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The paper is concerned with the homogenization of the equations describing the flow of a ferrofluid through a heterogeneous porous medium Ω in the presence of an applied magnetic field. We discuss two models where the magnetization M is parallel to the magnetic field H. In the first one M and H satisfy the relation

where λ0 is a positive constant and 1Ω f is the characteristic function of Ω f (the pore space). In the second model, M and H satisfy the Langevin magnetization law M = Ms L(b 1 |H|) |H| 1Ω f H, where L is the Langevin function given by L(x) = 1 tanh x -1 x , Ms is the saturation magnetization and b1 is a positive physical constant. The velocity and the pressure satisfy the Stokes equation with a Kelvin magnetic force. We perform the homogenization of the equations of each of the two models. Using the two-scale convergence method, we rigorously derive the homogenized equation for the magnetic potential and determine the asymptotic limit of the magnetization. Then we rigorously derive a Darcy law.

Introduction

Magnetic fluids (also called ferrofluids) are colloidal suspensions of nanoscale magnetic particles in a carrier fluid. Since their physical properties can be easily influenced by an external magnetic field, they have found a wide variety of applications in technology, industry and medicine, see [START_REF] Rosensweig | Ferrohydrodynamics[END_REF]. A potential application of ferrofluids is found in the subsurface environmental engineering, in which externally applied magnetic fields are used to direct and control the flow of ferrofluids under the ground, see [START_REF] Oldenburg | Numerical simulation of ferrofluid flow for subsurface environmental engineering[END_REF]. In the past years, ferrofluid flow in porous media has been the subject of various experimental and numerical studies, see [START_REF] Huang | Numerical Simulation Study of Tracking the Displacement Fronts and Enhancing Oil Recovery Based on Ferrofluid Flooding[END_REF] and the references therein.

An important tool for modeling flows in heterogeneous porous media is the homogenization theory, that allows to derive equations describing the macroscopic behavior of the flows, from the equations of fluid mechanics valid in the pore space. The most widely used methods for the derivation of macroscopic equations for periodic heterogeneous porous media are the method of multiscale expansions [START_REF] Bakhvalov | Homogenization: Averaging processes in periodic media[END_REF][START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF][START_REF] Chechkin | Homogenization: Methods and applications[END_REF][START_REF] Sanchez-Palencia | Non-Homogeneous media and vibration theory[END_REF], the two-scale convergence method [START_REF] Allaire | Homogenization and two-scale convergence[END_REF][START_REF] Lukkassen | Two-scale convergence[END_REF][START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], and the periodic unfolding method [START_REF] Cioranescu | The periodic unfolding method, Theory and Applications to Partial Differential Problems[END_REF]. Ene and Sanchez-Palencia [START_REF] Ene | Équations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux[END_REF] derived the Darcy law, from the Stokes system, by using a formal multiscale expansion. The rigorous mathematical derivation of the Darcy law was given by Tartar [START_REF] Tartar | Convergence of the homogenization process[END_REF], using the method of oscillating test functions. The explicit expression for the pressure extension was given by Lipton and Avellaneda [START_REF] Lipton | Darcy's law for slow viscous flow past a stationary array of bubbles[END_REF]. Several works have been devoted to the derivation of Darcy's law [START_REF] Allaire | Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes, I. Abstract framework, a volume distribution of holes[END_REF][START_REF] Allaire | A brief introduction to homogenization and miscellaneous applications, Mathematical and numerical approaches for multiscale problem[END_REF][START_REF] Cioranescu | Homogenization of the Stokes problem with non homogeneous slip boundary conditions[END_REF][START_REF] Hornung | Homogenization and porous media[END_REF][START_REF] Lipton | Darcy's law for slow viscous flow past a stationary array of bubbles[END_REF]. Homogenization techniques have been developed to treat more general problems: porous medium with double porosity [START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF], nonlinear filtration law [START_REF] Amirat | Homogenization of equations for miscible fluids[END_REF][START_REF] Marušić-Paloka | The derivation of a nonlinear filtration law including the inertia effects via homogenization[END_REF], multiphase flows [START_REF] Amaziane | Homogenization of immiscible compressible two-phase flow in highly heterogeneous porous media with discontinuous capillary pressures[END_REF], non-Newtonian flows [START_REF] Bourgeat | Homogenization of a polymer flow trough a porous medium[END_REF], interface problems [START_REF] Jäger | On the interface boundary conditions by Beavers, Joseph and Saffman[END_REF], MHD flows [START_REF] Amirat | Homogenization of MHD flows in porous media[END_REF][START_REF] Geindreau | Magnetohydrodynamic flows in porous media[END_REF], etc.

In the present paper we study the homogenization of the equations describing the flow of a ferrofluid through a porous medium in the presence of an applied magnetic field. We consider two simple models where the magnetization is parallel to the magnetic field: a linear model and a nonlinear model.

Problem formulation

We consider the flow of a ferrofluid through a porous medium in the presence of an applied magnetic field. The porous medium is denoted by Ω, a smooth bounded and simply connected domain of R 3 , and is composed of a solid part and a pore space that is filled by the ferrofluid. The solid part is denoted by Ω s , the pore space by Ω f , and the fluid/solid interface is denoted by Γ. We assume for simplicity that Ω s is strictly included in Ω.

We denote by U the velocity of the fluid acting in Ω f , H a the applied magnetic field, M the magnetization in the fluid which vanishes outside Ω f , H d the demagnetizing magnetic field, and B the magnetic induction given by

B =      µ f (H d + H a + M ) in Ω f , µ s (H d + H a ) in Ω s , µ 0 (H d + H a ) in R 3 \ Ω,
where µ f , µ s and µ 0 are the magnetic permeabilities in Ω f , Ω s and in vacuum, respectively. We assume that µ f , µ s and µ 0 are positive constants. We denote by H the magnetizing magnetic field defined by

H = H d + H a .
The magnetic induction and the (magnetizing) magnetic field are assumed to satisfy the equations of magnetostatics div B = 0, curl H = 0 in R 3 .

(

) 1 
It results from (1) that on the solid-liquid interface Γ = ∂Ω s we have that

[H × ν Γ ] = 0, [B • ν Γ ] = 0 on Γ. (2) 
Here ν Γ is the unit normal vector to Γ pointing from Ω s to Ω f . The brackets [•] stand for the jump across the solid-fluid interface. More precisely, denoting by v f and v s the values of v on either side of the surface Γ, respectively, in the fluid and solid domains, we set [v] = v f -v s . Equation (2) 1 expresses the continuity of the tangential component of the magnetic field H and (2) 2 expresses the continuity of the normal component of the magnetic induction. We also have

[H × ν] = 0, [B • ν] = 0 on ∂Ω ( 3 
)
where ν is the unit outward normal vector to ∂Ω.

We assume that H d = 0 in R 3 \ Ω, then we derive from (3) the boundary condition

µ f (H + M ) • ν = µ 0 H a • ν on ∂Ω.
We assume that the magnetic field and the magnetization are parallel [START_REF] Odenbach | Magnetoviscous effects in ferrofluids[END_REF] (Section 2.2), [START_REF] Rosensweig | Ferrohydrodynamics[END_REF] (Section 2.7) and [START_REF] Shliomis | Ferrohydrodynamics: Retrospective and issues[END_REF]. We consider two cases, in the first one M and H satisfy the relation

M = λ 0 1 Ω f H in Ω (4)
where λ 0 is a positive constant and 1 Ω f is the characteristic function of Ω f . This case leads to a linear model. In the second case, M and H satisfy the Langevin magnetization law [START_REF] Afkhami | A Field-induced motion of ferrofluid droplets through immiscible viscous media[END_REF][START_REF] Polevikova | Instability of magnetic fluid in a narrow gap between plates[END_REF]]

M = M s L(b 1 |H|) |H| 1 Ω f H, L(x) = 1 tanh(x) - 1 x , x ∈ R, (5) 
where L is the Langevin function, M s is the saturation magnetization, b 1 = µ f m k B T , m is the magnetic moment of the particule, T denotes the temperature and k B is the Boltzmann's constant. We assume that M s and b 1 are positive constants. This case leads to a nonlinear model. Some other relations are used in practical situations, for example M and H satisfy the relation [START_REF] Oldenburg | Numerical simulation of ferrofluid flow for subsurface environmental engineering[END_REF] 

M = a 1 arctan(b 1 |H|) |H| 1 Ω f H,
with a 1 and b 1 positive constants. This case leads to a nonlinear model.

The linear model

Assume that M and H satisfy relation [START_REF] Allaire | A brief introduction to homogenization and miscellaneous applications, Mathematical and numerical approaches for multiscale problem[END_REF]. Let µ denote the function defined a.e. in Ω by

µ = µ f (1 + λ 0 ) in Ω f , µ s in Ω s , (6) 
then we have

B = µ H and H is a solution of div (µ H) = 0, curl H = 0 in Ω, µ f (1 + λ 0 )H • ν = µ 0 H a • ν on ∂Ω.
Since Ω is simply connected, there is ϕ ∈ H 1 (Ω) such that H = ∇ϕ, see for instance [START_REF] Girault | Finite element methods for the Navier-Stokes equations: Theory and algorithms[END_REF] (Theorem 2.9, p. 31). Then ϕ is a solution of

     div(µ∇ϕ) = 0 in Ω, µ f (1 + λ 0 )∇ϕ • ν = µ 0 H a • ν on ∂Ω, Ω ϕ(x) dx = 0. ( 7 
)
The constraint of zero mean on ϕ is imposed in order to ensure the uniqueness of solutions of this problem. The fluid velocity U and the pressure p satisfy the incompressible Stokes equations in the absence of inertial terms

-η∆U + ∇p = µ f (M • ∇)H + g, div U = 0 in Ω f , U = 0 on ∂Ω f , ( 8 
)
where η is the dynamic viscosity, g the external force and the term µ f (M • ∇)H represents the Kelvin body force.

Local description and adimensionalization

We assume that the porous medium has a periodic microstructure. Let l and L denote the characteristic sizes of the heterogeneities and the domain Ω, respectively. We set ε = l L and assume ε << 1 small enough.

Let Y = (0, 1) 3 denote the unit cell. Let Y s (the solid part) be a closed smooth subset of Y with a strictly positive measure. The fluid part is given by Y f = Y \Y s . We denote for each k ∈ Z 3 :

Y k = Y + k, Y k s = Y s + k, Y k f = Y f + k,
then define the sets

X k ε = x : x εL ∈ Y k , X k ε,s = x : x εL ∈ Y k s , X k ε,f = x : x εL ∈ Y k f .
The physical (i.e. dimensional) solid and fluid regions are defined as

X ε s = ∪ k X k ε,s , X ε f = R 3 \X ε s .
Obviously, X ε s is a closed subset of R 3 and X ε f is an open subset of R 3 . Moreover, X ε f is a connected domain, while X ε s is formed by separate closed subsets of R 3 . We assume that Ω is an open simply connected domain of class C 2 . We introduce the fluid and solid domains

Ω ε f = Ω\ k∈I ε X ε k,s , Ω ε s = Ω\Ω ε f , where I ε = {k : X k ε,s ⊂ Ω}. The solid-fluid interface Γ ε
x is defined by

Γ = ∂Y s , Γ k = Γ + k, Γ k x,ε = x : x εL ∈ Γ k , Γ ε x = ∪ k Γ k x,ε .
For convenience, the interface between the solid and fluid domains Ω ∩ Γ ε x is still denoted Γ ε

x .

In order to express equations ( 4), ( 6)-( 8) in dimensionless form, we introduce a change of variables:

x = x/L, U = U/u c , p = p/p c , M = M/m c , H = H/h c , H a = H a /h c , g = g/g c , µ i = µ i /µ ic (i = s, f, 0), (9) 
where the variables indexed by c denote reference values and the variables with the prime superscript denote dimensionless values, respectively. We denote by Ω and Γ the image of Ω and Γ, respectively, under the change of variable x → x . We choose m c = h c and µ sc = µ f c = µ 0c . Using the above change of variables, equation ( 4) reads

M = λ 0 1 Ω f H in Ω . ( 10 
)
The dimensionless equations of magnetostatics are

div (µ H ) = 0, curl H = 0 in Ω , µ f (1 + λ 0 )H • ν = µ 0 H a • ν on ∂Ω ,
and equation [START_REF] Amirat | Homogenization of equations for miscible fluids[END_REF] becomes

     div (µ ∇ ϕ ) = 0 in Ω , µ f (1 + λ 0 )∇ ϕ • ν = µ 0 H a • ν on ∂Ω , Ω ϕ (x) dx = 0, ( 11 
)
where ϕ is the magnetic potential associated with H , i.e. H = ∇ ϕ . We have

- ηu c L 2 ∆ U + p c L ∇ p = µ f m c h c L (M • ∇ )H + g c g ,
dividing by

ρ f u 2 c L we obtain - 1 Re ∆ U + Eu ∇ p = 1 Re m (M • ∇ )H + F r g in Ω f , with Re = ρ f u c L η , Eu = p c ρ f u 2 c , Re m = ρ f u 2 c µ f h 2 c , F r = Lg c ρ f u 2 c .
Here, Re is the Reynolds number, Rm is the magnetic Reynolds number, Eu is the Euler number and F r is the Froude number. In the sequel we take Re = 1 ε 2 , F r = Re m = Eu = 1, then obtain the dimensionless Stokes equations

         -ε 2 ∆ U + ∇ p = (M • ∇ )H + g in Ω f , div U = 0 in Ω f , U = 0 on ∂Ω f . (12) 
In what follows we omit the prime index.

Problem (P ε

l ) Our objective is to perform an asymptotic analysis of equations ( 10)-( 12), as ε → 0. Let us note that in the Stokes equation [START_REF] Bourgeat | Homogenization of a polymer flow trough a porous medium[END_REF], the Kelvin force is a nonlinear function of H, since

(M • ∇)H = λ0 2 ∇(|H| 2
), as we will see below. Then our study will focus on the asymptotic behavior of |H| 2 .

We introduce the following formulation of the problem. The magnetization M ε is given by

M ε = λ 0 1 Ω ε f H ε in Ω, (13) 
where 1 Ω ε f is the characteristic function of Ω ε f . We can write

Ω ε f = x ∈ Ω : χ f x ε = 1 ,
where χ f is the characteristic function of Y f ; clearly, χ f is a Y -periodic function. Let µ ε denote the periodic function defined a.e. in Ω by

µ ε (x) = µ x ε , (14) 
with the period ε in the variable x, where

µ(y) = µ f (1 + λ 0 ), if y ∈ Y f , µ s , if y ∈ Y s . (15) 
The magnetic field H ε is such that

H ε = ∇ϕ ε where ϕ ε is a solution of    div(µ ε ∇ϕ ε ) = 0 in Ω, µ ε ∇ϕ ε • ν = µ 0 H a • ν on ∂Ω, Ω ϕ ε (x) dx = 0. ( 16 
)
Using [START_REF] Chechkin | Homogenization: Methods and applications[END_REF] and equation curl H ε = 0, there holds that

((M ε • ∇)H ε ) k = λ 0 ((H ε • ∇)H ε ) k = λ 0 j H ε j ∂ j H ε k = λ 0 j H ε j ∂ k H ε j = λ 0 j ∂ k |H ε j | 2 2 = λ 0 2 ∂ k (|H ε | 2 ),
then the Kelvin body force can be written as

µ f (M ε • ∇)H ε = µ f λ0 2 ∇ |H ε | 2 .
Because of its gradient structure the latter term can be included in the new pressure

q ε = p ε -µ f λ 0 2 |H ε | 2 , ( 17 
)
then we obtain that the pair (U ε , q ε ) satisfies the Stokes system

           -ε 2 ∆U ε + ∇q ε = g in Ω ε f , div U ε = 0 in Ω ε f , U ε = 0 on ∂Ω ε f , Ω ε f q ε (x) dx = 0. (18) 
Problem (P ε l ) is formed by equations ( 13)- [START_REF] Cioranescu | Homogenization of the Stokes problem with non homogeneous slip boundary conditions[END_REF]. We are interested in describing the asymptotic behavior, when ε tends to 0, of the magnetic field H ε , the magnetization M ε , the velocity U ε and the pressure p ε .

Our goal is the rigorous derivation of a Darcy law including some effect of the applied magnetic field. Clearly, problems [START_REF] Chiadò Piat | G-convergence of monotone operators[END_REF] and [START_REF] Cioranescu | Homogenization of the Stokes problem with non homogeneous slip boundary conditions[END_REF] are decoupled; the homogenization of the second order linear elliptic equation ( 16) is classical, as well as the homogenization of the Stokes system [START_REF] Cioranescu | Homogenization of the Stokes problem with non homogeneous slip boundary conditions[END_REF], see for instance [START_REF] Allaire | A brief introduction to homogenization and miscellaneous applications, Mathematical and numerical approaches for multiscale problem[END_REF][START_REF] Hornung | Homogenization and porous media[END_REF][START_REF] Sanchez-Palencia | Non-Homogeneous media and vibration theory[END_REF][START_REF] Tartar | Convergence of the homogenization process[END_REF]. But relation [START_REF] Cioranescu | The periodic unfolding method, Theory and Applications to Partial Differential Problems[END_REF] gives rise to the study of a nonlinear problem. Let H ε = ∇ϕ ε and let Q ε be the extension of q ε as defined in Lemma 12 (below). According to [START_REF] Cioranescu | The periodic unfolding method, Theory and Applications to Partial Differential Problems[END_REF] we define P ε in Ω by

P ε = Q ε + µ f λ0 2 |H ε | 2 .
Our new result is the regularity of the magnetic field H ε . We prove, by using Meyers' theorem for Neumann problem that, under the assumption H a ∈ H 1 (R 3 ), there exists a real number p M > 2, such that, for all 2 < r < inf{p M , 6}, H ε ∈ L r (Ω), and the sequence (H ε ) is bounded in L r (Ω), see Theorem 1 (below). This implies that the sequence (|H ε | 2 ) is bounded in L r/2 (Ω); note that the exponent r/2 > 1 is essential for applying the two-scale convergence to the sequence (|H ε | 2 ). Let H 0 (x, x/ε) be a corrector for H ε (x), see Lemma 4 (below). Applying the two-scale convergence, we have

|H ε | 2 2s |H 0 (x, y)| 2 . It results that P ε 2s P 0 (x, y) = Q(x) + µ f λ 0 2 |H 0 (x, y)| 2 , P ε P (x) = Q(x) + µ f λ 0 2 (I + A)∇ϕ(x) • ∇ϕ(x),
where A is the constant matrix given by [START_REF] Novotnỳ | Introduction to the mathematical theory of compressible flows[END_REF], and ∇ϕ(x) = Y H 0 (x, y) dy. Then we derive a Darcy law, with an additional term representing the effect induced by homogenization, see Theorem 2 and Remark 1 (below).

Let us mention the paper [START_REF] Ming-Jun | Magnetic fluid flows in porous media[END_REF] dealing with the linear case. Using the representation H = ∇ψ for the magnetic field and a formal upscaling technique, the authors derived the macroscopic flow from the description of the physical mechanisms at the pore scale. Our result is in agreement with the model they derived.

Let us also mention some recent works (derived by means of formal power series expansions) where additional terms arising from local variations of fields have been taken into account in the context of Darcy's flow [START_REF] Penta | Effective governing equations for heterogenous porous media subject to inhomogeneous body forces[END_REF], linear elasticity [START_REF] Penta | Effective balance equations for elastic composites subject to inhomogeneous potentials[END_REF], and electromagnetic composites [START_REF] Di Stefano | Effective balance equations for electrostrictive composites[END_REF].

The nonlinear model

Assume that M and H satisfy relation [START_REF] Amaziane | Homogenization of immiscible compressible two-phase flow in highly heterogeneous porous media with discontinuous capillary pressures[END_REF]. Let µ denote the function defined a.e. in Ω by

µ =    µ f 1 + M s L(b 1 |H|) |H| in Ω f , µ s in Ω s , (19) 
then we have B = µ H and H is a solution of

     div (µ H) = 0, curl H = 0 in Ω, µ f 1 + M s L(b 1 |H|) |H| H • ν = µ 0 H a • ν on ∂Ω.
Let ϕ ∈ H 1 (Ω) the magnetic potential associated to H, i.e. H = ∇ϕ; ϕ is a solution of

       div(µ∇ϕ) = 0 in Ω, µ f 1 + M s L(b 1 |∇ϕ|) |∇ϕ| ∇ϕ • ν = µ 0 H a • ν on ∂Ω, Ω ϕ(x) dx = 0. ( 20 
)
The constraint of zero mean of ϕ is imposed in order to ensure the uniqueness of solutions of this problem.

The fluid velocity U and the pressure p satisfy the Stokes equations

-η∆U + ∇p = µ f (M • ∇)H + g, div U = 0 in Ω f , U = 0 on ∂Ω f . (21) 
The Kelvin body force can be written as

µ f (M • ∇)H = µ f M s L(b 1 |H|) |H| 1 Ω f (H • ∇)H = µ f M s L(b 1 |H|)1 Ω f ∇(|H|).
Using that

x 0 M s L(b 1 s) ds = M s b 1 ln sinh(b 1 x) x , ∀ x ∈ R + , we can write µ f (M • ∇)H = µ f 1 Ω f ∇(κ(H)),
where κ : R 3 → R denote the function defined by

κ(ξ) = M s b 1 ln sinh(b 1 |ξ|) |ξ| , ∀ ξ ∈ R 3 . (22) 
As in the linear case the term representing the Kelvin body force can be included in the new pressure q = p -µ f κ(H). Then we rewrite equation [START_REF] Di Stefano | Effective balance equations for electrostrictive composites[END_REF] as

-η∆U + ∇q = g, div U = 0 in Ω f , U = 0 on ∂Ω f . (23) 
We use the change of variables (9) to express equations ( 5), ( 19)-( 23) in dimensionless form. For notational convenience we take m c = h c = 1. Omitting the prime index we obtain the following equations. The magnetization M ε is given by

M ε = M s L(b 1 |H ε |) |H ε | 1 Ω ε f H ε in Ω. ( 24 
)
Let µ ε denote the function defined a.e. in Ω by

µ ε =    µ f 1 + M s L(b 1 |H ε |) |H ε | in Ω ε f , µ s in Ω ε s , (25) 
and let ϕ ε ∈ H 1 (Ω) such that H ε = ∇ϕ ε ; ϕ ε is a solution of the nonlinear differential equation

       div(µ ε ∇ϕ ε ) = 0 in Ω, µ f 1 + M s L(b 1 |∇ ε ϕ|) |∇ϕ ε | ∇ϕ ε • ν = µ 0 H a • ν on ∂Ω, Ω ϕ ε (x) dx = 0. ( 26 
)
The pair (U ε , q ε ) satisfies the Stokes system

           -ε 2 ∆U ε + ∇q ε = g in Ω ε f , div U ε = 0 in Ω ε f , U ε = 0 on ∂Ω ε f , Ω ε f q ε (x) dx = 0. (27) 
The function q ε is linked with the pressure p ε par the relation

q ε = p ε -µ f κ(H ε ). ( 28 
)
We denote by problem (P ε nl ) the system formed by equations ( 24)-( 28). We are interested in describing the asymptotic behavior, when ε tends to 0, of the magnetization M ε , the magnetic field H ε , the velocity U ε and the pressure p ε .

Here again, our goal is the rigorous derivation of a Darcy law including an effect of the applied magnetic field. Problems ( 26) and ( 27) are decoupled, problem ( 26) is a nonlinear differential equation, and problem ( 27) is identical to problem [START_REF] Cioranescu | Homogenization of the Stokes problem with non homogeneous slip boundary conditions[END_REF] considered in the linear case. Let Q ε be the extension of q ε as defined in Lemma 12 (below), we define P ε in Ω by

P ε = Q ε + µ f κ(H ε )
where κ is given by [START_REF] Elschner | Optimal regularity for elliptic transmission problems including C 1 interfaces[END_REF].

We show that the nonlinear differential operator in ( 26) is strictly monotone, coercive and hemicontinuous. This allows us to prove that the variational equation associated to [START_REF] Girault | Finite element methods for the Navier-Stokes equations: Theory and algorithms[END_REF] has a unique solution ϕ ε ∈ H 1 (Ω) and that ϕ ε is uniformly bounded in H 1 (Ω), see Lemma 2 (below). Using the monotonicity of the differential operator and the two-scale convergence method we derive a two-scale homogenized equation, then deduce the homogenized equation of the magnetic potentiel as well as the two-scale limit of the magnetization and its weak limit in L 2 (Ω), see Theorem 3 (below). Using a corrector for the magnetic field, we deduce the asymptotic behaviour of the sequence µ f κ(H ε ). Then we rigorously derive a Darcy law, see Theorem 4 (below). To our knowledge this result is new.

The remainder is organized as follows: In Section 3 we state our main results. Theorems 1 and 2 are concerned with the asymptotic analysis of the linear problem (P ε l ) and Theorems 3 and 4 are concerned with the asymptotic analysis of the nonlinear problem (P ε nl ). Section 4 is devoted to the proofs and Section 5 concludes the paper.

Main results

We make the following assumptions:

a1 Ω is an open simply connected domain of class C 2 ; a2 Y s is a closed simply connected domain of class C 2 with a strictly positive measure, and such that Y s ⊂ Y ;

a3 µ is the Y -periodic functions in L ∞ (R 3 ), given by (6), satisfying 0 < c 0 ≤ µ ≤ c -1 0 ; a4 g ∈ L 2 (Ω); a5 H a ∈ H 1 (R 3 ).
We introduce the classical function spaces in the theory of the Navier-Stokes equations

D s (Ω f ) = v ∈ D(Ω f , R 3 ) : div v = 0 in Ω f , V = closure of D s (Ω f ) in H 1 (Ω f ).
Here D(Ω f , R 3 ) is the space of infinitely differentiable functions with compact support in Ω f and valued in R 3 . As is well known,

V = v ∈ H 1 0 (Ω f ) : div v = 0 in Ω f .
We also introduce the space

H 1 (Ω) = {ψ ∈ H 1 (Ω) : Ω ψ(x) dx = 0}.
Due to the Poincaré-Wirtinger inequality, there exists a constant c (depending only on Ω) such that

ϕ L 2 (Ω) ≤ c ∇ϕ L 2 (Ω) , ∀ϕ ∈ H 1 (Ω).

Two-scale convergence

To describe the asymptotic analysis of problems (P ε l ) and (P ε nl ) we use the two-scale convergence method [START_REF] Allaire | Homogenization and two-scale convergence[END_REF][START_REF] Lukkassen | Two-scale convergence[END_REF][START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. We denote by C ∞ per (Y ) the space of infinitely differentiable functions in R 3 which are Y -periodic, by C per (Y ) the Banach space of continuous and Y -periodic functions, and by

W 1,q per (Y ) (1 < q < ∞) the closure of C ∞ per (Y ) in the W 1,q (Y )- norm. Eventually, D(Ω, C ∞ per (Y )
) denotes the space of infinitely smooth and compactly supported functions in Ω with values in the space

C ∞ per (Y ). A sequence (u ε ) of functions in L q (Ω), 1 < q < ∞, is said two-scale convergent (in L q ) to a function u 0 (x, y), u 0 ∈ L q (Ω × Y ), as ε → 0, if lim ε→0 Ω u ε (x)ϕ x, x ε dx = Ω×Y u 0 (x, y)ϕ(x, y) dxdy,
for any test function ϕ ∈ D(Ω, C ∞ per (Y )); we will write u ε 2s u 0 (x, y). Note that for the space of admissible test functions, the space C( Ω, C ∞ per (Y )) can be also used. It is a crucial property of the two-scale convergence that for any bounded sequence (u ε ) of L q (Ω) there is a subsequence, still denoted (u ε ), and a function u 0 (x, y), u 0 ∈ L q (Ω × Y ), such that u ε 2s u 0 (x, y), see [START_REF] Allaire | Homogenization and two-scale convergence[END_REF][START_REF] Lukkassen | Two-scale convergence[END_REF][START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. Let also cite the following properties [START_REF] Allaire | Homogenization and two-scale convergence[END_REF][START_REF] Lukkassen | Two-scale convergence[END_REF][START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]:

(i) If (u ε ) is a bounded sequence of W 1,q (Ω), there is a subsequence, still denoted (u ε ),
and there are functions u ∈ W 1,q (Ω), u 1 ∈ L q (Ω; W 1,q per (Y )), such that u ε u in W 1,q (Ω) weak, u ε 2s u(x), ∇u ε 2s ∇u(x) + ∇ y u 1 (x, y).

(ii) If (u ε ) is a bounded sequence of L q (Ω), such that (ε∇u ε ) is bounded in L q (Ω), then there is a subsequence, still denoted (u ε ), and a function u 0 (x, y), u 0 ∈ L q (Ω; W 1,q per (Y )), such that u ε 2s u 0 (x, y), ε∇u ε 2s ∇ y u 0 (x, y).

Main results in the linear case

The weak formulation of problem ( 16) is

ϕ ε ∈ H 1 (Ω), Ω µ ε ∇ϕ ε • ∇ψ dx = ∂Ω µ 0 H a • ν ψ dσ, ∀ψ ∈ H 1 (Ω), (29) 
where µ ε is defined by ( 14), [START_REF] Chiadò Piat | Homogenization of quasi-linear equations with natural growth terms[END_REF]. By the Lax-Milgram theorem and the Poincaré-Wirtinger inequality, there exists a unique solution to [START_REF] Jäger | On the interface boundary conditions by Beavers, Joseph and Saffman[END_REF].

The weak formulation of problem ( 18) is

U ε ∈ V, ε 2 Ω ε f ∇U ε • ∇v dx = Ω ε f g • v dx, ∀v ∈ V. ( 30 
)
Under assumption a4, this problem has a unique solution.

We define a constant (homogenized) matrix µ ef f by

µ ef f ik = Y µ(y) δ ik + ∂w k ∂y i (y) dy, i, k = 1, 2, 3, (31) 
where w k (y) denotes a scalar Y -periodic function which solves the cell problem

-div y µ(y)∇ y w k (y) = div y µ(y) e k in Y, Y w k (y) dy = 0. ( 32 
)
Here e k denotes the k-th standard basis vector of R 3 . Clearly, problem (32) has a unique weak solution w k ∈ H 1 per (Y ), where H 1 per (Y ) denotes the space of functions in H 1 loc (R 3 ) which are Y -periodic. Let ϕ be a solution of the homogenized equation

ϕ ∈ H 1 (Ω), Ω µ ef f ∇ϕ • ∇ψ dx = µ 0 ∂Ω H a • ν ψ dσ, ∀ψ ∈ H 1 (Ω), (33) 
where µ ef f is a constant matrix defined by [START_REF] Ming-Jun | Magnetic fluid flows in porous media[END_REF]. Note that µ ef f is symmetric and positive definite. Let ϕ 1 be the function defined by

ϕ 1 (x, y) = 3 k=1 ∂ϕ ∂x k (x)w k (y), (x, y) ∈ Ω × Y. (34) 
Clearly, ϕ 1 ∈ L 2 (Ω; H 1 per (Y )) and we have

-div y µ(y) ∇ϕ(x) + ∇ y ϕ 1 (x, y) = 0 in Y.
Let (e i ) 1≤i≤3 denote the canonical basis of R 3 . We introduce the differential systems in

Y f , for 1 ≤ i ≤ 3:          -∆ y ω i (y) + ∇ y π i (y) = e i in Y f , div y ω i (y) = 0 in Y f , ω i |∂Ys = 0, Y f π i (y) dy = 0. (35) 
Clearly, problem [START_REF] Marušić-Paloka | The derivation of a nonlinear filtration law including the inertia effects via homogenization[END_REF] has a unique solution (ω i , π

i ) ∈ H 1 per (Y f ) × L 2 (Y f
). We now state our first main result.

Theorem 1. Under assumptions a1-a5, let ϕ ε be a solution of problem [START_REF] Jäger | On the interface boundary conditions by Beavers, Joseph and Saffman[END_REF], and H ε = ∇ϕ ε . Then the sequence (H ε ) two-scale converges to H 0 (x, y) = ∇ϕ(x) + ∇ y ϕ 1 (x, y) where ϕ(x) is a unique solution of the homogenized equation [START_REF] Lipton | Darcy's law for slow viscous flow past a stationary array of bubbles[END_REF], and ϕ 1 (x, y) is defined by [START_REF] Lukkassen | Two-scale convergence[END_REF]. We have ϕ ∈ H 2 (Ω) and ϕ 1 ∈ H 1 (Ω; W 1,6 per (Y )). Moreover: (i) There exists a real number p M > 2, such that, for all 2 < r < inf{p M , 6}, H ε ∈ L r (Ω), the sequence (H ε ) is bounded in L r (Ω), and H 0 (x, y) ∈ L r (Ω × Y ).

(ii) We have

|H ε | 2 2s α 0 (x, y) := |∇ϕ(x)| 2 + 2∇ϕ(x) • ∇ y ϕ 1 (x, y) + |∇ y ϕ 1 (x, y) | 2 , |H ε | 2 α(x) := |∇ϕ(x)| 2 + Y |∇ y ϕ 1 (x, y)| 2 dy weakly in L r/2 (Ω).
Our second main result is the following.

Theorem 2. Under assumptions a1-a5 and notations of Theorem 1, let M ε be the function defined by (13), (U ε , q ε ) a solution of problem [START_REF] Cioranescu | Homogenization of the Stokes problem with non homogeneous slip boundary conditions[END_REF], p ε the function linked with q ε par relation [START_REF] Cioranescu | The periodic unfolding method, Theory and Applications to Partial Differential Problems[END_REF], Q ε the extension of q ε as defined in Lemma 12 (below). We define P ε in Ω by

P ε = Q ε + µ f λ0 2 |H ε | 2 . Then: (i) the sequence (M ε ) two-scale converges to M 0 (x, y) and converges weakly in L 2 (Ω) to M (x) = Y M 0 (x, y) dy, where M 0 ∈ L r (Ω × Y ), for all 2 < r < inf{p M , 6}, is given by M 0 (x, y) = λ 0 χ f (y) H 0 (x, y) and χ f (y) is a Y -periodic function defined in Y as the characteristic function of Y f . (ii) There exist funtions U 0 ∈ L 2 (Ω; H 1 per (Y )), Q ∈ L 2 (Ω), P 0 ∈ L r/2 (Ω × Y ) such that U ε 2s U 0 (x, y), ε∇U ε 2s ∇ y U 0 (x, y), Q ε → Q strongly in L 2 (Ω), P ε 2s P 0 (x, y) = Q(x) + µ f λ 0 2 α 0 (x, y), P ε P (x) := Q(x) + P m (x) weakly in L r/2 (Ω),
where P m is the magnetic pressure given by

P m (x) = µ f λ 0 2 α(x) = µ f λ 0 2 (I + A)∇ϕ(x) • ∇ϕ(x) (36) 
and A = (A ij ) 1≤i,j≤3 is a symmetric and positive definite matrix given by

A ij = Y ∇ y w i (y) • ∇ y w j (y) dy, (w k defined by (32)). ( 37 
)
The pair

(U 0 , Q) is such that              U 0 = 0 in Ω × Y s , div y U 0 = 0 in Ω × Y, div Y U 0 (•, y) dy = 0 in Ω, Y U 0 (•, y) dy • ν = 0 on ∂Ω, U 0 (x, y) Y-periodic for a.e. x ∈ Ω, Ω Q(x) dx = 0, (38) 
and is a solution of

               Ω Y f ∇ y U 0 (x, y) • ∇ y ζ(x, y) dxdy - Ω Y f Q(x) div x ζ(x, y) dxdy = Ω Y f g(x) • ζ(x, y) dxdy, ∀ζ ∈ D(Ω, C ∞ per (Y )), with ζ = 0 in Ω × Y s and div y ζ(x, y) = 0 in Ω × Y. (39) 
Moreover,

U 0 (x, y) = 3 j=1 ω j (y) g j (x) - ∂P ∂x j (x) + ∂P m ∂x j (x) , x ∈ Ω, y ∈ Y f , (40) 
Y f U 0 (x, y) dy = K g(x) -∇P (x) + ∇P m (x) , x ∈ Ω, (Darcy law) (41) 
where K = (K ij ) 1≤i,j≤3 is the permeability matrix given by

K ij = Y f ∇ y ω i ∇ y ω j dy = Y f ω i j dy, (ω i defined by (35)). ( 42 
)
The permeability matrix K is symmetric and positive definite.

The proofs of Theorems 1 and 2 are given in Section 4.

Remark 1. We can rewrite the Darcy law (41) in the following form. From Theorem 1 (ii) and (36) we have

P m (x) = µ f λ 0 2 |∇ϕ(x)| 2 + µ f λ 0 2 A∇ϕ(x) • ∇ϕ(x),
where ϕ(x) is a unique solution of the homogenized equation [START_REF] Lipton | Darcy's law for slow viscous flow past a stationary array of bubbles[END_REF], and A is a matrix defined by [START_REF] Novotnỳ | Introduction to the mathematical theory of compressible flows[END_REF]. Define

H(x) = ∇ϕ(x), M (x) = λ 0 H(x), g K (x) = µ f (M • ∇)H (x), R(x) = µ f λ 0 2 A∇ϕ(x) • ∇ϕ(x).
We have ∇ µ f λ0

2 |∇ϕ(x)| 2 = µ f (M • ∇)H (x) = g K (x), then (41) takes the form Y f U 0 (x, y) dy = K g(x) + g K (x) -∇P (x) + ∇R(x) ,
where K∇R(x) represents the effect induced by homogenization.

Remark 2. It results from [START_REF] Odenbach | Magnetoviscous effects in ferrofluids[END_REF] and (41) that the pressure P satisfies the differential equation

   -div K(∇(P -P m ) = -div (Kg) in Ω, K∇(P -P m ) • ν = Kg • ν on ∂Ω.
The weak formulation of this problem is

P ∈ H 1 (Ω), Ω K∇ (P -P m ) • ∇ψ dx = Ω Kg • ∇ψ dx, ∀ψ ∈ H 1 (Ω).
Clearly, this problem has a unique solution.

Remark 3. Theorem 2 can be generalized to the case where the load g also depends on the variable y

= x/ε. Let g ∈ L 2 (Ω; C per (Y ) 3 ). Define g ε (x) = g(x, x ε ). We have g ε L 2 (Ω) ≤ g L 2 (Ω;Cper(Y ) 3 ) . The Stokes system            -ε 2 ∆U ε + ∇q ε = g ε in Ω ε f , div U ε = 0 in Ω ε f , U ε = 0 on ∂Ω ε f , Ω ε f q ε (x) dx = 0.
has a unique solution (U ε , q ε ). We extend U ε by zero in Ω \ Ω ε f and still denote by U ε the extended function. Let Q ε be the extension of q ε as defined in Lemma 12 (below). We define

P ε in Ω by P ε = Q ε + µ f λ0 2 |H ε | 2 . We have ε ∇U ε L 2 (Ω) ≤ c, U ε L 2 (Ω) ≤ c, Q ε L 2 (Ω) ≤ c,
where c is a constant independent of ε. Using the two-scale convergence, we show that the sequence (U ε , Q ε ) two-scale converges to the unique solution

(U 0 , Q) ∈ L 2 (Ω; H 1 per (Y )) × L 2 (Ω) of the two-scale homogenized problem                        -∆ y U 0 (x, y) + ∇Q(x) + ∇ y Q 1 (x, y) = g(x, y) in Ω × Y f , U 0 = 0 in Ω × Y s , div y U 0 = 0 in Ω × Y, div Y U 0 (•, y) dy = 0 in Ω, Y U 0 (•, y) dy • ν = 0 on ∂Ω, U 0 (x, y), Q 1 (x, y) Y-periodic for a.e. x ∈ Ω, Ω Q(x) dx = 0, Y Q 1 (x, y) dy = 0 for a.e. x ∈ Ω. Let (ω 0 , π 0 ) ∈ L 2 (Ω; H 1 per (Y )) × L 2 (Ω × Y f ) the unique solution of the cell problem            -∆ y ω 0 (x, y) + ∇ y π 0 (x, y) = g(x, y) in Ω × Y f , div y ω 0 (x, y) = 0 in Ω × Y f , ω 0 |∂Ys = 0, Y f
π 0 (x, y) dy = 0 for a.e. x ∈ Ω.

We show that

U 0 (x, y) = ω 0 (x, y) + 3 j=1 ω j (y) - ∂Q ∂x j (x) , x ∈ Ω, y ∈ Y f .
Using that

P ε P (x) := Q(x) + P m (x) weakly in L r/2 (Ω), with P m = Q + µ f λ0 2 |∇ϕ| 2 + µ f λ0
2 A∇ϕ • ∇ϕ, we derive the Darcy law

Y f U 0 (x, y) dy = Y f ω 0 (x, y) dy + K -∇P (x) + ∇P m (x) , x ∈ Ω.

Main results in the nonlinear case

Let a : 

Y × R 3 → R 3 be defined by a(y, ξ) =    µ(y)ξ + µ f χ f (y)M s L(b1|ξ|) |ξ| ξ for a.e. y ∈ Y, for all ξ ∈ R 3 \ {0}, 0 if ξ = 0, (43) 
We have the following result.

Lemma 1. The function a(y, ξ) defined by (43) satisfies the following properties:

(i) a(y, 0) = 0 for a.e. y ∈ Y ;

(ii) a(y, ξ) is Lipschitz continuous with respect to ξ, i.e. there exists a constant c such that

|a(y, ξ 1 ) -a(y, ξ 2 )| ≤ c|ξ 1 -ξ 2 |, for a.e. y ∈ Y, for all ξ 1 , ξ 2 ∈ R 3 ;
(iii) a(y, ξ) is monotone and coercive, more precisely,

(a(y, ξ 1 ) -a(y, ξ 2 )) • (ξ 1 -ξ 2 ) ≥ inf{µ f , µ s }|ξ 1 -ξ 2 | 2 , for a.e. y ∈ Y, for all ξ 1 , ξ 2 ∈ R 3 .
The weak formulation of problem [START_REF] Girault | Finite element methods for the Navier-Stokes equations: Theory and algorithms[END_REF] reads

ϕ ε ∈ H 1 (Ω), Ω a x ε , ∇ϕ ε (x) • ∇ψ dx = ∂Ω µ 0 H a • ν ψ dσ, ∀ψ ∈ H 1 (Ω). ( 45 
)
We have the following result.

Lemma 2. Problem (45) has a unique solution ϕ ε . Moreover, the sequence

(ϕ ε ) is bounded in H 1 (Ω).
The proofs of Lemmas 1 and 2 are provided in Section 4. Problem ( 27) is identical to problem (18) whose weak formulation is

U ε ∈ V, ε 2 Ω ε f ∇U ε • ∇v dx = Ω ε f g • v dx, ∀v ∈ V.
Let us mention that homogenization of nonlinear problems of the form

-div a x ε , ∇u ε = f in Ω, u ε ∈ W 1,r 0 (Ω), (46) 
where f ∈ W -1,r (Ω), 1 < r < ∞, and a(y, ξ) is a Y -periodic function in y and satisfies suitable assumptions of uniform Lipschitz continuity and uniform strict monotonicity in ξ, have been studied in [START_REF] Allaire | Homogenization and two-scale convergence[END_REF][START_REF] Attouch | Introduction à l'homogénéisation d'inéquations variationnelles[END_REF][START_REF] Chiadò Piat | Homogenization of monotone operators[END_REF][START_REF] Chiadò Piat | Homogenization of quasi-linear equations with natural growth terms[END_REF][START_REF] Chiadò Piat | G-convergence of monotone operators[END_REF][START_REF] Defranceschi | An introduction to homogenization and G-convergence[END_REF][START_REF] Lukkassen | Two-scale convergence[END_REF]. In these papers, oscillating test functions are used to derive the homogenized equation. A corrector result has been proven in [START_REF] Maso | Correctors for the homogenization of monotone operators[END_REF].

Let us also mention a paper on homogenization of boundary value problems for monotone operators in perforated domains with rapidly oscillating boundary conditions of Fourier type [START_REF] Piatnitski | Homogenization of boundary value problems for monotone operators in perforated domains with rapidly oscillating boundary conditions of Fourier type[END_REF].

We now state our third main result. Using the two-scale convergence method we derive a two-scale homogenized equation. In addition we derive the homogenized equation of the magnetic potentiel as well as the two-scale limit of the magnetization and its weak limit in L 2 (Ω).

Theorem 3. Under assumptions a1-a5, let a be defined by [START_REF] Polevikova | Instability of magnetic fluid in a narrow gap between plates[END_REF], ϕ ε a solution of problem [START_REF] Sanchez-Palencia | Non-Homogeneous media and vibration theory[END_REF], H ε = ∇ϕ ε , and let M ε be the function defined by [START_REF] Gallouët | On the regularity of solutions to elliptic equations[END_REF]. Then:

(i) The sequence (ϕ ε ) of solutions of problem [START_REF] Sanchez-Palencia | Non-Homogeneous media and vibration theory[END_REF] converges weakly in H 1 (Ω) to a function ϕ and the sequence (H ε ) two-scale converges to H 0 (x, y) = ∇ϕ(x) + ∇ y ϕ 1 (x, y), where

(ϕ, ϕ 1 ) is the unique solution in H 1 (Ω) × L 2 (Ω; H 1 per (Y )) of the two-scale equation Ω Y a y, ∇ϕ(x)+∇ y ϕ 1 (x, y) • ∇φ(x)+∇ y φ 1 (x, y) dxdy = ∂Ω µ 0 H a •νφ dσ, (47) 
for any φ ∈ H 1 (Ω), φ 1 ∈ L 2 (Ω; H 1 per (Y )). Moreover,

a ε (x) := a x ε , ∇ϕ ε (x)
2s a y, ∇ϕ(x) + ∇ y ϕ 1 (x, y) , a ε (x) a * (x) := Y a y, ∇ϕ(x) + ∇ y ϕ 1 (x, y) dy in L 2 (Ω) weak.

(ii) The function ϕ is a unique solution in H 1 (Ω) of the homogenized equation

Ω b(∇ϕ(x)) • ∇φ(x) dx = ∂Ω µ 0 H a • νφ dσ, ∀φ ∈ H 1 (Ω). ( 48 
)
The operator b : R 3 → R 3 is defined for every ξ ∈ We now study the asymptotic behaviour of the sequence µ f κ(H ε ) where κ is defined by [START_REF] Elschner | Optimal regularity for elliptic transmission problems including C 1 interfaces[END_REF]. To this aim we use a corrector for the magnetic field. Following [START_REF] Maso | Correctors for the homogenization of monotone operators[END_REF], we introduce a sequence (m ε ) of approximations of the identity map in L 2 (Ω) such that m ε Φ is a step function for every Φ ∈ L 2 (Ω). More precisely, for every ε > 0 and every Φ ∈ L 2 (Ω), we define a function m ε Φ : R 3 → R 3 by

m ε Φ(x) = i∈Iε 1 Y i ε (x) 1 |Y i ε | Y i ε Φ(y) dy (51) 
where

Y i ε = ε(i + Y ) (for i ∈ Z 3 ), I ε = {i ∈ Z 3 : Y i ε ⊂
Ω} and 1 A is the characteristic function of a set A ⊂ R 3 . Let us note that, as ε → 0, we have [START_REF] Zaanen | An introduction to the theory of integration[END_REF] (Chapter 8) m ε Φ → Φ a.e. in Ω and strongly in L 2 (Ω).

(52)

We define a function h :

Y × R 3 → R 3 by h(y, ξ) = ξ + ∇ y w(y, ξ) (53) 
where for every ξ ∈ R 3 , w(•, ξ) is a unique (up to an additive constant) solution in H 1 per (Y ) of the cell problem (50). Let us note that w(•, ξ) can be extended by periodicity to a function of H 1 loc (R 3 ) and that problem (50) is equivalent to div x (a(x, ξ + ∇ x w(x, ξ))) = 0 in D (R 3 ). Finally, we set

h ε (x, ξ) = ξ + ∇ y w x ε , ξ , (x, ξ) ∈ R 3 × R 3 . ( 54 
)
Our fourth main result is the following.

Theorem 4. Under assumptions a1-a5 and notations of Theorem 3, let (U ε , q ε ) be a solution of problem [START_REF] Hornung | Homogenization and porous media[END_REF], p ε the function linked with q ε par relation [START_REF] Huang | Numerical Simulation Study of Tracking the Displacement Fronts and Enhancing Oil Recovery Based on Ferrofluid Flooding[END_REF], Q ε the extension of q ε as defined in Lemma 12 (below). We define P ε in Ω by

P ε = Q ε + µ f κ(H ε )
where κ is defined by [START_REF] Elschner | Optimal regularity for elliptic transmission problems including C 1 interfaces[END_REF]. Then:

(i) We have

H ε (x) -h ε (x, (m ε ∇ϕ)(x)) → 0 a.e.
in Ω and strongly in L 2 (Ω),

where h ε (x, ξ) is defined by (54).

(ii) We have from Theorem 2 (ii)

U ε 2s U 0 (x, y), ε∇U ε 2s ∇ y U 0 (x, y), Q ε → Q strongly in L 2 (Ω),
where the pair (U 0 , Q) satisfies [START_REF] Odenbach | Magnetoviscous effects in ferrofluids[END_REF] and is a solution of problem [START_REF] Oldenburg | Numerical simulation of ferrofluid flow for subsurface environmental engineering[END_REF].

(iii) Define

κ 0 (ξ) = Y κ h(y, ξ) dy, ∀ ξ ∈ R 3 , (55) 
where h(•, ξ) is defined by (53). We have

P ε P (x) := Q(x) + µ f κ 1 (x) weakly in L 2 (Ω), (56) 
with κ 1 (x) = κ 0 (∇ϕ(x)), x ∈ Ω. Moreover,

U 0 (x, y) = 3 j=1 ω j (y) g j (x) - ∂P ∂x j (x) + µ f ∂κ 1 ∂x j (x) , x ∈ Ω, y ∈ Y f , (57) 
Y f U 0 (x, y) dy = K (g(x) -∇P (x) + µ f ∇κ 1 (x)) , x ∈ Ω. (Darcy law) (58)
The proofs of Theorems 3 and 4 are given in Section 4.

Proofs

4.1 Proof of Theorem 1

Limit of the magnetic field

We have the following result whose proof is immediate.

Lemma 3. Let (ϕ ε ) be the sequence of solutions of equation [START_REF] Jäger | On the interface boundary conditions by Beavers, Joseph and Saffman[END_REF]. Then (ϕ ε ) converges weakly in H 1 (Ω) to the solution ϕ of the homogenized equation [START_REF] Lipton | Darcy's law for slow viscous flow past a stationary array of bubbles[END_REF]. Moreover, the sequence (∇ϕ ε ) two-scale converges to ∇ϕ(x) + ∇ y ϕ 1 (x, y) where ϕ 1 (x, y) is given by (34) and we have

Ω Y µ(y) ∇ϕ(x) + ∇ y ϕ 1 (x, y) • ∇ψ(x) + ∇ y ψ 1 (x, y) dx = µ 0 ∂Ω H a • νψ dσ, (59) 
∀(ψ, ψ 1 ) ∈ H 1 (Ω)× ∈ L 2 (Ω; H 1 per (Y )
). We have the following result. Lemma 4. Let (ϕ ε ) be the sequence of solutions of (29), ϕ(x) be defined by (33) and ϕ 1 (x, y) by [START_REF] Lukkassen | Two-scale convergence[END_REF]. Then

∇ϕ ε (x) -∇ϕ(x) -∇ y ϕ 1 x, x ε → 0 in L 2 (Ω). ( 60 
)
Remark 4. The function ∇ϕ(x)

+ ∇ y ϕ 1 x, x ε is a corrector for H ε (x).
Proof of Lemma 4. We have

µ - Ω ∇ϕ ε (x) -∇ϕ(x) -∇ y ϕ 1 x, x ε 2 dx ≤ Ω µ ε (x) ∇ϕ ε (x) -∇ϕ(x) -∇ y ϕ 1 x, x ε • ∇ϕ ε (x) -∇ϕ(x) -∇ y ϕ 1 x, x ε dx = Ω µ ε (x)∇ϕ ε (x) • ∇ϕ ε (x) -2 Ω µ ε (x)∇ϕ ε (x) • ∇ϕ(x) + ∇ y ϕ 1 x, x ε dx + Ω µ ε (x) ∇ϕ(x) + ∇ y ϕ 1 x, x ε • ∇ϕ(x) + ∇ y ϕ 1 x, x ε dx,
where µ -= inf{µ f (1 + λ 0 ), µ s }. We have from ( 29)

Ω µ ε ∇ϕ ε • ∇ϕ ε dx = ∂Ω µ 0 H a • ν ϕ ε dσ, then lim ε→0 Ω µ ε ∇ϕ ε • ∇ϕ ε dx = ∂Ω µ 0 H a • ν ϕ dσ.
Using [START_REF] Lukkassen | Two-scale convergence[END_REF] we have

Ω µ ε (x)∇ϕ ε (x) • ∇ϕ(x) + ∇ y ϕ 1 x, x ε dx = Ω µ ε (x)∇ϕ ε (x) • ∇ϕ(x) + 3 k=1 ∂ϕ ∂x k (x)∇ y w k x ε dx,
then, passing to the two-scale limit we get

lim ε→0 Ω µ ε (x)∇ϕ ε (x) • ∇ϕ(x) + ∇ y ϕ 1 x, x ε dx = Ω Y µ(y) ∇ϕ(x) + ∇ y ϕ 1 (x, y) • ∇ϕ(x) + 3 k=1 ∂ϕ ∂x k (x)∇ y w k (y) dxdy = Ω Y µ(y) ∇ϕ(x) + ∇ y ϕ 1 (x, y) • ∇ϕ(x) + ∇ y ϕ 1 (x, y) dxdy.
We have

Ω µ ε (x) ∇ϕ(x) + ∇ y ϕ 1 x, x ε • ∇ϕ(x) + ∇ y ϕ 1 x, x ε dx = Ω µ ε (x) ∇ϕ(x) + 3 k=1 ∂ϕ ∂x k (x)∇ y w k x ε • ∇ϕ(x) + 3 k=1 ∂ϕ ∂x k (x)∇ y w k x ε dx,
then, passing to the two-scale limit we get

lim ε→0 Ω µ ε (x) ∇ϕ(x) + ∇ y ϕ 1 x, x ε • ∇ϕ(x) + ∇ y ϕ 1 x, x ε dx = Ω Y µ(y) ∇ϕ(x) + ∇ y ϕ 1 (x, y) • ∇ϕ(x) + ∇ y ϕ 1 (x, y) dxdy.
We then get

lim ε→0 µ - Ω ∇ϕ ε (x) -∇ϕ(x) -∇ y ϕ 1 x, x ε 2 dx ≤ - Ω Y µ(y) ∇ϕ(x) + ∇ y ϕ 1 (x, y) • ∇ϕ(x) + ∇ y ϕ 1 (x, y) dxdy + ∂Ω µ 0 H a • ν ϕ dσ = 0,
where we used (59) in the last equality. Then (60) follows and the proof of Lemma 4 is achieved.

Regularity and two-scale convergence of

(|H ε | 2 )
We have the following result.

Lemma 5. The solution w k of problem (32) belongs to W 1,6 per (Y ).

Proof. We extend by periodicity the function w k to R 3 and still denote by w k the extended function. We take a cut-off function θ ∈ D(R 3 ) such that θ = 1 in a neighborhood of Y . Let Ỹ denote an open smooth bounded domain containing the support of θ. We set u = θw k . We have

-div(µ∇u) = -div(µw k ∇θ) -div(µθ∇w k ) = -div(µw k ∇θ) -θ div(µ∇w k ) -µ∇θ • ∇w k = -div(µw k ∇θ) + θ div(µe k ) -µ∇θ • ∇w k . ( 61 
)
Using the continuous Sobolev embedding

H 1 ( Ỹ ) → L 6 ( Ỹ ), we have that µw k ∇θ ∈ L 6 ( Ỹ ). Moreover, µe k ∈ L 6 ( Ỹ ) and µ∇θ • ∇w k ∈ L 2 ( Ỹ ). Using the Sobolev embedding W 1,6/5 0 ( Ỹ ) → L 2 ( Ỹ ), it holds that L 2 ( Ỹ ) → W -1,6 ( Ỹ ).
Thus the right-hand side of (61) belongs to W -1,6 ( Ỹ ). We also have u = 0 on the boundary ∂ Ỹ of Ỹ . Applying the result in [START_REF] Elschner | Optimal regularity for elliptic transmission problems including C 1 interfaces[END_REF] we obtain that u ∈ W 1,6 0 ( Ỹ ). Therefore w k ∈ W 1,6 (Y ). The proof of the lemma is complete.

We have the following result. Lemma 6. Under assumption a5, let ϕ be the solution of the homogenized equation [START_REF] Lipton | Darcy's law for slow viscous flow past a stationary array of bubbles[END_REF], and ϕ 1 defined by [START_REF] Lukkassen | Two-scale convergence[END_REF]. Then ϕ ∈ H 2 (Ω) and ϕ 1 ∈ H 1 (Ω; W 1,6 per (Y )).

Proof. The function ϕ is a weak solution of the equation

-div(µ ef f ∇ϕ) = 0 in Ω, µ ef f ∇ϕ • ν = µ 0 H a • ν on ∂Ω, Ω ϕ(x) dx = 0.
Under assumption a5, H a • ν ∈ H 1/2 (∂Ω), then by a classical result on the regularity of the solution of an elliptic equation with Neumann condition, we have ϕ ∈ H 2 (Ω).

We have from ( 34)

ϕ 1 (x, y) = 3 k=1 ∂ϕ ∂x k (x)w k (y), ∇ y ϕ 1 (x, y) = 3 k=1 ∂ϕ ∂x k (x)∇ y w k (y),
where w k (y) ∈ H 1 per (Y ) (k = 1, 2, 3) and solves the cell problem [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]. Thanks to the H 2regularity of ϕ and Lemma 5, we have ϕ 1 ∈ H 1 (Ω; W 1,6 per (Y )). This completes the proof of Lemma 6.

We have the following result.

Lemma 7. There is a number 2 < p M such that for all 2 < r < p M , H ε ∈ L r (Ω), and the sequence (H ε ) is bounded in L r (Ω).

Proof. Let us rewrite problem (29) as a homogeneous Neumann problem. Consider the equation

-∆ρ = div H a in Ω, ∇ρ • ν = H a • ν on ∂Ω.
Under assumption a5, and the continuous Sobolev embedding H 1 (Ω) → L 6 (Ω), this equation has a weak solution ρ ∈ W 1,6 (Ω) satisfying ∇ρ L 6 (Ω) ≤ c(Ω) H a L 6 (Ω) , see [START_REF] Novotnỳ | Introduction to the mathematical theory of compressible flows[END_REF] (Lemma 4.27). We impose Ω ρ(x) dx = 0, then define ρ = µ0 µ f (1+λ0) ρ and

ϕ ε = ϕ ε -ρ. We have ∇ ρ L 6 (Ω) ≤ c(Ω) µ 0 µ f (1 + λ 0 ) H a L 6 (Ω) . (62) 
We also have

-div(µ ε ∇ ϕ ε ) = div(µ ε ∇ ρ) in Ω, µ f (1 + λ 0 )∇ ϕ ε • ν = (µ f (1 + λ 0 )∇ϕ ε -µ f (1 + λ 0 )∇ ρ) • ν = (µ f (1 + λ 0 )∇ϕ ε -µ 0 ∇ρ) • ν = (µ f (1 + λ 0 )∇ϕ ε -µ 0 H a ) • ν = 0 on ∂Ω.
Then ϕ ε belongs to H 1 (Ω) and satisfies a homogeneous Neumann problem

-div(µ ε ∇ ϕ ε ) = div(µ ε ∇ ρ) in Ω, µ ε ∇ ϕ ε • ν = 0 on ∂Ω.
The weak formulation of this problem is

ϕ ε ∈ H 1 (Ω), Ω µ ε ∇ ϕ ε • ∇ψ dx = - Ω µ ε ∇ ρ • ∇ψ dx, ∀ψ ∈ H 1 (Ω). ( 63 
) Let f ∈ (H 1 (Ω)) be defined by f, ψ (H 1 (Ω)) ,H 1 (Ω)) = - Ω µ ε ∇ ρ • ∇ψ dx, ∀ψ ∈ H 1 (Ω). ( 64 
)
We have that ∇ ρ ∈ L 6 (Ω), then f ∈ (W 1,6/5 (Ω)) and satisfies f,

1 (H 1 (Ω)) ,H 1 (Ω)) = 0. Note that (W 1,6/5 (Ω)) ⊂ (H 1 (Ω)) )
. The operator T which associates with every function H a ∈ L 6 (Ω) the solution ϕ ε of (63) can be decomposed as follows:

T = T 3 • T 2 • T 1 where T 1 is the linear operator defined by T 1 (H a ) = ∇ ρ ∈ L 6 (Ω) for all H a ∈ L 6 (Ω), T 2 is the linear operator defined by T 2 (∇ ρ) = f ∈ (W 1,6/5 (Ω))
, with f given by (64) and T 3 is the linear operator defined by

T 3 (f ) = u ε for all f ∈ (W 1,6/5 (Ω)) with f, 1 (H 1 (Ω)) ,H 1 (Ω)) = 0,
where u ε is the unique solution to

u ε ∈ H 1 (Ω), Ω µ ε ∇u ε • ∇ψ dx = f, ψ (H 1 (Ω)) ,H 1 (Ω)) , ∀ψ ∈ H 1 (Ω).
Thanks to (62) the operator T 1 is continuous from L 6 (Ω) to L 6 (Ω) with a norm bounded by c(Ω)

µ f (1+λ0) µ0
. We easily verify that the operator T 2 is continuous from L 6 (Ω) to (W 1,6/5 (Ω)) with a norm bounded by a constant depending only on c 0 and Ω. For the operator T 3 we can apply Meyers' theorem for Neumann problem, proved in [START_REF] Gallouët | On the regularity of solutions to elliptic equations[END_REF]: There is a real number p M > 2 such that for all r, 2 < r < p M , the operator T 3 is linear continuous from (W 1,6/5 (Ω)) to W 1,r (Ω). Moreover, the norm of T 3 only depends on c 0 and Ω, and p M on c 0 and Ω, not on f . This implies that ϕ ε ∈ W 1,r (Ω) and that ( ϕ ε ) is bounded in W 1,r (Ω). We conclude that H ε ∈ L r (Ω) and the sequence (H ε ) is bounded in L r (Ω). The proof of Lemma 7 is complete.

We have the following result.

Lemma 8. The sequence (|H ε | 2 ) is bounded in L r/2
(Ω) and we have

|H ε | 2 2s |∇ϕ(x)| 2 + 2∇ϕ(x) • ∇ y ϕ 1 (x, y) + |∇ y ϕ 1 (x, y) | 2
where ϕ(x) and ϕ 1 (x, y) are defined by [START_REF] Lipton | Darcy's law for slow viscous flow past a stationary array of bubbles[END_REF] and [START_REF] Lukkassen | Two-scale convergence[END_REF], respectively. We also have

|H ε | 2 |∇ϕ(x)| 2 + Y |∇ y ϕ 1 (x, y)| 2 dy weakly in L r/2 (Ω).
Proof. By Lemma 7, there exists r > 2 such that (|H ε | 2 ) is bounded in L r/2 (Ω). Then there is a function α(x, y) ∈ L r/2 (Ω × Y ) and a subsequence, still indexed by ε, such that

|H ε | 2 2s α(x, y).
Writing

H ε = a ε + b ε , with a ε (x) = H ε (x) -(∇ϕ(x) + ∇ y ϕ 1 x, x ε , b ε (x) = ∇ϕ(x) + ∇ y ϕ 1 x, x ε , we have |H ε (x)| 2 = |a ε (x)| 2 + 2a ε (x) • b ε (x) + |b ε (x)| 2 .
Thanks to Lemma 6, we have that ∇ϕ(x) and ∇ y ϕ 1 (x, y) belong to L 6 (Ω) and L 6 (Ω × Y ), respectively. Moreover,

∇ y ϕ 1 (x, x ε ) is bounded in L 6 (Ω × Y ). Let ψ ∈ D(Ω, C ∞ per (Y )). We have Ω |a ε (x)| 2 ψ x, x ε dx ≤ max (x,y)∈Ω×Y |ψ(x, y)| Ω |a ε (x)| 2 dx, then lim ε→0 Ω |a ε (x)| 2 ψ x, x ε dx = 0,
thanks to Lemma 4. Consequently, |a ε | 2 2s 0. Using the Cauchy-Schwarz inequality we have

Ω a ε (x)b ε (x)ψ x, x ε dx ≤ max (x,y)∈Ω×Y |ψ(x, y)| a ε L 2 (Ω) b ε L 2 (Ω) , then lim ε→0 Ω a ε (x)b ε (x)ψ x, x ε dx = 0, consequently, a ε b ε 2s 0. We have |b ε (x)| 2 = |∇ϕ(x)| 2 + 2∇ϕ(x) • ∇ y ϕ 1 x, x ε + |∇ y ϕ 1 x, x ε | 2 .
We have from [START_REF] Lukkassen | Two-scale convergence[END_REF] that

∇ y ϕ 1 x, x ε = 3 k=1 ∂ϕ ∂x k (x)∇ y w k x ε .
Passing to the two-scale limit there holds that

|b ε | 2 2s α 0 (x, y) = |∇ϕ(x)| 2 + 2∇ϕ(x) • ∇ y ϕ 1 (x, y) + |∇ y ϕ 1 (x, y) | 2 .
Consequently, |H ε | 2 2s α 0 (x, y) and |H ε | 2 α(x) = Y α 0 (x, y) dy weakly in L r/2 (Ω). Since each extracted sequence of (H ε ) has the same limit, we deduce that the whole sequence converges. The proof of Lemma 8 is complete.

Proof of Theorem 2

Homogenization of the Stokes equations

The homogenization of the Stokes equations has been studied by Tartar, using the method of oscillating test functions, and by Allaire, using the two-scale convergence method. Here we present the results and refer to [START_REF] Allaire | A brief introduction to homogenization and miscellaneous applications, Mathematical and numerical approaches for multiscale problem[END_REF][START_REF] Tartar | Convergence of the homogenization process[END_REF] for the proofs. We first mention a version of the Poincaré inequality [START_REF] Tartar | Convergence of the homogenization process[END_REF] which is used for proving uniform estimates of the solution of problem (30). Lemma 9. There exists a positive constant c, depending only on Y f , such that, for evrey v ∈ V , we have

v L 2 (Ω f ≤ cε ∇v L 2 (Ω f ) .
Then we easily show the following estimates of the velocity.

Lemma 10. Under assumptions a1-a5, the velocity U ε satisfies the uniform estimates

ε ∇U ε L 2 (Ω f ) ≤ c g L 2 (Ω) , U ε L 2 (Ω) ≤ c g L 2 (Ω) , (65) 
where c is a constant independent of ε.

Remark 5. The function U ε can be extended by zero in Ω \ Ω ε f because of its zero trace on ∂Ω ε f . It is well known that extension by zero preserves L q and W 1,q 0 norms for 1 < q < ∞. A uniformly bounded extension of the pressure to the whole domain Ω was introduced by Tartar [START_REF] Tartar | Convergence of the homogenization process[END_REF]; he has defined a restriction operator satisfying the following properties.

Lemma 11. There is a restriction operator

R ε : H 1 0 (Ω) -→ H 1 0 (Ω ε f ) (1 < q < ∞) such that W ∈ H 1 0 (Ω ε f ) =⇒ R ε W = W, (elements of H 1 0 (Ω ε f ) are extended by 0 to Ω) div W = 0 =⇒ div R ε W = 0, R ε W L 2 (Ω ε f ) ≤ c W L 2 (Ω) + cε ∇W L 2 (Ω) , ∇R ε W L 2 (Ω ε f ) ≤ c ε W L 2 (Ω) + c ∇W L 2 (Ω) ,
where c is a constant independent of ε.

Then the following result was derived [START_REF] Tartar | Convergence of the homogenization process[END_REF].

Lemma 12. There is an extension Q ε of q ε which satisfies, for any W ∈ D(Ω, R 3 ),

ε 2 Ω ∇U ε • ∇R ε W dx - Ω Q ε div W dx = Ω gR ε W dx.
Moreover, there is a constant c independent of ε such that

Q ε L 2 (Ω)/R + ∇Q ε H -1 (Ω) ≤ c g L 2 (Ω) .
Remark 6. Following [START_REF] Lipton | Darcy's law for slow viscous flow past a stationary array of bubbles[END_REF] one can define the extension of q ε by

Q ε (x) =      q ε in Ω ε f , 1 |Y k ε,f | Y k ε,f q ε (x) dx in each Y k ε,s , where Y k ε,f = ε(Y f + k) and Y k ε,s = ε(Y s + k).
Then we can pass to the limit in the Stokes equations. We have from [START_REF] Tartar | Convergence of the homogenization process[END_REF] that there is a subsequence, not relabelled for convenience, and a function

Q such that Q ε → Q in L 2 (Ω)
strong. We extend the function U ε by zero in Ω \ Ω ε f and use the same notation for the extended function. We deduce from (65) that U ε and ε∇U ε are bounded in L 2 (Ω). Then there is a subsequence, not relabelled for convenience, and a function

U 0 (x, y) ∈ L 2 (Ω × Y ), such that U ε 2s U 0 (x, y), ε∇U ε 2s ∇ y U 0 (x, y).
Using appropriate test functions one can derive the equations ( 38) and ( 39) satisfied by U 0 and Q. Finally, we have

U 0 (x, y) = 3 j=1 ω j (y) g j (x) - ∂Q ∂x j (x) , x ∈ Ω, y ∈ Y f , (66) 
Y f U 0 (x, y) dy = K (g(x) -∇Q(x)) , x ∈ Ω, ( Darcy law) (67) 
where K = (K ij ) 1≤i,j≤3 is the permeability matrix defined by (42).

End of the proof of Theorem 2

We have from ( 13) that (M ε ) is bounded in L r (Ω), then

M ε 2s M 0 (x, y) = λ 0 χ f (y) H 0 (x, y), M ε M (x) = λ 0 Y χ f (y) H 0 (x, y) dy weakly in L r (Ω).
We have clearly

Q(x) = P (x) -µ f λ 0 2 α(x), α(x) = |∇ϕ(x)| 2 + Y |∇ y ϕ 1 (x, y)| 2 dy.
Using [START_REF] Lukkassen | Two-scale convergence[END_REF] we have that

α(x) = |∇ϕ(x)| 2 + Y 3 k=1 ∂ϕ ∂x k (x)∇ y w k (y) 2 dy = 3 i=1 ∂ϕ ∂x i (x) 2 + 3 j,k=1 ∂ϕ ∂x j (x) ∂ϕ ∂x k (x) Y ∇ y w j (y) • ∇ y w k (y) dy = 3 i=1 (1 + A ii ) ∂ϕ ∂x i (x) 2 + j =k A jk ∂ϕ ∂x j (x) ∂ϕ ∂x k (x), then α(x) = (I + A)∇ϕ(x) • ∇ϕ(x)
where A is the matrix given by (37), hence relation [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF].

To finish the proof of Theorem 2, it remains to establish relations [START_REF] Penta | Effective governing equations for heterogenous porous media subject to inhomogeneous body forces[END_REF] and [START_REF] Penta | Effective balance equations for elastic composites subject to inhomogeneous potentials[END_REF]. These are direct consequences of (66) and (67), respectively, together with the relationship P (x) = Q(x) + P m (x). The proof of Theorem 2 is complete. 

(x) = M s L(b 1 x) if x = 0, 0 if x = 0 v(x) =    u(x) x if x = 0, 1 3 M s b 1 if x = 0.
The following properties of the Langevin function are useful:

0 ≤ L(x) ≤ 1, ∀x ≥ 0, L (x) = - 1 sinh 2 (x) + 1 x 2 , L (x) ≥ 0, ∀x ≥ 0, lim x→+∞ L(x) = 1, lim x→+∞ L (x) = 0, for x → 0 : L(x) = 1 3 x - 1 45 x 3 + O(x 4 ), - 1 sinh 2 (x) + 1 x 2 = 1 3 x - 1 15 x 2 + O(x 3 ).
We easily verify that u ∈ C 1 (R) and there exists a constant c such that |u (x)| ≤ c, for all x ∈ R. Let us verify that v ∈ C 1 (R). We have for x → 0

v(x) -v(0) x = M s L(b1x) x -1 3 M s b 1 x = M s b 1 x 3 - (b 1 x) 3 45 x -1 3 M s b 1 + O(x 3 ) x = - M s b 3 1 x 45 + O(x 2 ),
then v is derivable at x = 0 and v (0) = 0. For x = 0 we have

v (x) = M s b 1 x - 1 sinh 2 (b1x) + 1 (b1x) 2 -L(b 1 x) x 2 = M s x -b 1 sinh 2 (b 1 x) + b 1 (b 1 x) 2 - L(b 1 x) x = O(x 2 ) → 0, for x → 0.
Finally we have

v (x) =    M s b1xL (b1x)-L(b1x) x 2 if x = 0, 0 if x = 0, (68) 
and v ∈ C 1 (R). We deduce from (68) that there exists a constant c such that |v (x)| ≤ c, for all x ∈ R. Then u and v are Lipschitz continuous on R. Now define the function w : R 3 → R 3 by

w(ξ) = (w i (ξ)) 1≤i≤3 , w i (ξ) = v(|ξ|)ξ i , ∀ξ ∈ R 3 .
Let us show that w is Lipschitz continuous. We have

∂w i ∂ξ j (ξ) = v (|ξ|) ξ i ξ j |ξ| + v(|ξ|)δ ij , ∀ξ = 0
where δ ij is the Kronecker symbol. Let ξj be the vector of R 3 whose components are all 0 except the jth which equals ξ j . For ξ = 0, the partial derivative of w i with respect to ξ j is

∂w i ∂ξ j (0) = lim ξj →0 w i ( ξj ) -w i (0) ξ j = lim ξj →0 w i ( ξj ) ξ j = lim ξj →0 v(|ξ j |) ξj i ξ j = v(0)δ ij = 1 3 M s b 1 δ ij .
Moreover for ξ = 0,

ξiξj |ξ| ≤ 1 2 |ξ|, then ∂w i ∂ξ j (ξ) ≤ 1 2 |ξ||v (|ξ|)| + |v(|ξ|)|.
Since v is bounded as well as |ξ|v (|ξ|), it results that there exists a constant c such that

∂w i ∂x j (ξ) ≤ c, ∀ξ ∈ R 3 (i, j = 1, 2, 3).
We conclude that w is Lipschitz continuous. Since a(y, ξ) = μ(y)ξ + µ f χ f (y)w(ξ), for all (y, ξ) ∈ Y × R 3 , where μ is defined by [START_REF] Rosensweig | Ferrohydrodynamics[END_REF], we deduce that a(y, ξ) is Lipschitz continuous with respect to ξ. Point (ii) is proven.

(iii) Let F : Y × R 3 → R be the function defined by

F (y, ξ) = µ(y) 2 |ξ| 2 + µ f χ f (y) M s b 1 ln sinh(b 1 |ξ)| |ξ| if ξ = 0.
We have a(y, ξ) = ∇ ξ F (y, ξ) if ξ = 0.

The Hessian matrix H(y, ξ) = (H ij (y, ξ)) of the function ξ → F (y, ξ) is given by H ij (y, ξ) = ∂ai(y,ξ) ∂ξj . For ξ = 0 we have

∂a i (y, ξ) ∂ξ j = µ(y)δ ij + µ f χ f (y)M s L(b 1 |ξ|) |ξ| δ ij + b 1 |ξ|L (b 1 |ξ|) -L(b 1 |ξ|) |ξ| 2 ξ i ξ j |ξ| = µ(y)δ ij + µ f χ f (y)M s L(b 1 |ξ|) |ξ| δ ij - ξ i ξ j |ξ| 2 + µ f χ f (y)M s b 1 L (b 1 |ξ|) ξ i ξ j |ξ| 2 . Let η ∈ R 3 . Since |ξ| 2 |η| 2 -(ξ • η) 2 ≥ 0 and L (b 1 |ξ| 2 ) ≥ 0 we deduce that H(y, ξ)η; η ≥ µ(y)|η| 2 ≥ inf{µ f , µ s }|η| 2 .
It results that the function ξ → a(y, ξ) is strictly monotone and satisfies for all ξ 1 , ξ 2 ∈ R 3 , a(y, ξ 1 ) -a(y, ξ 2 )

• ξ 1 -ξ 2 ≥ inf{µ f , µ s }|ξ 1 -ξ 2 | 2 ,
then ξ → a(y, ξ) is monotone and coercive. Point (iii) is proven. The proof of Lemma 1 is achieved.

Proof of Lemma 2

We define the operator A : H 1 (Ω) → (H 1 (Ω)) by

A(ϕ), ψ = Ω a x ε , ∇ϕ(x) • ∇ψ(x) dx, ∀(ϕ, ψ) ∈ H 1 (Ω) × H 1 (Ω), (69) 
where a(•, •) is defined by [START_REF] Polevikova | Instability of magnetic fluid in a narrow gap between plates[END_REF]. Using the Hölder inequality, we easily verify that the operator A is well-defined. Define

l(ψ) = µ 0 ∂Ω H a • ν ψ ds, ∀ ψ ∈ H 1 (Ω).
Clearly l ∈ (H 1 (Ω)) .

(i) Let us show that the operator A is strictly monotone [START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF](Chapter III), [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF](Chapter 2, Section 2). Let ϕ 1 , ϕ 2 ∈ H 1 (Ω). Using Lemma 1 (iii) we have

A(ϕ 1 ) -A(ϕ 2 ), ϕ 1 -ϕ 2 ≥ inf{µ f , µ s } Ω |∇ϕ 1 -∇ϕ 2 | 2 dx.
This inequality, together with the Poincaré-Wirtinger inequality, shows that the operator A is strictly monotone.

(ii) Let us now check that the operator A satisfies the coerciveness property:

A(ϕ), ϕ ϕ W → +∞ as ϕ H 1 (Ω) → +∞. (70) 
We have

A(ϕ), ϕ ≥ inf{µ f , µ s } Ω |∇ϕ| 2 dx; ∀ ϕ ∈ H 1 (Ω),
then using the Poincaré-Wirtinger inequality there holds that A(ϕ), ϕ ≥ c ϕ 2 H 1 (Ω) where c is a constant independent of ε, hence (70).

(iii) It is clear that A is hemicontinuous. We conclude, see e.g. [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] (Chapter 2, Section 2), [START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF] (Chapter III), that there is a unique ϕ ∈ H 1 (Ω) such that A(ϕ) = l.

(iv) Taking ψ = ϕ ε in (45) there holds that

inf{µ f , µ s } Ω |∇ϕ ε | 2 dx ≤ A(ϕ ε ), ϕ ε = µ 0 ∂Ω H a • ν ϕ ε dσ.
Using the Poincaré-Wirtinger inequality and the trace theorem, we deduce that the sequence (ϕ ε ) is bounded in H 1 (Ω). The proof of Lemma 2 is complete.

4.4 Proof of Theorem 3

4.4.1 Proof of (i) Define a ε (x) = a x ε , ∇ϕ ε (x)
where a(y, ξ) is defined by [START_REF] Polevikova | Instability of magnetic fluid in a narrow gap between plates[END_REF]. We have from ( 26) that div a ε = 0 in Ω,

a ε • ν = µ 0 H a • ν on ∂Ω. (71) 
We have from Lemma 2 that (ϕ ε ) is bounded in H 1 (Ω) and we easily verify that (a ε ) is bounded in L 2 (Ω). Then there are subsequences, still indexed by ε, and functions ϕ ∈ H 1 (Ω), ϕ 1 (x, y) ∈ L 2 (Ω, H 1 per (Y ), and a 0 (x, y) ∈ L 2 (Ω × Y ), such that (ϕ ε ) converges to ϕ weakly in H 1 (Ω), (∇ϕ ε ) two-scale converges to ∇ϕ(x) + ∇ y ϕ 1 (x, y), and a ε two-scale converges to a 0 (x, y). As is classical we have that

         div y a 0 = 0 in Ω × Y, div Y a 0 (•, y) dy = 0 in Ω, Y a 0 (•, y) dy • ν = µ 0 H a • ν on ∂Ω, a 0 (x, y) Y-periodic for a.e. x ∈ Ω.
In order to express a 0 (x, y) in terms of ϕ(x) and ϕ 1 (x, y) we consider the test function

Ψ ε (x) = ∇ψ ε (x) + tΦ(x, x ε ), ψ ε (x) = ψ(x) + εψ 1 x, x ε , with ψ ∈ D(Ω), ψ 1 ∈ D(Ω, C ∞ per (Y )), Φ ∈ D(Ω, C ∞ per (Y ))
, and t a positive real number. Using the monotonicity of the operator A (defined by (69)), we have

Ω a ε (x) -a x ε , Ψ ε (x) • (∇ϕ ε (x) -Ψ ε (x)) dx ≥ 0. (72) 
Using (71) and the Green formula we have

Ω a ε (x) • (∇ϕ ε (x) -Ψ ε (x)) dx = µ 0 ∂Ω H a • ν(ϕ ε -ψ ε ) dσ - Ω a ε (x) • tΦ(x, x ε dx then (72) becomes µ 0 ∂Ω H a • ν(ϕ ε -ψ ε ) dσ - Ω a ε (x) • tΦ(x, x ε dx - Ω a x ε , Ψ ε (x) • ∇ϕ ε (x) -Ψ ε (x) dx ≥ 0. ( 73 
)
Let us write the last term of (73) as

Ω a x ε , Ψ ε (x) • ∇ϕ ε (x) -Ψ ε (x) dx = I ε 1 + I ε 2 , with I ε 1 = Ω a x ε , Ψ ε (x) -a x ε , ∇ψ(x) + ∇ y ψ 1 x, x ε + tΦ(x, x ε • [∇ϕ ε (x) -Ψ ε (x)] dx, I ε 2 = Ω a x ε , ∇ψ(x) + ∇ y ψ 1 x, x ε + tΦ(x, x ε • ∇ϕ ε (x) -Ψ ε (x) dx.
We can pass to the limit in I ε 2 , as ε → 0, since a(y, ∇ψ(x) + ∇ y ψ 1 (x, y) + tΦ(x, y)) belongs to L 2 per (Y ; C(Ω)). Indeed

I ε 2 → Ω Y a(y, ∇ψ(x) + ∇ y ψ 1 (x, y) + tΦ(x, y))• • (∇(ϕ(x) -ψ(x)) + ∇ y (ϕ 1 (x, y) -ψ 1 (x, y)) -tΦ(x, y)) dxdy.
We have by Lemma 1

a x ε , Ψ ε (x) -a x ε , ∇ψ(x) + ∇ y ψ 1 x, x ε + tΦ(x, x ε ≤ c Ψ ε (x) -∇ψ(x) + ∇ y ψ 1 x, x ε + tΦ x, x ε = cε∇ x ψ 1 x, x ε .
Here and in the sequel we denote by c a positive constant independent of ε. Using the Cauchy-Schwarz inequality it then holds that |I ε 1 | ≤ cε, since (∇ϕ ε ) and (Ψ ε ) are bounded in L 2 (Ω). Therefore, passing to the two-scale limit in (73) as ε → 0, yields

∂Ω µ 0 H a • ν(ϕ -ψ) dσ - Ω Y a 0 (x, y) • tΦ(x, y)dxdy - Ω Y a(y, ∇ψ(x) + ∇ y ψ 1 (x, y) + tΦ(x, y))• • (∇(ϕ(x) -ψ(x)) + ∇ y (ϕ 1 (x, y) -ψ 1 (x, y)) -tΦ(x, y)) dxdy ≥ 0.

Now we take in the previous inequality

ψ = ϕ -tφ, ψ 1 = ϕ 1 -tφ 1 , φ = φ(x) ∈ D(Ω) and φ 1 = φ 1 (x, y) ∈ D(Ω, C ∞ per (Y ))
. After dividing by t, there holds that

∂Ω µ 0 H a • νφ dσ - Ω Y a 0 (x, y) • Φ(x, y)dxdy - Ω Y a(y, ∇(ϕ -tφ)(x) + ∇ y (ϕ 1 -tφ 1 )(x, y) + tΦ(x, y))• • ∇φ(x) + ∇ y φ 1 (x, y) -Φ(x, y) dxdy ≥ 0. Letting t → 0, it results that ∂Ω µ 0 H a • νφ dσ - Ω Y a 0 (x, y) • Φ(x, y)dxdy - Ω Y a(y, ∇ϕ(x) + ∇ y ϕ 1 (x, y)) • ∇φ(x) + ∇ y φ 1 (x, y) -Φ(x, y) dxdy = 0, for any φ ∈ D(Ω), φ 1 ∈ D(Ω, C ∞ per (Y )) and Φ ∈ D(Ω, C ∞ per (Y )).
We deduce that a 0 (x, y) = a y, ∇ϕ(x) + ∇ y ϕ 1 (x, y)

and

Ω Y a(y, ∇ϕ(x) + ∇ y ϕ 1 (x, y)) • ∇φ(x) + ∇ y φ 1 (x, y) dxdy = ∂Ω µ 0 H a • νφ dσ, (74) 
for any φ ∈ D(Ω), φ 1 ∈ D(Ω, C ∞ per (Y )). Using a density argument we deduce that (74) holds for any φ ∈ H 1 (Ω), φ 1 ∈ L 2 (Ω, H 1 per (Y )). Using the strict monotonicity of the operator A (defined by ( 69)), we easily show that the variational equation (74) has a unique solution (ϕ, ϕ 1 ) in H 1 (Ω) × L 2 (Ω, H 1 per (Y )). This implies that the whole sequence (ϕ ε ) converges. We also have that the whole sequence (a ε ) two-scale converges to a 0 (x, y). Then (a ε ) converges in L 2 (Ω) weak to a * (x) = Y a 0 (x, y) dy. Clearly, the mean null condition Ω ϕ(x) dx = 0 is satisfied. The proof of (i) is complete.

Remark 7. We have shown in the above proof that the sequence a x ε , ∇ϕ ε (x) two-scale converges to a y, ∇ϕ(x) + ∇ y ϕ 1 (x, y) .

Proof of (ii)

We have from (i) above that which is equation [START_REF] Zaanen | An introduction to the theory of integration[END_REF]. We prove as in [START_REF] Defranceschi | An introduction to homogenization and G-convergence[END_REF] that the operator b satisfies the following properties: It results that equation [START_REF] Zaanen | An introduction to the theory of integration[END_REF] has a unique solution in H 1 (Ω). Point (ii) is proven. In [START_REF] Maso | Correctors for the homogenization of monotone operators[END_REF] the authors studied the homogenization of a nonlinear problem of the form [START_REF] Shliomis | Ferrohydrodynamics: Retrospective and issues[END_REF] (with a Dirichlet boundary condition). They constructed a corrector [START_REF] Maso | Correctors for the homogenization of monotone operators[END_REF] (Theorem 2.1).

a ε (x) := a x ε , ∇ϕ ε (x) a * (x) := Y a y, ∇ϕ(x) + ∇ y ϕ 1 (x, y) dy in L 2 (Ω) weak
The same arguments allow to prove that their result is also valid for our problem.

Theorem 5. Let ϕ ε be a solution of problem [START_REF] Sanchez-Palencia | Non-Homogeneous media and vibration theory[END_REF], H ε = ∇ϕ ε , h ε be defined by (54), and let ϕ be a solution of problem [START_REF] Zaanen | An introduction to the theory of integration[END_REF]. Then H ε -h ε (•, (m ε ∇ϕ)) → 0 a.e. and strongly in L 2 (Ω).

Proof of (ii)

Problem ( 27) is the same as problem (18) then we have from Theorem 2 (ii)

U ε 2s U 0 (x, y), ε∇U ε 2s ∇ y U 0 (x, y), Q ε → Q strongly in L 2 (Ω),
where the pair (U 0 , Q) satisfies [START_REF] Odenbach | Magnetoviscous effects in ferrofluids[END_REF] and is a solution of problem (39).

Proof of (iii)

Let κ be the function defined by [START_REF] Elschner | Optimal regularity for elliptic transmission problems including C 1 interfaces[END_REF]. We have ∂κ ∂ξ j (ξ) = M s L(b 1 |ξ|) ξ j |ξ| then ∂κ ∂ξ j (ξ) ≤ M s , j = 1, 2, 3, which implies that κ is Lipchitz continuous. Moreover, |κ(ξ)| ≤ M s |ξ|, then (κ(H ε )) is bounded in L 2 (Ω) since (H ε ) is bounded in L 2 (Ω). We have from Theorem 5 that H ε (x) -h ε x, (m ε ∇ϕ)(x) → 0 a.e. in Ω and strongly in L 2 (Ω), then κ H ε (x) -κ h ε x, (m ε ∇ϕ)(x) → 0 a.e. in Ω and strongly in L 2 (Ω), since κ is Lipchitz continuous. We are then led to study the limit of κ h ε •, (m ε ∇ϕ) , as ε → 0. Let ξ 1 , ξ 2 ∈ R 3 and let h(y, ξ) be the function defined by (53). Using Lemma 1 and the relation 

for every Ψ ∈ L 2 (Ω). To this aim we use the following result [START_REF] Maso | Correctors for the homogenization of monotone operators[END_REF] (Lemma 3.5).

Lemma 13. Let Φ ∈ L 2 (Ω) and let Ψ be a step function of the form

Ψ(x) = n j=1 η j 1 Ωj (x) with η j ∈ R 3 \ {0}, Ω j ⊂⊂ Ω, |∂Ω j | = 0, Ω j ∩ Ω k = ∅ for j = k. Then lim sup ε→0 h ε (•, m ε Φ) -h ε (•, Ψ) L 2 (Ω) ≤ c Φ -Ψ L 2 (Ω) (81) 
where the constant c is independent of ε and n.

To prove (80) we first note that, by (79), κ h ε (•, Ψ) κ 0 (Ψ) weakly in L 2 (Ω), for every step function Ψ ∈ L 2 (Ω). Let then Ψ ∈ L 2 (Ω). For every δ > 0, there exists a step function η(x) = n j=1 η j 1 Ωj (x) with η j ∈ R 3 \ {0}, Ω j ⊂⊂ Ω, |∂Ω j | = 0, Ω j ∩ Ω k = ∅ for j = k, such that Ψ -η L 2 (Ω) ≤ δ.

Let us write

κ h ε (•, m ε Ψ) -κ 0 (Ψ) = κ h ε (•, m ε Ψ) -κ h ε (•, η) + κ h ε (•, η) -κ 0 (η) + κ 0 (η) -κ 0 (Ψ) . (83) 
By (79) we have that κ h ε (•, η)) κ 0 (η) weakly in L 2 (Ω).

(
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Since κ is Lipchitz continuous there is a constant c independent of ε such that κ h ε (x, (m ε Ψ)(x)) -κ h ε (x, η(x)) ≤ c |h ε (x, (m ε Ψ)(x)) -h ε (x, η(x))| , a.e. in Ω.

Using Lemma 13 and the previous inequality we deduce that lim sup

ε→0 κ(h ε (•, m ε Ψ) -κ h ε (•, η)) L 2 (Ω) ≤ c Ψ -η L 2 (Ω) ≤ cδ (85) 
where in the last inequality we used (82).

where χ f

  is the characteristic function of Y f and μ the Y -periodic function defined in Y by μ = µ f a.e. in Y f , µ s a.e. in Y s .

  ξ + ∇ y w(y, ξ) dy (49) where w(•, ξ) is a unique (up to an additive constant) solution in H 1 per (Y ) of the cell problem Y a(y, ξ + ∇ y w(y, ξ)) • ∇v(y) dy = 0 for all v ∈ H 1 per (Y ). (50) (iii) The sequence (M ε ) two-scale converges to M 0 (x, y) and converges weakly in L 2 (Ω) to M (x) = Y M 0 (x, y) dy where M 0 ∈ L 2 (Ω × Y ) is given by M 0 (x, y) = µ f χ f (y) w(H 0 (x, y)) and χ f (y) is a Y -periodic function, defined in Y as the characteristic function of Y f , and w : R 3 → R 3 is defined by w(ξ) = M s L(b1|ξ|) |ξ| ξ if ξ = 0 and w(0) = 0.

4. 3

 3 Proofs of Lemmas 1 and 2 4.3.1 Proof of Lemma 1 (i) Clearly, a(y, 0) = 0 for a.e. y ∈ Y . (ii) Let us introduce the functions u, v : R → R by u

  andΩ a * (x) • ∇φ(x) dx = ∂Ω µ 0 H a • νφ dσ, ∀φ ∈ H 1 (Ω).(75)Moreover, taking φ = 0 and φ 1 ∈ H per (Y ) in[START_REF] Tartar | Convergence of the homogenization process[END_REF] we obtain that ϕ(x) and ϕ 1 (x, y) satisfy the cell problem Y a(y, ∇ϕ(x) + ∇ y ϕ 1 (x, y)) • ∇ y φ 1 (y) dy = 0, for all φ 1 ∈ H 1 per (Y ). (76) Then, according to the definition of the operator b (see (49) and (50)) it holds that b(∇ϕ(x)) = Y a y, ∇ϕ(x) + ∇ y ϕ 1 (x, y) dy = a * (x), and (75) reads Ω b(∇ϕ(x)) • ∇φ(x) dx = ∂Ω µ 0 H a • νφ dσ, for all φ ∈ H 1 (Ω),

(i) b( 0 )

 0 = 0;(ii) b is Lipschitz continuous, i.e. there exists a constant c such that|b(ξ 1 ) -b(ξ 2 )| ≤ c|ξ 1 -ξ 2 |, for every ξ 1 , ξ 2 ∈ R 3 ; (iii) b is monotone and coercive, more precisely, b(ξ 1 ) -b(ξ 2 ) • (ξ 1 -ξ 2 ) ≥ inf{µ f , µ s }|ξ 1 -ξ 2 | 2 , for every ξ 1 , ξ 2 ∈ R 3 .

4. 4 . 3

 43 Proof of (iii)Thanks to Remark 7 we have that a x ε , ∇ϕ ε (x) 2s a y, H 0 (x, y) . Using that a(y, ξ) = μ(y)ξ + µ f χ f (y)M s L(b1|ξ|) |ξ| ξ, we deduce thatµ f χ f ( x ε ) w ∇ϕ ε (x) 2s µ f χ f (y) w H 0 (x, y) , w(ξ) = M s L(b 1 |ξ|) |ξ| ξ,and the result follows readily. The proof of Theorem 3 is complete.

4. 5 4 4. 5 . 1

 5451 Proof of Theorem Proof of (i)

Y

  a(y, h(y, ξ 1 )) -a(y, h(y, ξ 2 )) • (h(y, ξ 1 ) -h(y, ξ 2 )) dy= Y a(y, h(y, ξ 1 )) -a(y, h(y, ξ 2 )) • (ξ 1 -ξ 2 ) dy, we deduce that Y |h(y, ξ 1 ) -h(y, ξ 2 )| 2 dy ≤ c Y |h(y, ξ 1 ) -h(y, ξ 2 )||ξ 1 -ξ 2 |dy, hence, using the Cauchy-Schwarz inequality, h(•, ξ 1 ) -h ( •, ξ 1 ) L 2 (Y ) ≤ c|ξ 1 -ξ 2 |. (77)Here and in the sequel we denote by c a positive constant independent of ε. Let us now consider the function κ 0 given by (55). Since κ is Lipschitz continuous, we deduce by using (77) that|κ 0 (ξ 1 ) -κ 0 (ξ 2 )| ≤ Y |κ h(y, ξ 1 ) -κ h(y, ξ 2 ) |dy ≤ c Y |h(y, ξ 1 ) -h(y, ξ 2 )|dy ≤ c h(•, ξ 1 ) -h(•, ξ 2 ) L 2 (Y ) ≤ c|ξ 1 -ξ 2 |, ∀ξ 1 , ξ 2 ∈ R 3 .(78)Let us now study the limit of κ h ε (•, (m ε ∇ϕ)) , as ε → 0. Since for everyξ ∈ R 3 , y → κ h(y, ξ) ∈ L 2 (Y ) and κ h ε (•, ξ) is ε-periodic it holds that κ h ε (•, ξ) κ 0 (ξ) weakly in L 2 (Ω), for every ξ ∈ R 3 . (79)Let us prove that κ h ε (•, m ε Ψ) κ 0 (Ψ) weakly in L 2 (Ω),
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Let us now consider κ 0 (η) -κ 0 (Ψ) L 2 (Ω) . We deduce from (78) that

where we used (82) in the last inequality. From ( 83)-(86) we deduce (80). Applying (80) with Ψ = ∇ϕ and using Theorem 4 (ii) we obtain (56).

To finish the proof of Theorem 4, it remains to establish relations [START_REF] Penta | Effective governing equations for heterogenous porous media subject to inhomogeneous body forces[END_REF] and [START_REF] Penta | Effective balance equations for elastic composites subject to inhomogeneous potentials[END_REF]. These are direct consequences of (57) and (58), respectively, together with the relationship

Point (iii) is proven and the proof of Theorem 4 is complete.

Concluding remarks

We considered the equations describing the flow of a ferrofluid through a heterogeneous porous medium Ω in the presence of an applied magnetic field. We discussed two models where the magnetization M is parallel to the magnetic field H: a linear model and a nonlinear model where the magnetization and the magnetic field satisfy the Langevin law. The velocity and the pressure satisfy the Stokes equation with a Kelvin magnetic force. Choosing the characteristic parameters of the flow as Re = 1 ε 2 , F r = Re m = Eu = 1, we investigated in each of the two models the homogenization of the differential system with the use of the two-scale convergence method. We rigorously derived the homogenized equation for the magnetic potential and determined the asymptotic limit of the magnetization. Then we rigorously derived a Darcy law.

Let us mention that the analysis done for the Langevin model can be applied by using similar arguments to the model where the magnetization and the magnetic field satisfy the relation

where a 1 and b 1 are positive constants and 1 Ω f is the characteristic function of the pore space Ω f . The extension of this study to take a more general law, e.g. M = f (H), is limited to the cases where we can homogenize the nonlinear problem satisfied by the potential ϕ associated with the magnetic field H and that (f (H) • ∇)H has a gradient structure.