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Abstract

Despite great achievements of reinforcement learning based works, those
methods are known for their poor sample e�ciency. This particular draw-
back usually means training agents in simulated environments is the only
viable option, regarding time constraints. Furthermore, reinforcement
learning agents have a strong tendency to over�t on their environment,
observing a drastic loss of performances at test time. As a result, tying
the agent logic to its current body may very well make transfer unef-
�cient. To tackle that issue, we propose the Universal Notice Network
(UNN) method to enforce separation of the neural network layers hold-
ing information to solve the task from those related to robot properties,
hence enabling easier transfer of knowledge between entities. We demon-
strate the e�ciency of this method on a broad panel of applications,
we consider di�erent kinds of robots, with di�erent morphological struc-
tures performing kinematic, dynamic single and multi-robot tasks. We
prove that our method produces zero shot (without additionnal learn-
ing) transfers that may produce better performances than state-of-the
art approaches and show that a fast tuning enhances those performances.

Keywords: Control, Transfer Learning, Cooperative Control, Reinforcement
Learning
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2 Universal Notice Networks

1 Introduction

In recent years, Reinforcement Learning (RL) methods have been successfully
applied to a broad range of complex, high-dimensional and non-linear prob-
lems, both in simulated environments [1�3], and in the real world [4�7]. While
an important part of these works relies on model-free techniques, an increas-
ing focus is set on model-based methods, given their higher sample e�ciency
and their ability to plan a successful sequence of actions [8], [9]. However,
in both model-based and model-free settings, the �nal behaviour is critically
sensitive to the training distribution. As a result, the system performances
decrease when placed in an environment with a test distribution too far from
the training distribution, which is the case when a model trained on simulated
environments is deployed to the real world. Moreover, even when the result-
ing policy is able to cope up with the intrinsic di�erences between virtual and
physical world, it is usually not possible to transfer this skill to another agent
with a di�erent body con�guration. Commonly, transfer implies replacing the
last layer of the network to �t the new con�guration and task [10]. This mod-
i�cation may produce performance loss when no precaution is taken, because
the learning process will not isolate control parameters, depending on the
robot properties, with decisional/logic units that are related to the task, hence
changing a complete layer may remove critical weights, e�ectively plummering
the agent's e�ciency at its task.

Indeed, deep learning techniques uses backpropagation and gradient
descent to optimize the parameters of a neural network based on a loss func-
tion. Training is usually done with randomly sampled batches from the dataset
and the parameters of the network are usually initialized with random weights.
Using certain weights distributions such as [11], improves learning speed and
�nal performances. But overall, it is di�cult to predict the parameters tra-
jectory in their space during training session. In the reinforcement learning
context, this stochasticity is emphasized given the reward signal dependency
to the agent actions as well, which are themselves sampled from a distribution
depending on the parameters. This inherent complexity does not necessarily
prevent the agent from learning, however, there is no principled method to
predict which part of the neural network is responsible for speci�c behaviours,
at least for straightforward architectures.

The Universal Notice Network (UNN) approach [12] proved on various 2D
tasks that it is possible to tackle speci�cally this drawback, by ensuring knowl-
edge is held in predetermined areas of the model. Relying on this approach
permits to segment learning between various modules (one module for the
task and two modules for the robot control), thus knowledge to solve a task is
isolated from control logic. It is then possible to transmit skills to solve this
speci�c task in a plug-and-play fashion between robots with di�erent con�gu-
rations. While these con�gurations can be physically de�ned, such as various
numbers of joints, segment lengths and so on, it is also possible to think of them
as the di�erences between the simulated-world robot and the real-world robot,
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or, in a more pragmatic view between a robot and its damaged or time-altered
version.

If these robots are tasked with the same assignment and if skills for solving
the task are distinct from those needed to control the robot, then one could
simply transfer the trained task module to get the robot to perform, hence
avoiding repeated training. To sum up, the main contributions of this paper
are the following:

� an application of the UNN method [12] to 3D environments for manipulation
and cooperative tasks,

� the introduction of a new framework: the Heuristic Curriculum Learning
(HCL) that aims at minimizing the correlation between the way the agent
succeeds in the task and its body con�guration,

� a practical and speci�c example demonstrating how the bias inducted by
modules pretraining can positively improve the learning process of a UNN.

Those contributions are evaluated on 3D simulated environments that are
presented in the following video : https://youtu.be/bhxOSiZjANo.

2 The Universal Notice Network Method

2.1 UNN pipeline

Fig. 1: UNN pipeline considering the three sub-modules mr
i ,m

T
u ,m

r
o and the

observation state decomposition.

In practice, the UNN pipeline is an end-to-end model, composed of three
sub-modules, mr

i ,m
T
u ,m

r
o, as shown in Figure 1. The �rst and the last part of

this model mr
i ,m

r
o, respectively the input and the output modules, are speci�c

to the robot r, while the center module mTu , the UNN, is designed to be robot-
agnostic and speci�c to the task T . Hence, given a task T , we can observe
at each timestep the full state observation vector s. We split this vector into
two parts: si,r holding data intrinsic to the considered robot and sT task-
related information, independent from the agent. The �rst step is to feed the
intrinsic information si,r to the input module mr

i that produces a processed

states representation si
′,r :

si
′,r = mr

i (s
i,r) (1)

https://youtu.be/bhxOSiZjANo
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Then, merging this processed states representation si
′,r and the task-related

information sT we get the input of the UNN that will output a high-level
instruction

oout = mTu (s
T , si

′,r) (2)

The e�ective robot action ar is then recovered by concatenating the initial
intrinsic vector si,r with oout and feeding it to the last module, that is:

ar = mr
o(o

out, si,r) (3)

Finally, the whole process can be synthetized as:

ar = mr
o(m

T
u (s
T ,mr

i (s
i,r)), si,r) (4)

In practice, for any module, that is, either input and/or output module
or even the UNN, there is no theoretical restriction on the computational
model used. As long as the function used returns a vector of the expected
size, functions approximators as well as analytical methods, if available, are
perfectly suitable.

One can see the robot modules mr
i ,m

r
o as a model that allows the agent

to achieve basic movements. On the one hand, as an example, if we consider
tasks involving robotic manipulators, the input module mr

i could compute the
e�ector con�guration based on the robot's joints information and the output
modulemr

o could convert the e�ector desired con�guration to angular velocities
for each articulation. While, on the other hand, the UNN module mTu is a
high level model that produces the desired e�ector con�guration to perform
the task from the current e�ector position.

Ultimately, for any UNN/agent couple, the goal is, to �nd the module
functions mr

i ,m
T
u ,m

r
o, that produce the movementM generated by actions ar

provided by the pipeline for solving a task T and that must ensure the set of
constraints gT to perform the task and the set of constraints gr to ensure the
physical limits of the robot, such as:

�nd mr
i ,m

T
u ,m

r
o

such as gτ (M) ≤ 0
gr(M) ≤ 0

With: M = f(ar) = f(mr
o(m

T
u (s
T ,mr

i (s
i,r)), si,r))

(5)

The following section proposes a framework to solve problem 5 by
sequentially computing the robot and the task modules.

2.2 Building and using UNN modules

The motivation behind the UNN approach is to ease and enhance the e�ciency
of skills transfer between agents of di�erent con�gurations. In Figure 2, we
de�ne a set of several robots with di�erent con�gurations and a set of tasks
achievable by these robots. The goal of the UNN is that any robot of the set
can perform task. We provide here a possible work�ow description relying on
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Fig. 2: The UNN work�ow for creating and using modules and UNNs. Dashed
violet paths are to pair the robot with its module. Dashed blue paths are
to pair the task with its UNN. Black and red paths are to create new robot
modules. Orange and blue paths are to create new task module (UNN).

the UNN, and summarized in Figure 2 to create new robot modules, new UNN
(task) modules and to use it.

2.2.1 Use of the existing modules

Now, consider the case where a user wants a robot r to perform a given task
T and assume that the robot modules and the UNN module already exist.
It opens the possibility for a user to pair any robot up with its module with
a UNN relevant to the current task and carry on with the realization (green
path on Figure 2).

2.2.2 Creating robot modules

If no robot modules are available, it is possible to generate them, using a
primitive task: this is the robot module creation (black path in Figure 2).
Alternatively, a robot module can be created using a given task and its paired
pretrained UNN (red path).

2.2.3 Creating UNN (task) modules

If the robot modules are available, the next step is to assess whether a trained
UNN module is available for this speci�c task. If not, the user should create
it using one out of two ways: relying on its trained robot modules to train the
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UNN (orange path) or using Identity modules such as the HCL framework
(blue path), explained in Section 2.3.

2.3 Heuristic Curriculum Learning

However, due to the notable RL tendency to fall into local minima, the UNN
is likely to discover a successful strategy for solving the task that depends
on its body con�guration (for instance, blocking an object between two artic-
ulations). In these deceptive cases, the constraint related to physical limits
in Equation(5) may no longer be respected. While this is not an issue for
the current agent, it is detrimental for the e�ciency of a future transfer to
an agent with a di�erent structure. To ensure that the UNN constraints are
not entangled with the agent ones, the Heuristic Curriculum Learning (HCL)
is introduced. This approach uses the same algorithms as the baseline UNN
method, but relies on an environment modi�cation that assimilates the robot
to its e�ectors, thus creating a virtual robot, as shown in Figure 3. On the for-
mulation side, we set the base models mr

i ,m
r
o as identity functions and provide

directly the UNN output to the command. These two modi�cations release
most of the constraints that would have been distilled by the pre-trained base
and prevent the UNN from learning a con�guration-speci�c strategy, resulting
in the creation of an UNN closer to a model-agnostic setting.

Fig. 3: An HCL environment is created by removing the kinematic constraints
inherent to the agent's body and assigning an identity function instead to
translate directly the HCL outputs into actions
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(a) Reacher (b) Tennis (c) Raise a Plank

(d) Cooperative Move
Plank: init pose

(e) Cooperative Move
Plank: intermediate pose

(f) Cooperative Move
Plank: �nal pose

(g) Dual-arm Move
Plank

(h) Biped Walking (i) Basket-Ball

Fig. 4: A panel of the tasks used to evaluated the performance of the UNN.

3 Experimental Setup

In this section, we introduce the seven environments, as presented in Figure
4, that we implemented using ML-Agents framework [13]. As we train the
UNN using reinforcement learning (RL), we detail the general concept and
the Markov Decision Process (MDP) reward function that motivates the agent
behaviour. In those environments, the UNN module receives the same infor-
mation si

′
from its input module and outputs the same information oout.

Speci�cally:

� The processed intrisinc information si
′ ∈ R9 consist in the end e�ector linear

position and velocity and orientation.
� The UNN output oout ∈ R6 is composed of desired e�ector linear velocity
and angular velocity.

For environments a to c, i.e. environments involving a single arm, the
general pipeline is the one depicted in Figure 1. This approach is adapted as
shown in Figure 5 for tasks d to g, given that multiple arms are controlled.
For the latter, the main di�erence is that the UNN will receive the processed
intrisinc information for each arm and output oout for each e�ector.
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Fig. 5: Architecture for cooperative tasks.

3.1 Robots

The UNN method goal is to create a module encompassing knowledge inde-
pendently from the agent accomplishing the task in order to later have the
possibility to transfer this knowledge module to an agent with a di�erent con-
�guration. In this view, Figure 6 shows the robots used to embody this transfer,
along with their Degrees of Freedom (DoF) (drawn as colored arrows). Some
architectures are inspired from real-world robots, such as the Kuka-LWR (5
DoF) or Berkeley Blue (5 DoF). We also introduce the Generic-3 robots, a 3
joints with 2 DoF for each joint con�guration, and an architecture declined
into two variants (Leg Type 1, 3 DoF, and Leg Type 2, 4 DoF) that were used
in the Biped environment.

Fig. 6: From left to right: Generic robot, Berkeley Blue, Kuka-LWR, Leg Type
1, Leg Type 2
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3.2 Reacher

The reaching task is presented in Figure 4a and consists in setting the position
of the end-e�ector to a desired position. This is a fundamental and partic-
ular piece in our framework, since most of the experiments will require the
agent to have mastered this skill. That task is considered as the primitive task
introduced in Figure 2. However, while seemingly very basic, an agent trained
with a reward depending solely on the distance between its e�ector and the
target very rarely yields a policy with plausible/desirable behaviour. Most of
the time, that kind of reward function ends up into a policy with unexpected
behaviour at best and unstable at worse (Figure 4a, right-most robot). Hence,
to avoid this drawback of reinforcement learning, we take advantages of various
insights from [3] and we propose the following MDP for learning:

� sT ∈ R7: Vector from the end-e�ector to the target and target orientation
(as quaternion), expressed in world frame

� Reward function Rt: Inversely proportional to the distance between current
agent con�guration qa (Figure 4a, left-most robot) and a con�guration given
by a state-of-the-art method qr, here [14] (Figure 4a, central robot). Thus:

Rt = α× ‖qa − qr‖−1 (6)

where α is a scalar used for reward normalization. The qr con�guration is
the main leverage used to induce bias within output module. Indeed, in
this speci�c task, the UNN is transparent, that is acting as the identity
function. Thus, given that training focuses on the output module, by de�ning
wisely the qr con�gurations in this task, it is possible to generate output
modules that, for instance, can conditionally behave in a way that can recall
inverse kinematic models constrained through pole targets. This feature is
particularly useful and its usages are more thoroughly detailed in Section 4.

3.3 Tennis

This task consists in a self-play in a tennis-like setting, see Figure 4b. A paddle
e�ector is considered as the end-e�ector of a robotic arm and the goal is to
maximize the number of times the ball bounces against the wall and the episode
ends up whenever the ball drops below a preset height threshold. Thus, the
MDP has the following components:

� Task-related state sT ∈ R6: ball linear position and velocity, expressed in
world frame

� Reward function:

Rt =

{
1 if contact

0 else
(7)

For each episode, the reward is incremented for each bounce, until the ball
drops or if the time limit is reached.
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3.4 Raise a Plank

This manipulation task consists in reaching and raising a plank to a constant
desired height hd, see Figure 4c. The environment is composed of a �xed
support for the plank, the plank itself and a robotic arm equipped of a gripper.
For this environment, we have:

� Task-related state sT ∈ R9 ×B1: plank linear velocity and angular velocity,
expressed in world frame, plank position expressed in end-e�ector frame,
and the contact �ag c between the gripper and the plank,

� Reward function:

Rt = −(1− c)× d+ c× exp(− | h− hd |) (8)

With d the distance between the e�ector and the plank and h the actual
plank height.

3.5 Cooperative Move Plank

The cooperative Move Plank environment tackles a task requiring coordination
to move a large object, beyond the capabilities of a single robot. In practice,
this environment features two robotic arms and a large plank to be moved from
its support to another location (see Figure 4d). Two target points are de�ned
on the plank for each end-e�ector. The UNN uses the process described in
Figure 5. Formally, we have:

� Task-related state sT ∈ R16 × B2: plank linear position in each arm
end-e�ector frame, plank linear position expressed in goal frame, plank ori-
entation and angular velocity, expressed in world frame and ci, the contact
value between e�ector i and the plank.

� Reward:

Rt =


−α× (D1 +D2) if

∑2
i=1 ci = 0

0 if
∑2
i=1 ci = 1

β
Dt

∑2
i=1 ci = 2

(9)

with α, β two positive scalars used for reward normalization given the sim-
ulation scale, Di the distance between the e�ector i and its target points.
Finally, Dt is the distance between the plank and the goal position.

A variant of this environment is the Dual-Arm setting, see Figure 4e. While
similar in concept, it presents the following di�erences: both arms belong to a
single body and each arm is equipped with a suction pad. Consequently, we
enhance the state sT with a contact �ag for each suction pad.

3.6 Biped walking

To broaden the range of applications using the UNN method, we introduce the
walking biped task. In this environment, we want a biped robot, composed of
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a pelvis and two legs, to walk across a platform, see Figure 4f. We assimilate
this application to the centralized control of two reacher robots and, similarly
to the comanipulation task, the pipeline consists in a single UNN setting target
positions for each leg, as shown in Figure 5. The MDP for the walk UNN
described below requires a slightly more complex reward function:

� sT ∈ R11: Pelvis linear position in the center of masses (CoM) frame, pelvis
velocity and angular velocity in world frame, pelvis height from the ground,
pelvis lateral o�set from the middle of the platform.

� The reward Rt is composed of various terms, that is:

Rt = Rf +Rl +Rh (10)

with:

� the pelvis speed along the forward axis:

Rf = max(Vf , 0) (11)

where Vf is the pelvis speed along the forward axis,
� the lateral o�set between the pelvis and the forward axis, to encourage
the agent to walk in a straight line:

Rl = exp(−|Pl|) (12)

where Pl is the lateral pelvis position regarding the forward axis,
� the vertical o�set between the pelvis and the target height (initial pelvis
height, in practice), to prevent the agent from jumping:

Rh = exp(−
∣∣Pv − Pv,0∣∣) (13)

where Pv, Pv,0 are respectively the vertical pelvis position and the target
height position.

3.7 Basket-Ball task: catching the ball

The Basket-Ball environment, see Figure 4g, aims at testing a dual arm setup
with a holonomic mobile base. The agent must catch a ball and keep it at a
constant position until the end of the episode. When the environment resets,
the ball is thrown with an initial velocity. We de�ne this environment as the
following MDP:

� sT ∈ R6: Ball linear position and velocity in world frame;
� oout: in addition to the usual output, the UNN also returns the forward and
lateral velocity for the mobile base,

� The reward is de�ned as:

Rt = α+ exp (−Vball) (14)
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where Vball is the ball speed, α a positive scalar ensuring the agent �nds an
initial solution. If the ball drops below a preset height threshold, the reward
is zero and the episode resets, hence putting a stop to the agent reward
accumulation.

4 Results

In order to demonstrate the versatility of our method, we show that it is pos-
sible to repurpose a robotic arm for various tasks and that the knowledge
gained using this con�guration can be used with very little to no retraining
by other agents con�gurations. Our agents are trained using Proximal Pol-
icy Optimization (PPO) [15], an on-policy, actor-critic with trust-region deep
reinforcement learning algorithm, which goal is to maximize the cumulative
reward per episode. Using PPO implies that every module trained in this fash-
ion will feature an actor model as well as a critic function. As for the network
architectures, we rely on hyperparameters featured in other similar works such
as in [3, 15, 16], although other con�gurations are likely to yield results as well.
Speci�cally, both the UNN policy and the output robot module network have
two hidden layers with respectively 128 and 64 units, with TanH activation
function. Our reference baseline, the vanilla PPO policy has three hidden lay-
ers of 128 units, again with TanH non-linearity. Given that all our robots have a
serial structure, we propose to a�ect a Forward Kinematic analytical model to
the input robot module to compute si

′,r, such that si
′,r = mr

i (s
i,r) = FK(si,r).

To evaluate transfer e�ciency, both regarding learning and �nal performances,
we consider four con�gurations:

� PPO: A baseline vanilla PPO agent is trained
� PPO Transfer: A new agent is initialized with the previously learned
weights from the vanilla agent. In this case, the hidden weights are �xed dur-
ing training and the optimization process a�ects only the input and output
layer weights.

� UNN: The UNN is trained from scratch while being paired with a trained
robot module or in its HCL version

� UNN Transfer: The previously learned UNN is transmitted to another
robot, using its own trained robot modules. When the training percentage
in the various table results is superior to 0%, it means that the bases are
�ne-tuned for this percentage of the initial training time. Speci�cally, the
UNN weights are �xed during retraining and only the module behaviour will
be updated by training.

The inherent structural di�erences between a vanilla PPO agent and a
UNN agent have resulted in a slightly superior number of parameters in favor
of the UNN. While it is legitimate to consider that both agents should have
the same structure to ensure fair comparison, setting up such a con�guration
proved rather challenging and incited us to instead strive for a network con-
�guration in which both models have at least two hidden layers. In practice,
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however, if small changes in hyperparameters could indeed slightly enhance
or hurt performances, most of the experiments presented below show a non-
negligible di�erence between the UNN method and PPO baselines, which is
unlikely to be absorbed by a supplementary layer.

The graphs used in this paper to evaluate the agents performance evolu-
tion are a common RL tool. Speci�cally, they display the magnitude of the
mean reward per episode on the y-axis over the duration of training, which is
represented on the episodes on the x-axis. Given the RL mathematical formal-
isation and goal, it is easy to understand that curves that quickly increase are
favored and usually imply that the agent is learning how to behave e�ciently
in the environment.

If we consider the UNN retraining pipeline, the adaptation of a robot and
its modules to a newly paired UNN (involving modifying the weights of the
robot modules) may seem counter-intuitive, since those modules are closely
related to physics, which is usually not subject to change. Given the follow-
ing applications (relatively straightforward solutions and simple robots), our
hypothesis is that the robot modules are able to twist slightly their physi-
cal understanding of primitive movements to adapt to the UNN instructions
for performing the task, as shown in the following sections. Nevertheless, we
believe that for higher level tasks, more abstract modules, ie. not necessarily
transmitting a physically-grounded set of values, may be needed to keep this
pipeline.

In the next sections, we demonstrate that the UNN framework make
transfert possible over a set of various tasks. We will focus on three represen-
tative tasks: Tennis, Dual-Arm Raise Plank and the Biped Walk (summary
video available at:https://youtu.be/bhxOSiZjANo ). For each of these tasks,
we compare the transfer e�ciency when using the UNN approach with the
straighforward transfer and evaluate the �nal policies performances using met-
rics speci�c to each environment. Additional results for environments Raise
Plank, Cooperative Move Plank and Basket-Ball are available in the annexes.
Then, we discuss the in�uence of the module bias within these environments,
highlighting cases where that bias can be bene�cial and where the HCL
framework proves most useful. Finally, we present two additional ways to
adapt or retrain the modules by using a pre-trained UNN. The implementa-
tion used in this paper is available on https://github.com/MoMe36/UNN_
UnityEnvAndScripts. This Section presents focuses on some results, more
details are available in Appendix A and in [17].

4.1 Skill transfert: tennis task

Let us �rst consider the Tennis environment, for which learning curves can
be seen in Figure 7. In this case, the original PPO policy and the UNN are
trained for 1 million timesteps, controlling the Kuka robot. It clearly appears
that the UNN policy (dark blue) is superior by an important margin to the
vanilla PPO policy, both in terms of learning speed and �nal performance. We
detail various mechanisms fueling this phenomenon further. Once training is

https://youtu.be/bhxOSiZjANo
https://github.com/MoMe36/UNN_UnityEnvAndScripts
https://github.com/MoMe36/UNN_UnityEnvAndScripts
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over for those two policies, their trained models are transferred to a new agent
with a di�erent body con�guration, speci�cally the Berkeley Blue robot. In
particular, for the UNN case, the trained UNN for the tennis task is inserted
in the pipeline of another agent with its trained bases and for the vanilla case,
it is the hidden layers that are transferred. The learning curves for the new
policies with transferred core are drawn in orange and light blue, respectively
for the PPO transfer and UNN transfer. Several points are worth noticing
in this con�guration. First, the UNN transfer case immediately starts with
a higher mean reward than the policies trained from scratch. In this speci�c
case, the initial UNN transfer mean reward is even higher than the �nal mean
reward of the vanilla PPO policy. Then, the progress rate for the transferred
policy is much steeper than the original policy and only 10% of the initial
training time are needed to recover a similar �nal mean reward.

Fig. 7: Learning performances in the Tennis environment. PPO and UNN are
performed using Kuka robot, transfer to Berkeley Blue robot

Table 1: Tennis Summary

Con�g Training
Performances

(in bounces)
Original Kuka 100% 18.74

UNN

Transfer to Berkeley Blue 0% 11.88
Transfer to Berkeley Blue 10% 17.56
Transfer to Generic 3 15% 18.12
Original Kuka 100% 7.89

PPO

Transfer to Berkeley Blue 0% 0.86
Transfer to Berkeley Blue 100% 6.81
Transfer to Generic 3 100% 7.57
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Once training is over, we evaluate the �nal policy performance by aver-
aging the number of bounces against the wall for 100 episodes. These results
are detailed in Table 1. This table and the subsequent tables all share the
same organisation. First column gives the training case, whether the policy
considered is the original or a transferred one. The second column, entitled
con�guration, details which robotic arm, or dual-arm, was used for this sim-
ulation. Third column precises the percentage of total training steps used for
the performances of this policy, listed in the last column. In this case, these
results con�rm the performances predicted by the learning curves, as well as
the transfer e�ciency. In particular, we see that after training for 1 million
timestep (100%), the UNN policy is able to bounce the ball over twice as much
as the vanilla PPO policy. Also, we see that with no retraining, the UNN con-
trolling the Berkeley Blue robot outperforms both the original PPO with the
Kuka as well as the transferred PPO to the Berkeley Blue robot. In Table 1, a
transfer toward the generic case has also been added, further emphasizing the
domination of the UNN on this task.

The above results are prone to raise several questions about the reasons why
UNN agents outperform vanilla PPO policies. The visual observation of each
agent performance as well as the training context of its module reveal impor-
tant qualitative facts. In this case, the output module is a network trained on
a reacher task, using a reward function that encourages the agent to propose a
solution that respects certain constraints, as described in 3.2. Hence, even with
randomly initialized UNN module weights, the agent initially returns body
con�gurations that are close to the ones needed to be able to easily bounce the
ball back towards the wall. It is a good starting point and, through the restric-
tions it brings, helps the UNN policy �nd solutions in the current MDP. On
the contrary, the vanilla PPO policy has no particular reason, when initialized,
to propose those expected con�gurations and freely explores its action space.
Thus, the policy may potentially receive its �rst positive rewards while being
in a non-optimal position that will then see its probability increased thanks
to the RL process. This is further exacerbated when the reward function is
sparse and requires an important amount of tweaking to ensure the vanilla

PPO policy receives its �rst rewards in a con�guration that would allow it to
keep improving.

4.2 The curious Biped case

Analyzing the curves from the Biped runs, see Figure 8, seems to yield partial
contradictions to the precedent conclusions. Firstly, the vanilla PPO policy
mean reward evolution along training clearly exceeds the UNN mean reward.
And, while the transferred PPO policy does not clearly bene�t from the trans-
fer, apart from a steadier evolution, its mean reward grows also faster and
reaches higher level than the UNN mean reward. Even though the transfer in
the UNN case yields an important initial advantage for the new policy, the
�nal mean reward stays way below both the vanilla PPO approaches. At test
time, we compare the agent performances by measuring the average distance
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(expressed in meters) covered by the considered agent over 100 episodes, see
Table 2. In this case, interestingly enough, the UNN agent and its transferred
version outperform both the PPO versions.

Fig. 8: Learning performances in Biped Walk environment. PPO and UNN
are performed using 2 legs of Type1, transfer to robot composed of Leg Type1
and Leg Type 2.

Table 2: Biped Summary

Con�g Training
Performances

(in meters)
Original Leg Type 1/1 100% 49.74

UNN

Transfer to Leg Type 1/2 0% 21.02
Transfer to Leg Type 1/2 30% 44.55
Original Leg Type 1/1 100% 29.63

PPO

Transfer to Leg Type 1/2 0% 2.90
Transfer to Leg Type 1/2 100% 31.67

In this speci�c environment, the output module pretraining in�uence is
even more pronounced. Indeed, in this case, the output module was trained
again on a reaching task, but this time, we enforce through the reward function
a bias for a knee back semi-folded leg con�guration, as shown in Figure 9a
and 9b. Hence, when paired with the UNN, the module interprets the actions
ordered by the UNN through this particular bias which leads to a very di�erent
gait evolution (cf. Figure 9b) between the UNN policy and the vanilla PPO
policy which freely accesses to all its action space (cf. Figure 9a). As a result,
the trained vanilla PPO policy exhibits a non-symmetrical gait, in which one
leg is always forward, while the other leg stays behind, see Figure 9c. This
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moving position allows the vanilla PPO policy to gather at least two reward
terms out of three, namely the o�set reward Rc and the height reward Rh,
thus explaining the higher PPO score in Figure 8. However, as shown in Table
2, this approach does not optimize for the walking distance.

(a) Free con�gurations
(b) Enforced semi-folded con�gura-
tions

(c) vanilla PPO gait (d) UNN gait

Fig. 9: In�uence of vanilla PPO and UNN approach on the leg con�guration
and on the walking gait.

Indeed, this policy is able to move slowly forward by giving quick impulses
to its joints, in a stutter-like manner. On the contrary, the trained UNN policy
is much more symmetrical and alternates between small jumps and walk to
move forward, see Figure 9d, resulting in a larger distance covered, see Table 2.

4.3 A HCL con�guration: Dual-Arm Raise Plank

In the Dual-Arm Raise Plank task, we compare the vanilla PPO approach with
both the classic UNN and the HCL version. In this con�guration, the HCL
policy controls the heuristic version of a two-armed manipulator, as depicted
on the right-hand side in Figure 3, while the classic UNN and the vanilla PPO
policy are trained in an environment with two Kuka arms and transferred to
two Berkeley Blue Robots. Learning progresses of the HCL, the classic UNN,
vanilla PPO and their transferred counterparts are shown in Figure 10.

Regarding �rst the classic UNN and the vanilla PPO, we observe that
similarly to the Tennis environment, those curves indicate that even though
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Fig. 10: Learning performances in Dual-Arm Raise Plank environment. PPO
and UNN are performed using two Kuka arms, transfer to two Berkeley Blue
robots.

the UNN policy starts with a slightly inferior mean reward to the vanilla PPO
policy, the UNN policy improvement is faster and achieves a much higher mean
reward. In particular, neither vanilla PPO policy nor its transferred version to
a dual Berkeley Blue robot setup are able to succeed in this task. In contrast,
the transferred version of the UNN, again controlling two Berkeley Blue robots,
even though starting with a low mean reward level, quickly recovers the �nal
performance level. While yielding a non-negligible improvement compared to
the vanilla approach, the UNN method in this environment cannot match the
e�ciency of the HCL framework. Indeed, as can be seen in Figure 10, the
HCL agent mean reward evolution presents a steeper evolution and is able
to achieve two times the classic UNN mean reward, thus also surpassing the
vanilla approach. Moreover, as for transfer e�ciency, it can be seen that the
transferred agent immediately starts with a reward level comparable to the
one achieved by the HCL policy after 2 million timesteps, e�ectively showing
the transfer e�ciency. In this case, this indicates that the transferred policy
didn't even need retraining.

At test time, we de�ne the best agent as the one capable of reaching to the
plank and keeping it in the proximity of the goal position for the longest time.
Again, we average this metric expressed in timesteps over 100 episodes with a
time limit of 2000 timesteps. Table 3 con�rms the results shown in Figure 10.
As a matter of fact, the results obtained by the two UNN con�gurations, both
classic and HCL, are clearly superior to the ones the vanilla policy is able to
achieve. In this speci�c case, the HCL policy doesn't even need retraining and
the transferred policy achieves a better test score than every other con�gu-
ration, with the exception of the original HCL policy. The UNN policy also
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outperforms the vanilla PPO policy, even though transfer is not as e�cient as
in the HCL case.

Table 3: Dual Arm Raise Plank Summary

Con�g. Training
Performances

(in timesteps)
Original HCL 100% 1557.05

HCL

Transfer to B.Blue-B.Blue 0% 1545.65
Transfer to B.Blue-B.Blue 15% 1547.02
Transfer to Kuka-B.Blue 0% 1451.03
Original Kuka-Kuka 100% 987.11

UNN

Transfer to B.Blue-B.Blue 0% 4.41
Transfer to B.Blue-B.Blue 15% 926.66

PPO Kuka-Kuka 100% 139.40

PPO

Transfer to B.Blue-B.Blue 0% 8.45
Transfer to B.Blue-B.Blue 100% 152.54
Transfer to Kuka-B.Blue 100% 147.78

The Dual-Arm Raise Plank environment presents various features that are
prone to lead a vanilla agent to failure and thus provide interesting insights
to understand better the HCL framework advantages. In particular, the suc-
cession of objectives is rarely trivial to master in reinforcement learning. This
is further exacerbated by the number of degrees of freedom in the controlled
robot. Using the UNN method abstracts the tasks and lets the agent focus
solely on where to place and move its e�ectors. As for the biped case, it is pos-
sible to pretrain the modules in order to include a certain degree of bias and
help the UNN policy with these initial conditions. Nevertheless, there are two
main points that distinguish this task from the biped task. In particular:

� In the Biped Walking task,

� the qualitative appeal of the walk cycle depends on the leg con�guration
and not only on foot placement

� and from a modelling point of view, it is unclear how to design a HCL
version of the task.

� While the Cooperative Raise Plank task as designed

� isn't a�ected by the arms con�guration, as long as there are no self-
collision

� but does require an enhanced accuracy regarding the e�ectors control.
Thus, unless special care is dedicated to the module training, it is likely
that it might hurt the UNN policy learning performances.

� Finally, the modelling process and constraints setup for HCL training is
particularly straightforward.

These points indicate that creating a HCL version of the environment is
a valuable alternative. As seen in Figure 10 and Table 3, the HCL version of
the UNN behaves in a more desirable way than its counterparts, thus o�ering
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a robot-agnostic model of the task to various robots. Then, if the modules of
a particular robot are su�ciently precise, it is possible to succeed in the task
with no retraining at all and still yield higher performances than other policies.

Obviously, it is theoretically possible to design a reward function that
would lead a vanilla PPO policy to walk in a predictable manner or reach
and manipulate a plank with a high accuracy. However, this is a very com-
plex task that requires a considerable amount of feedback, tweaking and state
representation engineering in order to �nd the ponderation that would, in the
biped case, allow the policy to walk fast while not degrading the other impor-
tant components too much, namely the steering and the height control. In the
manipulation task, the sequential nature of the environment would also call for
careful and thorough �ne-tuning of the reward and the simulation to ensure
that the policy �nds a reliable solution. Using the UNN method enables to
greatly simplify this design process by embedding in the robot limbs a bias,
that acts similarly as soft constraints. Alternatively, setting up a HCL alter-
native when the conditions concur to it is highly useful to help the policy �nd
a solution in highly complex and non-linear environments.

4.4 Recovering robot modules

So far, the presented applications have focused on cases where the UNN train-
ing relies on �xed pre-trained modules to learn the task. Let us now consider
the con�guration described by the red path in Figure 2. That is, the UNN
for a task already exists, but using a new robot with no robot module avail-
able. We refer to this already existing UNN as the original. As explained in
Section 2.2, it is possible to take advantage of the original UNN to recreate
the robot module. Speci�cally, two di�erent ways of training the modules may
be considered:

� Classic recovery: Leverage the previous MDP for training the modules. That
is, the same reward function used to train the task is used to train the
agent. In this case, the UNN weights are �xed while the module weights are
updated by backpropagation.

� Residual recovery: In this con�guration, the agent is penalized for straying
away from the UNN instruction, hence considering Equation(15).

Rrecovery = exp(−α|PT (ti)− PR(ti+1)|) (15)

With α a normalization constant, PT (ti) the target e�ector pose given by
the UNN and PR(ti+1) the resulting e�ector pose.

The Residual approach can be assimilated to a Reaching task for the robot
modules, where the target is set at every timestep by the UNN as presented in
Figure 11. To demonstrate this method, we consider that the robot modules
for the Generic-3 robot are not available, hence must be learned, in the tennis
environment, using the UNN learned with the kuka arm, mentioned as the
original UNN.
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Fig. 11: Representation of the residual recovery process. The module mτ
u is

constant andmr
o andm

r
i are learned based on the di�erence between the target

and the resulting e�ector pose.

Figure 12 shows learning progression for the module in the classic recovery
case, along with the learning curve of its original (learning of the original UNN
with modules pretrained with the reaching task) and the vanilla con�guration
as a baseline. In this case, while the recovered module progressively gets better
results, exceeding the vanilla approach from the start, its �nal performance is
still below the original UNN even after a training time equal to the original
policy.

Fig. 12: Module recovery from KUKA to Generic-3: Classic recovery setup for
the Tennis environment. The PPO Original and UNN original curve are used
as baseline to measure the recovering e�ciency

Figure 13 shows results for the residual recovery approach, where the opti-
mal policy should have a mean reward per episode close to 0, because, as
previously explained, the residual recovery approach is similar to a reaching
task, except that the target is set by the UNN. In this case, the policy reaches
its �nal performance level in about a �fth of the initial training time. We sum
up the test performances results in Table 4, again using the number of bounces
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Fig. 13: Module recovery from KUKA to G-3: Residual recovery setup for the
Tennis environment.

as the success metric. In this case, the residual recovery approach performance
exceeds the classic recovering one while still not doing as well as the original
policy. Indeed, the classic recovery approach doesn't provide an improvement
signal as clear as the residual recovery one. That is, the output module has to
infer a control policy based on its internal perceptions, the UNN output and
the reward. However, this results in a tail-chasing con�guration, as the UNN
relies on the output module itself, making it even more di�cult than in the
initial setup to collect reward, in particular in the case of sparse rewards. On
the other hand, the residual recovery approach doesn't make use of the envi-
ronment reward to progress, as it uses the environment uniquely as a support
for the UNN to guide the output module. To sum up, this experiment shows
that it is possible to recover the modules using a pretrained UNN, yielding
acceptable, but inferior results than when the work�ow is reversed, that is �rst
pre-training the module, and then the UNN.

Table 4: Recovery summary

Robot Recovery Type
Performances

(in bounces)
Kuka Original 18.74

G3
Classic 10.87
Residual 14.50
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5 Related Works

Transfer learning is a very common approach in various machine learning �elds,
such as computer vision and natural language processing. Indeed, due to the
amount of computation needed for learning language models [18],[10] or rele-
vant convolution �lters [19], there are important advantages in relying on these
pretrained models. Furthermore, the architecture of these models does implic-
itly structure knowledge, in particular in the dimensional bottleneck in the last
fully connected layers of a vision/language model. However, in reinforcement
learning, common architectures are usually less greedy in terms of computation
and do not present any particular bottleneck that infers the role of each layer
intuitively. Hence, transfer learning in RL is usually approached with the idea
of having an agent being able to do multiple tasks [20], being able to quickly
readapt or develop generalized strategies to succeed in di�erent environments
[21] or to adapt to the user in case of telemanipulation [22]. Interestingly, we
can also note that the usual RL training frameworks such as OpenAI Gym [23]
for testing RL algorithms are not dedicated to transferring knowledge. Thus,
even if robust algorithms ([16], [15]) exist and are able to succeed in com-
plex, high dimensional non-linear environments, the resulting agent is almost
never used beyond its training environment. Among the reasons for this pol-
icy concealment, we can point out the fact that RL policies do not generalize
well outside of the training distribution, resulting in poor performance when
deployed to other environments. Various works aim at mitigating this issue,
such as [24], [5] [25] and [26] that leverage domain randomization to help the
policy become insensitive to world lighting and texturing, which helps trans-
fer a learned policy for manipulating a cube from a simulated environment to
the real-world. Another approach is Residual Learning, successfully used in
[27] where Convolutional networks are used along with the ballistic equation
for throwing precisely objects of diverse shapes and weight distributions in
speci�ed bins. Despite the impressive results of these works, the learned con-
trol policies are completely tied to the robot parameters and cannot be reused
by another robot of a di�erent con�guration, which is exactly what the UNN
approach o�ers to do.

The UNN method can also be assimilated to a hierarchical/compositional
approach of reinforcement learning, given that we �rst master basic skills and
then use them to complete more complex tasks. This path has been taken
by a number of recent works such as [28] where a hierarchical architecture
is setup. In this case, a master policy selects a controller for a certain num-
ber of timesteps from a set of policies, similar to primitives. While providing
a useful set of learned controllers after training, the networks all share the
same parameters which makes reusability uneasy. Compared to the HCL, the
use of simple model during learning phase was already explored in [29] for
brachiation motion to facilitate the learning of the policy for the full model.
Considering simulated robots and actual robots, the UNN may also refer to
sim-to-real transfer techniques and was already extended to perform simple
planar application while dealing with delay issue [30].
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6 Conclusion and Prospects

In this paper, we presented a broad range of applications for the proposed Uni-
versal Notice Network (UNN) approach, a method that disassociates the agent
control logic from the task it is supposed to accomplish. For each detailed envi-
ronment, we compared our technique with a classical state-of-the-art algorithm
and we demonstrate the bene�ts and advantages of our method, both in terms
of learning speed and �nal performance. We further tackle the issue of transfer
learning in RL in a way that is seldom regarded in recent works. Considering
seven di�erent tasks and �ve di�erent robot kinematic morphologies, we show
that our method enables a more e�cient transfer than current methods, allow-
ing an agent to perform as well as the original policy without retraining at all,
in some cases. The experiments set up allowed us to detect that the classic
UNN architecture may convey a bias from the modules pre-training which can
in various situations be used as an advantage. For con�gurations in which the
bias can be detrimental or simply undesired, we also proposed an experimental
framework, the Heuristic Curriculum Learning, for overcoming such biases.

Future works will investigate more deeply the modules bias and determine
how best to use it. Also, we plan to focus on a way to embed soft constraints
within the modules in order to study how the learning and exploration process
of a policy can be altered with this pretraining step. Eventually, here we set
analytical kinematic models for the state representation, we plan to explore the
use of neural network as robot basis to look for a suitable state representation.
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Appendix A Additional results

In this section, additional results for the presented environments are detailed.
Speci�cally, we show both learning curves and test performances for the Raise
Plank, Cooperative Raise Plank and Basket-Ball task. These curves con�rm
the observations detailed in Section 4, especially concerning the transfer e�-
ciency. Indeed, while in the Raise Plank and Cooperative Raise Plank, the
vanilla PPO policy and the UNN exhibit a similar �nal mean reward, see
Figure A1 and A2, the transferred PPO policy is in these cases negatively
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impacted and its learning progress is undeniably slow, if not null. However,
the transferred UNN policy starts with a superior mean reward and, for the
Raise Plank and Cooperative Raise Plank environment, reaches the �nal mean
reward of the previous policy in a fraction of the total time. At test time, we
use the following metrics, averaged over 100 episodes:

� Raise Plank: A counter is incremented for each timestep if the plank
altitude is over a height threshold

� Cooperative Raise Plank: A counter is incremented for each timestep if
the plank is in the proximity of a target position

� Basket-Ball: A counter is incremented for each timestep if the ball is kept
over a height threshold

These results detailed in Table A1 are coherent with the �nal mean reward
of the learning curves and further emphasize the fact that transfer learning
using the UNN approach outperforms by an important margin straightfoward
transfer. As Table A1 refers in some cases to the Generic 2 (G2) robot, we
inform the reader that this robot architecture is similar to the G3 robot, with
the slight di�erence that a segment was removed.

Table A1: Test Performances Summary

Con�g Training
Performances

(in timesteps)
Raise Plank

Original Kuka 100% 805.70

UNN

Transfer to Generic 2 0% 244.64
Transfer to Generic 2 30% 723.65
Original Kuka 100% 755.02

PPO

Transfer to Generic 2 0% 20.57
Transfer to Generic 2 100% 80.81

Cooperative Raise Plank

Original Generic 3-Generic 3 100% 552.68

UNN

Transfer to G3-G2 0% 111.20
Transfer to G3-G2 30% 547.88
Original G3-G3 100% 589.96

PPO

Transfer to G3-G2 0% 3.57
Transfer to G3-G2 100% 8.08

Basket-Ball

Original HCL 100% 1745.04

UNN

Transfer to Kuka-Kuka 0% 749.58
Transfer to Kuka-Kuka 30% 1022.17
Original G3-G3 100% 807.54

PPO

Transfer to Kuka-Kuka 0% 1.52
Transfer to Kuka-Kuka 100% 478.85
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Fig. A1: Addition learning curves for Raise Plank learning performances and
transfer from KUKA to G2

Fig. A2: Addition learning curves for Cooperative Raise Plank learning
performances and transfer from G3-G3 to G2-G3
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Fig. A3: Addition learning curves forBasket-Ball learning performances and
transfer from HCL to KUKA-KUKA
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