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Highlights 

•Tramadol induced both behavioral (CPP) and motor (total 

movement) sensitizations in the rat. 

•Tramadol promoted different molecular marker changes in 

the anterior cingulate cortex. 

•All tramadol effects were significantly decreased by the 

administration of naltrexone, a µ opioid receptors antagonist. 

•Tramadol constitutes a reinforcing substance in the rat. 

 

Abstract 

Tramadol is one of the most commonly prescribed analgesic opioids in various 

pharmacopeias. Tramadol has been linked to abuse in recent clinical investigations. 

However, the behavioral effects and neural substrates of the drug have not been 

well characterized in preclinical studies. As a result, the present study investigated 

the effects of tramadol on behavioral sensitizations in rats. Its impacts on cellular 

and molecular alterations in the brain were also investigated. In conditioned place 

preference (CPP) paradigm, tramadol induced behavioral as well as motor 

sensitizations. These effects were dramatically reduced by intraperitoneal 

administration of naltrexone, an opioid receptor antagonist. Tramadol caused 

changes in several molecular markers (pERK1/2, Δ-FosB, PKCγ, PKMζ GAD67) 

in the anterior cingulate cortex, which could indicate an increase in excitation 
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within this structure. Tramadol is demonstrated in the present study to be a 

reinforcing drug in rats, as it increased both behavioral and motor sensitizations. 

Tramadol’s effects are most likely due to the high levels of excitation it causes in 

the brain, which is mostly caused by the activation of opioid receptors. 

1. Introduction 

Tramadol is an opioid agonist that is often used alone or in combination with other 

medications to treat chronic pain. It is one of the most commonly prescribed 

analgesic opioids in various pharmacopeias due to its lower risk of addiction [1]. It 

delivers analgesia by two mechanisms: one, activation of opioid receptors, and the 

other, inhibition of central monoaminergic reuptake, which elevates 

monoaminergic neurotransmitter levels in the brain [[2], [3]]. Tramadol acts on 

different receptors and ion channels (GABAA, glycine, NMDA, adrenergic, 

nicotinic acetylcholine, sodium channels) [[4], [5], [6], [7], [8]]. 

There are differences in tramadol abuse effects in clinical research. Some studies 

showed a weak or no abuse liability for tramadol 

[[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]]. Conversely, other 

studies linked an abuse effect to tramadol 

[[9], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [3

3], [34]]. These discrepancies have been attributed to different doses, tramadol use 

in non-opioid dependent versus drug-dependent people, oral versus injectable 

administrations or its interaction with other drugs or medication. 

Preclinical research on tramadol’s potential for abuse have various discrepancies. 

Tramadol has a mild reinforcing effect in rhesus monkeys [35], but a strong 

reinforcing effect in mice and rats [36], according to a self-administration studies. 

In rodents, tramadol causes conditioned place preference (CPP) 

[[36], [37], [38], [39]]. The CPP is a test that measure the motivational effects of a 

drug. Tramadol induces CPP via mu-opioid receptor [39], and an increase in 

dopamine release within the nucleus accumbens [37]. However, studies did not 

report that tramadol induces motor sensitization in rats [38]. This lack of motor 

sensitization during CPP test suggests that tramadol is not devoid of reinforcing 

effect but it has only limited abuse potential. Based on its interactions with 

morphine and buprenorphine, tramadol was found to cause CPP in rats [40]. 

The purpose of this study was to explore how tramadol affected behavioral 

sensitizations (CPP and actimetry). Both sensitizations must be present for a 
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molecule to be classified as an abuse drug [[38], [41]]. Sensitization is defined 

generally as an amplification of the response to a specific repeated stimulus. After 

repeated exposure to addictive substances, rodents frequently experience locomotor 

sensitization, a common and important behavioral alteration that causes the animal 

to become noticeably more hyperactive in response to an acute drug challenge. The 

effects of tramadol on cellular and molecular alterations in the rat brain, were also 

studied. In addition, the opioid antagonist naltrexone was used to counteract the 

effects of tramadol. 

The anterior cingulate cortex (ACC) constitutes an essential component of the 

limbic system, which is involved in a range of cognitive and emotional processing. 

The ACC plays major roles in pain [80] and drug reward [81]. The ACC processes 

both acute and chronic pain, which makes this region hyperactive [[44], [80]]. 

Contrarily, it has been reported that addiction causes an ACC hypoactivity [81,82]. 

For each of these reasons, the ACC has been investigated in this study. 

2. Materials and methods 

2.1. Animals 

Fifty-one adult male Sprague Dawley rats (Charles Rivers, L’Arbresle, France) 

were used. Rats were maintained in a controlled environment (lights on 07:00–

19:00 h, 22 °C) with ad libitum access to food and water. The experiments 

followed the ethical guidelines of the animal ethics committee of the University of 

Auvergne (APAFIS#19965-20190325052285). 

The CPP test was conducted as previously indicated [[42], [43]]. A software 

application (Imetronic, Pessac, France) was used to analyze rat movements within 

each compartment of the apparatus, and measure the number of entries and the time 

the rats spent in each compartment. Briefly, for habituation, the rats were placed in 

the central alley and were free to explore the entire apparatus for 15 min. During 

the pretest day, rats received only vehicle injection then placed in the central alley 

and the time spent in each compartment during a15 min session was recorded. The 

conditioning period consisted of a session of 30 min per day for 8 days. Each 

animal had one session with a tramadol (10 mg/kg) intraperitoneal injection 

(15 min before the CPP session) alternated on the second day by an injection of a 

vehicle (saline). During the conditioning phase of the CPP, the rats received four 

tramadol (10 mg/kg)-paired sessions and four vehicles paired sessions (Fig. 1). This 

https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#b0190
https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#b0205
https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#b0400
https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#b0405
https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#b0220
https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#b0400
https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#b0405
https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#b0210
https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#b0215
https://www.sciencedirect.com/science/article/pii/S0304394023000071?dgcid=author#f0005


procedure ruled out that place preference would result from response bias. By 

doing this, one group had its last tramadol injection 24 h before the test day while 

the other had it 48 h before the test day. In the test day, rats were introduced 

(during 15 min) into the apparatus by placing them in the central alley and did not 

receive any drug or vehicle. This group is referred to as tramadol-group. This group 

was continuously tested until the extinction of the tramadol-induced CPP. A second 

group was tramadol sensitized during the CPP and received naltrexone (1 mg/kg) 

intraperitoneal injection just before the test in the test day. This group is referred to 

as naltrexone group. This group continued to be naltrexone administered each day 

until the extinction of the CPP. The time spent in each compartment during a 

15 min session was measured. Data were presented as means of individual 

differences between times spent in the drug-paired compartment during the pretest 

phase and the test day. Positive values reflected a CPP. To mention that the CPP 

experimenter was unaware of the treatment given to the animals. 
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Fig. 1. The figure represents the time course of the CPP experiments. The rats were 

divided into two groups: tramadol group, which was conditioned with tramadol and 

had been CPP-tested after the test day for 7 additional days until the extinction of the 

behavioral sensitization (CPP) was obtained. The second group named the naltrexone 

group, which has been conditioned with tramadol and after the test was daily 

administered a naltrexone for additional 7 days. During the conditioning, the rats were 

split into two groups, one receiving tramadol while the other receiving a saline 

administration and there were switched the next day. As a result, one group had their 

last tramadol injection 24 h before the test, whereas the other received it 48 h before 

the test. 

Software from the CPP apparatus gave information’s on the number of entries on 

each compartment, the movement made at the back, front, and back and forth in 

each compartment. Locomotors activity performance (actimetry) represents the 

sum of movements performed in each compartment for each animal (mean ± SD) in 

15 min. The input number is the sum of entries in the compartments made for each 

animal (mean ± SD) in 15 min. 

2.2. Immunohistochemistry 

At the end of behavioral studies (CPP extinction), rats were deeply anesthetized 

with 1 % ketamine and Xylazine. Rats were perfused through the heart with saline 

followed by 4 % paraformaldehyde in phosphate-buffered saline (PBS). The brains 

were then removed and placed in 30 % sucrose and 0.05 % sodium azide solution 

overnight at 4 °C. Coronal sections (30 µm) were obtained using a freezing 

microtome and collected in 0.05 M Tris-buffered saline (TBS). Free-floating 

sections were placed in 1 % normal goat serum for 1 h before overnight incubation 

in primary monoclonal antibody solution (1:5000 mouse anti-PKCγ, Sigma-

Aldrich, France; anti-phosphoPKMζ 1/1000, rabbit, Clinisciences, France; anti-

GAD67,1/1000, rabbit, Cell-Signaling, Netherland; anti-Δ-FosB, 1/1000, rabbit, 

Clinisciences, France) at 4 °C. After several rinses, sections were incubated with a 

corresponding secondary antibody (1:400 for goat anti-mouse Cy2or Cy3; Vector 

Lab, France) for 3 h at room temperature. All antibodies were diluted in TBS 

containing 0.25 % bovine serum albumin and 0.3 % TritonX-100. The sections 

were finally rinsed in TBS, mounted onto gelatin-coated slides, dehydrated in 

alcohol, cleared in xylene, and cover-slipped with distyrene-plasticizer-xylene. The 

specificity of the immunostaining was assessed by omitting the primary antibody or 

protein pre-adsorbed antibody, which resulted in the absence of a signal. 

Photomicrographs of immuno-stained sections were captured and image intensity 



analysis was completed using ImageJ software (ImageJ v1.41, National Institute of 

Health, USA). 

The number of Δ-FosB positive cells or the intensity of the labeling were counted 

using ImageJ software as previousely reported [[42], [43], [44]]. For each animal 

group, data were the total number of cells or the labeling intensity per identical 

used square of the sections (n = 12 per animal). 

2.3. Statistics 

Data analysis and statistical comparisons were performed using GraphPad Prism 8 

(GraphPad Software Inc.). The results are expressed as mean ± SEM. Level of 

significance was set as P ≤ 0.05. Brown Forsythe ANOVA one way and Bartlett’s 

test were used to compare between three and more groups. Otherwise, Student’s t-

test was used for comparing pretest and test results (Fig. 3). 
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Fig. 2. The diagram illustrates how tramadol’s impact on motor sensitization during 

conditioning changed over time. Tramadol generated a considerable (p < 0.01) 

increase in motor sensitization after the third injection, and this increase became 

significantly more pronounced (p < 0.001) by the fourth dosage. Data are 

means ± SEM. 
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Fig. 3. The figure represents the tramadol effect on the CPP and the motor 

sensitization (actimetry) as well as the effect of naltrexone on the CPP-induced by 

tramadol. Tramadol significantly (p < 0.01) induces a CPP (A) as revealed by the time 

spent in the tramadol associated compartment when compared to the pretest one. The 

injection of naltrexone significantly (p < 0.05) decreased the CPP induced by tramadol 

(B). The naltrexone effect was highly significant (p < 0.001) (C). Tramadol also 

induced a significant motor (total movements) sensitization (D) when compared to the 

pretest day. However, naltrexone administration did not result in a significant 

difference in motor sensitization (E) when compared to the pretest day, while it did 

reduce motor sensitization generated by tramadol considerably (p < 0.05) (F). Data are 

means ± SEM. 

3. Results 

3.1. Tramadol effect on behavioral (CPP) and motor (actimetry) sensitizations 
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The ANOVA one way revealed a very significant difference (p < 0.001) between 

groups during conditioning (Fig. 2). Tramadol produced a significant (p < 0.01) 

CPP starting with the third injection and became more significant (p < 0.001) at the 

fourth tramadol injection. 

After the conditioning period, tramadol induced a significant (p < 0.01) CPP (as 

evidenced by the time spent in the tramadol related compartment as compared to 

the pretest) (Fig. 3A). Naltrexone decreased significantly (p < 0.05) the CPP 

induced by tramadol conditioning (Fig. 3B). The naltrexone effect on tramadol 

induced conditioning was highly significant (p < 0.001) (Fig. 3C). 

In addition, when compared to the pretest total movement within the apparatus 

room, tramadol had a significant (p < 0.01) motor sensitization (actimetry, total 

movement within the apparatus room) (Fig. 3D). Although naltrexone treatment 

reduced overall movement, the difference was not significant when compared to the 

baseline (pretest) (Fig. 3E). When compared to tramadol, however, naltrexone had 

a significant (p < 0.05) effect on motor sensitization (Fig. 3F). When compared to 

the pretest, motor sensitization became non-significant after the fifth day after 

naltrexone injection, indicating that naltrexone had an effect on tramadol-induced 

activity. 

3.2. CPP extinction and naltrexone effect (effect of NTX on tramadol induced-

CPP) 

From the first test day to the extinction of behavioral sensitization, tramadol-

induced CPP was assessed (Fig. 4A). It is worth noting that the rats were not given 

tramadol beyond the first test day (eighth day after the pretest). The tramadol-

induced CPP remained significant (p < 0.01) for four days following the test day, 

declined by the fifth day although still significant (p < 0.05), and subsequently 

became non-significant. Tramadol re-induced a substantial (p < 0.01) CPP when 

injected 7 days following the last test day. 
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Fig. 4. The figure represents the extinction of tramadol-induced CPP and the 

naltrexone effect on this CPP. Tramadol-induced behavior was significant for up to 

7 days after the test day (A). Tramadol injections on day 7 after the test resulted in a 

significant (p < 0.01) increase in CPP. The tramadol-induced CPP was reduced 

significantly (p < 0.01) by naltrexone treatment in the first three days after the test 

day, and it was blocked after that (B). A CPP was not induced by tramadol injection 

24 h after naltrexone injection on day 7 after the test. Tramadol-induced motor 

sensitization was considerable 6 days following the test day, but not by the 7th day 

(C).When tramadol was administered on the eighth day after the test, it caused a 

significant (p < 0.001) increase in CPP. For the first four days after the test day, 

naltrexone reduced tramadol-induced motor sensitization (D) and ultimately blocked 

it. Tramadol did not cause motor sensitization in this animal group on the eighth day 

after the test day (naltrexone-treated). Data are means ± SEM. 

From the day of the CPP test, the Naltrexone group received naltrexone injections 

every day. Naltrexone administration reduced the CPP generated by tramadol 
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considerably (p < 0.01) for the first three days after the test day (Fig. 4B) and then 

blocked it. There was no significant tramadol-induced CPP behavior in the 

naltrexone group when tramadol was reinjected 7 days after the test day. 

A significant tramadol-induced motor sensitization paralleled that of the CPP 

behavior, lasted for 6 days after the test day, and subsequently disappeared (Fig. 

4C). The injection of tramadol eight days after the test day re-induced a significant 

(p < 0.01) motor sensitization. 

After the test day, naltrexone was given every day until the CPP behavior was no 

longer present. The first four days of tramadol-induced motor sensitization were 

reduced by naltrexone, but the motor sensitization was still significant when 

compared to the pretest. When compared to the pretest, motor sensitization became 

non-significant after the fifth day after naltrexone injection, indicating that 

naltrexone had an effect on tramadol-induced motor activity (Fig. 4D). There was 

no substantial motor sensitization when tramadol was re-injected on day 8 after the 

test day in the naltrexone group. 

3.3. Molecular changes induced by tramadol in the anterior cingulate cortex 

3.3.1. GAD67 staining: 

In tramadol- (Fig. 5A), naltrexone- (Fig. 5B), and control rats, a comparable pattern 

of GAD67 immunostaining (Fig. 5) was found in cell bodies and processes within 

the ACC (Fig. 5C). In tramadol-treated ACC, the intensity of GAD67 staining was 

more higher, particularly within cell processes, than in naltrexone-treated and 

control ACC. Quantification of GAD67 immunostaining revealed a significant 

(p < 0.001) difference between tramadol-treated and naltrexone-treated or control 

ACC (Fig. 5D). Although the GAD67 staining intensity was higher in naltrexone-

treated rats than in control rats, this difference was not significant. 
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Fig. 5. The figure represents the effect of tramadol and naltrexone on GAD67 

expression in the ACC. Within the ACC of tramadol- (A), naltrexone-treated (B), and 

control rats, GAD67 staining can be seen in various cell bodies and processes (C). The 

GAD67 staining quantification indicated a significant (p < 0.001) difference in 

staining between tramadol and control rats, as well as tramadol and naltrexone treated 

rats. There is no significant change in staining between the naltrexone-treated and 

control rats. The bar represents 200 µm in A, C and E; and 50 µm in B, D and F. Data 

are means ± SEM. 

3.3.2. PKMζ staining 

PKMζ immunostaining in the ACC (Fig. 6) was primarily observed in neuronal cell 

bodies and processes in the tramadol- (Fig. 6A-B), naltrexone- (Fig. 6C-D) and 

control rats (Fig. 6E-F). The intensity of staining was more important in tramadol 

and naltrexone-treated when compared to control ACC. PKMζ staining 
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quantification (Fig. 7) revealed a significant staining difference between tramadol, 

naltrexone (p < 0.01) and control (p < 0.001) rats. There was also a significant 

(p < 0.01) PKMζ staining difference between naltrexone-treated and control ACC. 

Bar represents 50 µm in A, C and E and 110 µm in B, D, and F. 
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Fig. 6. Represents phospho-PKMζ staining in the ACC. The staining can be seen in 

neuronal cell bodies and processes within the ACC of tramadol-treated rats at low 

magnification (A). The staining can be seen throughout somata and processes across 
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the width of the cortex of tramadol-treated rats at high magnification (B). The 

intensity of the staining was decreased in naltrexone-treated animals (C, D), but it can 

be seen at high magnification in neuronal somata and processes inside the ACC (D). 

Similar staining is observed in the ACC (E) in the control, where it is localized in 

neuronal cell bodies (F). The bar represents 200 µm in A, C and E; and 50 µm in B, D 

and F. 
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Fig. 7. phospho-PKMζ intensity of staining quantification revealed a significant 

staining difference between tramadol treated and naltrexone-treated (p < 0.01) or 

control (p < 0.001) ACC. There was also a significant (p < 0.01) staining difference 

between naltrexone-treated and control ACC. Data are means ± SEM. 

3.3.3. PKCγ staining 

In tramadol (Fig. 8A-B), naltrexone (Fig. 9C-D), and control (Fig. 8 E-F) groups, 

PKCγ labeling (Fig. 8) was found in cell bodies and processes across the ACC. The 

processes were thick and resembled the dendritic subtype in appearance. In the 

ACC, PKCγ immunostaining quantification revealed a significant (p < 0.001) 
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difference between tramadol and naltrexone or control (Fig. 9). Although the 

intensity of PKCγ staining in naltrexone was higher than in control ACC, the 

difference was not significant. 
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Fig. 8. PKCγ staining within the ACC in tramadol- (A, B), naltrexone-treated (C, D) 

and control rats (E, F). PKCγ staining is observed in cell bodies and processes. The 

intensity of staining is high in tramadol and naltrexone-treated rats when compared to 

control. The bar represents 200 µm in A, C and E; and 50 µm in B, D and F. 
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Fig. 9. PKCγ intensity of staining quantification in the ACC revealed a significant 

(p < 0.001) staining difference between tramadol-treated when compared to 

naltrexone-treated or control. No significant staining difference is observed between 

naltrexone-treated and control ACC. Data are means ± SEM. 

3.3.4. Δ-FosB staining 

Δ-FosB staining (Fig. 10) was observed in cell nuclei within the ACC of tramadol- 

(Fig. 10A, B), naltrexone- (Fig. 10C, D) and control (Fig. 10E, F) rats. There was a 

more cell staining in tramadol and naltrexone-treated ACC than in control. Cell 

count (Fig. 11) reveals a significant difference in the positive cell number between 

tramadol (p < 0.01), naltrexone (p < 0.05) and control rat. There is also a significant 

(p < 0.05) difference in cell number between tramadol and naltrexone ACC. 
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Fig. 10. Δ-FosB staining in the ACC. Δ-FosB staining is observed in cell nuclei of the 

cortex in tramadol- (A, B), naltrexone- (C, D) and control (E, F) rats. The bar 

represents 200 µm in A, C and E; and 50 µm in B, D and F. 
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Fig. 11. Δ-FosB cell count reveals a significant difference between tramadol 

(p < 0.01), naltrexone (p < 0.05) -treated and control rat. There is also a significant 

staining difference in cell number in the anterior cingulate cortex between tramadol 

and naltrexone treated rats. Data are means ± SEM. 

4. Discussion 

The main results of the present study were that tramadol administration promoted 

both behavioral (CPP) and motor (actimetry) sensitizations making it a drug of 

abuse in the rat. Tramadol administration caused a high level of excitation in the 

ACC, as evidenced by an increase in markers such PKCγ, phospho-PKMζ, and Δ-

FosB. 

CPP caused by tramadol has already been demonstrated [[36], [37], [38]]. Only one 

study, however, shows a minor motor sensitivity [38]. During the conditioning 
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period in the current investigation, motor sensitization mirrored behavioral 

sensitization. During the conditioning, tramadol caused significant motor 

sensitization after the third injection. Also, motor sensitization followed behavioral 

sensitization in the tramadol-group (rats get tramadol under CPP training) after the 

test day (CPP). Furthermore, on the day of CPP extinction, motor sensitization was 

still evident and significant (behavior). In the naltrexone group, similar results were 

obtained. These findings support the fact that tramadol causes both motor and 

behavioral sensitization. Tramadol delivery-two weeks after CPP extinction 

resulted in an increase in both behavioral and motor sensitizations (unpublished 

data), while the differences were not statistically significant when compared to the 

pretest. 

The ACC is a structure that is important for cognitive control of decision-making, 

in reward [46], learning, emotion, and memory [48]. In drug addicts, there is a 

decrease in ACC activity [49]. These characteristics make the ACC an ideal 

structure for studying tramadol’s molecular and cellular effects. 

The ΔFosB finding is consistent with a recent study that found that tramadol 

enhanced ΔFosB in the nucleus accumbens and prefrontal cortex after both acute 

and chronic treatment [50]. This effect is due to the tramadol activation of mu-

opioid receptors as well as an increase in their expression [[39], [50]]. ΔFosB is 

known to be elevated during chronic exposure to drug abuse and to play a key role 

in the neuroplasticity that underlay addiction [51]. Increased psychomotor 

sensitivity to psychostimulants is promoted by ΔFosB expression [[52], [53]]. As a 

result, the current study’s rise in ΔFosB expression provides more evidence of 

tramadol’s misuse potential in rats. 

ΔFosB may have a role in tramadol-induced behavioral and motor sensitizations by 

modulating the expression of Glutamate receptor subunits [[52], [54], [55]]. In both 

CPP and self-administration paradigms, inducing ΔFosB expression in the 

striatum’s medium spiny neurons improves locomotor sensitivity and reward 

responses to cocaine [[52], [56], [57]]. 

In addition, tramadol administration increased two important synaptic plasticity 

proteins, PKCγ and PKMζ [[58], [59]]. Within the brain, synaptic plasticity occurs 

at glutamatergic synapses. Tramadol induces an increase in glutamate release and a 

decrease in GABA system [[60], [61]] causing seizure [[62], [63]]. Tramadol may 

suppress this cell type by acting on mu-opioid receptors, which are only found in 
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GABA-ergic interneurons [[64], [65], [66], [67], [68]]. Within the ACC, this can 

help excitatory inputs to pyramidal cells or GABAergic afferent target cells. 

In addition, mu-opioid stimulation inhibits GABA release [69]. This decrease in 

GABA inhibition is most likely reflected in the current study by an increase in 

PKCγ [70] and PKMζ expression in the tramadol-treated group’s ACC. Both of 

these markers are found in excitatory cells, including pyramidal cells. Also, 

tramadol inhibits GABA receptors [[71], [72]]. The fact that GAD67 increased in 

the ACC of the tramadol group is probably due to an increase in general excitation 

within the cortex. GAD67 expression is regulated by activity 

[[73], [74], [75], [76]]. It could be due also to disinhibition within GABAergic 

circuitry within the ACC [77]. The expression of GAD67 is highly correlated with 

the amount of intracellular GABA [78]. 

The CPP generated by tramadol was dramatically reduced by naltrexone, a mu-

opioid antagonist. It reduces behavioral as well as motor sensitizations. 

Furthermore, naltrexone accelerated the extinction of the tramadol-induced CPP by 

two days (at four days following the test day instead of 6 days in tramadol-treated 

rats). Tramadol-induced CPP (reinstatement) was totally prevented by continuous 

naltrexone (8 days after the test day) treatment. Both motor and behavioral 

sensitization were inhibited (Fig. 5A and B). Furthermore, naltrexone reduced all of 

the studied markers. 

Although, naltrexone decreased significantly most of tramadol effects it did not 

reverse them at the control levels. This revealed that some of tramadol’s effects are 

due to its activity other than through mu-opioid receptors 

[[2], [3], [4], [5], [6], [7], [8]] may be at central serotoninergic transmission level 

[79]. 
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