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Abstract

We investigate the identification problem of the fog Droplet Size Distribution (DSD) by an
inverse method of the 1D radiative transfer equation thanks to spectral radiation measure-
ments in the range 350 nm - 2500 nm. This distribution together with Lorenz-Mie scattering
theory allow to compute the optical properties (scattering coefficient, absorption coefficient,
and phase function). We prove the well-posedness of the underlying inverse problem then
we perform some numerical experiments using synthetic data. The numerical results suggest
that the method allows to identify the DSD with different modellings of the radiative transfer
(Beer-Lambert, isotropic and anisotropic collision operator).
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1. Introduction

The World Meteorological Organization defines fog as a suspension of very small, usu-
ally microscopic water droplets in the air, reducing visibility at the Earth’s surface. Due
to the visibility reduction, fog can affect human activities in many fields like free-space op-
tical (FSO) communication, aviation or ground transportation [43, 44, 75]. In this latter
field, adverse weather conditions are issues for the development of intelligent vehicle and au-
tonomous driving since perceptive sensors like camera, radar and lidar are largely employed
[90, 70, 81, 33, 91, 71]. To evaluate the impact of these adverse conditions on optical sensors,
the French research and technical center Cerema operates the European Rain and Fog PAVIN
platform (Figure 1) in which optical sensors and cars can be submitted to controlled artificial
fog and rain [19, 23, 28, 29]. This platform allows to study human perception in adverse
conditions [18, 79], vision system capabilities in fog or rain conditions [13, 65, 73, 57, 62] or
computer vision algorithms for object and weather detection [24, 14, 25].
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Figure 1: Representation of the evolution of optical sensors at the Cerema’s platform in presence of fog.

Many roadmaps [2, 3] of European and worldwide institutions responsible for trans-
portation public policies highlight the driving scenario approach to demonstrate the safety
of automated road transport systems, including scenarios based on realistic digital simula-
tion taking into account adverse weather conditions. In order to achieve this objective, ITS
research team of Cerema is involved in the Horizon Europe ROADVIEW project (Robust
Automated Driving in Extreme Weather) [77] which aims to address the impact of harsh
weather on automotive perception sensors and more particularly within the Work Package
3 devoted to the digital simulation. The major issue for the numerical simulation tools use
concerns their realism even more so if they are used for autonomous driving security as-
sessment. The simulation of perceptive sensors in fog conditions must take into account the
modelling of the propagation of electromagnetic waves through a participating medium. The
optical characteristics of this medium must be known in order to simulate the extinction of
the radiation. The droplet size distribution for the fog case is a key parameter that governs
these optical characteristics depending on the radiation wavelength [10, 41, 29]. The aim
of this paper is to propose a method for identifying this distribution from radiation mea-
surements that are interpreted using the radiative transfer equation. We develop a method
that allows the identification in a wide range of distributions encountered for natural fogs
and artificial ones generated in the PAVIN platform. There is an extensive literature on
modeled or measured fog droplet size and other characteristics like liquid water content,
total concentration of drops, mean diameter [43, 85, 23, 22, 56, 32, 38, 52, 53, 36, 40, 50, 54,
37, 55, 89, 23, 22, 56, 32, 38, 52, 53, 36, 40, 50, 54, 69, 37, 63, 30, 61]. All the experimental
studies show that fog droplet size ranges from a few tenths of a micron to a few tens of
microns [74, 39, 43, 47, 44, 66, 16, 76]. Other studies attempt to characterize the droplet
size distribution (DSD) by modeling them. Two main categories of laws are used for fitting:
shifted gamma laws [26, 83, 64, 88] and log normal laws [83, 12, 22]. In this paper we test
our method on DSD obtained by measurement in natural conditions [45], artificial conditions
[30] and from models [84].

In a participating medium (fog) containing water particles, the light can be scattered or
absorbed. There are numerous models that describe light propagation, such as the radiative
transfer equation (RTE), which was introduced in astrophysics, nuclear reactors, and atmo-
spheric science [17, 20, 72]. The radiance is the power per unit area of radiation traveling
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or being emitted in a time t at a point s ∈ R3, and in a given direction u ∈ S2 where S2 is
the unit sphere. The spectral radiance, denoted by Lλ (expressed in W ·m−2 · sr−1 ·m−1),
verifies the following equation [20]:

1

c

∂Lλ

∂t
(t, s, u) + u.∇sLλ(t, s, u) + σλ

extLλ(t, s, u) =
σλ
sca

4π

∫
S2
Lλ(t, s, v)Φλ(s, v, u) dv, (1.1)

where c is the light speed in the host medium, σλ
ext = σλ

sca+σ
λ
abs and σ

λ
sca denote the extinction

coefficient and the scattering coefficient, respectively, with σλ
abs the absorbing coefficient at

the wavelength λ. The phase function Φλ describes the probability that a photon at a point
s ∈ R3 with directions v ∈ S2 undergoes a collision: as a result a photon or a number of
photons can appear in the u-directions. The phase function Φλ is normalized in the following
way:

∀s ∈ R3,∀u ∈ S2,
1

4π

∫
S2
Φλ(s, v, u) dv = 1. (1.2)

The isotropic case corresponds to a phase function Φλ constant equal to one.

We are interested in the reconstruction of the optical properties (scattering coefficient,
absorption coefficient and the phase function) in a time-independent case. Concerning the
time-dependent case, we mention [5, 42, 78]. To reconstruct these properties, it is necessary
to introduce the inverse problem of RTE, which is studied by several authors [67, 68]. Some
authors use an exact method to reconstruct these properties [21] based on the knowledge of
the Albedo operator, which maps the incoming flux to the outgoing flux under some condi-
tions based on these properties. In [21], they only reconstruct the absorption and scattering
coefficients in two dimensions, while in three dimensions they reconstruct all these proper-
ties. In dimension n ≥ 3, Bal and Jollivet [8] investigate the stability of the reconstruction
of the scattering and absorption coefficients from the knowledge of the full Albedo operator.
There are authors who reconstruct these properties using numerical approximation methods.
We mention the work of Klose, Netz, Beuthan, and Hielscher [1] where they evaluated the
radiative transfer equation in two dimensions. The authors present a number of tissue phan-
toms to investigate the sensitivity of the fluence (the integral of radiance) calculated using
the radiative transfer equation and comparing it with experimental measurements. In their
work, they used the Henyey–Greenstein scattering function (for the phase function). After
several tests on various optical properties, the authors observe that without an accurate
knowledge of the anisotropy factor of phase function, the measured data cannot be properly
predicted. After this study, the authors have introduced the reconstruction of the absorption
and scattering coefficients [51] by assuming that the anisotropy factor of the phase function
is known.
Egger and Schlottbom [31] identify the scattering and absorption properties by assuming
that the phase function is known in three dimensions. These authors use the Tikhonov reg-
ularization [59] in Banach spaces to provide a solution to this reconstruction problem.
We also mention [15, 34], where the authors reconstruct the optical properties by assuming
that one or two of these properties are known, and by using a reconstruction algorithm based
on the Levenberg-Marquardt regularization [60].
Finally, we mention [48, 49, 86, 87, 94], where the authors reconstruct some models of volume
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frequency distributions (Rosin–Rammler R-R, Log normal laws L-N, and Normal laws N-N)
using Bouguer–Lambert law, L = L0e

σext d, which expresses the attenuation of the luminous
flux L0 at the value of L as a function of the distance d and the extinction coefficient σλ

ext.

The main purpose of this article is to identify the droplet size distribution (DSD) of a fog
by radiation measurements. We recall that DSD is the number of water particles per cm3

for each radius r. The DSD is expressed in cm−3µm−1 as a function of the radius r of water
particles expressed in µm, and is denoted by N(r). The identification of the distribution
N allows us to compute the optical properties by using Lorenz-Mie theory [27]. In order to
identify the droplet size distribution N , we introduce for all ε ≥ 0 the following least-squares
problem:

inf
N∈H(R+)

Jε(N) :=
1

2

I∑
i=1

G∑
l=1

(
Fλl

(xi)−Mλl
(xi)

Mλl
(xi)

)2

+
ε

2
∥
√
fN∥2H(R+), (1.3)

where

H(R+) =

{
N ∈ L2(R+),

∫
R+

r2N2(r)dr < +∞
}

endowed with the inner product:

(N,N)H(R+) =

∫
R+

r2N(r)N(r) dr.

Jε(N) is the difference between the measured radiation Mλl
(xi) and the radiation calculated

by the radiative transfer equation Fλl
(xi) at point xi for a wavelength λl; I and G represent

the number of measurement points and wavelengths, respectively. The ε-term is a regular-
izing term as it ensures the well-posedness of the problem. Moreover, as a priori knowledge
about the droplet size distribution N - almost zero for small radii - that we will identify, we
introduce a positive function f in which explodes for small radii.
Figure 2 shows a diagram of the experimental protocol allowing to perform the identification:
a spectrally continuous light source (assumed spatially infinite) illuminates a homogeneous
foggy medium and spectral measurements are made in forescattering (left) and backscatter-
ing (right) situations. For numerical applications, we will consider a Lambertian source.

Figure 2: Diagram of the protocol for the measurements.

In this work, we wish to investigate the reconstruction of the DSD with models that may
involve a collision operator, and thus not limit ourselves to the basic Beer-Lambert solution.
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With some anticipation of the following sections, Figure 3 shows the relative error

Eλ =
∥Lλ − Lλ,0∥L∞(X)

∥Lλ∥L∞(X)

between the solution Lλ of the radiative transfer equation with collision (3.4) and the solution
Lλ,0 without collision (Beer-Lambert case), with optical parameters given by one of the DSD
of Figure 5 (a).

Figure 3: Relative error Eλ between radiance with and without collision operator in function of wavelengths.

We can observe that for different wavelengths between 300nm and 2500nm, we have an
error of 50% between the two radiance which justifies the use of the collision operator. It
is therefore needed to develop numerical procedures to solve the complete radiative transfer
equation. We then exploit these procedures by using a gradient descent based method to
solve our minimization problem: we will introduce an adjoint problem to the RTE allowing
to easily calculate the cost function gradient. It is then important to note that the computing
time of these procedures depends more on the discretization parameters to solve the integro-
differential equation (RTE) and its adjoint problem than the number of parameters describing
the DSD: the method we detail in this article doesn’t need to model the unknown DSD as
that is made in [48, 49, 86, 87, 94].

The paper is organized as follows. In Section 2, we introduce the Lorenz-Mie scattering
theory, which enables to express the optical properties with respect to the fog droplet size
distributions. We detail in this section the DSD we will use to test the reconstruction method.
In Section 3, we recall the existence and uniqueness of the solution of the stationary radiative
transfer equation. We also give in this section some explicit solutions to the stationary
radiative transfer equation allowing in Section 6 to validate our numerical tools and to study
the influence of the numerical parameters used to discretize the RTE. The gradient descent-
based inverse problem and the cost function are presented together with their properties in
Section 4. We give in this section the expression of the cost function gradient in terms of
an adjoint problem to the RTE. In Section 5, we recall Yvon’s method [17, 95] to solve the
stationary radiative transfer equation and the Barzilai-Borwein algorithm [9] to minimize the
cost function Jε. Numerical results on the DSD identification using synthetic measurements
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(output of simulations with real DSDs and some DSDs models as input) in Beer-Lambert
modelling case (without multiple scattering), isotropic and anisotropic collision operator
cases are presented in Section 7. We end the paper by a conclusion and some perspectives
in Section 8.

2. Droplet size distribution, extinction and Mie theory

The World Meteorological Organization (WMO) [93] defines the meteorological visibility
as the greatest distance at which a black object of suitable dimensions can be seen and
recognized against the horizon sky during daylight or could be seen and recognized during
the night if the general illumination were raised to the normal daylight level. Meteorological
visibility Vm (expressed in m) is defined by Koschmieder in 1923 as follows [93]:

Vm =
3

σext
(2.1)

where σext is the extinction coefficient of the fog for a wavelength of 550 nm (green). We will
see in Section 2.1 how to rely this coefficient with the droplet size distribution N of the fog.
As mentioned in Section 1, our work is motivated by ITS application and then we will focus
on road fogs which are characterized by a meteorological visibility less than 400 meters, that
is thanks to (2.1):

σext ≥ 7.5× 10−3. (2.2)

Considering front vehicle lights emitting around 103 cd/m2 and a scotopic human vision
(night conditions) detection threshold around 10−4 cd/m2, we will consider fogs with trans-
mittance greater than 10−7 or equivalently with optical thickness τ verifying:

τ ≤ −Ln
(
10−7

)
≃ 16. (2.3)

Numerical applications of Section 7 will illustrate our DSD identification method with τ = 4
and DSD we detail in Section 2.2. In the following subsection we present the Mie theory
allowing to rely DSD and extinction.

2.1. Lorenz-Mie scattering theory

The Lorenz-Mie theory [27] solves the electromagnetic equations of Maxwell by describ-
ing the elastic scattering of an electromagnetic wave by a spherical particle with its diameter
and its complex refractive index , m = n + ik, with n and k denoting the refractive and
absorption indices, respectively. In our work, we use the wavelengths with the Segelstein
indices [82]. In light scattering solved by Mie theory, a monochromatic plane wave with
wave vector k = 2π/λ propagates in a medium with refractive index m1. This incident wave
encounters a sphere of radius r. As a result of the interaction, a wave is diffused by the
sphere throughout space. Lorenz-Mie theory allows us to compute the scattering properties
of a single homogeneous, spherical particle embedded in an homogeneous medium.

The extinction and scattering coefficients are expressed in terms of the droplet size dis-
tribution N as follows:

σλ
ext(N) =

∫ +∞

0

Qλ
ext(r) π r

2N(r) dr ; σλ
sca(N) =

∫ +∞

0

Qλ
sca(r) π r

2N(r) dr. (2.4)
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Similarly, the phase function can be expressed by the following form:

σλ
sca(N)ϕλ(µ,N) =

∫ +∞

0

Qλ
sca(r)ψλ(r, µ) π r

2N(r) dr, (2.5)

where the scattering and extinction cross sections are given by:

Qλ
sca(r) =

λ2

2π2 r2

+∞∑
n=1

(2n+ 1)
(
|an(r, λ)|2 + |bn(r, λ)|2

)
, (2.6)

Qλ
ext(r) =

λ2

2π2 r2

+∞∑
n=1

(2n+ 1)Re (an(r, λ) + bn(r, λ)) , (2.7)

and ψλ given by

ψλ(r, µ) =
λ2

2π2 r2Qλ
sca(r)

(
|S1(µ)|2 + |S2(µ)|2

)
. (2.8)

S1 and S2 are the scattering amplitude functions given by:

S1(µ) =
+∞∑
n=1

2n+ 1

n(n+ 1)
(an(r, λ)πn(µ) + bn(r, λ)τn(µ)) , (2.9)

S2(µ) =
+∞∑
n=1

2n+ 1

n(n+ 1)
(bn(r, λ)πn(µ) + an(r, λ)τn(µ)) , (2.10)

where the sequence of polynomials (πn)n≥0 and (τn)n≥0 are defined by the recurrences:
π0(z) = 0, π1(z) = 1,

∀n ≥ 2 , πn(z) = z
2n− 1

n− 1
πn−1(z)−

n

n− 1
πn−2(z),{

τ0(z) = 0, τ1(z) = z,

∀n ≥ 2 , τn(z) = z(τn(z)− τn−2(z))− (2n− 1)(1− z2) τn−1(z) + τn−2(z).

The coefficients an and bn in equations (2.6) and (2.7) are complex numbers called the Lorenz-
Mie coefficients, which are composed of the spherical Bessel functions. For more details on
an and bn, we refer to [27].
The functions Qext and Qabs are represented in function of the particle radius r in Figure 4
for different wavelengths (one in the visible 0.55µm and three in infrared 8, 10, 12µm).
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Figure 4: Extinction cross section Qext (left) and absorption cross section Qabs (right) for four wavelengths
in function of particle radius.

The numerical computations of the series introduced above require a truncation. The most
commonly used truncation, taking into account the numerical difficulties encountered with
Bessel functions, is that of Wiscombe [92]:

E(v) =


v + 4v1/3 + 1 if 0.02 ≤ v ≤ 8,

v + 4.05v1/3 + 2 if 8 < v ≤ 4200,

v + 4v1/3 + 2 if 4200 < v ≤ 20000,

(2.11)

where E(v) is the truncation function of the size parameter v = 2πr/λ.

2.2. Droplet size distributions

We will test our identification method on different fog droplet size distributions, which
have been measured in the PAVIN platform or in natural conditions. We will also consider
some common DSD models. The measurements were carried out with the PALAS WELAS
particle size analyzer [30]. For numerical applications (Section 7), all the DSD are normalized
in order to have:

τ ≡ Dσext = 4.0 (with D = 1) ⇔ Vm = 0.75. (2.12)

The DSD of artificial fog produced in the PAVIN platform are represented in Figure 5(a).
The DSD for a real fog (see Figure 5(b)) were acquired during an episode of fog in the night
of March 13 to 14, 2007 on the French Palaiseau site (Paris-Fog campaign [11]).
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Figure 5: Droplet size distributions N (a) measured at Cerema PAVIN platform, (b) during the Paris-Fog
campaign and (c) coming from Shettle and Fenn models.

In order to take into account DSD with bigger droplets, we consider in Figure 5(c)
modified Gamma law based models of radiation fogs given by Shettle and Fen [84]):

N(r) = c rβe−drγ , r ≥ 0, (2.13)

with the following coefficients:

Model c β d γ rm(µm)

3 428.15 6 1.5 1 4
4 211317 6 3.0 1 2

Table 1: Coefficients given in [84] for modified Gamma laws (2.13).

where rm represents the peak position for each model.
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3. One-dimensional stationary radiative transfer equation

We are interested in the stationary radiative transfer equation in one-dimensional space
(stationary linear Boltzmann equation): for a wavelength λ,

µ
∂L̃λ

∂x
(x, µ,N) + σλ

ext(N)L̃λ(x, µ,N) = KL̃λ(x, µ,N) + qλ(x, µ), (x, µ) ∈ [0,+∞)× [−1, 1]

(3.1)
with the following boundary conditions:

L̃(0, µ,N) = L+(µ) for µ > 0 ; lim
x→+∞

L̃(x, µ,N) = 0 for µ < 0, (3.2)

where µ = cos(θ) denotes the cosine of the propagation angle, N ∈ L2(R+) is the droplet
size distribution, and

σλ
ext(N) = σλ

abs(N) + σλ
sca(N),

KLλ(x, µ,N) =
σλ
sca(N)

2

∫ 1

−1

Φλ(µ, µ
′, N)Lλ(x, µ

′, N) dµ′,

∀ (µ, µ′) ∈ [−1, 1]2, Φλ(µ, µ
′, N) =

1

2π

∫ 2π

0

ϕλ(µµ
′ +
√

1− µ2
√
1− µ′2 cos(ω), N) dω.

(3.3)
The condition (1.2) in one-dimensional space becomes

∀µ ∈ [−1, 1],
1

2

∫ 1

−1

Φλ(µ, µ
′, N) dµ′ = 1.

According to the results of Case-Zweifel [17] and Dautray-Lions [80], the problem (3.1)-(3.2)
has a unique solution which decreases exponentially towards 0 as x tends to infinity. In the
squel, we will restrict the space domain to [0, D] and the radiative transfer equation (3.1)
posed in [0, D] is given by the following problem [6, 7]:µ

∂Lλ

∂x
(x, µ,N) + σλ

ext(N)Lλ(x, µ,N) = KLλ(x, µ,N) + qλ(x, µ), (x, µ) ∈ X

Lλ(0, µ,N) = L+
λ (µ) for µ > 0 and Lλ(D,µ,N) = L−

λ (µ) for µ < 0,
(3.4)

where X = [0, D] × ([−1, 0) ∪ (0, 1]). L−
λ is the spectral radiance value at x = D which is

small if D is large enough. For the numerical applications, we will use L−
λ = 0.

3.1. Existence and uniqueness of the solution of stationary radiative transfer equation
In this section, we review the existence and uniqueness of the solution of stationary

radiative transfer equation (3.4).

Theorem 3.1. [7] Assume σλ
abs(N) > 0 and suppose that

σλ
sca(N)

2
Φλ ∈ Cb(([−1, 0) ∪

(0, 1])2 × R+) and

qλ ∈ L∞(X) , L+
λ ∈ L∞((0, 1]), L−

λ ∈ L∞([−1, 0)),

where Cb is the space of bounded continuous functions. The problem (3.4) has a unique
solution in Cb(X) which satisfies the following estimate

∥Lλ∥L∞(X) ≤ max

(
∥L−

λ ∥L∞([−1,0)), ∥L+
λ ∥L∞((0,1]),

1

σλ
abs(N)

∥qλ∥L∞(X)

)
. (3.5)

11



3.2. Some explicit solutions of the stationary radiative transfer equation

In some cases, we provide exact solutions for the stationary radiative transfer equation
used in the sequel to check our numerical approximations.

3.2.1. Case without collision operator (KLλ ≡ 0) and qλ ≡ 0

We are interested in the following system, with σλ
ext(N) > 0:µ

∂Lλ

∂x
(x, µ) + σλ

ext(N)Lλ(x, µ) = 0, (x, µ) ∈ X

Lλ(0, µ) = L+
λ (µ), µ > 0 and Lλ(D,µ) = 0, µ < 0.

(3.6)

It is easy to show the solution of (3.6) is:

Lλ(x, µ) = L+
λ (µ) e

−σλ
ext(N)

x

µ11µ>0. (3.7)

3.2.2. Case with a source expressed by a Dirac measure

We are interested in the following system, with σλ
ext(N) > 0 and 0 < c < D real numbers:µ

∂Lλ

∂x
(x, µ) + σλ

ext(N)Lλ(x, µ) = f(µ)δc(x), (x, µ) ∈ X

Lλ(0, µ) = 0, µ > 0 and Lλ(D,µ) = 0, µ < 0.
(3.8)

The solution of (3.8) is :

Lλ(x, µ) =
f(µ)

|µ|
e
−σλ

ext(N)
(x− c)

µ 11(x−c)µ>0. (3.9)

3.2.3. Case with phase function Φλ ≡ 1 and source term qλ expressed by the Dirac measure

We are interested in the problem discussed in paragraph 4 of [80] with 0 < c < 1:µ
∂Lλ

∂x
(x, µ) + Lλ(x, µ) =

c

2

∫ 1

−1

Lλ(x, µ
′)dµ′ +

1

2
δ(x), x ∈ R, µ ∈ [−1, 0) ∪ (0, 1],

Lλ(−∞, µ) = 0, µ > 0 ; Lλ(+∞, µ) = 0, µ < 0.

(3.10)

The solution is expressed by applying the Fourier transform to the variable µ, and by using
Cauchy’s theorem of complex analysis.

The expression of T (x) :=

∫ 1

−1

L(x, µ) dµ, according to [80] is:

∀x > 0, T (x) =
ξ0
c

1− ξ20
ξ20 + c− 1

e−ξ0x +

∫ +∞

1

e−tx

2t
[(
1− c

2t
log t+1

t−1

)2
+
(
cπ
2t

)2] dt, (3.11)

where 0 < ξ0 ≤ 1 verifies iξ0−c atan(iξ0) = 0. We give in table 2 some values of ξ0 according
to c.

c 0.25 0.5 0.75 0.9
ξ0 9.993×10−1 9.575×10−1 7.755× 10−1 5.254×10−1

Table 2: Approximation of ξ0 for several values of c.
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4. Identification of the DSD by a least-squares optimization method

In this section, we present the inverse problem for identifying the droplet size distribution
N from radiation measurements.

4.1. The cost function and the minimization problem

The measurements at wavelength λl, at a point xi of the x-axis is determined by:

M i
l ≡Mλl

(xi) =

∫ b

a

L⋆
λl
(xi, µ) dµ , ∀ 1 ≤ i ≤ I, 1 ≤ l ≤ G, (4.1)

where I and G represent the numbers of measurement points and wavelengths, respectively.
The two parameters a and b are defined as follows:

a = cos
(
θ′ +

α

2

)
; b = cos(θ′) (4.2)

where α designates the aperture angle of the sensor, and θ′ is the position angle of the
sensor relative to the source (θ′ = 0◦ for forescattering measurements, and θ′ = 180◦ for
backscattering measurements).
L⋆
λ(x, µ) is the “real” spectral radiance in the direction µ, at point x and for the wavelength

λ. For the numerical applications, we will use synthetic measurements obtained by (7.1) and
by:

L⋆
λ(x, µ) = Lλ(x, µ,N

⋆), (4.3)

that is L⋆
λ is the solution of the stationary radiative transfer equation (3.4) with a known

droplet size distribution N⋆ measured in the PAVIN platform, in natural foggy conditions
or coming from DSD modelling recalled in the Introduction and detailed in Section 6.
In order to identify the droplet size distribution N , we introduce for all ε ≥ 0 the following
least-squares problem:

inf
N∈H(R+)

Jε(N), (4.4)

where
Jε(N) = J1(N) +

ε

2
∥
√
f N∥2H(R+), (4.5)

and

J1(N) =
1

2

I∑
i=1

G∑
l=1


∫ b

a

Lλl
(xi, µ) dµ−Mλl

(xi)

Mλl
(xi)


2

. (4.6)

The cost function defined in (4.5) represents the difference between the synthetic measure-
ments and the model output, including the regularity term.

Theorem 4.1. For all ε ≥ 0, the least squares problem (4.4)-(4.5) admits a unique solution
in H(R+).

Proof. It is easy to check that the cost function Jε defined in (4.5) is continuous, differentiable,
and strictly convex. Then our problem admits a unique minimum.
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4.2. The cost function gradient and the adjoint problem

Here we show the differentiability of the cost function and express its gradient thanks to the
adjoint problem associated to the radiative transfer equation.

Proposition 4.1. For all ε ≥ 0, the function Jε is differentiable and the directional deriva-
tive is as follows:

DJε(N) ·N = (∇Jε(N), N)H(R+) =

∫ +∞

0

r2 (∇Jε(N))( r)N(r) dr,

where

∇Jε(N) = −π
G∑
l=1

[
Qλl

extWλl
(N)

]
+
π

2

G∑
l=1

[
Qλl

scaRλl
(N)

]
+ εfN, (4.7)

with for all wavelengths λ,

Wλ(N) =

∫ 1

−1

∫ D

0

pλ(x, µ,N)Lλ(x, µ,N) dx dµ, (4.8)

Rλ(N) =
1

2π

∫ 1

µ=−1

∫ D

0

pλ(x, µ,N)

(∫ 1

µ′=−1

Lλ(x, µ
′, N)

(∫ 2π

0

ψλ(r, µ0)dω

)
dµ′
)
dx dµ.

Lλ verifies (3.4), and pλ verifies the adjoint problem defined by
−µ ∂pλ

∂x
(x, µ,N) + σλ

ext(N) pλ(x, µ,N) = Kpλ(x, µ,N) + qλ(x, µ,N), (x, µ) ∈ X

pλ(0, µ,N) = 0, µ < 0 and pλ(D,µ,N) = 0, µ > 0,

(4.9)

with

qλ(x, µ,N) =
I∑

i=1


∫ b

a

Lλ(xi, µ,N) dµ−Mλ(xi)

(Mλl
(xi))2

 11(a,b)(µ) δxi
(x). (4.10)

Proof. The directional derivative of the cost function (4.5) according to N is given by the
following form (see Appendix A):

DJε(N) ·N =−
G∑
l=1

[
σλl
ext(N)

∫ 1

−1

∫ D

0

pλl
(x, µ,N)Lλl

(x, µ,N) dx dµ

]

+
1

2

G∑
l=1

[
σλl
sca(N)

∫ 1

µ=−1

∫ D

0

pλl
(x, µ,N)

(∫ 1

µ′=−1

Lλl
(x, µ′, N)Φλl

(
µ, µ′, N

)
dµ′
)
dxdµ

]
+ ε

∫ +∞

0

r2 f(r)N(r)N(r) dr.

(4.11)
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Moreover,

σλl
sca(N) Φλ(µ, µ

′, N) =
1

2π

∫ 2π

0

σλl
sca(N)ϕλ(µµ

′ +
√

1− µ2
√

1− µ′2 cos(ω), N) dω, (4.12)

by (2.5), and noting that µ0 = µµ′ +
√
1− µ2

√
1− µ′2 cos(ω), we have

σλ
sca ϕλ(µ0, N) =

∫ +∞

0

Qλ
sca(r)ψλ(r, µ0) π r

2N(r) dr, (4.13)

then

σλl
sca(N) Φλ(µ, µ

′, N) =
1

2π

∫ 2π

0

∫ +∞

0

Qλ
sca(r)ψλ(r, µ0) π r

2N(r) dr dω, (4.14)

where ψλ is defined in (2.8).
By injecting (2.4) and (4.14) in (4.11), we get

DJε(N) ·N =− π
G∑
l=1

[∫ +∞

0

Qλl
ext(r)Eλl

(N) r2N(r) dr

]

+
π

2

G∑
l=1

[∫ +∞

0

Qλl
sca(r)Rλl

(N)r2N(r) dr

]
+ ε

∫ +∞

0

r2 f(r)N(r)N(r) dr,

(4.15)
then, we obtain the formula (4.7).

5. Numerical schemes to approximate the RTE and its adjoint problem

In this section, we present the approximation of one-dimensional stationary radiative
transfer equation by using Yvon’s method [95]. In order to use this method, we need to
decompose the phase function on the Legendre polynomials basis. In the following, we give
the minimization algorithm to minimize the cost function Jε.

5.1. Decomposition of the phase function on Legendre basis

In this part, we present the decomposition of the phase function Φλ on Legendre poly-
nomials basis [35]. We recall that the Legendre polynomials are defined for all µ ∈ [−1, 1]
by the following recurrence (see [58]):

P0(µ) = 1 , P1(µ) = µ,

∀n ≥ 1, Pn+1(µ) =
(2n+ 1)

(n+ 1)
µPn(µ)−

n

(n+ 1)
Pn−1(µ).

(5.1)

Lemma 5.1. The phase function Φλ defined in (3.1) can be decomposed as follows:

∀ (µ, µ′) ∈ [−1, 1]2, ∀N ∈ L2(R+), Φλ(µ, µ
′, N) =

+∞∑
k=0

Aλ,k(N)Pk(µ)Pk(µ
′), (5.2)
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with

Aλ,k(N) =
1

σλ
sca(N)

∫ +∞

0

Qλ
sca(r)Ãλ,k(r) π r

2N(r) dr, (5.3)

and

∀ r > 0, Ãλ,k(r) =
λ2(2k + 1)

4π2 r2Qλ
sca(r)

+∞∑
i=0

+∞∑
j=0

(αi αj + βi βj)

∫ 1

−1

Pi(µ)Pj(µ)Pk(µ) dµ, (5.4)

where α, β ∈ C are determined in Appendix B. α, β are the complex conjugates of α, β and
we have [4]:

∫ 1

−1

Pi(µ)Pj(µ)Pk(µ) dµ =


0 if i+ j < k or j + k < i or i+ j + k is odd

2
(2s− 2i)(2s− 2k)(2s− 2j)

(2s− 1)!

[
s!

(s− i)!(s− j)!(s− k)!

]
else,

with s = (i+ j + k)/2.

Proof. Let us assume that the functions S1 and S2 defined in (2.9)-(2.10) are decomposed
on the Legendre basis (Pk)k≥0 as follows:

∀µ ∈ [−1, 1], S1(µ) =
+∞∑
i=0

αi Pi(µ) ; S2(µ) =
+∞∑
i=0

βi Pi(µ). (5.5)

From (2.8), we deduce that

ψλ(r, µ) =
λ2

2π2 r2Qλ
sca(r)

+∞∑
i=0

+∞∑
j=0

(αi αj + βi βj)

∫ 1

−1

Pi(µ)Pj(µ) dµ

=
+∞∑
k=0

Ãλ,k(r)Pk(µ)

(5.6)

Moreover,

ϕλ(µ,N) =
1

σλ
sca(N)

∫ +∞

0

Qλ
sca(r)ψλ(r, µ) π r

2N(r) dr

=
1

σλ
sca(N)

∫ +∞

0

Qλ
sca(r)

(
+∞∑
k=0

Ãλ,k(r)Pk(µ)

)
π r2N(r) dr

=
+∞∑
k=0

Aλ,k(N)Pk(µ),

(5.7)

where

Aλ,k(N) =
1

σλ
sca(N)

∫ +∞

0

Qλ
sca(r)Ãλ,k(r) π r

2N(r) dr. (5.8)
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Then,

Φλ(µ, µ
′, N) =

1

2π

∫ 2π

0

ϕλ(µµ
′ +
√

1− µ2
√

1− µ′2 cos(ω), N) dω

=
1

2π

+∞∑
k=0

Aλ,k(N)

∫ 2π

0

Pk(µµ
′ +
√

1− µ2
√

1− µ′2 cos(ω))dω,

(5.9)

using Legendre’s polynomial addition theorem [58]: for all n ≥ 1,

∀ (µ, µ′) ∈ [−1, 1]2,∀w ∈ [0, 2π], Pn

(
µµ′ +

√
1− µ2

√
1− µ′2 cosw

)
= Pn(µ)Pn (µ

′) + 2
n∑

m=1

(n−m)!

(n+m)!
Pm
n (µ)Pm

n (µ′) cos(mw),

which results in

∀ (µ, µ′) ∈ [−1, 1]2,
1

2π

∫ 2π

0

Pn

(
µµ′ +

√
1− µ2

√
1− µ′2 cosw

)
dw = Pn(µ)Pn (µ

′) .

Then, from (5.9) and Legendre’s polynomial addition theorem, we obtain:

Φλ(µ, µ
′, N) =

+∞∑
k=0

Aλ,k(N)Pk(µ)Pk(µ
′).

5.2. Approximation of the stationary radiative transfer equation using Yvon’s method

To solve the stationary radiative transfer equation, we use Yvon’s method [95] which is
a decomposition method based on the double basis of Legendre polynomials (Pn(2 · −1))n≥0

for µ ∈ [−1, 0) and (Pn(2 ·+1))n≥0 for µ ∈ (0, 1]. Yvon’s method begins by splitting the Lλ

into two functions, one ℓ+λ corresponds to photons having a µ > 0, the other ℓ−λ corresponds
to photons having a µ < 0, and consider each of these parts as a separate function.
The radiance Lλ, for K Legendre polynomials, is decomposed as follows [95]:

Lλ(x, µ) =



K∑
j=0

(2j + 1)ℓ−λ,j(x,N)Pj(2µ+ 1) if µ < 0

K∑
j=0

(2j + 1)ℓ+λ,j(x,N)Pj(2µ− 1) if µ > 0,

(5.10)

and suppose that the source term qλ in (3.1) is decomposed as follows:

qλ(x, µ) =
K∑
i=0

qλ,i(x)Pi(µ). (5.11)

17



By injecting (5.9), (5.10), and (5.11) into (3.1), we get two systems of size K +1 that verify
the functions ℓ+λ,j, ℓ

−
λ,j [95]:

1

2

j

2j + 1

dℓ+λ,j−1

dx
(x,N) +

1

2

j + 1

2j + 1

dℓ+λ,j+1

dx
(x,N) +

1

2

dℓ+j
dx

(x,N) + σλ
ext(N)ℓ+j (x,N)

=
1

2
σλ
sca(N)

K∑
n=0

(2n+ 1)
(
Γα,β
j,n ℓ

−
λ,n(x,N) + Γα,α

j,n ℓ
+
n (x,N)

)
+

K∑
n=0

qλ,n(x)αn,j, 0 ≤ j ≤ K

−1

2

j

2j + 1

dℓ
−
λ,j−1

dx
(x,N)− 1

2

j + 1

2j + 1

dℓ
−
λ,j+1

dx
(x,N)− 1

2

dℓ−j
dx

(x,N) + σλ
ext(N)ℓ

−
λ,j(x)

=
1

2
σλ
sca(N)

K∑
n=0

(2n+ 1)
(
Γβ,β
j,n ℓ

−
λ,n(x,N) + Γβ,α

j,n ℓ
+

λ,n(x,N)
)
+

K∑
n=0

qλ,n(D − x)βn,j, 0 ≤ j ≤ K

∀x ∈ [0, D],
(
ℓ−λ,K+1

)′
(x,N) =

(
ℓ+λ,K+1

)′
(x,N) = 0,(

ℓ+λ,j(0, N)
))

0≤j≤K
and

(
ℓ−λ,j(D,N)

))
0≤j≤K

given,

(5.12)

where we put ℓ
±
λ,k(·, N) = ℓ±λ,k(D − ·, N), and

∀j ≥ 0,∀n ≥ 0,Γu,v
λ,j,n ≡ Γu,v

λ,j,n(N) =
K∑
k=0

Aλ,k(N)uk,j vk,n,

for any real families (up,q)p≥0,q≥0, (vp,q)p≥0,q≥0 while Aλ,k is defined in (5.3), and

∀k ≥ 0,∀n ≥ k, αn,k =

∫ 1

0

Pn(µ)Pk(2µ− 1)dµ ; βn,k =

∫ 0

−1

Pn(µ)Pk(2µ+ 1)dµ. (5.13)

Eventually, our system (5.12) reads in a compact form as follows: AL′
λ(x) +B Lλ(x) = C1 Lλ(x) + C2 Lλ(D − x) + E(x), 0 < x < D,

Lλ(0) given,
(5.14)

with A,B,C1 and C2 some matrices of size (2K+2)×(2K+2), A tridiagonal and B diagonal,
E a vector of size 2K + 2.
In order to solve (5.14), we use the so-called ”source iteration method” [see 7, chapter 5
section 2] combined with the implicit Euler scheme.
To use the same discretization for the adjoint problem (4.9), we make a change of variable of
x̃ = D − x to obtain a problem similar to the radiative transfer equation. Then, we obtain

pλ(x, µ) =



K∑
k=0

(2 k + 1) d−λ,k(x,N)Pk(2µ+ 1) if µ < 0,

K∑
k=0

(2 k + 1) d+λ,k(x,N)Pk(2µ− 1) if µ > 0.

(5.15)
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5.3. Approximation of the gradient

By injecting (5.10) and (5.15) into (4.7), and by using the trapezoidal rule for the integral
in x, the gradient for K Legendre polynomials is given as follows:

∇Jε(N) ≈− π

G∑
l=1

Qλl
extWλl

(N) +
π

2

G∑
l=1

Qλl
scaRλl

(N) + ε f N (5.16)

with ∀ 1 ≤ l ≤ G

Wλl
(N) ≈

S∑
i=0

wi

(
K∑
j=0

(2 j + 1)
(
d−λ,j(xi, N) l−λ,j(xi, N) + d+λ,j(xi, N) l−λ,j(xi, N)

))
,

Rλl
(N) ≈

S∑
i=0

wi

(
K∑
j=0

(2 j + 1)
(
d−λl,j

(xi, N)Bλ,j(xi, N) + d+λ,j(xi, N)Cλ,j(xi, N)
))

,

where ωi is the weights, and ∀ 0 ≤ i ≤ S, ∀ 0 ≤ j ≤ K

Bλ,j(xi, N) ≈
K∑

n=0

(2n+ 1)(Γ̃β,β
λ,j,n l

−
λ,j(xi, N) + Γ̃α,β

λ,j,n l
+
λ,j(xi, N)),

Cλ,j(xi, N) ≈
K∑

n=0

(2n+ 1)(Γ̃α,β
j,n l

−
λ,j(xi, N) + Γ̃α,α

λ,j,n l
+
λ,j(xi, N)),

where l+λ,j, l
−
λ,j are defined in (5.12), and Γ̃u,v

λ,j,n are defined by:

∀j ≥ 0,∀n ≥ 0, Γ̃u,v
λ,j,n ≡ Γ̃u,v

λ,j,n(r) =
K∑
k=0

Ãλ,k(r)uk,j vk,n,

with Ãλ,k is defined in (5.4), and u, v are defined in (5.13).

5.4. Iterative minimization algorithm

The purpose of this part is to present and analyze a numerical algorithm to approximate
the solution of the previously studied minimization problem (4.4)-(4.5). We consider the
Barzilai-Borwein minimization algorithm [9]:{

N0, N1 given, N0 ̸= N1,

g0 = ∇Jε(N0) and g1 = ∇Jε(N1),

and for all n ≥ 1 
∆Nn−1 = Nn −Nn−1 ; ∆gn−1 = gn − gn−1,

Nn+1 = Nn −
(∆Nn−1,∆gn−1)H(R+)

(∆gn−1,∆gn−1)H(R+)

gn,

gn+1 = ∇Jε(Nn+1).

We also mention the conjugate gradient method [46], which is notably used by [51] in our
context.
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6. Numerical study of the stationary radiative transfer equation discretization

In this section, we study the numerical approximations presented in Section 5 with an
analysis of their convergence on the explicit cases given in Section 3.2. We start by a
nondimensionalization step in order to reduce the number of parameters.

6.1. Nondimensionalization of the radiative transfer equation

The first step is to normalize in (3.4) the spatial domain [0, D] by [0, 1] thanks to the
change of variable x̃ = x/D. Introducing the new functions:

L̃(x, µ) = L(x̃, µ), q̃λ(x, µ) = qλ(x̃, µ), σ̃
λ
sca = Dσλ

sca, σ̃
λ
abs = Dσλ

abs, σ̃
λ
ext = Dσλ

ext, (6.1)

then L̃ is the solution to:µ
∂L̃λ

∂x
(x, µ,N) + σ̃λ

ext(N)L̃λ(x, µ,N) = K̃L̃λ(x, µ,N) + q̃λ(x, µ), (x, µ) ∈ X

L̃λ(0, µ,N) = L+
λ (µ) for µ > 0 and L̃λ(1, µ,N) = L−

λ (µ) for µ < 0,

(6.2)

where X = [0, 1]× ([−1, 0) ∪ (0, 1]) and:

K̃L̃λ(x, µ,N) =
σ̃λ
sca(N)

2

∫ 1

−1

Φλ(µ, µ
′, N) L̃λ(x, µ

′, N) dµ′. (6.3)

As mentioned in Section 1, we will focus our numerical experiments on a Lambertian source,
leading to put, without loss of generality:

∀µ > 0, L+
λ (µ) = 1. (6.4)

Moreover, choosing D large enough, we will use the following boundary condition in all the
sequel:

∀µ < 0, L−
λ (µ) = 0. (6.5)

In order to lighten the notations, all tildes will be omitted and D = 1.

6.2. Convergence error w.r.t. spatial discretization and Legendre series truncation

The case of the Beer-Lambert solution (Section 3.2.1) is investigated here in order to ana-
lyze the convergence of our numerical procedure of Section 5. Considering the problem (6.2)
with K̃ = 0, q̃λ = 0 and with boundary conditions (6.4)- (6.5), the solution is then given
by (3.7):

L(x, µ) =

{
exp(−σextx/µ) if µ > 0

0 if µ ≤ 0,
(6.6)

For a stepsize ∆x defining a partition 0 = x0 < x1 < · · · < xN = 1 and a number K of
keeped terms in the Legendre series truncation, we denote by LK

∆x the approximate radiance
of L obtained by the numerical method of Section 5. The cost function defined in (4.6)

requiring the calculation of
∫ b

a
L(x, µ)dx, we consider the following numerical error:

E(σext, K,∆x) = sup
0≤i≤N

∣∣∣∫ b

a

(
L(xi, µ)dµ− LK

∆x(xi, µ)
)
dµ
∣∣∣∫ b

a
L(xi, µ)dµ

. (6.7)

20



For the numerical simulations, we will use, as in Section 7:

a = cos
( π

360

)
, b = 1 (forescattering measurement with 1o aperture angle). (6.8)

We plot in Figure 6 the relative error (6.7) for the following values:

σext ∈ {6.25× 10−2, 1.0, 4.0, 16.0}, K ∈ {10, 30, 50, 70, 90}, ∆x ∈ {2−i, 5 ≤ i ≤ 18}. (6.9)

Figure 6: Error (6.7) in the Beer-Lambert case with σext equal to 6.25× 10−2 (a) , 1.0 (b), 4.0 (c) and 16.0
(d).

We can observe in Figure 6 that the error decreases as the step ∆x decreases and as
the truncation threshold K increases. The sensitivity to K is nevertheless very low for high
extinction coefficients.

For the general case (K ̸= 0), we plot in Figure 7 the relative error (6.7). The calculations
are done with one of the DSD of Figure 5(a). The “exact” solution, which is unknown, is
assumed to be given by LK

∆x with K = 100 and ∆x = 2−18 ≃ 3.8× 10−6.
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Figure 7: Error (6.7) in the general case with σext equal to 6.25× 10−2 (a) , 1.0 (b), 4.0 (c) and 16.0 (d).

We can observe in Figure 7 a higher sensitivity to K, especially if the stepsize ∆x is small.
We will keep in the sequel:

K = 50 and ∆x = 10−3 =⇒ E(σext, k,∆x) ≤ 10−2. (6.10)

We end this study by plotting in Figure 8 the numerical and explicit radiance with respect
to x and µ with ∆x = 10−3, and 50 Legendre polynomials, for the Beer-Lambert case and
the collision case (in this latter, the explicit solution is given by LK

∆x with K = 100 and
∆x = 2−18 ≃ 3.8× 10−6).
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Figure 8: Numerical and explicit radiances with respect to x and µ with ∆x = 10−3, and 50 Legendre
polynomials, for the Beer-Lambert case ((a) and (b)) and the collision case ((c) and (d)).

6.3. Study for the adjoint problem of the RTE

The adjoint problem (4.9) involves Dirac sources. We apply our numerical scheme on the
simple model (3.8) whose solution is given by (3.9). We then consider the following problem:µ

∂L

∂x
(x, µ) + σL(x, µ) = δ1/2(x), 0 < x < 1, −1 < µ < 1

L(0, µ) = L(1,−µ) = 0, µ > 0,
(6.11)

whose solution is given by:

L(x, µ) =
1

|µ|
eσ(x−1/2)/µ 1(x−1/2)µ>0(µ). (6.12)

We plot in Figure 9(a) the numerical and explicit radiances with respect to x and µ
with ∆x = 10−3, and 50 Legendre polynomials for the problem (6.11) with σ = 4.0. We
can observe a very good agreement between numerical and explicit solutions. In order to
take into account a collision operator which appears in the adjoint problem, we consider the
Dautray-Lions solution (3.11) of problem (3.10). Since the Dautray-Lions solution (3.11)
does not give the radiance but its integral over µ, we consider the following numerical error
associated to the discretization of (3.10):

E(∆x,K, c) =

∣∣∣∫R ∫ 1

−1

(
L(x, µ)− LK

∆x(x, µ)
)
dµdx

∣∣∣∫
R

∫ 1

−1
L(x, µ)dµ

, (6.13)

where c is the parameter of the Dautray-Lions problem. We plot in Figure 9(b) the numerical
and explicit function T (see 3.11) with respect to x with ∆x = 10−3, and 50 Legendre
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polynomials for the problem (3.10) with c = 0.5. In this case, we then find E(2−16, 100, 0.5) =
3.53× 10−2.

Figure 9: Numerical and explicit radiances with respect to x and µ with ∆x = 10−3, and 50 Legendre
polynomials for the problem (6.11) with σ = 4.0 (a). Numerical and explicit function T (see 3.11) w.r.t. x
with ∆x = 10−3 and 50 Legendre polynomials for the problem (3.10) with c = 0.5.

7. Droplet size distribution identification results

In this part, we present some numerical identification of the distribution N by using
synthetic measurements. We investigate the reconstruction method for different radiative
transfer modellings and for the 3 types of DSD presented in Figure 5. The identification is
done in the following four cases:

1. Beer-Lambert case with forescattering measurements (θ′ = 0◦ and α = 1◦);

2. Isotropic collision operator case with forescattering measurements (θ′ = 0◦ and α = 1◦);

3. Isotropic collision operator case with backscattering measurements (θ′ = 180◦ and
α = 1◦);

4. Anisotropic collision operator case with backscattering measurements (θ′ = 180◦ and
α = 1◦).

From a target distribution function, noted N⋆, the measurements are reconstructed as fol-
lows:

∀ 1 ≤ i ≤ I, 1 ≤ l ≤ G, Mλl
(xi) =

∫ b

a

L⋆
λl
(xi, µ,N

⋆) dµ (7.1)

for I = 1, x1 = 0.5 (forescattering), x1 = 0 (backscattering) and for G = 50 wavelengths
equally distributed between 300nm and 2500nm:

∀ 1 ≤ l ≤ 50, λl = 300 + 44 ∗ (l − 1) nm. (7.2)
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In order to study the convergence of the minimization algorithm, we calculate at each iter-
ation k the relative error RE of the minimizer and the relative cost RC

RE(k) =

√
(Nk −N⋆, Nk −N⋆)H(R+)

(N⋆, N⋆)H(R+)

=

(
R∑
i=1

[ri(Nk(ri)−N⋆(ri))]
2

)1/2

(
R∑
i=1

(riN
⋆(ri))

2

)1/2

RC(k) =
J1(Nk)

J1(N0)

where R denotes the number of sub-intervals which the particle size range [rmin, rmax] is
divided into; J1 is defined in (4.6), N⋆ is the target DSD and N0 is the initial DSD for the
minimization algorithm. This algorithm is initialized by the two vectors N0 = (1, · · ·, 1)
and N1 = N0 − 0.1∇Jε(N0) in all the numerical results shown in this section. The actual
measurements have a noise level η, such as:

∀λ ∈ [300nm, 2500 nm], ∥Mη
λ −Mλ∥L∞([0,D]) ≤ η

where
Mη

λ = (1 + η U)Mλ

represents the measurements (with a relative noise level η ≥ 0 and U a random variable with
uniform law on (0, 1)) andMλ represents the true measurements corresponding to the target
distribution N⋆.
We perform our simulations with a Lambertian source, where the radiance at x = 0 is
constant and is independent of µ (i.e we take L(0, µ) = L+(µ) = 1 and L(D,µ) = L−(µ) = 0).
We fix two choices for the couple (ε, f(r)) depending on the locations of the DSD’s peak.
We refer to Table 3 for the (ε, f(r)) choices after some preliminar experiments.

Conditions ε f(r)

DSD with a peak location rm < 1µm 10−14 1/r9

DSD with a peak location rm > 1µm 10−6 1/r4

Table 3: Choices of the (ε, f) parameters of the cost function.

7.1. Determination of the best descent algorithm

We determine the descent algorithm having the best performances by a comparison on the
Beer-Lambert modelling case (see Section 3.2.1). Forescattering measurements are carried
out (θ′ = 0◦, α = 1◦). We recall, for all ε ≥ 0, the cost function:

Jε(N) =
1

2

I∑
i=1

G∑
l=1


∫ b

a

e−σ
λl
ext(N)

xi
µ dµ−Mλl

(xi)

Mλl
(xi)


2

+
ε

2
∥
√
fN∥2H(R+). (7.3)
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In this case (Beer-Lambert explicit solution to the RTE), we can simply compute the gradient
of Jε:

DJε(N) ·N = −
G∑
l=1

σλl
ext(N)

(
I∑

i=1

xiB
λl(xi)

∫ b

a

1

µ
e−σ

λl
ext(N)

xi
µ dµ

)

+ ε

∫ +∞

0

r2f(r)N(r)N(r) dr (7.4)

with

Bλl(xi) =


∫ b

a

e−σ
λl
ext(N)

xi
µ dµ−Mλl

(xi)

(Mλl
(xi))2

 , 1 ≤ i ≤ I ; 1 ≤ l ≤ G.

We then obtain:

∇Jε(N) = −π
G∑
l=1

Qλl
ext

(
I∑

i=1

xiB
λl(xi)

∫ b

a

1

µ
e−σ

λl
ext(N)

xi
µ dµ

)
+ ε f N. (7.5)

A Gauss’s integration formula is used to compute the integral in (7.5).
A comparison between the Barzilai-Borwein minimization algorithm and the two conju-

gate gradient algorithms CG-Polak Ribiere and CG-Daniel [46] is shown in Figure 10 for one
of the DSD of Figure 5(a).

Figure 10: Reconstructed DSDs obtained by Barzilai-Borwein, CG-Polak Ribiere and CG-Daniel minimiza-
tion algorithms after 30 000 iterations, and PAVIN platform target DSD with θ′ = 0◦, α = 1◦, x = 0.5 and
η = 0%.
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Methods J1(N) relative cost relative error

Barzilai-Borwein 8.478×10−10 7.263×10−13 2.555×10−2

CG-Polak Ribiere 3.816×10−6 1.228×10−4 4.052×10−1

CG-Daniel 1.253×10−6 4.035×10−5 3.217×10−1

Table 4: The cost J1, the relative cost RC, and the relative error RE, after 30 000 iterations for various
minimization algorithms with ε = 10−14 and f(r) = 1

r9 .

After 30 000 iterations, from Table 4 and in comparison to N⋆, our approximated N
by the Barzilai-Borwein algorithm has an error of 2.5%, is less than the error obtained by
CG-Polak Ribiere algorithm 40% and CG-Daniel algorithm 32%. Figure 10 confirms that
the identification of the distribution N by the Barzilai-Borwein algorithm is the best among
the three algorithms used. We give in Table 5 the relative error:

E2
λ =

∥L⋆
λ − La

λ∥L∞(X)

∥L⋆
λ∥L∞(X)

between the radiance L⋆
λ calculated from N⋆, and the radiance La

λ calculated from the ap-
proximated N by the Barzilai-Borwein algorithm.

λ (nm) 300 500 1000 1500 2000 2500
E2

λ 2.284×10−5 1.174×10−4 5.496×10−5 3.735×10−5 2.250×10−5 9.236×10−6

Table 5: Relative error E2
λ between the radiance calculated by N⋆ and by the approximated N (obtained by

BB algorithm) w.r.t. wavelength λ.

We observe a very small difference between the spectral radiance calculated from target
N⋆ and the approximated N . In the sequel, we shall use the Barzilai-Borwein algorithm to
identify the distribution N .

7.2. Beer-Lambert case

Figure 11 shows the identification results for various droplet size distributions measured
at the Cerema PAVIN Platform. Table 6 presents the values of the relative cost and the
relative error of these tests after 30 000 iterations, which suggest that the identification is
satisfactory.

Tests J1(N) relative cost relative error

Test 1 (top left) 1.892×10−9 8.597×10−12 2.830×10−2

Test 2 (top right) 1.312×10−10 3.896×10−13 1.492×10−2

Test 3 (bottom left) 1.006×10−9 1.627×10−12 2.237×10−2

Test 4 (bottom right) 2.965×10−10 7.416×10−13 2.105×10−2

Table 6: The cost J1(N), the relative cost RC, and the relative error RE after 30 000 iterations with
ε = 10−14 and f(r) = 1

r9 corresponding to Figure 11.

Figure 12 shows the identification results for various droplet size distributions measured
on Paris-Fog campaign [11] (see Figure 5(b)). Table 7 presents the values of the relative cost
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Figure 11: Identification results obtained after 30 000 iterations with θ′ = 0◦, α = 1◦, x = 0.5 and the noise
η = 0% for 4 PAVIN platform DSDs.

and the relative error of these tests after 100 000 iterations. These figures and this table
suggest that the identification is satisfactory with an error ranging between 4,7% or 8%.

Figure 12: Identification results obtained after 100 000 iterations with θ′ = 0◦, α = 1◦, x = 0.5 and the noise
η = 0% for 4 Paris-Fog DSDs.
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Tests J1(N) relative cost relative error

Test 1 (top left) 2.0137×10−7 3.325×10−10 7.614×10−2

Test 2 (top right) 4.924×10−8 6.379×10−11 4.743×10−2

Test 3 (bottom left) 3.917×10−7 5.377×10−10 8.190×10−2

Test 4 (bottom right) 1.410×10−7 1.523×10−10 7.048×10−2

Table 7: The cost J1(N), the relative cost RC, and the relative error RE after 100 000 iterations with
ε = 10−14 and f(r) = 1

r9 corresponding to Figure 12.

We now test the method on the Shettle and Fenn models of Table 1. The identification
results are presented in Figure 13. Table 8 shows the relative cost and the relative error of
the identifications presented in Figure 13.

Figure 13: Identification results obtained after 10 000 iterations with θ′ = 0◦, α = 1◦, x = 0.5 and the noise
η = 0% for Shettle and Fenn DSD models.

Tests J1(N) relative cost relative error

Model 3 (left) 4.723×10−9 4.680×10−8 4.333×10−3

Model 4 (right) 6.828×10−6 1.099×10−6 2.690×10−2

Table 8: The cost J1(N), the relative cost RC, and the relative error RE after 10 000 iterations with ε = 10−6

and f(r) = 1
r4 .

7.3. Isotropic collision operator case

We introduce here a collision operator in the radiative transfer modelling thanks to the
isotropic phase function Φλ ≡ 1 and we then apply the DSD reconstruction method. Note
that this case does not have a very physical meaning since we prescribe a given phase function
when it should depend on the DSD. Nevertheless, it has the merit of testing our method
in a more complex case than the Beer-Lambert case allowing to consider backscattering
measurements. According to Figure 14, we observe a good approximation of N⋆ with either
forescattering or backscattering measurements with a relative cost less than 10−7 and a
relative error less than 5 %.

29



Figure 14: Identification results obtained after 2 000 iterations with forescattering measurements (left) and
backscattering measurements (right) for a PAVIN platform DSD.

Measurement type Jε(N) relative cost relative error

Forescattering 4.980×10−7 7.514×10−8 3.432× 10−2

Backscattering 7.444×10−7 2.985×10−8 4.164× 10−2

Table 9: The cost Jε(N), the relative cost RC, and the relative error RE after 2000 iterations for forescat-
tering and backscattering measurements in the isotropic case.

7.4. Anisotropic collision operator case

In this part, we identify the distribution N in the anisotropic case when the phase func-
tion in the collision operator is calculated from the distribution N . From aour numerical
testing, the forescattering measurements do not properly identify the droplet size distribu-
tion. However, backscattering measurements allow to well reconstruct the DSD. Figure 15
shows the identification of DSD in backscattering measurements after 5000 iterations. The
peak of 0.5 µm is reached. Table 10 shows a relative cost less than 10−7 and a relative error
around than 7 % (slightly larger than in the isotropic case).

30



Figure 15: Identification results obtained after 5 000 iterations with backscattering measurements (right) for
a PAVIN platform DSD in the anisotropic case.

Measurement type Jε(N) relative cost relative error

Backscattering 1.212×10−6 5.143×10−8 7.244× 10−2

Table 10: The cost Jε(N), the relative cost RC, and the relative error RE after 5000 iterations backscattering
measurements in the anisotropic case.

7.5. Noise adding on the measurements

To study the robustness of the DSD identification method, we add to the measurements
a noise level of 1% and 3%. We gather in Figure 16 the reconstructed DSD with different
noises for the following cases: forescattering and backscattering measurements in isotropic
conditions and backscattering measurements in anisotropic conditions. Table 11 details val-
ues of the cost Jε(N), the relative cost RC and the relative error RE for different modellings,
measurement types and noise levels on the measurements. According to Figure 16, the iden-
tification results are correct for 1% noise level: in particular, the peak at 0.5 µm is reached.
For a 3% noise level, the reconstruction begins to change.
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Figure 16: Identification results with noise adding (1% on the left, 3% on the right) in forescattering and
isotropic case (first line), backscattering and isotropic case (second line) and backscattering and anisotropic
case (third line).

Modelling Measurement type Noise η Jε(N) relative cost relative error

Isotropic Forescattering 0% 4.980×10−7 7.514×10−8 3.432× 10−2

Isotropic Forescattering 1% 6.020×10−4 9.089×10−5 2.580×10−1

Isotropic Forescattering 3% 6.166×10−3 9.297×10−4 4.100×10−1

Isotropic Backscattering 0% 7.444×10−7 2.985×10−8 4.164× 10−2

Isotropic Backscattering 1% 5.251×10−4 2.106×10−5 2.550× 10−1

Isotropic Backscattering 3% 5.394×10−3 2.163×10−4 5.087× 10−1

Anisotropic Backscattering 0% 1.212×10−6 5.143×10−8 7.244× 10−2

Anisotropic Backscattering 1% 5.118×10−4 2.171×10−5 2.511× 10−1

Anisotropic Backscattering 3% 5.217×10−3 2.212×10−4 4.608× 10−1

Table 11: The cost Jε(N), the relative cost RC and the relative error RE for different modellings, measure-
ment types and noise levels on the measurements.

For 1% and 3% noise levels on the measurements, the reconstructed N has respectively
about 25% error and 50% with the target DSD N⋆. We can observe the same behavior for
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the gap between the approximation Nη
app obtained with a noise η and the approximation

N0
app with η = 0:

Gap =
∥Nη

app −N0
app∥H(R+)

∥N0
app∥H(R+)

(7.6)

Table 12 shows the gap (7.6) obtained on the approximated N with respect to the noise
level applied on the measurements.

Modelling Measurement type Noise η on Mλ Gap on N
Isotropic Backscattering 1% 24.08%
Isotropic Backscattering 3% 44.17%

Anisotropic Backscattering 1% 21.77%
Anisotropic Backscattering 3% 38.44%

Table 12: The gap obtained on N in function of the noise applied on Mλ.

8. Conclusion

The droplet size distribution (DSD) in a fog or cloud has an impact on the optical
properties of the medium and its knowledge is therefore necessary to take into account
clouds or fogs in meteorological models for example. We developped this work of identifying
DSDs for another application than meteorology, namely the evaluation of optical sensors
such as cameras, radars or lidars in adverse weather conditions for applications to intelligent
transport systems. We proposed an identification method based on radiation measurements
at different wavelengths in the 0 nm -2500 nm spectral band and the inversion of radiative
transfer models. We assumed that the medium in which the measurements were made could
be considered as optically homogeneous and that the radiative transfer within it could be
modelled by a one-dimensional space equation. We then considered a complete modelling of
the radiative transfer equation by taking into account a collision operator provided by the
DSD via the Mie theory.

A least-squares method combined with the Barzilai Borwein algorithm has been used to
identify the droplet size distribution (DSD) from radiation measurements. The minimiza-
tion of the cost function required to calculate its gradient with respect to the DSD, what
was done thanks to the resolution of an adjoint problem to the radiative transfer equation.
Inspired by Yvon’s works, a decomposition method on the double Legendre basis has been
used to approximate the stationary radiative transfer equation and its adjoint. The numer-
ical method has been evaluated and validated on several explicit solutions of the stationary
radiative transfer equation. In addition, an extensive numerical study was carried out to
determine the convergence errors in the proposed numerical methods. A comparison be-
tween the Barzilai-Borwein algorithm and two algorithms based on the conjugate gradient
was performed. It concluded that the Barzilai-Borwein method was more efficient than the
other two and all numerical applications were performed with this algorithm. Various mod-
els describing fog DSDs (Shettel and Fenn) and real DSD measured in natural conditions
(Paris Fog campaign) or in artificial conditions (Cerema PAVIN platform) are used to com-
pute synthetic radiation measurements via Mie theory and the radiative transfer equation
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under different assumptions (Beer-Lambert modelling, isotropic or anisotropic collision oper-
ator). Afterwards, the identification of the DSDs was carried out using these three radiative
transfer modellings. In the Beer-Lambert case, the DSD reconstruction was successful by
using forescattering measurements. In case of a modelling with an isotropic collision term,
forescattering or backscattering measurements led to well reconstruct the DSD. From our
numerical experiments, the identification method in the anisotropic case requires backscat-
tering measurements. We explored in the last section the robustness of the method and
constated that the DSD reconstruction is very sensitive with respect to the noise adding on
measurements. For a 3% noise level, the identification is poorly approached.

Particle size distribution identifications are a wide area of research, and various issues
remain unsolved that require additional investigation of light scattering theory and particle
size distribution inversion approaches. Based on this present works, the inversion of fog
particle size distributions using real measurements will be considered in further studies. We
will also consider the case of 3D modelling which may be necessary to interpret the real
measurements. Furthermore, it will be interesting to consider other types of sources such as
collimated sources for example. Finally, other wavelengths such as thermal infrared could
be considered to improve the method.
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Appendix A. Gradient of the cost function

To compute the expression of the gradient of the cost function Jε (4.5), we define the Lagrangian
L as follows:

L(N,L, p) = 1

2

I∑
i=1

G∑
l=1


∫ b

a
Lλl

(x, µ,N) dµ−Mλl
(xi)

Mλl
(xi)


2

+
ε

2
∥
√
fN∥2H(R+)

+
G∑
l=1

[∫ 1

−1

∫ H

0
µ
∂p

∂x
(x, µ,N)Lλl

(x, µ,N) dx dµ

]

−
G∑
l=1

[
σλl
ext(N)

∫ 1

−1

∫ H

0
pλl

(x, µ,N)Lλl
(x, µ,N) dxdµ

]

+
G∑
l=1

[∫ 1

−1

∫ H

0
pλl

(x, µ,N)

∫ 1

−1
L(x, µ′, N)fλ(µ, µ

′, N)dµ′dxdµ

]

−
G∑
l=1

[∫ 1

0
µ pλl

(D,µ,N)Lλl
(D,µ,N) dµ−

∫ 0

−1
µ pλl

(D,µ,N)L−
λl
(µ) dµ

]

+
G∑
l=1

[∫ 0

−1
µ pλl

(0, µ,N)Lλl
(0, µ,N) dµ

]

+
G∑
l=1

[∫ 1

0
µ pλl

(0, µ,N)L+
λl
(µ) dµ

]

(A.1)

where pλ is the Lagrange multiplier that verifies (4.9) and

fλ(µ, µ
′, N) =

σλsca(N)

2
Φλ(µ, µ

′, N) =
1

4

∫ 2π

0

∫ +∞

0
Qλ

sca(r)ψλ(r, µµ
′+
√

1− µ2
√

1− µ′2 cos(w))r2N(r)drdw,

σλl
ext(N) = π

∫ +∞

0
Qλ

ext(r) r
2N(r) dr.

Let Nη = N + ηN we have

Lλ(x, µ,Nη) = Lλ(x, µ,N) + ηLλ(x, µ,N) + o(η2).

By using (3.4) and

µ
∂Lλ

∂x
(x, µ,Nη) + σλext(Nη)Lλ(x, µ,Nη) =

∫ 1

−1
Lλ(x, µ

′, Nη)f(µ, µ
′, Nη)dµ

′,
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we obtain the following problem satisfied by Lλ:

µ
∂Lλ

∂x
(x, µ,N) + σλext(N)Lλ(x, µ,N) + σλext(N)Lλ(x, µ,N) =

∫ 1

−1
Lλ(x, µ

′, N)fλ(µ, µ
′, N)dµ′

+

∫ 1

−1
Lλ(x, µ

′, N)fλ(µ, µ
′, N)dµ′

Lλ(0, µ,N) = 0 if µ ∈ (0, 1]

Lλ(D,µ,N) = 0 if µ ∈ [−1, 0).

(A.2)
But

DJε(N) ·N = lim
η→0

Jε(Nη)− Jε(N)

η
= ε

∫
R+

r2 f(r)N(r)N(r) dr +

I∑
i=1

G∑
l=1

K(xi, λl)

(∫ b

a
Lλl

(xi, µ,N)dµ

)
(A.3)

where

K(xi, λl) =


∫ b

a
Lλl

(xi, µ) dµ−Mλl
(xi)

(Mλl
(xi))2

 .

To simplify the gradient expression, we need to determine the second term in (A.3). For that, we
multiply (4.9) by L(x, µ) and (A.2) by pλl

(x, µ) and by integrating on X, we obtain

−
∫ 1

−1

∫ D

0
µ
∂pλ
∂x

(x, µ,N)Lλ(x, µ,N) dxdµ+

∫ 1

−1

∫ D

0
σλext(N) pλ(x, µ,N)L(x, µ,N)dxdµ

=

∫ 1

−1

∫ D

0
Lλ(x, µ,N)

∫ 1

−1
p(x, µ′, N)fλ(µ

′, µ,N)dµ′dxdµ

+

∫ 1

−1

∫ D

0
Lλ(x, µ,N)

I∑
i=1

K(xi, λ)11(a,b)(µ) δxi(x) dx dµ

(A.4)

and∫ 1

−1

∫ D

0
µ pλ(x, µ,N)

∂Lλ

∂x
(x, µ,N) dx dµ+

∫ 1

−1

∫ D

0
σext(N) pλ(x, µ,N)Lλ(x, µ,N) dx dµ

+

∫ 1

−1

∫ D

0
σλext(N) pλ(x, µ,N)Lλ(x, µ,N) dx dµ

=

∫ 1

−1

∫ D

0
pλ(x, µ,N)

∫ 1

−1
Lλ(x, µ

′, N)fλ(µ, µ
′, N)dµ′ dx dµ

+

∫ 1

−1

∫ D

0
pλ(x, µ,N)

∫ 1

−1
Lλ(x, µ

′, N)fλ(µ, µ
′, N)dµ′ dx dµ

(A.5)

by using the integration by part and that∫ 1

−1

∫ D

0
pλ(x, µ,N)

∫ 1

−1
fλ(µ, µ

′, N)Lλ(x, µ
′, N)dµ′dxdµ =∫ 1

−1

∫ D

0
Lλ(x, µ,N)

∫ 1

−1
p(x, µ′, N)fλ(µ

′, µ,N) dµ′dxdµ
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∫ 1

−1

∫ D

0
Lλ(x, µ,N)

I∑
i=1

K(xi, λ)11(a,b)(µ) δxi(x)dxdµ =

I∑
i=1

K(xi, λ)

∫ b

a
Lλ(xi, µ,N)dµ

and by comparing (A.4) and (A.5), we obtain

I∑
i=1

G∑
l=1

K(xi, λl)

∫ b

a
Lλl

(xi, µ,N)dµ =
G∑
l=1

[
−
∫ 1

−1

∫ D

0
σλl
ext(N)pλl

(x, µ,N)Lλl
(x, µ,N)dxdµ

]

+
G∑
l=1

[∫ 1

−1

∫ D

0
pλl

(x, µ,N)

∫ 1

−1
Lλl

(x, µ′, N)fλl
(µ, µ′, N)dµ′dxdµ

]
.

(A.6)
Then, by (A.6) we obtain

DJε(N) ·N = ε

∫ +∞

0
r2 f(r)N N dr −

G∑
l=1

[∫ 1

−1

∫ D

0
pλl

(x, µ,N)σλl
ext(N)Lλl

(x, µ,N) dx dµ

]

+

G∑
l=1

[∫ 1

−1

∫ D

0
pλl

(x, µ,N)

∫ 1

−1
Lλl

(x, µ′, N) fλl
(µ, µ′, N) dµ′ dx dµ

]
.

(A.7)

Appendix B. Computation of the decomposition of S1 and S2 on the basis of
Legendre polynomial

To compute the decomposition (5.5) of S1 and S2 on the basis of Legendre polynomial, we ex-
press the polynomials πn and τn occurring in (2.9)- (2.10) in function of the Legendre polynomials
(Pn)n≥0. We recall that

πn(µ) = P ′
n(µ), τn(µ) = −µπn(µ) + n(n+ 1)Pn(µ),

in addition, by (5.1) and

∀n ≥ 2, P ′
n(µ) = Pn−2(µ)− (2n− 1)P ′

n−1(µ), (B.1)

we obtain the following decomposition:

π0 = 0, et ∀n ≥ 1, π2n =
n−1∑
k=0

(4k + 3)P2k+1, π2n−1 =
n−1∑
k=0

(4k + 1)P2k, (B.2)

τ0 = 0, τ1 = P1, τ2n = (2n)2 −
n−1∑
k=0

(4k + 1)P2k, τ2n−1 = (2n− 1)2 −
n−2∑
k=0

(4k + 3)P2k+1. (B.3)

By injecting (B.2),(B.3) in (2.9),(2.10), and (5.5), we obtain after some computations:

∀k ≥ 0,



α2k =

+∞∑
n=k∨2

p1(n, k) +

(
3

2
a1 −

5

6
b2

)
δk0 +

10

3
b2δk1

α2k+1 =
+∞∑

n=(k+1)∨2

i1(n, k) +

(
3

2
b1 +

5

2
a2

)
δk0
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∀k ≥ 0,



β2k =

+∞∑
n=k∨2

p2(n, k) +

(
3

2
b1 −

5

6
a2

)
δk0 +

10

3
a2δk1

β2k+1 =
+∞∑

n=(k+1)∨2

i2(n, k) +

(
3

2
a1 +

5

2
b2

)
δk0

with for n ≥ 2 :
p1(n, k) = −(4n+ 1)(4k + 1)

2n(2n+ 1)
b2n +

(4n− 1)(4k + 1)

2n(2n− 1)
a2n−1, 0 ≤ k ≤ n− 1

p1(n, n) =
4n+ 1

2n(2n+ 1)
(2n)2b2n


i1(n, k) = −(4n+ 1)(4k + 3)

2n(2n+ 1)
a2n − (4n− 1)(4k + 3)

2n(2n− 1)
b2n−1, 0 ≤ k ≤ n− 2

i1(n, n− 1) =
(4n+ 1)(4n− 1)

2n(2n+ 1)
a2n +

4n− 1

2n(2n− 1)
(2n− 1)2b2n−1

p2(n, k) = −(4n+ 1)(4k + 1)

2n(2n+ 1)
a2n +

(4n− 1)(4k + 1)

2n(2n− 1)
b2n−1, 0 ≤ k ≤ n− 1

p2(n, n) =
4n+ 1

2n(2n+ 1)
(2n)2a2n

i2(n, k) = −(4n+ 1)(4k + 3)

2n(2n+ 1)
b2n − (4n− 1)(4k + 3)

2n(2n− 1)
a2n−1, 0 ≤ k ≤ n− 2

i2(n, n− 1) =
(4n+ 1)(4n− 1)

2n(2n+ 1)
b2n +

4n− 1

2n(2n− 1)
(2n− 1)2a2n−1.
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