical derivation of the Darcy law was given by Tartar [47], using the
method of oscillating test functions. The explicit expression for the pressure extension was
given by Lipton and Avellaneda [33]. Several works have been devoted to the derivation of
Darcy’s law [2, 4, 18, 27, 33]. Homogenization techniques have been developed to treat more
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kamel.hamdache@devinci.fr)

1



2

general problems: porous medium with double porosity [8], nonlinear filtration law [7, 35],
multiphase flows [5], non-Newtonian flows [12], interface problems [29], MHD flows [6, 25],
etc.

In the present paper we study the homogenization of the equations describing the flow
of a ferrofluid through a porous medium in the presence of an applied magnetic field. We
consider two simple models where the magnetization is parallel to the magnetic field: a
linear model and a nonlinear model.

2 Problem formulation

We consider the flow of a ferrofluid through a porous medium in the presence of an applied
magnetic field. The porous medium is denoted by Ω, a smooth bounded and simply con-
nected domain of R3, and is composed of a solid part and a pore space that is filled by
the ferrofluid. The solid part is denoted by Ωs, the pore space by Ωf , and the fluid/solid
interface is denoted by Γ. We assume for simplicity that Ωs is strictly included in Ω.

We denote by U the velocity of the fluid acting in Ωf , Ha the applied magnetic field, M
the magnetization in the fluid which vanishes outside Ωf , Hd the demagnetizing magnetic
field, and B the magnetic induction given by

B =


µf (Hd +Ha +M) in Ωf ,

µs(Hd +Ha) in Ωs,

µ0(Hd +Ha) in R3 \ Ω,

where µf , µs and µ0 are the magnetic permeabilities in Ωf , Ωs and in vacuum, respectively.
We assume that µf , µs and µ0 are positive constants. We denote by H the magnetizing
magnetic field defined by

H = Hd +Ha.

The magnetic induction and the (magnetizing) magnetic field are assumed to satisfy the
equations of magnetostatics

divB = 0, curlH = 0 in R3. (1)

It results from (1) that on the solid-liquid interface Γ = ∂Ωs we have that

[H × νΓ] = 0, [B · νΓ] = 0 on Γ. (2)

Here νΓ is the unit normal vector to Γ pointing from Ωs to Ωf . The brackets [·] stand for
the jump across the solid-fluid interface. More precisely, denoting by vf and vs the values
of v on either side of the surface Γ, respectively, in the fluid and solid domains, we set
[v] = vf − vs. Equation (2)1 expresses the continuity of the tangential component of the
magnetic field H and (2)2 expresses the continuity of the normal component of the magnetic
induction. We also have

[H × ν] = 0, [B · ν] = 0 on ∂Ω (3)

where ν is the unit outward normal vector to ∂Ω.
We assume that Hd = 0 in R3 \ Ω, then we derive from (3) the boundary condition

µf (H +M) · ν = µ0Ha · ν on ∂Ω.

We assume that the magnetic field and the magnetization are parallel [38] (Section 2.2), [44]
(Section 2.7) and [46]. We consider two cases, in the first one M and H satisfy the relation

M = λ0 1Ωf
H in Ω (4)
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where λ0 is a positive constant and 1Ωf
is the characteristic function of Ωf . This case leads

to a linear model. In the second case, M and H satisfy the Langevin magnetization law
[1, 43]

M = Ms
L(b1 |H|)
|H|

1Ωf
H, L(x) =

1

tanh(x)
− 1

x
, x ∈ R, (5)

where L is the Langevin function, Ms is the saturation magnetization, b1 =
µfm
kBT

, m is the
magnetic moment of the particule, T denotes the temperature and kB is the Boltzmann’s
constant. We assume that Ms and b1 are positive constants. This case leads to a nonlinear
model. Some other relations are used in practical situations, for example M and H satisfy
the relation [39]

M = a1
arctan(b1|H|)

|H|
1Ωf

H,

with a1 and b1 positive constants. This case leads to a nonlinear model.

2.1 The linear model

Assume that M and H satisfy relation (4). Let µ denote the function defined a.e. in Ω by

µ =

{
µf (1 + λ0) in Ωf ,

µs in Ωs,
(6)

then we have B = µH and H is a solution of{
div (µH) = 0, curlH = 0 in Ω,

µf (1 + λ0)H · ν = µ0Ha · ν on ∂Ω.

Since Ω is simply connected, there is ϕ ∈ H1(Ω) such that H = ∇ϕ, see for instance [26]
(Theorem 2.9, p. 31). Then ϕ is a solution of

div(µ∇ϕ) = 0 in Ω,

µf (1 + λ0)∇ϕ · ν = µ0Ha · ν on ∂Ω,

∫
Ω

ϕ(x) dx = 0.
(7)

The constraint of zero mean on ϕ is imposed in order to ensure the uniqueness of solutions
of this problem.

The fluid velocity U and the pressure p satisfy the incompressible Stokes equations in
the absence of inertial terms{ −η∆U +∇p = µf (M · ∇)H + g, divU = 0 in Ωf ,

U = 0 on ∂Ωf ,
(8)

where η is the dynamic viscosity, g the external force and the term µf (M · ∇)H represents
the Kelvin body force.

2.1.1 Local description and adimensionalization

We assume that the porous medium has a periodic microstructure. Let l and L denote the
characteristic sizes of the heterogeneities and the domain Ω, respectively. We set ε = l

L and
assume ε << 1 small enough.

Let Y = (0, 1)3 denote the unit cell. Let Ys (the solid part) be a closed smooth subset
of Y with a strictly positive measure. The fluid part is given by Yf = Y \Ys. We denote for
each k ∈ Z3:

Y k = Y + k, Y ks = Ys + k, Y kf = Yf + k,
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then define the sets

Xk
ε =

{
x :

x

εL
∈ Y k

}
, Xk

ε,s =
{
x :

x

εL
∈ Y ks

}
, Xk

ε,f =
{
x :

x

εL
∈ Y kf

}
.

The physical (i.e. dimensional) solid and fluid regions are defined as

Xε
s = ∪kXk

ε,s, Xε
f = R3\Xε

s .

Obviously, Xε
s is a closed subset of R3 and Xε

f is an open subset of R3. Moreover, Xε
f is a

connected domain, while Xε
s is formed by separate closed subsets of R3. We assume that Ω

is an open simply connected domain of class C2. We introduce the fluid and solid domains

Ωεf = Ω\
⋃
k∈Iε

Xε
k,s, Ωεs = Ω\Ωεf ,

where
Iε = {k : Xk

ε,s ⊂ Ω}.

The solid-fluid interface Γεx is defined by

Γ = ∂Ys, Γk = Γ + k, Γkx,ε =
{
x :

x

εL
∈ Γk

}
, Γεx = ∪kΓkx,ε.

For convenience, the interface between the solid and fluid domains Ω ∩ Γεx is still denoted
Γεx.

In order to express equations (4), (6)–(8) in dimensionless form, we introduce a change
of variables:

x′ = x/L, U ′ = U/uc, p
′ = p/pc, M

′ = M/mc, H
′ = H/hc,

H ′a = Ha/hc, g
′ = g/gc, µ′i = µi/µic (i = s, f, 0), (9)

where the variables indexed by c denote reference values and the variables with the prime
superscript denote dimensionless values, respectively. We denote by Ω′ and Γ′ the image
of Ω and Γ, respectively, under the change of variable x → x′. We choose mc = hc and
µsc = µfc = µ0c. Using the above change of variables, equation (4) reads

M ′ = λ0 1Ω′f
H ′ in Ω′. (10)

The dimensionless equations of magnetostatics are{
div′(µ′H ′) = 0, curl′H ′ = 0 in Ω′,

µ′f (1 + λ0)H ′ · ν = µ′0H
′
a · ν on ∂Ω′,

and equation (7) becomes
div′(µ′∇′ϕ′) = 0 in Ω′,

µ′f (1 + λ0)∇′ϕ′ · ν = µ′0H
′
a · ν on ∂Ω′,

∫
Ω′
ϕ′(x) dx = 0,

(11)

where ϕ′ is the magnetic potential associated with H ′, i.e. H ′ = ∇′ϕ′. We have

−ηuc
L2

∆′U ′ +
pc
L
∇′p′ =

µfmchc
L

(M ′ · ∇′)H ′ + gc g
′,

dividing by
ρfu

2
c

L we obtain

− 1

Re
∆′U ′ + Eu∇′p′ =

1

Rem
(M ′ · ∇′)H ′ + Fr g′ in Ω′f ,
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with

Re =
ρfucL

η
, Eu =

pc
ρfu2

c

, Rem =
ρfu

2
c

µfh2
c

, F r =
Lgc
ρfu2

c

.

Here, Re is the Reynolds number, Rm is the magnetic Reynolds number, Eu is the Euler
number and Fr is the Froude number. In the sequel we take Re = 1

ε2 , Fr = Rem = Eu = 1,
then obtain the dimensionless Stokes equations

−ε2∆′U ′ +∇′p′ = (M ′ · ∇′)H ′ + g′ in Ω′f ,

div′ U ′ = 0 in Ω′f ,

U ′ = 0 on ∂Ω′f .

(12)

In what follows we omit the prime index.

2.1.2 Problem (Pεl )

Our objective is to perform an asymptotic analysis of equations (10)–(12), as ε→ 0. Let us
note that in the Stokes equation (12), the Kelvin force is a nonlinear function of H, since
(M · ∇)H = λ0

2 ∇(|H|2), as we will see below. Then our study will focus on the asymptotic
behavior of |H|2.

We introduce the following formulation of the problem. The magnetization Mε is given
by

Mε = λ0 1Ωε
f
Hε in Ω, (13)

where 1Ωε
f

is the characteristic function of Ωεf . We can write

Ωεf =
{
x ∈ Ω : χf

(x
ε

)
= 1
}
,

where χf is the characteristic function of Yf ; clearly, χf is a Y -periodic function. Let µε

denote the periodic function defined a.e. in Ω by

µε(x) = µ
(x
ε

)
, (14)

with the period ε in the variable x, where

µ(y) =

{
µf (1 + λ0), if y ∈ Yf ,
µs, if y ∈ Ys.

(15)

The magnetic field Hε is such that Hε = ∇ϕε where ϕε is a solution of
div(µε∇ϕε) = 0 in Ω,

µε∇ϕε · ν = µ0Ha · ν on ∂Ω,

∫
Ω

ϕε(x) dx = 0.
(16)

Using (13) and equation curlHε = 0, there holds that

((Mε · ∇)Hε)k = λ0((Hε · ∇)Hε)k = λ0

∑
j

Hε
j ∂jH

ε
k = λ0

∑
j

Hε
j ∂kH

ε
j

= λ0

∑
j

∂k

(
|Hε

j |2

2

)
=
λ0

2
∂k(|Hε|2),

then the Kelvin body force can be written as µf (Mε · ∇)Hε = µf
λ0

2 ∇
(
|Hε|2

)
. Because of

its gradient structure the latter term can be included in the new pressure

qε = pε − µf
λ0

2
|Hε|2, (17)
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then we obtain that the pair (Uε, qε) satisfies the Stokes system
−ε2∆Uε +∇qε = g in Ωεf ,

divUε = 0 in Ωεf ,

Uε = 0 on ∂Ωεf ,

∫
Ωε

f

qε(x) dx = 0.

(18)

Problem (Pεl ) is formed by equations (13)–(18). We are interested in describing the asymp-
totic behavior, when ε tends to 0, of the magnetic field Hε, the magnetization Mε, the
velocity Uε and the pressure pε.

Our goal is the rigorous derivation of a Darcy law including some effect of the applied
magnetic field. Clearly, problems (16) and (18) are decoupled; the homogenization of the
second order linear elliptic equation (16) is classical, as well as the homogenization of the
Stokes system (18), see for instance [4, 27, 45, 47]. But relation (17) gives rise to the study
of a nonlinear problem. Let Hε = ∇ϕε and let Qε be the extension of qε as defined in
Lemma 12 (below). According to (17) we define P ε in Ω by P ε = Qε + µf

λ0

2 |H
ε|2.

Our new result is the regularity of the magnetic field Hε. We prove, by using Meyers’
theorem for Neumann problem that, under the assumption Ha ∈ H1(R3), there exists a
real number pM > 2, such that, for all 2 < r < inf{pM , 6}, Hε ∈ Lr(Ω), and the sequence
(Hε) is bounded in Lr(Ω), see Theorem 1 (below). This implies that the sequence (|Hε|2) is
bounded in Lr/2(Ω); note that the exponent r/2 > 1 is essential for applying the two-scale
convergence to the sequence (|Hε|2). Let H0(x, x/ε) be a corrector for Hε(x), see Lemma 4

(below). Applying the two-scale convergence, we have |Hε|2 2s
⇀ |H0(x, y)|2. It results that

P ε
2s
⇀ P0(x, y) = Q(x) + µf

λ0

2
|H0(x, y)|2,

P ε ⇀ P (x) = Q(x) + µf
λ0

2
(I +A)∇ϕ(x) · ∇ϕ(x),

where A is the constant matrix given by (37), and ∇ϕ(x) =
∫
Y
H0(x, y) dy. Then we derive

a Darcy law, with an additional term representing the effect induced by homogenization,
see Theorem 2 and Remark 1 (below).

Let us mention the paper [31] dealing with the linear case. Using the representation
H = ∇ψ for the magnetic field and a formal upscaling technique, the authors derived the
macroscopic flow from the description of the physical mechanisms at the pore scale. Our
result is in agreement with the model they derived.

Let us also mention some recent works (derived by means of formal power series ex-
pansions) where additional terms arising from local variations of fields have been taken
into account in the context of Darcy’s flow [40], linear elasticity [41], and electromagnetic
composites [21].

2.2 The nonlinear model

Assume that M and H satisfy relation (5). Let µ denote the function defined a.e. in Ω by

µ =

 µf

(
1 +Ms

L(b1|H|)
|H|

)
in Ωf ,

µs in Ωs,

(19)

then we have B = µH and H is a solution of
div (µH) = 0, curlH = 0 in Ω,

µf

(
1 +Ms

L(b1|H|)
|H|

)
H · ν = µ0Ha · ν on ∂Ω.
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Let ϕ ∈ H1(Ω) the magnetic potential associated to H, i.e. H = ∇ϕ; ϕ is a solution of
div(µ∇ϕ) = 0 in Ω,

µf

(
1 +Ms

L(b1|∇ϕ|)
|∇ϕ|

)
∇ϕ · ν = µ0Ha · ν on ∂Ω,

∫
Ω

ϕ(x) dx = 0.
(20)

The constraint of zero mean of ϕ is imposed in order to ensure the uniqueness of solutions
of this problem.

The fluid velocity U and the pressure p satisfy the Stokes equations{ −η∆U +∇p = µf (M · ∇)H + g, divU = 0 in Ωf ,

U = 0 on ∂Ωf .
(21)

The Kelvin body force can be written as

µf (M · ∇)H = µf Ms
L(b1|H|)
|H|

1Ωf
(H · ∇)H = µf MsL(b1|H|)1Ωf

∇(|H|).

Using that ∫ x

0

MsL(b1s) ds =
Ms

b1
ln
( sinh(b1x)

x

)
, ∀x ∈ R+,

we can write
µf (M · ∇)H = µf 1Ωf

∇(κ(H)),

where κ : R3 → R denote the function defined by

κ(ξ) =
Ms

b1
ln
( sinh(b1|ξ|)

|ξ|

)
, ∀ ξ ∈ R3. (22)

As in the linear case the term representing the Kelvin body force can be included in the new
pressure q = p− µfκ(H). Then we rewrite equation (21) as{ −η∆U +∇q = g, divU = 0 in Ωf ,

U = 0 on ∂Ωf .
(23)

We use the change of variables (9) to express equations (5), (19)–(23) in dimensionless
form. For notational convenience we take mc = hc = 1. Omitting the prime index we obtain
the following equations. The magnetization Mε is given by

Mε = Ms
L(b1|Hε|)
|Hε|

1Ωε
f
Hε in Ω. (24)

Let µε denote the function defined a.e. in Ω by

µε =

 µf

(
1 +Ms

L(b1|Hε|)
|Hε|

)
in Ωεf ,

µs in Ωεs,

(25)

and let ϕε ∈ H1(Ω) such that Hε = ∇ϕε; ϕε is a solution of the nonlinear differential
equation

div(µε∇ϕε) = 0 in Ω,

µf

(
1 +Ms

L(b1|∇εϕ|)
|∇ϕε|

)
∇ϕε · ν = µ0Ha · ν on ∂Ω,

∫
Ω

ϕε(x) dx = 0.
(26)
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The pair (Uε, qε) satisfies the Stokes system
−ε2∆Uε +∇qε = g in Ωεf ,

divUε = 0 in Ωεf ,

Uε = 0 on ∂Ωεf ,

∫
Ωε

f

qε(x) dx = 0.

(27)

The function qε is linked with the pressure pε par the relation

qε = pε − µfκ(Hε). (28)

We denote by problem (Pεnl) the system formed by equations (24)–(28). We are interested
in describing the asymptotic behavior, when ε tends to 0, of the magnetization Mε, the
magnetic field Hε, the velocity Uε and the pressure pε.

Here again, our goal is the rigorous derivation of a Darcy law including an effect of the
applied magnetic field. Problems (26) and (27) are decoupled, problem (26) is a nonlinear
differential equation, and problem (27) is identical to problem (18) considered in the linear
case. Let Qε be the extension of qε as defined in Lemma 12 (below), we define P ε in Ω by
P ε = Qε + µfκ(Hε) where κ is given by (22).

We show that the nonlinear differential operator in (26) is strictly monotone, coercive
and hemicontinuous. This allows us to prove that the variational equation associated to (26)
has a unique solution ϕε ∈ H1(Ω) and that ϕε is uniformly bounded in H1(Ω), see Lemma 2
(below). Using the monotonicity of the differential operator and the two-scale convergence
method we derive a two-scale homogenized equation, then deduce the homogenized equation
of the magnetic potentiel as well as the two-scale limit of the magnetization and its weak
limit in L2(Ω), see Theorem 3 (below). Using a corrector for the magnetic field, we deduce
the asymptotic behaviour of the sequence µfκ(Hε). Then we rigorously derive a Darcy law,
see Theorem 4 (below). To our knowledge this result is new.

The remainder is organized as follows: In Section 3 we state our main results. Theorems
1 and 2 are concerned with the asymptotic analysis of the linear problem (Pεl ) and Theorems
3 and 4 are concerned with the asymptotic analysis of the nonlinear problem (Pεnl). Section
4 is devoted to the proofs and Section 5 concludes the paper.

3 Main results

We make the following assumptions:

a1 Ω is an open simply connected domain of class C2;

a2 Ys is a closed simply connected domain of class C2 with a strictly positive measure,
and such that Ys ⊂ Y ;

a3 µ is the Y -periodic functions in L∞(R3), given by (6), satisfying 0 < c0 ≤ µ ≤ c−1
0 ;

a4 g ∈ L2(Ω);

a5 Ha ∈ H1(R3).

We introduce the classical function spaces in the theory of the Navier-Stokes equations

Ds(Ωf ) =
{
v ∈ D(Ωf ,R3) : div v = 0 in Ωf

}
,

V = closure of Ds(Ωf ) in H1(Ωf ).

Here D(Ωf ,R3) is the space of infinitely differentiable functions with compact support in
Ωf and valued in R3. As is well known,

V =
{
v ∈ H1

0 (Ωf ) : div v = 0 in Ωf
}
.
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We also introduce the space

H1
] (Ω) = {ψ ∈ H1(Ω) :

∫
Ω

ψ(x) dx = 0}.

Due to the Poincaré-Wirtinger inequality, there exists a constant c (depending only on Ω)
such that

‖ϕ‖L2(Ω) ≤ c‖∇ϕ‖L2(Ω), ∀ϕ ∈ H1
] (Ω).

3.1 Two-scale convergence

To describe the asymptotic analysis of problems (Pεl ) and (Pεnl) we use the two-scale con-
vergence method [3, 34, 36]. We denote by C∞per(Y ) the space of infinitely differentiable
functions in R3 which are Y -periodic, by Cper(Y ) the Banach space of continuous and
Y -periodic functions, and by W 1,q

per(Y ) (1 < q <∞) the closure of C∞per(Y ) in the W 1,q(Y )-
norm. Eventually, D(Ω, C∞per(Y )) denotes the space of infinitely smooth and compactly
supported functions in Ω with values in the space C∞per(Y ).

A sequence (uε) of functions in Lq(Ω), 1 < q < ∞, is said two-scale convergent (in Lq)
to a function u0(x, y), u0 ∈ Lq(Ω× Y ), as ε→ 0, if

lim
ε→0

∫
Ω

uε(x)ϕ
(
x,
x

ε

)
dx =

∫
Ω×Y

u0(x, y)ϕ(x, y) dxdy,

for any test function ϕ ∈ D(Ω, C∞per(Y )); we will write uε
2s
⇀ u0(x, y). Note that for the

space of admissible test functions, the space C(Ω̄, C∞per(Y )) can be also used.
It is a crucial property of the two-scale convergence that for any bounded sequence (uε)

of Lq(Ω) there is a subsequence, still denoted (uε), and a function u0(x, y), u0 ∈ Lq(Ω×Y ),

such that uε
2s
⇀ u0(x, y), see [3, 34, 36]. Let also cite the following properties [3, 34, 36]:

(i) If (uε) is a bounded sequence of W 1,q(Ω), there is a subsequence, still denoted (uε),
and there are functions u ∈W 1,q(Ω), u1 ∈ Lq(Ω;W 1,q

per(Y )), such that

uε ⇀ u in W 1,q(Ω) weak, uε
2s
⇀ u(x), ∇uε 2s

⇀ ∇u(x) +∇yu1(x, y).

(ii) If (uε) is a bounded sequence of Lq(Ω), such that (ε∇uε) is bounded in Lq(Ω), then
there is a subsequence, still denoted (uε), and a function u0(x, y), u0 ∈ Lq(Ω;W 1,q

per(Y )),
such that

uε
2s
⇀ u0(x, y), ε∇uε 2s

⇀ ∇yu0(x, y).

3.2 Main results in the linear case

The weak formulation of problem (16) is

ϕε ∈ H1
] (Ω),

∫
Ω

µε∇ϕε · ∇ψ dx =

∫
∂Ω

µ0Ha · ν ψ dσ, ∀ψ ∈ H1(Ω), (29)

where µε is defined by (14), (15). By the Lax-Milgram theorem and the Poincaré-Wirtinger
inequality, there exists a unique solution to (29).

The weak formulation of problem (18) is

Uε ∈ V, ε2

∫
Ωε

f

∇Uε · ∇v dx =

∫
Ωε

f

g · v dx, ∀v ∈ V. (30)

Under assumption a4, this problem has a unique solution.
We define a constant (homogenized) matrix µeff by

µeffik =

∫
Y

µ(y)

(
δik +

∂wk

∂yi
(y)

)
dy, i, k = 1, 2, 3, (31)
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where wk(y) denotes a scalar Y -periodic function which solves the cell problem

−divy
(
µ(y)∇ywk(y)

)
= divy

(
µ(y) ek

)
in Y,

∫
Y

wk(y) dy = 0. (32)

Here ek denotes the k-th standard basis vector of R3. Clearly, problem (32) has a unique
weak solution wk ∈ H1

per(Y ), where H1
per(Y ) denotes the space of functions in H1

loc(R3)
which are Y -periodic. Let ϕ be a solution of the homogenized equation

ϕ ∈ H1
] (Ω),

∫
Ω

µeff∇ϕ · ∇ψ dx = µ0

∫
∂Ω

Ha · ν ψ dσ, ∀ψ ∈ H1(Ω), (33)

where µeff is a constant matrix defined by (31). Note that µeff is symmetric and positive
definite. Let ϕ1 be the function defined by

ϕ1(x, y) =

3∑
k=1

∂ϕ

∂xk
(x)wk(y), (x, y) ∈ Ω× Y. (34)

Clearly, ϕ1 ∈ L2(Ω;H1
per(Y )) and we have

− divy
(
µ(y)

(
∇ϕ(x) +∇yϕ1(x, y)

))
= 0 in Y.

Let (ei)1≤i≤3 denote the canonical basis of R3. We introduce the differential systems in Yf ,
for 1 ≤ i ≤ 3: 

−∆yω
i(y) +∇yπi(y) = ei in Yf ,

divy ω
i(y) = 0 in Yf ,

ωi|∂Ys
= 0,

∫
Yf
πi(y) dy = 0.

(35)

Clearly, problem (35) has a unique solution (ωi, πi) ∈ H1
per(Yf )× L2(Yf ).

We now state our first main result.

Theorem 1. Under assumptions a1–a5, let ϕε be a solution of problem (29), and Hε =
∇ϕε. Then the sequence (Hε) two-scale converges to H0(x, y) = ∇ϕ(x) +∇yϕ1(x, y) where
ϕ(x) is a unique solution of the homogenized equation (33), and ϕ1(x, y) is defined by (34).
We have ϕ ∈ H2(Ω) and ϕ1 ∈ H1(Ω;W 1,6

per(Y )). Moreover:
(i) There exists a real number pM > 2, such that, for all 2 < r < inf{pM , 6}, Hε ∈ Lr(Ω),

the sequence (Hε) is bounded in Lr(Ω), and H0(x, y) ∈ Lr(Ω× Y ).
(ii) We have

|Hε|2 2s
⇀ α0(x, y) := |∇ϕ(x)|2 + 2∇ϕ(x) · ∇yϕ1 (x, y) + |∇yϕ1 (x, y) |2,

|Hε|2 ⇀ α(x) := |∇ϕ(x)|2 +

∫
Y

|∇yϕ1(x, y)|2 dy weakly in Lr/2(Ω).

Our second main result is the following.

Theorem 2. Under assumptions a1–a5 and notations of Theorem 1, let Mε be the function
defined by (13), (Uε, qε) a solution of problem (18), pε the function linked with qε par
relation (17), Qε the extension of qε as defined in Lemma 12 (below). We define P ε in Ω
by P ε = Qε + µf

λ0

2 |H
ε|2. Then:

(i) the sequence (Mε) two-scale converges to M0(x, y) and converges weakly in L2(Ω) to
M(x) =

∫
Y
M0(x, y) dy, where M0 ∈ Lr(Ω× Y ), for all 2 < r < inf{pM , 6}, is given by

M0(x, y) = λ0 χf (y)H0(x, y)

and χf (y) is a Y -periodic function defined in Y as the characteristic function of Yf .
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(ii) There exist funtions U0 ∈ L2(Ω;H1
per(Y )), Q ∈ L2(Ω), P0 ∈ Lr/2(Ω× Y ) such that

Uε
2s
⇀ U0(x, y), ε∇Uε 2s

⇀ ∇yU0(x, y), Qε → Q strongly in L2(Ω),

P ε
2s
⇀ P0(x, y) = Q(x) + µf

λ0

2
α0(x, y),

P ε ⇀ P (x) := Q(x) + Pm(x) weakly in Lr/2(Ω),

where Pm is the magnetic pressure given by

Pm(x) = µf
λ0

2
α(x) = µf

λ0

2
(I +A)∇ϕ(x) · ∇ϕ(x) (36)

and A = (Aij)1≤i,j≤3 is a symmetric and positive definite matrix given by

Aij =

∫
Y

∇ywi(y) · ∇ywj(y) dy, (wk defined by (32)). (37)

The pair (U0, Q) is such that

U0 = 0 in Ω× Ys, divy U0 = 0 in Ω× Y,

div

(∫
Y

U0(·, y) dy

)
= 0 in Ω,

(∫
Y

U0(·, y) dy

)
· ν = 0 on ∂Ω,

U0(x, y) Y-periodic for a.e. x ∈ Ω,

∫
Ω

Q(x) dx = 0,

(38)

and is a solution of

∫
Ω

∫
Yf

∇yU0(x, y) · ∇yζ(x, y) dxdy −
∫

Ω

∫
Yf

Q(x) divx ζ(x, y) dxdy

=

∫
Ω

∫
Yf

g(x) · ζ(x, y) dxdy,

∀ζ ∈ D(Ω, C∞per(Y )), with ζ = 0 in Ω× Ys and divy ζ(x, y) = 0 in Ω× Y.

(39)

Moreover,

U0(x, y) =

3∑
j=1

ωj(y)

(
gj(x)− ∂P

∂xj
(x) +

∂Pm
∂xj

(x)

)
, x ∈ Ω, y ∈ Yf , (40)∫

Yf

U0(x, y) dy = K
(
g(x)−∇P (x) +∇Pm(x)

)
, x ∈ Ω, (Darcy law) (41)

where K = (Kij)1≤i,j≤3 is the permeability matrix given by

Kij =

∫
Yf

∇yωi∇yωj dy =

∫
Yf

ωij dy, (ωi defined by (35)). (42)

The permeability matrix K is symmetric and positive definite.

The proofs of Theorems 1 and 2 are given in Section 4.

Remark 1. We can rewrite the Darcy law (41) in the following form. From Theorem 1 (ii)
and (36) we have

Pm(x) = µf
λ0

2
|∇ϕ(x)|2 + µf

λ0

2
A∇ϕ(x) · ∇ϕ(x),
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where ϕ(x) is a unique solution of the homogenized equation (33), and A is a matrix defined
by (37). Define

H(x) = ∇ϕ(x), M(x) = λ0H(x), gK(x) = µf (M · ∇)H (x),

R(x) = µf
λ0

2
A∇ϕ(x) · ∇ϕ(x).

We have ∇
(
µf

λ0

2 |∇ϕ(x)|2
)

= µf (M · ∇)H (x) = gK(x), then (41) takes the form∫
Yf

U0(x, y) dy = K
(
g(x) + gK(x)−∇P (x) +∇R(x)

)
,

where K∇R(x) represents the effect induced by homogenization.

Remark 2. It results from (38) and (41) that the pressure P satisfies the differential equa-
tion − div

(
K(∇(P − Pm)

)
= − div (Kg) in Ω,

K∇(P − Pm) · ν = Kg · ν on ∂Ω.

The weak formulation of this problem is

P ∈ H1
] (Ω),∫

Ω

K∇ (P − Pm) · ∇ψ dx =

∫
Ω

Kg · ∇ψ dx, ∀ψ ∈ H1(Ω).

Clearly, this problem has a unique solution.

Remark 3. Theorem 2 can be generalized to the case where the load g also depends on the
variable y = x/ε. Let g ∈ L2(Ω;Cper(Y )3). Define gε(x) = g(x, xε ). We have ‖gε‖L2(Ω) ≤
‖g‖L2(Ω;Cper(Y )3). The Stokes system

−ε2∆Uε +∇qε = gε in Ωεf ,

div Uε = 0 in Ωεf ,

Uε = 0 on ∂Ωεf ,

∫
Ωε

f

qε(x) dx = 0.

has a unique solution (Uε, qε). We extend Uε by zero in Ω \ Ωεf and still denote by Uε the
extended function. Let Qε be the extension of qε as defined in Lemma 12 (below). We define
P ε in Ω by P ε = Qε + µf

λ0

2 |H
ε|2. We have

ε‖∇Uε‖L2(Ω) ≤ c, ‖Uε‖L2(Ω) ≤ c, ‖Qε‖L2(Ω) ≤ c,

where c is a constant independent of ε. Using the two-scale convergence, we show that the
sequence (Uε, Qε) two-scale converges to the unique solution (U0, Q) ∈ L2(Ω;H1

per(Y )) ×
L2(Ω) of the two-scale homogenized problem

−∆yU0(x, y) +∇Q(x) +∇yQ1(x, y) = g(x, y) in Ω× Yf ,

U0 = 0 in Ω× Ys, divy U0 = 0 in Ω× Y,

div

(∫
Y

U0(·, y) dy

)
= 0 in Ω,

(∫
Y

U0(·, y) dy

)
· ν = 0 on ∂Ω,

U0(x, y), Q1(x, y) Y-periodic for a.e. x ∈ Ω,∫
Ω

Q(x) dx = 0,

∫
Y

Q1(x, y) dy = 0 for a.e. x ∈ Ω.
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Let (ω0, π0) ∈ L2(Ω;H1
per(Y ))× L2(Ω× Yf ) the unique solution of the cell problem
−∆yω

0(x, y) +∇yπ0(x, y) = g(x, y) in Ω× Yf ,

divy ω
0(x, y) = 0 in Ω× Yf ,

ω0
|∂Ys

= 0,

∫
Yf

π0(x, y) dy = 0 for a.e. x ∈ Ω.

We show that

U0(x, y) = ω0(x, y) +

3∑
j=1

ωj(y)

(
− ∂Q
∂xj

(x)

)
, x ∈ Ω, y ∈ Yf .

Using that
P ε ⇀ P (x) := Q(x) + Pm(x) weakly in Lr/2(Ω),

with Pm = Q+ µf
λ0

2 |∇ϕ|
2 + µf

λ0

2 A∇ϕ · ∇ϕ, we derive the Darcy law∫
Yf

U0(x, y) dy =

∫
Yf

ω0(x, y) dy +K
(
−∇P (x) +∇Pm(x)

)
, x ∈ Ω.

3.3 Main results in the nonlinear case

Let a : Y × R3 → R3 be defined by

a(y, ξ) =

 µ̃(y)ξ + µf χf (y)Ms
L(b1|ξ|)
|ξ| ξ for a.e. y ∈ Y, for all ξ ∈ R3 \ {0},

0 if ξ = 0,
(43)

where χf is the characteristic function of Yf and µ̃ the Y -periodic function defined in Y by

µ̃ =

{
µf a.e. in Yf ,

µs a.e. in Ys.
(44)

We have the following result.

Lemma 1. The function a(y, ξ) defined by (43) satisfies the following properties:

(i) a(y, 0) = 0 for a.e. y ∈ Y ;

(ii) a(y, ξ) is Lipschitz continuous with respect to ξ, i.e. there exists a constant c such that

|a(y, ξ1)− a(y, ξ2)| ≤ c|ξ1 − ξ2|, for a.e. y ∈ Y, for all ξ1, ξ2 ∈ R3;

(iii) a(y, ξ) is monotone and coercive, more precisely,

(a(y, ξ1)−a(y, ξ2)) ·(ξ1−ξ2) ≥ inf{µf , µs}|ξ1−ξ2|2, for a.e. y ∈ Y, for all ξ1, ξ2 ∈ R3.

The weak formulation of problem (26) reads

ϕε ∈ H1
] (Ω),

∫
Ω

a
(x
ε
,∇ϕε(x)

)
· ∇ψ dx =

∫
∂Ω

µ0Ha · ν ψ dσ, ∀ψ ∈ H1(Ω). (45)

We have the following result.

Lemma 2. Problem (45) has a unique solution ϕε. Moreover, the sequence (ϕε) is bounded
in H1

] (Ω).
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The proofs of Lemmas 1 and 2 are provided in Section 4. Problem (27) is identical to
problem (18) whose weak formulation is

Uε ∈ V, ε2

∫
Ωε

f

∇Uε · ∇v dx =

∫
Ωε

f

g · v dx, ∀v ∈ V.

Let us mention that homogenization of nonlinear problems of the form

−div a
(x
ε
,∇uε

)
= f in Ω, uε ∈W 1,r

0 (Ω), (46)

where f ∈ W−1,r(Ω), 1 < r < ∞, and a(y, ξ) is a Y -periodic function in y and satisfies
suitable assumptions of uniform Lipschitz continuity and uniform strict monotonicity in ξ,
have been studied in [3, 9, 14, 15, 16, 20, 34]. In these papers, oscillating test functions
are used to derive the homogenized equation. A corrector result has been proven in [19].
Let us also mention a paper on homogenization of boundary value problems for monotone
operators in perforated domains with rapidly oscillating boundary conditions of Fourier type
[42].

We now state our third main result. Using the two-scale convergence method we derive
a two-scale homogenized equation. In addition we derive the homogenized equation of the
magnetic potentiel as well as the two-scale limit of the magnetization and its weak limit in
L2(Ω).

Theorem 3. Under assumptions a1–a5, let a be defined by (43), ϕε a solution of problem
(45), Hε = ∇ϕε, and let Mε be the function defined by (24). Then:

(i) The sequence (ϕε) of solutions of problem (45) converges weakly in H1
] (Ω) to a function

ϕ and the sequence (Hε) two-scale converges to H0(x, y) = ∇ϕ(x)+∇yϕ1(x, y), where
(ϕ,ϕ1) is the unique solution in H1

] (Ω)× L2(Ω;H1
per(Y )) of the two-scale equation∫

Ω

∫
Y

a
(
y,∇ϕ(x)+∇yϕ1(x, y)

)
·
(
∇φ(x)+∇yφ1(x, y)

)
dxdy =

∫
∂Ω

µ0Ha ·νφ dσ, (47)

for any φ ∈ H1(Ω), φ1 ∈ L2(Ω;H1
per(Y )). Moreover,

aε(x) := a
(x
ε
,∇ϕε(x)

)
2s
⇀ a

(
y,∇ϕ(x) +∇yϕ1(x, y)

)
,

aε(x) ⇀ a∗(x) :=

∫
Y

a
(
y,∇ϕ(x) +∇yϕ1(x, y)

)
dy in L2(Ω) weak.

(ii) The function ϕ is a unique solution in H1
] (Ω) of the homogenized equation∫

Ω

b(∇ϕ(x)) · ∇φ(x) dx =

∫
∂Ω

µ0Ha · νφ dσ, ∀φ ∈ H1(Ω). (48)

The operator b : R3 → R3 is defined for every ξ ∈ R3 by

b(ξ) =

∫
Y

a
(
y, ξ +∇yw(y, ξ)

)
dy (49)

where w(·, ξ) is a unique (up to an additive constant) solution in H1
per(Y ) of the cell

problem ∫
Y

a(y, ξ +∇yw(y, ξ)) · ∇v(y) dy = 0 for all v ∈ H1
per(Y ). (50)

(iii) The sequence (Mε) two-scale converges to M0(x, y) and converges weakly in L2(Ω) to
M(x) =

∫
Y
M0(x, y) dy where M0 ∈ L2(Ω× Y ) is given by

M0(x, y) = µf χf (y)w(H0(x, y))

and χf (y) is a Y -periodic function, defined in Y as the characteristic function of Yf ,

and w : R3 → R3 is defined by w(ξ) = Ms
L(b1|ξ|)
|ξ| ξ if ξ 6= 0 and w(0) = 0.
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We now study the asymptotic behaviour of the sequence µfκ(Hε) where κ is defined by
(22). To this aim we use a corrector for the magnetic field. Following [19], we introduce
a sequence (mε) of approximations of the identity map in L2(Ω) such that mεΦ is a step
function for every Φ ∈ L2(Ω). More precisely, for every ε > 0 and every Φ ∈ L2(Ω), we
define a function mεΦ : R3 → R3 by

mεΦ(x) =
∑
i∈Iε

1Y i
ε
(x)

1

|Y iε |

∫
Y i
ε

Φ(y) dy (51)

where Y iε = ε(i + Y ) (for i ∈ Z3), Iε = {i ∈ Z3 : Y iε ⊂ Ω} and 1A is the characteristic
function of a set A ⊂ R3. Let us note that, as ε→ 0, we have [48] (Chapter 8)

mεΦ→ Φ a.e. in Ω and strongly in L2(Ω). (52)

We define a function h : Y × R3 → R3 by

h(y, ξ) = ξ +∇yw(y, ξ) (53)

where for every ξ ∈ R3, w(·, ξ) is a unique (up to an additive constant) solution in H1
per(Y )

of the cell problem (50). Let us note that w(·, ξ) can be extended by periodicity to a function
of H1

loc(R3) and that problem (50) is equivalent to divx(a(x, ξ +∇xw(x, ξ))) = 0 in D′(R3).
Finally, we set

hε(x, ξ) = ξ +∇yw
(x
ε
, ξ
)
, (x, ξ) ∈ R3 × R3. (54)

Our fourth main result is the following.

Theorem 4. Under assumptions a1–a5 and notations of Theorem 3, let (Uε, qε) be a
solution of problem (27), pε the function linked with qε par relation (28), Qε the extension
of qε as defined in Lemma 12 (below). We define P ε in Ω by P ε = Qε + µfκ(Hε) where κ
is defined by (22). Then:

(i) We have

Hε(x)− hε (x, (mε∇ϕ)(x)) → 0 a.e. in Ω and strongly in L2(Ω),

where hε(x, ξ) is defined by (54).

(ii) We have from Theorem 2 (ii)

Uε
2s
⇀ U0(x, y), ε∇Uε 2s

⇀ ∇yU0(x, y), Qε → Q strongly in L2(Ω),

where the pair (U0, Q) satisfies (38) and is a solution of problem (39).

(iii) Define

κ0(ξ) =

∫
Y

κ
(
h(y, ξ)

)
dy, ∀ ξ ∈ R3, (55)

where h(·, ξ) is defined by (53). We have

P ε ⇀ P (x) := Q(x) + µfκ1(x) weakly in L2(Ω), (56)

with κ1(x) = κ0(∇ϕ(x)), x ∈ Ω. Moreover,

U0(x, y) =

3∑
j=1

ωj(y)

(
gj(x)− ∂P

∂xj
(x) + µf

∂κ1

∂xj
(x)

)
, x ∈ Ω, y ∈ Yf , (57)∫

Yf

U0(x, y) dy = K (g(x)−∇P (x) + µf∇κ1(x)) , x ∈ Ω. (Darcy law) (58)

The proofs of Theorems 3 and 4 are given in Section 4.
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4 Proofs

4.1 Proof of Theorem 1

4.1.1 Limit of the magnetic field

We have the following result whose proof is immediate.

Lemma 3. Let (ϕε) be the sequence of solutions of equation (29). Then (ϕε) converges
weakly in H1

] (Ω) to the solution ϕ of the homogenized equation (33). Moreover, the sequence

(∇ϕε) two-scale converges to ∇ϕ(x) + ∇yϕ1(x, y) where ϕ1(x, y) is given by (34) and we
have∫

Ω

∫
Y

µ(y)
(
∇ϕ(x) +∇yϕ1(x, y)

)
·
(
∇ψ(x) +∇yψ1(x, y)

)
dx = µ0

∫
∂Ω

Ha · νψ dσ, (59)

∀(ψ,ψ1) ∈ H1
] (Ω)× ∈ L2(Ω;H1

per(Y )).

We have the following result.

Lemma 4. Let (ϕε) be the sequence of solutions of (29), ϕ(x) be defined by (33) and
ϕ1(x, y) by (34). Then

∇ϕε(x)−∇ϕ(x)−∇yϕ1
(
x,
x

ε

)
→ 0 in L2(Ω). (60)

Remark 4. The function ∇ϕ(x) +∇yϕ1
(
x,
x

ε

)
is a corrector for Hε(x).

Proof of Lemma 4. We have

µ−

∫
Ω

∣∣∣∇ϕε(x)−∇ϕ(x)−∇yϕ1
(
x,
x

ε

)∣∣∣2 dx
≤
∫

Ω

µε(x)
(
∇ϕε(x)−∇ϕ(x)−∇yϕ1

(
x,
x

ε

))
·
(
∇ϕε(x)−∇ϕ(x)−∇yϕ1

(
x,
x

ε

))
dx

=

∫
Ω

µε(x)∇ϕε(x) · ∇ϕε(x)− 2

∫
Ω

µε(x)∇ϕε(x) ·
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

))
dx

+

∫
Ω

µε(x)
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

))
·
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

))
dx,

where µ− = inf{µf (1 + λ0), µs}. We have from (29)∫
Ω

µε∇ϕε · ∇ϕε dx =

∫
∂Ω

µ0Ha · ν ϕε dσ,

then

lim
ε→0

∫
Ω

µε∇ϕε · ∇ϕε dx =

∫
∂Ω

µ0Ha · ν ϕ dσ.

Using (34) we have∫
Ω

µε(x)∇ϕε(x) ·
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

))
dx

=

∫
Ω

µε(x)∇ϕε(x) ·

(
∇ϕ(x) +

3∑
k=1

∂ϕ

∂xk
(x)∇ywk

(x
ε

))
dx,

then, passing to the two-scale limit we get

lim
ε→0

∫
Ω

µε(x)∇ϕε(x) ·
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

))
dx

=

∫
Ω

∫
Y

µ(y)
(
∇ϕ(x) +∇yϕ1 (x, y)

)
·

(
∇ϕ(x) +

3∑
k=1

∂ϕ

∂xk
(x)∇ywk (y)

)
dxdy

=

∫
Ω

∫
Y

µ(y)
(
∇ϕ(x) +∇yϕ1 (x, y)

)
·
(
∇ϕ(x) +∇yϕ1 (x, y)

)
dxdy.
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We have∫
Ω

µε(x)
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

))
·
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

))
dx

=

∫
Ω

µε(x)

(
∇ϕ(x) +

3∑
k=1

∂ϕ

∂xk
(x)∇ywk

(x
ε

))
·

(
∇ϕ(x) +

3∑
k=1

∂ϕ

∂xk
(x)∇ywk

(x
ε

))
dx,

then, passing to the two-scale limit we get

lim
ε→0

∫
Ω

µε(x)
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

))
·
(
∇ϕ(x) +∇yϕ1

(
x,
x

ε

))
dx

=

∫
Ω

∫
Y

µ(y)
(
∇ϕ(x) +∇yϕ1 (x, y)

)
·
(
∇ϕ(x) +∇yϕ1 (x, y)

)
dxdy.

We then get

lim
ε→0

µ−

∫
Ω

∣∣∣∇ϕε(x)−∇ϕ(x)−∇yϕ1
(
x,
x

ε

)∣∣∣2 dx
≤ −

∫
Ω

∫
Y

µ(y)
(
∇ϕ(x) +∇yϕ1 (x, y)

)
·
(
∇ϕ(x) +∇yϕ1 (x, y)

)
dxdy +

∫
∂Ω

µ0Ha · ν ϕ dσ

= 0,

where we used (59) in the last equality. Then (60) follows and the proof of Lemma 4 is
achieved.

4.1.2 Regularity and two-scale convergence of (|Hε|2)

We have the following result.

Lemma 5. The solution wk of problem (32) belongs to W 1,6
per(Y ).

Proof. We extend by periodicity the function wk to R3 and still denote by wk the extended
function. We take a cut-off function θ ∈ D(R3) such that θ = 1 in a neighborhood of Y . Let
Ỹ denote an open smooth bounded domain containing the support of θ. We set u = θwk.
We have

−div(µ∇u) = −div(µwk∇θ)− div(µθ∇wk)

= −div(µwk∇θ)− θ div(µ∇wk)− µ∇θ · ∇wk

= −div(µwk∇θ) + θ div(µek)− µ∇θ · ∇wk. (61)

Using the continuous Sobolev embedding H1(Ỹ ) ↪→ L6(Ỹ ), we have that µwk∇θ ∈ L6(Ỹ ).
Moreover, µek ∈ L6(Ỹ ) and µ∇θ · ∇wk ∈ L2(Ỹ ). Using the Sobolev embedding

W
1,6/5
0 (Ỹ ) ↪→ L2(Ỹ ), it holds that L2(Ỹ ) ↪→ W−1,6(Ỹ ). Thus the right-hand side of (61)

belongs to W−1,6(Ỹ ). We also have u = 0 on the boundary ∂Ỹ of Ỹ . Applying the result
in [22] we obtain that u ∈ W 1,6

0 (Ỹ ). Therefore wk ∈ W 1,6(Y ). The proof of the lemma is
complete.

We have the following result.

Lemma 6. Under assumption a5, let ϕ be the solution of the homogenized equation (33),
and ϕ1 defined by (34). Then ϕ ∈ H2(Ω) and ϕ1 ∈ H1(Ω;W 1,6

per(Y )).

Proof. The function ϕ is a weak solution of the equation

−div(µeff∇ϕ) = 0 in Ω, µeff∇ϕ · ν = µ0Ha · ν on ∂Ω,

∫
Ω

ϕ(x) dx = 0.
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Under assumption a5, Ha · ν ∈ H1/2(∂Ω), then by a classical result on the regularity of the
solution of an elliptic equation with Neumann condition, we have ϕ ∈ H2(Ω).

We have from (34)

ϕ1(x, y) =

3∑
k=1

∂ϕ

∂xk
(x)wk(y), ∇yϕ1(x, y) =

3∑
k=1

∂ϕ

∂xk
(x)∇ywk(y),

where wk(y) ∈ H1
per(Y ) (k = 1, 2, 3) and solves the cell problem (32). Thanks to the H2-

regularity of ϕ and Lemma 5, we have ϕ1 ∈ H1(Ω;W 1,6
per(Y )). This completes the proof of

Lemma 6.

We have the following result.

Lemma 7. There is a number 2 < pM such that for all 2 < r < pM , Hε ∈ Lr(Ω), and the
sequence (Hε) is bounded in Lr(Ω).

Proof. Let us rewrite problem (29) as a homogeneous Neumann problem. Consider the
equation

−∆ρ = divHa in Ω, ∇ρ · ν = Ha · ν on ∂Ω.

Under assumption a5, and the continuous Sobolev embedding H1(Ω) ↪→ L6(Ω), this equa-
tion has a weak solution ρ ∈ W 1,6(Ω) satisfying ‖∇ρ‖L6(Ω) ≤ c(Ω)‖Ha‖L6(Ω), see [37]
(Lemma 4.27). We impose

∫
Ω
ρ(x) dx = 0, then define ρ̃ = µ0

µf (1+λ0)ρ and ϕ̃ε = ϕε − ρ̃.

We have
‖∇ρ̃‖L6(Ω) ≤ c(Ω)

µ0

µf (1 + λ0)
‖Ha‖L6(Ω). (62)

We also have

−div(µε∇ϕ̃ε) = div(µε∇ρ̃) in Ω,

µf (1 + λ0)∇ϕ̃ε · ν = (µf (1 + λ0)∇ϕε − µf (1 + λ0)∇ρ̃) · ν
= (µf (1 + λ0)∇ϕε − µ0∇ρ) · ν
= (µf (1 + λ0)∇ϕε − µ0Ha) · ν = 0 on ∂Ω.

Then ϕ̃ε belongs to H1
] (Ω) and satisfies a homogeneous Neumann problem{ −div(µε∇ϕ̃ε) = div(µε∇ρ̃) in Ω,

µε∇ϕ̃ε · ν = 0 on ∂Ω.

The weak formulation of this problem is

ϕ̃ε ∈ H1
] (Ω),

∫
Ω

µε∇ϕ̃ε · ∇ψ dx = −
∫

Ω

µε∇ρ̃ · ∇ψ dx, ∀ψ ∈ H1(Ω). (63)

Let f ∈ (H1(Ω))′ be defined by

〈f, ψ〉(H1(Ω))′,H1(Ω)) = −
∫

Ω

µε∇ρ̃ · ∇ψ dx, ∀ψ ∈ H1(Ω). (64)

We have that ∇ρ̃ ∈ L6(Ω), then f ∈ (W 1,6/5(Ω))′ and satisfies 〈f, 1〉(H1(Ω))′,H1(Ω)) = 0.

Note that (W 1,6/5(Ω))′ ⊂ (H1(Ω))′). The operator T which associates with every function
Ha ∈ L6(Ω) the solution ϕ̃ε of (63) can be decomposed as follows: T = T3 ◦ T2 ◦ T1 where
T1 is the linear operator defined by T1(Ha) = ∇ρ̃ ∈ L6(Ω) for all Ha ∈ L6(Ω), T2 is the
linear operator defined by T2(∇ρ̃) = f ∈ (W 1,6/5(Ω))′, with f given by (64) and T3 is the
linear operator defined by T3(f) = uε for all f ∈ (W 1,6/5(Ω))′ with 〈f, 1〉(H1(Ω))′,H1(Ω)) = 0,
where uε is the unique solution to

uε ∈ H1
] (Ω),

∫
Ω

µε∇uε · ∇ψ dx = 〈f, ψ〉(H1(Ω))′,H1(Ω)), ∀ψ ∈ H1(Ω).
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Thanks to (62) the operator T1 is continuous from L6(Ω) to L6(Ω) with a norm bounded by

c(Ω)
µf (1+λ0)

µ0
. We easily verify that the operator T2 is continuous from L6(Ω) to (W 1,6/5(Ω))′

with a norm bounded by a constant depending only on c0 and Ω. For the operator T3 we can
apply Meyers’ theorem for Neumann problem, proved in [24]: There is a real number pM > 2
such that for all r, 2 < r < pM , the operator T3 is linear continuous from (W 1,6/5(Ω))′ to
W 1,r(Ω). Moreover, the norm of T3 only depends on c0 and Ω, and pM on c0 and Ω, not
on f . This implies that ϕ̃ε ∈ W 1,r(Ω) and that (ϕ̃ε) is bounded in W 1,r(Ω). We conclude
that Hε ∈ Lr(Ω) and the sequence (Hε) is bounded in Lr(Ω). The proof of Lemma 7 is
complete.

We have the following result.

Lemma 8. The sequence (|Hε|2) is bounded in Lr/2(Ω) and we have

|Hε|2 2s
⇀ |∇ϕ(x)|2 + 2∇ϕ(x) · ∇yϕ1 (x, y) + |∇yϕ1 (x, y) |2

where ϕ(x) and ϕ1(x, y) are defined by (33) and (34), respectively. We also have

|Hε|2 ⇀ |∇ϕ(x)|2 +

∫
Y

|∇yϕ1(x, y)|2 dy weakly in Lr/2(Ω).

Proof. By Lemma 7, there exists r > 2 such that (|Hε|2) is bounded in Lr/2(Ω). Then there
is a function α(x, y) ∈ Lr/2(Ω× Y ) and a subsequence, still indexed by ε, such that

|Hε|2 2s
⇀ α(x, y).

Writing Hε = aε + bε, with aε(x) = Hε(x) − (∇ϕ(x) + ∇yϕ1
(
x, xε

)
, bε(x) = ∇ϕ(x) +

∇yϕ1
(
x, xε

)
, we have

|Hε(x)|2 = |aε(x)|2 + 2aε(x) · bε(x) + |bε(x)|2.

Thanks to Lemma 6, we have that ∇ϕ(x) and ∇yϕ1(x, y) belong to L6(Ω) and L6(Ω× Y ),
respectively. Moreover, ∇yϕ1(x, xε ) is bounded in L6(Ω × Y ). Let ψ ∈ D(Ω, C∞per(Y )). We
have ∫

Ω

∣∣∣|aε(x)|2ψ
(
x,
x

ε

)∣∣∣ dx ≤ max
(x,y)∈Ω×Y

|ψ(x, y)|
∫

Ω

|aε(x)|2dx,

then

lim
ε→0

∫
Ω

∣∣∣|aε(x)|2ψ
(
x,
x

ε

)∣∣∣ dx = 0,

thanks to Lemma 4. Consequently, |aε|2 2s
⇀ 0. Using the Cauchy-Schwarz inequality we have∫

Ω

∣∣∣aε(x)bε(x)ψ
(
x,
x

ε

)∣∣∣ dx ≤ max
(x,y)∈Ω×Y

|ψ(x, y)|‖aε‖L2(Ω)‖bε‖L2(Ω),

then

lim
ε→0

∫
Ω

∣∣∣aε(x)bε(x)ψ
(
x,
x

ε

)∣∣∣ dx = 0,

consequently, aεbε
2s
⇀ 0. We have

|bε(x)|2 = |∇ϕ(x)|2 + 2∇ϕ(x) · ∇yϕ1
(
x,
x

ε

)
+ |∇yϕ1

(
x,
x

ε

)
|2.

We have from (34) that

∇yϕ1
(
x,
x

ε

)
=

3∑
k=1

∂ϕ

∂xk
(x)∇ywk

(x
ε

)
.
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Passing to the two-scale limit there holds that

|bε|2 2s
⇀ α0(x, y) = |∇ϕ(x)|2 + 2∇ϕ(x) · ∇yϕ1 (x, y) + |∇yϕ1 (x, y) |2.

Consequently, |Hε|2 2s
⇀ α0(x, y) and |Hε|2 ⇀ α(x) =

∫
Y
α0(x, y) dy weakly in Lr/2(Ω). Since

each extracted sequence of (Hε) has the same limit, we deduce that the whole sequence
converges. The proof of Lemma 8 is complete.

4.2 Proof of Theorem 2

4.2.1 Homogenization of the Stokes equations

The homogenization of the Stokes equations has been studied by Tartar, using the method
of oscillating test functions, and by Allaire, using the two-scale convergence method. Here
we present the results and refer to [4, 47] for the proofs. We first mention a version of
the Poincaré inequality [47] which is used for proving uniform estimates of the solution of
problem (30).

Lemma 9. There exists a positive constant c, depending only on Yf , such that, for evrey
v ∈ V , we have

‖v‖L2(Ωf
≤ cε‖∇v‖L2(Ωf ).

Then we easily show the following estimates of the velocity.

Lemma 10. Under assumptions a1–a5, the velocity Uε satisfies the uniform estimates

ε‖∇Uε‖L2(Ωf ) ≤ c‖g‖L2(Ω), ‖Uε‖L2(Ω) ≤ c‖g‖L2(Ω), (65)

where c is a constant independent of ε.

Remark 5. The function Uε can be extended by zero in Ω \Ωεf because of its zero trace on

∂Ωεf . It is well known that extension by zero preserves Lq and W1,q
0 norms for 1 < q <∞.

A uniformly bounded extension of the pressure to the whole domain Ω was introduced
by Tartar [47]; he has defined a restriction operator satisfying the following properties.

Lemma 11. There is a restriction operator

Rε : H1
0(Ω) −→ H1

0(Ωεf ) (1 < q <∞)

such that
W ∈ H1

0(Ωεf ) =⇒RεW = W,

(elements of H1
0(Ωεf ) are extended by 0 to Ω)

divW = 0 =⇒ divRεW = 0,

‖RεW‖L2(Ωε
f ) ≤ c‖W‖L2(Ω) + cε‖∇W‖L2(Ω),

‖∇RεW‖L2(Ωε
f ) ≤

c

ε
‖W‖L2(Ω) + c‖∇W‖L2(Ω),

where c is a constant independent of ε.

Then the following result was derived [47].

Lemma 12. There is an extension Qε of qε which satisfies, for any W ∈ D(Ω,R3),

ε2

∫
Ω

∇Uε · ∇RεW dx−
∫

Ω

Qε divW dx =

∫
Ω

gRεW dx.

Moreover, there is a constant c independent of ε such that

‖Qε‖L2(Ω)/R + ‖∇Qε‖H−1(Ω) ≤ c‖g‖L2(Ω).
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Remark 6. Following [33] one can define the extension of qε by

Qε(x) =


qε in Ωεf ,

1

|Y kε,f |

∫
Y k
ε,f

qε(x) dx in each Y kε,s,

where Y kε,f = ε(Yf + k) and Y kε,s = ε(Ys + k).

Then we can pass to the limit in the Stokes equations. We have from [47] that there is a
subsequence, not relabelled for convenience, and a function Q such that Qε → Q in L2(Ω)
strong. We extend the function Uε by zero in Ω \ Ωεf and use the same notation for the

extended function. We deduce from (65) that Uε and ε∇Uε are bounded in L2(Ω). Then
there is a subsequence, not relabelled for convenience, and a function U0(x, y) ∈ L2(Ω×Y ),
such that

Uε
2s
⇀ U0(x, y), ε∇Uε 2s

⇀ ∇yU0(x, y).

Using appropriate test functions one can derive the equations (38) and (39) satisfied by U0

and Q. Finally, we have

U0(x, y) =

3∑
j=1

ωj(y)

(
gj(x)− ∂Q

∂xj
(x)

)
, x ∈ Ω, y ∈ Yf , (66)∫

Yf

U0(x, y) dy = K (g(x)−∇Q(x)) , x ∈ Ω, (Darcy law) (67)

where K = (Kij)1≤i,j≤3 is the permeability matrix defined by (42).

4.2.2 End of the proof of Theorem 2

We have from (13) that (Mε) is bounded in Lr(Ω), then

Mε 2s
⇀M0(x, y) = λ0 χf (y)H0(x, y),

Mε ⇀M(x) = λ0

∫
Y

χf (y)H0(x, y) dy weakly in Lr(Ω).

We have clearly

Q(x) = P (x)− µf
λ0

2
α(x), α(x) = |∇ϕ(x)|2 +

∫
Y

|∇yϕ1(x, y)|2 dy.

Using (34) we have that

α(x) = |∇ϕ(x)|2 +

∫
Y

∣∣ 3∑
k=1

∂ϕ

∂xk
(x)∇ywk(y)

∣∣2 dy
=

3∑
i=1

∣∣ ∂ϕ
∂xi

(x)
∣∣2 +

3∑
j,k=1

∂ϕ

∂xj
(x)

∂ϕ

∂xk
(x)

∫
Y

∇ywj(y) · ∇ywk(y) dy

=

3∑
i=1

(1 +Aii)
∣∣ ∂ϕ
∂xi

(x)
∣∣2 +

∑
j 6=k

Ajk
∂ϕ

∂xj
(x)

∂ϕ

∂xk
(x),

then α(x) = (I+A)∇ϕ(x) ·∇ϕ(x) where A is the matrix given by (37), hence relation (36).
To finish the proof of Theorem 2, it remains to establish relations (40) and (41). These

are direct consequences of (66) and (67), respectively, together with the relationship P (x) =
Q(x) + Pm(x). The proof of Theorem 2 is complete.
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4.3 Proofs of Lemmas 1 and 2

4.3.1 Proof of Lemma 1

(i) Clearly, a(y, 0) = 0 for a.e. y ∈ Y .

(ii) Let us introduce the functions u, v : R→ R by

u(x) =

{
MsL(b1x) if x 6= 0,

0 if x = 0
v(x) =


u(x)

x
if x 6= 0,

1
3Msb1 if x = 0.

The following properties of the Langevin function are useful:

0 ≤ L(x) ≤ 1, ∀x ≥ 0, L′(x) = − 1

sinh2(x)
+

1

x2
,

L′(x) ≥ 0, ∀x ≥ 0, lim
x→+∞

L(x) = 1, lim
x→+∞

L′(x) = 0,

for x→ 0 : L(x) =
1

3
x− 1

45
x3 +O(x4), − 1

sinh2(x)
+

1

x2
=

1

3
x− 1

15
x2 +O(x3).

We easily verify that u ∈ C1(R) and there exists a constant c such that |u′(x)| ≤ c, for all
x ∈ R. Let us verify that v ∈ C1(R). We have for x→ 0

v(x)− v(0)

x
=
Ms

L(b1x)
x − 1

3Msb1

x
=
Ms

b1x
3 −

(b1x)3

45

x − 1
3Msb1 +O(x3)

x
= −Msb

3
1x

45
+O(x2),

then v is derivable at x = 0 and v′(0) = 0. For x 6= 0 we have

v′(x) = Ms

b1x
(
− 1

sinh2(b1x)
+ 1

(b1x)2

)
− L(b1x)

x2
=
Ms

x

{
−b1

sinh2(b1x)
+

b1
(b1x)2

− L(b1x)

x

}
= O(x2)→ 0, for x→ 0.

Finally we have

v′(x) =

 Ms
b1xL

′(b1x)−L(b1x)
x2 if x 6= 0,

0 if x = 0,
(68)

and v ∈ C1(R). We deduce from (68) that there exists a constant c such that |v′(x)| ≤ c,
for all x ∈ R. Then u and v are Lipschitz continuous on R.

Now define the function w : R3 → R3 by

w(ξ) = (wi(ξ))1≤i≤3, wi(ξ) = v(|ξ|)ξi, ∀ξ ∈ R3.

Let us show that w is Lipschitz continuous. We have

∂wi
∂ξj

(ξ) = v′(|ξ|)ξiξj
|ξ|

+ v(|ξ|)δij , ∀ξ 6= 0

where δij is the Kronecker symbol. Let ξ̂j be the vector of R3 whose components are all 0
except the jth which equals ξj . For ξ = 0, the partial derivative of wi with respect to ξj is

∂wi
∂ξj

(0) = lim
ξj→0

wi(ξ̂
j)− wi(0)

ξj
= lim
ξj→0

wi(ξ̂
j)

ξj
= lim
ξj→0

v(|ξj |)ξ̂ji
ξj

= v(0)δij =
1

3
Msb1δij .

Moreover for ξ 6= 0,
ξiξj
|ξ| ≤

1
2 |ξ|, then∣∣∣∣∂wi∂ξj

(ξ)

∣∣∣∣ ≤ 1

2
|ξ||v′(|ξ|)|+ |v(|ξ|)|.



23

Since v is bounded as well as |ξ|v′(|ξ|), it results that there exists a constant c such that∣∣∣∣∂wi∂xj
(ξ)

∣∣∣∣ ≤ c, ∀ξ ∈ R3 (i, j = 1, 2, 3).

We conclude that w is Lipschitz continuous. Since a(y, ξ) = µ̃(y)ξ + µfχf (y)w(ξ), for all
(y, ξ) ∈ Y × R3, where µ̃ is defined by (44), we deduce that a(y, ξ) is Lipschitz continuous
with respect to ξ. Point (ii) is proven.

(iii) Let F : Y × R3 → R be the function defined by

F (y, ξ) =
µ̃(y)

2
|ξ|2 + µfχf (y)

Ms

b1
ln

(
sinh(b1|ξ)|
|ξ|

)
if ξ 6= 0.

We have
a(y, ξ) = ∇ξF (y, ξ) if ξ 6= 0.

The Hessian matrix H(y, ξ) = (Hij(y, ξ)) of the function ξ 7→ F (y, ξ) is given by Hij(y, ξ) =
∂ai(y,ξ)
∂ξj

. For ξ 6= 0 we have

∂ai(y, ξ)

∂ξj
= µ̃(y)δij + µfχf (y)Ms

(L(b1|ξ|)
|ξ|

δij +
b1|ξ|L′(b1|ξ|)− L(b1|ξ|)

|ξ|2
)ξiξj
|ξ|

= µ̃(y)δij + µfχf (y)Ms
L(b1|ξ|)
|ξ|

(
δij −

ξiξj
|ξ|2

)
+ µfχf (y)Msb1L

′(b1|ξ|)
ξiξj
|ξ|2

.

Let η ∈ R3. Since |ξ|2|η|2 − (ξ · η)2 ≥ 0 and L′(b1|ξ|2) ≥ 0 we deduce that(
H(y, ξ)η; η

)
≥ µ̃(y)|η|2 ≥ inf{µf , µs}|η|2.

It results that the function ξ 7→ a(y, ξ) is strictly monotone and satisfies for all ξ1, ξ2 ∈ R3,(
a(y, ξ1)− a(y, ξ2)

)
·
(
ξ1 − ξ2

)
≥ inf{µf , µs}|ξ1 − ξ2|2,

then ξ 7→ a(y, ξ) is monotone and coercive. Point (iii) is proven. The proof of Lemma 1 is
achieved.

4.3.2 Proof of Lemma 2

We define the operator A : H1
] (Ω)→ (H1

] (Ω))′ by

〈A(ϕ), ψ〉 =

∫
Ω

a
(x
ε
,∇ϕ(x)

)
· ∇ψ(x) dx, ∀(ϕ,ψ) ∈ H1

] (Ω)×H1
] (Ω), (69)

where a(·, ·) is defined by (43). Using the Hölder inequality, we easily verify that the operator
A is well-defined. Define

l(ψ) = µ0

∫
∂Ω

Ha · ν ψ ds, ∀ψ ∈ H1
] (Ω).

Clearly l ∈ (H1
] (Ω))′.

(i) Let us show that the operator A is strictly monotone [30](Chapter III), [32](Chapter
2, Section 2). Let ϕ1, ϕ2 ∈ H1

] (Ω). Using Lemma 1 (iii) we have

〈A(ϕ1)−A(ϕ2), ϕ1 − ϕ2〉 ≥ inf{µf , µs}
∫

Ω

|∇ϕ1 −∇ϕ2|2 dx.

This inequality, together with the Poincaré-Wirtinger inequality, shows that the operator A
is strictly monotone.
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(ii) Let us now check that the operator A satisfies the coerciveness property:

〈A(ϕ), ϕ〉
‖ϕ‖W

→ +∞ as ‖ϕ‖H1
] (Ω) → +∞. (70)

We have

〈A(ϕ), ϕ〉 ≥ inf{µf , µs}
∫

Ω

|∇ϕ|2 dx; ∀ϕ ∈ H1
] (Ω),

then using the Poincaré-Wirtinger inequality there holds that 〈A(ϕ), ϕ〉 ≥ c‖ϕ‖2
H1

] (Ω)
where

c is a constant independent of ε, hence (70).
(iii) It is clear that A is hemicontinuous. We conclude, see e.g. [32] (Chapter 2, Section

2), [30] (Chapter III), that there is a unique ϕ ∈ H1
] (Ω) such that A(ϕ) = l.

(iv) Taking ψ = ϕε in (45) there holds that

inf{µf , µs}
∫

Ω

|∇ϕε|2 dx ≤ 〈A(ϕε), ϕε〉 = µ0

∫
∂Ω

Ha · ν ϕε dσ.

Using the Poincaré-Wirtinger inequality and the trace theorem, we deduce that the sequence
(ϕε) is bounded in H1

] (Ω). The proof of Lemma 2 is complete.

4.4 Proof of Theorem 3

4.4.1 Proof of (i)

Define
aε(x) = a

(x
ε
,∇ϕε(x)

)
where a(y, ξ) is defined by (43). We have from (26) that{

div aε = 0 in Ω,

aε · ν = µ0Ha · ν on ∂Ω.
(71)

We have from Lemma 2 that (ϕε) is bounded in H1
] (Ω) and we easily verify that (aε) is

bounded in L2(Ω). Then there are subsequences, still indexed by ε, and functions ϕ ∈ H1
] (Ω),

ϕ1(x, y) ∈ L2(Ω, H1
per(Y ), and a0(x, y) ∈ L2(Ω× Y ), such that (ϕε) converges to ϕ weakly

in H1(Ω), (∇ϕε) two-scale converges to ∇ϕ(x) +∇yϕ1(x, y), and aε two-scale converges to
a0(x, y). As is classical we have that

divy a0 = 0 in Ω× Y,

div

(∫
Y

a0(·, y) dy

)
= 0 in Ω,

(∫
Y

a0(·, y) dy

)
· ν = µ0Ha · ν on ∂Ω,

a0(x, y) Y-periodic for a.e. x ∈ Ω.

In order to express a0(x, y) in terms of ϕ(x) and ϕ1(x, y) we consider the test function

Ψε(x) = ∇ψε(x) + tΦ(x,
(x
ε

)
), ψε(x) = ψ(x) + εψ1

(
x,
x

ε

)
,

with ψ ∈ D(Ω), ψ1 ∈ D(Ω, C∞per(Y )), Φ ∈ D(Ω, C∞per(Y )), and t a positive real number.
Using the monotonicity of the operator A (defined by (69)), we have∫

Ω

(
aε(x)− a

(x
ε
,Ψε(x)

))
· (∇ϕε(x)−Ψε(x)) dx ≥ 0. (72)

Using (71) and the Green formula we have∫
Ω

aε(x) · (∇ϕε(x)−Ψε(x)) dx = µ0

∫
∂Ω

Ha · ν(ϕε − ψε) dσ −
∫

Ω

aε(x) · tΦ(x,
(x
ε

)
dx
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then (72) becomes

µ0

∫
∂Ω

Ha · ν(ϕε − ψε) dσ −
∫

Ω

aε(x) · tΦ(x,
(x
ε

)
dx

−
∫

Ω

a
(x
ε
,Ψε(x)

)
·
(
∇ϕε(x)−Ψε(x)

)
dx ≥ 0. (73)

Let us write the last term of (73) as∫
Ω

a
(x
ε
,Ψε(x)

)
·
(
∇ϕε(x)−Ψε(x)

)
dx = Iε1 + Iε2 ,

with

Iε1 =

∫
Ω

[
a
(x
ε
,Ψε(x)

)
− a

(x
ε
,∇ψ(x) +∇yψ1

(
x,
x

ε

)
+ tΦ(x,

(x
ε

))]
· [∇ϕε(x)−Ψε(x)] dx,

Iε2 =

∫
Ω

a
(x
ε
,∇ψ(x) +∇yψ1

(
x,
x

ε

)
+ tΦ(x,

(x
ε

))
·
(
∇ϕε(x)−Ψε(x)

)
dx.

We can pass to the limit in Iε2 , as ε→ 0, since a(y,∇ψ(x) +∇yψ1(x, y) + tΦ(x, y)) belongs
to L2

per(Y ;C(Ω)). Indeed

Iε2 →
∫

Ω

∫
Y

a(y,∇ψ(x) +∇yψ1(x, y) + tΦ(x, y))·

· (∇(ϕ(x)− ψ(x)) +∇y(ϕ1(x, y)− ψ1(x, y))− tΦ(x, y)) dxdy.

We have by Lemma 1∣∣∣a(x
ε
,Ψε(x)

)
− a

(x
ε
,∇ψ(x) +∇yψ1

(
x,
x

ε

)
+ tΦ(x,

(x
ε

))∣∣∣
≤ c

∣∣∣Ψε(x)−
(
∇ψ(x) +∇yψ1

(
x,
x

ε

)
+ tΦ

(
x,
x

ε

))∣∣∣
= cε∇xψ1

(
x,
x

ε

)
.

Here and in the sequel we denote by c a positive constant independent of ε. Using the
Cauchy-Schwarz inequality it then holds that |Iε1 | ≤ cε, since (∇ϕε) and (Ψε) are bounded
in L2(Ω). Therefore, passing to the two-scale limit in (73) as ε→ 0, yields∫

∂Ω

µ0Ha · ν(ϕ− ψ) dσ −
∫

Ω

∫
Y

a0(x, y) · tΦ(x, y)dxdy

−
∫

Ω

∫
Y

a(y,∇ψ(x) +∇yψ1(x, y) + tΦ(x, y))·

· (∇(ϕ(x)− ψ(x)) +∇y(ϕ1(x, y)− ψ1(x, y))− tΦ(x, y)) dxdy ≥ 0.

Now we take in the previous inequality ψ = ϕ − tφ, ψ1 = ϕ1 − tφ1, φ = φ(x) ∈ D(Ω) and
φ1 = φ1(x, y) ∈ D(Ω, C∞per(Y )). After dividing by t, there holds that∫

∂Ω

µ0Ha · νφ dσ −
∫

Ω

∫
Y

a0(x, y) · Φ(x, y)dxdy

−
∫

Ω

∫
Y

a(y,∇(ϕ− tφ)(x) +∇y(ϕ1 − tφ1)(x, y) + tΦ(x, y))·

·
(
∇φ(x) +∇yφ1(x, y)− Φ(x, y)

)
dxdy ≥ 0.

Letting t→ 0, it results that∫
∂Ω

µ0Ha · νφ dσ −
∫

Ω

∫
Y

a0(x, y) · Φ(x, y)dxdy

−
∫

Ω

∫
Y

a(y,∇ϕ(x) +∇yϕ1(x, y)) ·
(
∇φ(x) +∇yφ1(x, y)− Φ(x, y)

)
dxdy = 0,



26

for any φ ∈ D(Ω), φ1 ∈ D(Ω, C∞per(Y )) and Φ ∈ D(Ω, C∞per(Y )). We deduce that

a0(x, y) = a
(
y,∇ϕ(x) +∇yϕ1(x, y)

)
and∫

Ω

∫
Y

a(y,∇ϕ(x) +∇yϕ1(x, y)) ·
(
∇φ(x) +∇yφ1(x, y)

)
dxdy =

∫
∂Ω

µ0Ha · νφ dσ, (74)

for any φ ∈ D(Ω), φ1 ∈ D(Ω, C∞per(Y )). Using a density argument we deduce that (74) holds
for any φ ∈ H1(Ω), φ1 ∈ L2(Ω, H1

per(Y )).
Using the strict monotonicity of the operator A (defined by (69)), we easily show that

the variational equation (74) has a unique solution (ϕ,ϕ1) in H1
] (Ω)×L2(Ω, H1

per(Y )). This
implies that the whole sequence (ϕε) converges. We also have that the whole sequence (aε)
two-scale converges to a0(x, y). Then (aε) converges in L2(Ω) weak to a∗(x) =

∫
Y
a0(x, y) dy.

Clearly, the mean null condition
∫

Ω
ϕ(x) dx = 0 is satisfied. The proof of (i) is complete.

Remark 7. We have shown in the above proof that the sequence
(
a
(
x
ε ,∇ϕ

ε(x)
) )

two-scale

converges to a
(
y,∇ϕ(x) +∇yϕ1(x, y)

)
.

4.4.2 Proof of (ii)

We have from (i) above that

aε(x) := a
(x
ε
,∇ϕε(x)

)
⇀ a∗(x) :=

∫
Y

a
(
y,∇ϕ(x) +∇yϕ1(x, y)

)
dy in L2(Ω) weak

and∫
Ω

a∗(x) · ∇φ(x) dx =

∫
∂Ω

µ0Ha · νφ dσ, ∀φ ∈ H1(Ω). (75)

Moreover, taking φ = 0 and φ1 ∈ Hper(Y ) in (47) we obtain that ϕ(x) and ϕ1(x, y) satisfy
the cell problem∫

Y

a(y,∇ϕ(x) +∇yϕ1(x, y)) · ∇yφ1(y) dy = 0, for all φ1 ∈ H1
per(Y ). (76)

Then, according to the definition of the operator b (see (49) and (50)) it holds that

b(∇ϕ(x)) =

∫
Y

a
(
y,∇ϕ(x) +∇yϕ1(x, y)

)
dy = a∗(x),

and (75) reads∫
Ω

b(∇ϕ(x)) · ∇φ(x) dx =

∫
∂Ω

µ0Ha · νφ dσ, for all φ ∈ H1(Ω),

which is equation (48). We prove as in [20] that the operator b satisfies the following
properties:

(i) b(0) = 0;

(ii) b is Lipschitz continuous, i.e. there exists a constant c such that

|b(ξ1)− b(ξ2)| ≤ c|ξ1 − ξ2|, for every ξ1, ξ2 ∈ R3;

(iii) b is monotone and coercive, more precisely,(
b(ξ1)− b(ξ2)

)
· (ξ1 − ξ2) ≥ inf{µf , µs}|ξ1 − ξ2|2, for every ξ1, ξ2 ∈ R3.

It results that equation (48) has a unique solution in H1
] (Ω). Point (ii) is proven.
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4.4.3 Proof of (iii)

Thanks to Remark 7 we have that a
(
x
ε ,∇ϕ

ε(x)
) 2s
⇀ a

(
y,H0(x, y)

)
. Using that a(y, ξ) =

µ̃(y)ξ + µf χf (y)Ms
L(b1|ξ|)
|ξ| ξ, we deduce that

µf χf (
x

ε
)w
(
∇ϕε(x)

) 2s
⇀ µf χf (y)w

(
H0(x, y)

)
, w(ξ) = Ms

L(b1|ξ|)
|ξ|

ξ,

and the result follows readily. The proof of Theorem 3 is complete.

4.5 Proof of Theorem 4

4.5.1 Proof of (i)

In [19] the authors studied the homogenization of a nonlinear problem of the form (46)
(with a Dirichlet boundary condition). They constructed a corrector [19] (Theorem 2.1).
The same arguments allow to prove that their result is also valid for our problem.

Theorem 5. Let ϕε be a solution of problem (45), Hε = ∇ϕε, hε be defined by (54), and
let ϕ be a solution of problem (48). Then

Hε − hε(·, (mε∇ϕ))→ 0 a.e. and strongly in L2(Ω).

4.5.2 Proof of (ii)

Problem (27) is the same as problem (18) then we have from Theorem 2 (ii)

Uε
2s
⇀ U0(x, y), ε∇Uε 2s

⇀ ∇yU0(x, y), Qε → Q strongly in L2(Ω),

where the pair (U0, Q) satisfies (38) and is a solution of problem (39).

4.5.3 Proof of (iii)

Let κ be the function defined by (22). We have
∂κ

∂ξj
(ξ) = MsL(b1|ξ|)

ξj
|ξ|

then

∣∣∣∣ ∂κ∂ξj (ξ)

∣∣∣∣ ≤Ms,

j = 1, 2, 3, which implies that κ is Lipchitz continuous. Moreover, |κ(ξ)| ≤ Ms|ξ|, then
(κ(Hε)) is bounded in L2(Ω) since (Hε) is bounded in L2(Ω).

We have from Theorem 5 that

Hε(x)− hε
(
x, (mε∇ϕ)(x)

)
→ 0 a.e. in Ω and strongly in L2(Ω),

then
κ
(
Hε(x)

)
− κ
(
hε
(
x, (mε∇ϕ)(x)

))
→ 0 a.e. in Ω and strongly in L2(Ω),

since κ is Lipchitz continuous. We are then led to study the limit of κ
(
hε
(
·, (mε∇ϕ)

))
, as

ε→ 0.
Let ξ1, ξ2 ∈ R3 and let h(y, ξ) be the function defined by (53). Using Lemma 1 and the

relation ∫
Y

(
a(y, h(y, ξ1))− a(y, h(y, ξ2))

)
· (h(y, ξ1)− h(y, ξ2)) dy

=

∫
Y

(
a(y, h(y, ξ1))− a(y, h(y, ξ2))

)
· (ξ1 − ξ2) dy,

we deduce that∫
Y

|h(y, ξ1)− h(y, ξ2)|2dy ≤ c
∫
Y

|h(y, ξ1)− h(y, ξ2)||ξ1 − ξ2|dy,
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hence, using the Cauchy-Schwarz inequality,

‖h(·, ξ1)− h(·, ξ1)‖L2(Y ) ≤ c|ξ1 − ξ2|. (77)

Here and in the sequel we denote by c a positive constant independent of ε. Let us now
consider the function κ0 given by (55). Since κ is Lipschitz continuous, we deduce by using
(77) that

|κ0(ξ1)− κ0(ξ2)| ≤
∫
Y

|κ
(
h(y, ξ1)

)
− κ
(
h(y, ξ2)

)
|dy ≤ c

∫
Y

|h(y, ξ1)− h(y, ξ2)|dy

≤ c‖h(·, ξ1)− h(·, ξ2)‖L2(Y ) ≤ c|ξ1 − ξ2|, ∀ξ1, ξ2 ∈ R3. (78)

Let us now study the limit of κ
(
hε(·, (mε∇ϕ))

)
, as ε → 0. Since for every ξ ∈ R3,

y 7→ κ
(
h(y, ξ)

)
∈ L2(Y ) and κ

(
hε(·, ξ)

)
is ε-periodic it holds that

κ
(
hε(·, ξ)

)
⇀ κ0(ξ) weakly in L2(Ω), for every ξ ∈ R3. (79)

Let us prove that
κ
(
hε(·,mεΨ)

)
⇀ κ0(Ψ) weakly in L2(Ω), (80)

for every Ψ ∈ L2(Ω). To this aim we use the following result [19] (Lemma 3.5).

Lemma 13. Let Φ ∈ L2(Ω) and let Ψ be a step function of the form

Ψ(x) =

n∑
j=1

ηj1Ωj
(x)

with ηj ∈ R3 \ {0}, Ωj ⊂⊂ Ω, |∂Ωj | = 0,Ωj ∩ Ωk = ∅ for j 6= k. Then

lim sup
ε→0

‖hε(·,mεΦ)− hε(·,Ψ)‖L2(Ω) ≤ c‖Φ−Ψ‖L2(Ω) (81)

where the constant c is independent of ε and n.

To prove (80) we first note that, by (79),

κ
(
hε(·,Ψ)

)
⇀ κ0(Ψ) weakly in L2(Ω),

for every step function Ψ ∈ L2(Ω). Let then Ψ ∈ L2(Ω). For every δ > 0, there exists a
step function η(x) =

∑n
j=1 ηj1Ωj

(x) with ηj ∈ R3 \ {0}, Ωj ⊂⊂ Ω, |∂Ωj | = 0,Ωj ∩ Ωk = ∅
for j 6= k, such that

‖Ψ− η‖L2(Ω) ≤ δ. (82)

Let us write

κ
(
hε(·,mεΨ)

)
− κ0(Ψ) =

[
κ
(
hε(·,mεΨ)

)
− κ
(
hε(·, η)

)]
+
[
κ
(
hε(·, η)

)
− κ0(η)

]
+
[
κ0(η)− κ0(Ψ)

]
. (83)

By (79) we have that
κ
(
hε(·, η)) ⇀ κ0(η) weakly in L2(Ω). (84)

Since κ is Lipchitz continuous there is a constant c independent of ε such that∣∣κ(hε(x, (mεΨ)(x))
)
− κ
(
hε(x, η(x))

)∣∣ ≤ c |hε(x, (mεΨ)(x))− hε(x, η(x))| , a.e. in Ω.

Using Lemma 13 and the previous inequality we deduce that

lim sup
ε→0

‖κ(hε(·,mεΨ)− κ
(
hε(·, η))‖L2(Ω) ≤ c‖Ψ− η‖L2(Ω) ≤ cδ (85)

where in the last inequality we used (82).
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Let us now consider ‖κ0(η)− κ0(Ψ)‖L2(Ω). We deduce from (78) that∫
Ω

|κ0(η(x))− κ0(Ψ(x))|2dx ≤ c
∫

Ω

|η(x)−Ψ(x)|2dx ≤ cδ2 (86)

where we used (82) in the last inequality. From (83)–(86) we deduce (80). Applying (80)
with Ψ = ∇ϕ and using Theorem 4 (ii) we obtain (56).

To finish the proof of Theorem 4, it remains to establish relations (40) and (41). These
are direct consequences of (57) and (58), respectively, together with the relationship

Q(x) = P (x)− µfκ1(x), κ1(x) = κ0(∇ϕ(x)).

Point (iii) is proven and the proof of Theorem 4 is complete.

5 Concluding remarks

We considered the equations describing the flow of a ferrofluid through a heterogeneous
porous medium Ω in the presence of an applied magnetic field. We discussed two models
where the magnetizationM is parallel to the magnetic fieldH: a linear model and a nonlinear
model where the magnetization and the magnetic field satisfy the Langevin law. The velocity
and the pressure satisfy the Stokes equation with a Kelvin magnetic force. Choosing the
characteristic parameters of the flow as Re = 1

ε2 , Fr = Rem = Eu = 1, we investigated
in each of the two models the homogenization of the differential system with the use of
the two-scale convergence method. We rigorously derived the homogenized equation for the
magnetic potential and determined the asymptotic limit of the magnetization. Then we
rigorously derived a Darcy law.

Let us mention that the analysis done for the Langevin model can be applied by using
similar arguments to the model where the magnetization and the magnetic field satisfy the
relation

M = a1
arctan(b1|H|)

|H|
1Ωf

H,

where a1 and b1 are positive constants and 1Ωf
is the characteristic function of the pore

space Ωf . The extension of this study to take a more general law, e.g. M = f(H), is limited
to the cases where we can homogenize the nonlinear problem satisfied by the potential ϕ
associated with the magnetic field H and that (f(H) · ∇)H has a gradient structure.
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