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Université Clermont Auvergne, CNRS, SIGMA Cler-
mont, Institut Pascal, F-63000 Clermont-Ferrand,
France.

youcef.mezouar@uca.fr

Abstract

Interval Analysis is interesting to solve optimization and constraint
satisfaction problems. It makes possible to ensure the lack of the solu-
tion or the global optimal solution taking into account some uncertain-
ties. However, it suffers from an over-estimation of the function called
pessimism. In this paper, we propose to take part of the BSplines prop-
erties and of the Kronecker product to have a less pessimistic evaluation
of mathematical functions. We prove that this method reduces the pes-
simism, hence the number of iterations when solving optimization or con-
straint satisfaction problems. We assess the effectiveness of our method
on planar robots with 2-to-9 degrees of freedom and to 3D-robots with 4
and 6 degrees of freedom.

∗R. Kalawoun was supported by the French Government through the FUI Program (20th
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1 Introduction

In robotics, lots of applications require getting optimal parameters. For instance, dur-
ing identification, the optimization process makes possible to find parameters matching
the results of the model with the experimental results [1]. Optimization techniques
allow robots to perform motions or static pose with minimal energy consumption or
to perform tasks as fast as possible [2]. Those techniques provide optimal parameters
that must satisfy a set of constraints (such as joint limits, joints torques, balance,
...) in order to ensure the integrity of the robotic system and the task completion
and optimize a given criteria. Depending on the application the constraints and cri-
teria function can vary between simple (continuous, linear, monotonic, ...) and very
complex (discontinuous, non-linear, with local extremum ...).

In simple cases (quadratic criteria without constraint), the optimal parameters
can be found easily using Lagrange multipliers, active set [3], or some other methods.
For more complex cases, one usually refer to heuristic algorithms or to some iterative
algorithms [4, 5] that produce a solution in a finite time. For relatively complex cases
(especially with discontinuous or non differentiable functions), Genetic Algortihms
return a solution without any guarantee of optimality.

Optimization techniques based on Interval Analysis provide global optimal results
ensuring constraints satisfaction (in a finite space) and can ensure the lack of solutions
in case of infeasible problem [6]. Those algorithms start from the initial search space
and iteratively split the search space try to find a set of solution that fit the problem.
Unfortunately those techniques suffer from a prohibitive computation time, due to a
large number of iterations caused by the pessimism induced by the use of Interval
Analysis. The pessimism is an over-estimation of the functions, i.e. the given interval
is still conservative (it contains the actual solution) but it is larger than the actual so-
lution. Thus, the pessimism may increase the number of iterations of the optimization
algorithms. Pessimism is deeply linked to the inclusion function (the way to evaluate
a function in Interval Analysis). In order to reduce pessimism, the natural inclusion
function can be replaced by the centred or the Taylor-centred inclusion [7].

In this paper, we propose to use the BSplines and the Kronecker product properties
to evaluate the functions in a less conservative way in order to decrease the pessimism,
hence to decrease the number of iterations and the computation time of optimization
processes. This method was already applied in a one dimension case to evaluate
functions over time intervals [2]. In this paper, we present the extension to multi-
dimensional problems, how to use it during optimization problem resolution. We
assess the results of our method on robotics systems.

We present the optimization problem, how to solve it using Interval Analysis and
we explain the impact of the pessimism on the number of iterations in Section 2.
In Section 3, we develop our method based on the Bsplines and Kronecker product
properties that reduces the pessimism. We assess our method on planar and 3D robot
systems in Section 4. Eventually, we discuss the proposed method in Section 5.
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2 Optimization using Interval Analysis

2.1 Problem statement

In this paper, we present a new way to evaluate function over multi-dimensional in-
terval. We assess our method through the resolution of optimization problems such
as:

Find q ∈ Q ⊂ Rn
such as min

q
F(q)

with ∀j ∈ {1, . . . ,m} Gj(q) ∈ [g
j
, gj ]

(1)

Where n is the number of parameters, Q the finite search space, F(q) the criteria
function and G(q) the set of j constraints that must remain within the interval [g

j
, gj ]

with the lower bound g
j

and the upper bound gj limits.

This problem may be turned into its interval analysis form, such :

Find [q] ∈ IQ ⊂ IRn
such as min

[q]
F([q])

with ∀j ∈ {1, . . . ,m} Gj([q]) ∈ [g
j
, gj ]

(2)

With IR and IQ represent the set of all the possible interval in R and Q.

2.2 Interval Analysis

Interval Analysis (IA) was initially developed to take into account the quantification
errors introduced by the floating point representation of real numbers with comput-
ers [8, 9, 10]. IA methods have been later used to solve optimization problems. Several
works showed that IA is competitive compared to the classic optimization solvers since
it provides guaranteed solutions respecting the constraints [11, 12, 13]. Nowadays, IA
is largely used in robotics [14, 15]. Recent works use IA to compute robot trajectories
and the guaranteed explored zone by a robot [16, 17, 18].

Let us define an interval [a] = [a, ā] as a connected and closed subset of R, with
a = Inf([a]), ā = Sup([a]) and Mid([a]) = a+ā

2
. The set of all real intervals of R is

denoted by IR. A vector of interval is defined as a box. Real arithmetic operations
are extended to intervals. Consider an operator ◦ ∈ {+,−, ∗,÷} and [a] and [b] two
intervals. Then:

[a] ◦ [b] = [infu∈[a],v∈[b] u ◦ v, supu∈[a],v∈[b] u ◦ v] (3)

Consider a function m : Rn 7−→ Rm; the range of this function over a box [a] is given
by:

m([a]) = {m(u) | u ∈ [a]} (4)

The interval function [m] : IRn 7−→ IRm is an inclusion function for m if:

∀[a] ∈ IRn, m([a]) ⊆ [m]([a]) (5)

The natural inclusion function of m is evaluated by replacing each occurrence of a
real variable by the corresponding interval and each standard function by its interval
counterpart.



4 Lengagne et al, Reducing pessimism in Interval Analysis

2.3 Pessimism

Through inclusion functions, we can perform a conservative evaluation of a function on
a whole set of values. Since it deals with numerical truncation, imprecise inputs and
round-off errors, Interval methods are reliable. A lack of accuracy is possible in IA,
when the overestimation produced by the underlying inclusion function is large [19].
However, accuracy is required in optimization methods as presented in Section 2.4.

This overestimation of the actual bounds of the results is called the pessimism. It is
mainly caused by the multi-occurrence of variables in equations [20, 21]. For instance,
consider the equation y = (x + 1)2 with x ∈ [−1, 1]. Using the latter formulation,
we find y = [0, 4], but using the following expression y = x2 + 2x + 1, the result
is y = [−1, 4]. Both results are correct, but the solution range is larger using the
second expression due to the pessimism. The pessimism is reduced by designing smart
inclusion functions in several works [22, 23, 24].

2.4 Solving optimization problem : Bisection

To prove that our method is effective, we will compare the performances (ie. number of
iterations and computation time) of a basic optimization algorithm using the natural
inclusion function and our BSplines inclusions function. Bisection algorithms, such as
presented in Algorithm 1 allow to solve optimization problem defined by Equation 2
using Interval Analysis. The Bisection method consists in evaluating the constraints
and the criteria function for a current box. Those evaluations are used to determine
if this box must be through away (due to one constraint violation or too large criteria
function) or split into two smaller boxes. The splitting process aims at getting a tighter
evaluation of the constraints and of the function. The bisection process ends when the
size of the box is smaller than a given threshold. The constraint Gj([q]) is considered
as violated if its interval evaluation as no intersection with the bounds [gj ].

Several splitting method can be applied [9]. For sake of simplicity, (since in this
paper we focus on the evaluation function), we split the box into two boxes by splitting
the largest interval in the middle.

2.5 Contraction

Contraction is based on the filtering algorithm concept [25]. It manipulates the equa-
tion in order to propagate the constraints in two ways: from inputs to outputs (Eq.(6))
and from outputs to inputs (Eq.(7)): this is the classic forward/backward contractor:

∀j [gj ]← Gj([q]) ∩ [gj ] (6)

∀i, j [qi]← G−ij ([q], [gj ]) ∩ [qi] (7)

where [gj ] is the current value of the constraints bounds (initialized to [g
j
, gj ]), qi the

i-th contractor input, [qi] the current bounds on the input qi and G−ij (q, [gj ]) is the
inverse of function Gj(q) regarding the input qi taking into account the current value
of the constraints bounds [gj ]. [qi] and [gj ] can be different from the initial bounds due
to previous iterations of the algorithm. Eventually, contraction may define a smaller
subset of input boxes respecting the different constraints.

For instance, given three variables a ∈ [−∞, 5], b ∈ [−∞, 4] and c ∈ [6,∞], and
the constraint c = a+ b, find the intervals of a, b, c respecting this constraint. One can
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Algorithm 1 Algorithm for optimization process using bisection process.

Require: Initial research space Q, desired precision ε
initialization : Q.push(Q), f̃ =∞
while Q is not empty do
get element [q] = Q.pop()
evaluate [f ] = [f ; f ] = F([q])
if f < f̃ then

evaluate constraints: ∀j [gj ] = Gj([q])
if ∀j [gj ] ∩ [g

j
; gj ] 6= ∅ then

if ∀j [gj ] ∩ [g
j
; gj ] = [gj ] and f < f̃ then

f̃ = f
q̃ = q

end if
if diam([q]) > ε then
{q1, q2} = bisection(q)
Q.push(q1)
Q.push(q2)

end if
end if

end if
end while
return Optimal box q̃ of problem of Eq.(2)

process as follow:

c = a+ b ⇒ c← [c ∩ (a+ b)] ⇒ c = [6, 9]
a = c− b ⇒ a← [a ∩ (c− b)] ⇒ a = [2, 5]
b = c− a ⇒ b← [b ∩ (c− a)] ⇒ b = [1, 4]

(8)

Thus, by using contractors, the intervals of the variables become tighter: a ∈ [2, 5],
b ∈ [1, 4] and c ∈ [6, 9].

Generally, a combination of contractions and bisections is used. In Algorithm 1,
the contraction step is done just before the evaluation step. However, this method
may still suffer from pessimism explained in Section 2.3. In Section 3, we propose a
new method to decrease pessimism.

3 Function evaluation and pessimism.

As presented before, the pessimism is linked to the mathematical expression of the
inclusion function. To assess the effectiveness of our method, in this paper, we consider
generic natural inclusion functions and we use the Bsplines and Kronecker product
properties to have a less pessimistic evaluation.
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3.1 BSplines properties

BSplines function is the weighted sum of several basis functions. For a one dimensional
case q ∈ R, a k− order BSplines function is defined by m control points pi and basis
functions bki (q) k such as:

F (q) =

m∑
i=1

bki (q)pi (9)

A BSplines curve is inside the convex hull of its control poly-line [26]. This property
is obtained quite easily from the following definition of a basis function:

∀q ∈ [q, q]
∑m
i=1 b

k
i (q) = 1 (10)

This immediately yields:

∀i ∈ [1,m] F ≤ pi ≤ F ⇒ ∀q ∈ [q, q] F ≤ F (q) ≤ F (11)

A conservative estimation of the bounds of F (q) is made based on the minimum and
the maximum of the control points.

Let us reformulate Equation (9) by assuming uniform Bsplines (i.e. m = k + 1):

F (q) = BK × [p1, p2, . . . , pm]× [1, q, q2, . . . , qk]T (12)

where BK ∈ Rm×m is the matrix containing the polynomial coefficients of the basis
functions bKi (q). Hence, knowing the polynomial formulation of F (q)

F (q) = [a1, a2, . . . , ak]× [1, q, q2, . . . , qk]T (13)

One can easily deduce the link between the equivalent control points and the polyno-
mial coefficients:

[a1, a2, . . . , ak] = BK × [p1, p2, . . . , pm] (14)

Eventually, one can compute the equivalent control points through :

[p1, p2, . . . , pm] = BK
−1 × [a1, a2, . . . , ak] (15)

This properties was already used to tackle pessimism in one dimension [2]. In
this paper, we propose a generalization of this concept to multi-dimensional problems
using the Kronecker product formulation.

3.2 Kronecker Product Formulation

As presented in [27], for n-dimensional case q ∈ Rn, the Bsplines functions can be
written as:

F (q) =

m1∑
i=1

m2∑
j=1

...

mn∑
z=1

(
bm1
i (q1)bm2

j (q2)...bmn
z (qn)

)
× pi,j,...,z (16)

The previous equation can be written though its polynomial form:

F (q) = [a1, a2, a3, . . . , ai, . . .]× [1, q1, q2, q1q2, . . . , µi, . . .]
T (17)

where µi represents the i-th monomial. By setting P the vector of all the control points
pi,j,...,z and X the vector of all the monomial coefficients, we generalize Equation (15)
to multi-dimensional case:

P = B−1X (18)
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where B can be written as:

B = B1 ⊗B2 ⊗ . . .⊗Bi ⊗ . . .⊗Bn (19)

The matrix Bi links the control points to the coefficient of the polynomial expression
of the basis functions of input qi and ⊗ is the Kronecker product. The Kronecker
product was firstly studied in the nineteenth century [28]. The Kronecker product
of two matrices A ∈ Rn1,m1 and B ∈ Rn2,m2 is the matrix A ⊗ B ∈ Rn1×n2,m1×m2

defined as follows:

A =

 a1,1 . . . a1,n1

...
...

...
am1,n1 . . . am1,n1

 (20)

A⊗B =


a1,1 ×B a1,2 ×B . . . a1,n1 ×B

a2,1 ×B a2,2 ×B . . . a2,n1 ×B
...

...
...

...

am1,1 ×B am1,2 ×B . . . am1,n1 ×B

 (21)

More properties of the Kronecker product can be found in [29]. The inversion of
the Kronecker product is given by:

(A⊗B)−1 = A−1 ⊗B−1 (22)

Using Equation (22), Equation (18) can be turned into :

P =
(
B−1

1 ⊗B−1
2 ⊗ . . .⊗B−1

n

)
X (23)

Assuming B ∈ Rx,x, with x =
∏n
j=1 mj , the complexity of the inversion of the

matrix B in Equation (18) is O(x3). Using the invertible property presented in Equa-
tion (22), the complexity decreases to O(x

∑
nm

2
j ), that will make possible to test

some case, especially for large n, where inverting directly B with the O(x3) complexity
is prohibitive regarding the computation time.

3.3 Inputs normalization

In Equation (18), the authors of [27] consider that the vector remains constant over
whole the computation process and update the BSplines matrix Bi regarding the cur-
rent bounds of [qi] at each iterations. The main drawback of this solution is the
numerical errors while computing Bi

−1 for narrow intervals on [qi] due to ill condi-
tioning. To solve this issue, we use the inputs normalization with the following affine
change of variables:

[qi] = mi + [qrefi ]
di
2

(24)

with mi and di are the middle and the diameter of interval [qi] and [qrefi ] is set as the
reference interval of [qi] and is initialized at [qrefi ] = [−1; 1]. By doing so, the Bsplines
matrix Bi rely on the reference interval [qrefi ], hence remains constant over whole the
computation process. The polynomial parameter vector X relies on the middle and
diameter of all the inputs.
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3.4 Non linear functions

The proposed method in this paper is based on a polynomial formulation of the con-
straint and criteria functions. In case of non-linear functions s([qi]), we use a Taylor
approximation:

s([qi]) = s(mi) +
ds(mi)

dq

di
2

[qrefi ] + . . .+ [εs(qi)]) (25)

Where [εs(qi)] is normalized using [εs,i
ref ], ms,i and ds,i as proposed in Equa-

tion (24). The reference error interval [εs
ref
i ] is considered as a new input in Equa-

tion (19). The interval value [εs(qi)], hence ms,i and ds,i, is updated as soon as the
original interval [qi] is modified and [εs,i

ref ] is set to [−1; 1]. [εs(qi)] is not considered
in the bisection process. In our work, we consider the first order approximation of
non-linear functions. Since, we aim at dealing with robotics (non-linear) problems in
Section 4, we consider the following non-linear functions: s([qi]) ∈ {sin([qi]), cos([qi])}:

3.5 Function Evaluations samples

In this section, we present the procedure to compute the results of a two-dimensional
function based on the BSplines and Kronecker product properties. and we compare
the results of the different inclusion functions for a 1-dimensional example.

3.5.1 2-dimensional example

As an example of the use of BSplines to reduce pessimism, let us consider

f(q1, q2) = 1− 3q1 − 2q2 + 4q1q2 (26)

with q1, q2 ∈ [−10, 10]. Thus, we have X = [1,−3,−2, 4]T . The details for the
original method (without input normalization) can be found in the appendix of [30].
After normalization of the inputs q1 and q2 using those equations q1 = 10qref1 and
q2 = 10qref2 , we can deduce that :

f(qref1 , qref2 ) = 1− 30qref1 − 20qref2 + 400qref1 qref2 (27)

Thus, we have X = [1,−30,−20, 400]T and we compute B. Since f contains two
variables q1 and q2 each one of degree n = 1 the basis function for each variable is :

b11(q) = 0.5− 0.5q
b12(q) = 0.5 + 0.5q

(28)

Thus, we found B1 = B2 =

[
0.5 0.5
−0.5 0.5

]
and we compute Hence, B−1

1 = B−1
2 =[

1 −1
1 1

]
and get the matrix for the function f :

B−1
1 ⊗B−1

2 =


1×

[
1 −1
1 1

]
−1×

[
1 −1
1 1

]

1×
[

1 −1
1 1

]
−1×

[
1 −1
1 1

]
 =


1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1


(29)
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We can compute the equivalent control point using:

P =
(
B−1

1 ⊗B−1
2

)
X = [451,−409,−389, 351]T (30)

Thus, using our method, we can deduce that f ∈ [−409, 451] which is the same interval
obtained without inputs normalization. By applying Horner schemes, we got two
different expressions of f : f = 1 + q1(−3 + 4q2)− 2q2 and f = 1− 3q1 − 2q2(1− 2q1).
For those two different expressions we got two intervals [−449, 451] and [−449, 451].
Once can deduce that our method reduces pessimism in this example. Horner scheme
works for n = 2 and gives the same results, but his behaviour becomes more critical
when n increases. Hence, the proposed method allows to avoid or at least reduce
pessimism for n = 2. Moreover, if the value of n increases, then the pessimism will be
more reduced: the multi-occurrence increases once n increases.

Now, let consider an other for value for q1 = q2 ∈ [−1, 1] for the same Equation 26.
Thus, we have X = [1,−3,−2, 4]T . We can compute the equivalent control point using:
P =

(
B−1

1 ⊗B−1
2

)
X = [10,−4,−2, 0]T Thus, using our method, we can deduce that

f ∈ [−4, 10]. However, using the natural inclusion functions we obtain f ∈ [−8, 10].
And using the two different Horner schemes already defined we can deduce that f ∈
[−8, 10]. Hence, we can deduce that our method reduces pessimism for large and tight
intervals.

3.5.2 1-dimensional example

We also validate our method on a non linear function f defined by

f(x) = x2 + sin(x) (31)

and the intervals [x1] = [
2π

3
,

4π

3
] and [x2] = [

99π

100
,

101π

100
]. We will compare the

approximations of f(x1) and f(x2) obtained by using the natural [f ]n, the centred
[f ]c, Taylor of order two [f ]T2, Chebyshev of order five [f ]C5,, Bernstein inclusion
function [f ]B , BSplines and minimal inclusion functions [f ]Bs and the actual (without
pessimism) evaluation [f∗] respectively.

[f ]n([x]) = [x]2 + sin([x])

[f ]c([x]) = f(π) + ([x]− π)[f ′]([x])

[f ]T2([x]) = f(π) + ([x]− π)[f ′]([π]) +
([x]− π)2

2
[f ′′]([x])

[f ]C5([x]) =
1

2
f0 + [−1, 1]

5∑
i=1

|fi|

[f ]∗([x]) = [x2 + sin(x), x̄2 + sin(x̄)]

with f ′(x) = 2x + cos(x) and f ′′(x) = 2 − sin(x) and fi =
2

π

∫ π
0
f(cos(x))cos(ix)dx.

The results are presented in Table 1 where M ([f ]([x])) represents the different between
the width of the computed interval and the actual width of the interval such as

M ([f ]([x])) = diam([f ]([x]))− diam([f ]∗([x])).

As we can see, the natural inclusion function remains competitive for the large in-
tervals. However, the centred, Taylor and Chebyshev inclusion functions are more
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[x1] = [
2π

3
,
4π

3
] [x2] = [

99π

100
,
101π

100
]

[f ] [f ]([x1]) M ([f ]([x1])) [f ]([x2]) M ([f ]([x2]))
[f ]n [3.52046, 18.41199] 3.46410 [9.64178, 10.09940] 0.12564
[f ]c [1.62022, 18.11899] 5.07134 [9.70163, 10.03758] 0.00397
[f ]T2 [4.33706, 16.97362] 1.20913 [9.70362, 10.03659] 0.00099
[f ]C5 [4.15463, 16.68117] 1.09911 [9.70362, 10.03657] 0.00098
[f ]B [5.25251, 16.67994] 0 [9.70461, 10.036673] 0.000083
[f ]Bs [5.25251, 16.67994] 0 [9.70461, 10.0366] 0.00002
[f ]∗ [5.25251, 16.67994] 0 [9.70461, 10.03658] 0

Table 1: Comparing inclusion functions

efficient than the natural inclusion function for the small intervals. Besides, Taylor
and Chebyshev inclusion functions bring noticeable improvement compared to the
natural and the centred inclusion functions even for large intervals. Moreover, the
best two inclusion functions are Bernstein expansion and Bsplines inclusion functions.
However, it is clear, on this example, that Bsplines inclusion function remains the
best inclusion function for large and small intervals: the results are almost the actual
intervals.

3.6 Constraint Evaluation

In this part, we focus on the computation of the bounds of a function gj([q]) and,
especially, on an efficient determination of the constraint violation or satisfaction re-
garding a given bound interval [gj ]. We recall that the evaluation of the constraint
function [gj ]([q]) is done by computing the minimum and maximum value of the vec-
tor P such as computed in Equation 18. The size of matrix B and vector X may be
large depending of the number of variables and of the order of each variables. The
multiplication of Equation 18 may imply a large number of operations, hence a huge
computation time that can be reduced as presented in this section.

As presented in Algorithm 1, this evaluation is used in order to assess if the corre-
sponding constraint remains within a given bounds [g

j
, gj ]. By sequentially computing

the control point Pk, we can determine if the corresponding box is overlapping when
min
∀k

Pk < g
j

and max
∀k

Pk > g
j

or min
∀k

Pk < gj and max
∀k

Pk > gj . As soon as, the

overlapping of the constraint is detected, there is no need to compute the other control
points, since the bisection must be performed, hence the evaluation of the process is
stopped: there may be no need to compute all the control points Pk. First, let us
decompose Equation (18) as follow:

P = B−1XI + B−1Xε (32)

where P ∈ Rx is the set of the equivalent control points, XI ∈ Rx contains the
polynomial coefficients that refer only to monomials with reference intervals ([qrefi ])
and Xε ∈ Rx contains the polynomial coefficients that refer to monomial with reference
intervals ([qrefi ]) and reference approximation errors ([εs

ref
i ]). ObviouslyX = XI+Xε.

Taking into account that the vectors XI and Xε contains a lot of null values, it
is computationally relevant to use a sparse representation of the matrices and vectors
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such as:
P = SIXI

s + SεXε
s (33)

where XI
s ∈ Ry is the vector collecting the non-null coefficients of XI and SI ∈ Rx,y

is obtained by removing the columns corresponding to the null coefficient of XI from
B−1, and similarly for Xε

s ∈ Rz and Sε ∈ Rx,z.
Since the second term of Equation (33) SεXε

s relies on non-linear approximation
errors, it must decrease as the width of the input boxes decreases. In order to speed
up the computation time, we introduce the non-linear approximation error interval
[ε] ∈ IRn through:

[ε] = Sε.Xε
s (34)

where Sε ∈ IRz is an interval vector where each element is the interval union of
all the values of the corresponding column of Sε. Thus, each equivalent control point
given by SεXε

s lies in the interval [ε]. Obviously, [ε] is a pessimistic evaluation of the
non linear approximation errors, but it is much faster to compute the dot product of
the z−dimensional vector Sε.Xε

s than using the the product of x× z-matrix with the
z−dimensional vector. Eventually, the evaluation of the constraint gj(q) is done from:

P = SI .XI
s + [ε] (35)

Hence, the function can be evaluated throught the minimal and maximal value of P ,
where each control point Pk can be computed as:

Pk = SIk.XI
s k + [ε] (36)

The polynomial formulation of the constraints and the computation of the sparse
matrices and vectors are done once in a preparation phase, before the beginning of
Algorithm 1.

3.7 Constraint Contraction

As presented in Section 2.5, the contraction of one constraint consists in updating the
bounds of the constraint functions and the bound of the inputs. In order to perform
the contraction, we consider a new function νj([q], [gj ]) such as:

νj([q], [gj ]) = gj([q])− [gj ] (37)

The control points of this function Pνj can be evaluated through

Pνj = B−1
νj Xνj (38)

where B−1
νj andXνj are the matrix and vector representation of the function νj([q], [gj ]).

We perform the same decomposition than the one presented in Equation (35) to deal
with error component and sparsity of the vector Xνj .

Let us define [µ] as the interval value to contract that may be the bounds of the
constraint [gj ] or the bounds of the reference intervals [qrefi ] and their sine and cosine
approximation errors [εsin(qj)] and [εcos(qj)]. The contraction process presented in
Equation (7) turns to:

[µ]← [µ] ∩ (νj([q], [gj ]) + [µ]) (39)

Therefore, the equivalent control point Pµ of νj([q], [gj ]) + [µ] can be computed as:

Pµ = B−1
νj Xνj + B−1

νj Xµ = Pνj + B−1
νj Xµ (40)
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where the values of the vector Xµ are zero except for the component corresponding to
the monomial µ that is the opposite of the one of Xνj .

Eventually, the evaluation of Equation (39) is performed as presented in Section 3.6
taking into account the error such as in Equation (35) and using the sparse properties
especially because Xµ contains only one non-zero value.

4 Results

The following abbreviations will be used in this section :

• BI: Bisection process using Interval Analysis,

• CI: Contraction and bisection using Interval Analysis,

• BS: Bisection process using the BSplines and Kronecker product properties,

• CS: Contraction and bisection process using the BSplines and Kronecker product
properties.

To compare the methods, with the same implementation performance, we re-code the
state of the art interval analysis without using available libraries such as ALIAS [31]
or IBEX [32]. For sake of simplicity, our implementation do not deal with rounding
errors. The sine and cosine functions in state of the art Interval Analysis returns
intervals without pessimism. In order to focus on the performance of our methods,
the optimization process are provided taking into account a one-thread computation
process. Our method was programmed using the C++ language and executed on the
following hardware and software: CPU Intel(R) Xeon(R) E5-2670, 6.4 GHz, Cache 8
Mo: CentOS Linux release 7.5.1804 (Core) 64 bits.

4.1 2D Robot feasible space

In this section, we present the computation of the feasible space of a 2-dof planar robot
with two links of length 1 unit, as presented in Figure 1, such as:

Find all [q] ∈ Q ⊂ Rn
such as ∀j ∈ {1, . . . ,m} Gj([q]) ∈ [gj ]

(41)

Figure 1: Representation of the 2-dof robot.

Since the resolution of this problem is straightforward from the resolution of the
optimization problem, we do not detail it in this paper. The system is a 2-dof planar
robot q ∈ R2, with joint limits q1, q2 ∈ [−3; 3], we set the following constraints :

x = cos(q1) + cos(q1) cos(q2)− sin(q1) sin(q2) ∈ [1.2; 1.8]
y = sin(q1) + cos(q1) sin(q2) + sin(q1) cos(q2) ∈ [−0.5; 0.5]

(42)
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The results are presented in Figure 2 and in Table 2 with a stopping threshold
of 0.05. The feasible boxes are represented in red and the possible boxes are green.
For the state-of-the-art methods (BI and CI), Figures 2(a) and 2(c) show that the
pessimism produces possible boxes even if they are totally inside or outside the feasible
space.

One can see that the use of Bsplines properties decreases the pessimism since the
number of possible boxes (green) is reduced and most of them are partially inside and
outside the feasible space. CI method reduces the number of iterations regarding BI
method as presented in Table 2 even if only a few possible boxes are removed.

Our new BS method allows the number of iterations to decrease. This method
produces fewer but larger possible boxes as it is shown on Figure 2(b). Moreover, our
new CS method reduces the number of iterations (nearly half of the BI method) and
the number of possible boxes. It also produces a set of interval with different sizes
(due to the non-uniform contraction) as presented on Figure 2(d).

Regarding the computation time, the BS method has the lowest computation time
even if the preparation phase requires a large computation time (' 250ms). However
this computation time can be ignored since it is not required to perform it in case of
change of the x or y bound value.

solver
number of
iterations

computation
time (ms)

(+preparation time)

number of
feasible boxes

number of
possible boxes

BI 1567 24.1 130 716
BS 1083 14 (+242) 102 428
CI 1431 23.7 130 648
CS 743 24 (+262) 136 396

Table 2: Computation results of the feasible spaces for the 2-dof planar robot.

This 2D simple CSP shows that the BSplines inclusion function reduces the pes-
simism. Hence it reduces the number of iterations, that reduce the computation time
for this case. In the following subsection we assess our method on more complex cases
dealing with planar 2D-robots and on 3D-robots.

4.2 Planar Robot

We assess our method on multi degrees-of-freedom 2D-robots. We address Constraint
Satisfaction Problems (CSP) and Optimization Problems (OP) to find the posture
of the robot that fits and optimally fits robot constraints and desired end-effector
position. We consider robots with 2-to-9 degrees of freedom, with equal segment
length. All the links have the same weight. The Centres Of Mass (COM) are located
in the middle of the links. The total length of the robot is equal to 2. We set as
a constraint that the COM of the robot must remain in [−0.1, 0.1] on the horizontal
plane. We also add a reachability constraint: the effector must reach a specific target.
We assess our method on nine different constraint satisfaction problems, with a square
target of size 0.2 by 0.2 (pb 1,2,3), a circle target with a radius of 0.1 (pb 4,5,6) and
a ring target with an external radius of 0.15 and an interval radius of 0.05 (pb 7,8,9).
The targets are localized at three different positions {x, y} : {0.2; 1.7} (pb 1,4,7),
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(d) CS method: Contraction with BSplines

Figure 2: Presentation of the feasible spaces {q1, q2} for the 2-dof robot. (feasible
boxes in red, possible boxes in green, actual feasible space limits in blue.)

{0.4; 1.4} (pb 2,5,8) and {0.6; 1.1} (pb 3,6,9). If the computation time exceeds one
week, we stop the execution of the algorithm and no result are considered.

4.2.1 Solving CSP

Figures 3, 4 and 5 present the number of iterations and the computation time of
bisection using BS, CI and CS methods regarding the performance of BI method for the
constraint satisfaction problem with a stopping threshold of 0.01. Figure 6 compares
the results of the CS method regarding the ones of BS method. The resolution of the
CSP is done as presented in Algorithm 1. Nevertheless, the execution of the algorithm
is stopped as soon as one solution is found.

Figure 3(a) proves that the number of iteration required to solve the CSP using BS
is lower than the number of iterations using BI. We can deduce that the evaluation of
the constraints induces less pessimism using the Bsplines method. Figure 3(c) shows
that the BS method (taking into account the preparation phase) is faster than the BI
method, but only for a large number of degrees of freedom (n >= 7). We highlight
that the BS method produces a result for the problems 1 and 2 with 9 degrees-of-
freedom in nearly 3 hours whereas the BI method cannot find a solution within one
week.

Figure 4 compares the state-of-the-art CI with BI methods and proves that the
number of iterations is quite reduced, but with a very larger computation time.
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Figure 3: Comparison of the BSplines Bisection and the Interval Bisection methods
to solve CSP.

Looking at Figure 5, it seems that the CS methods have nearly the same perfor-
mances of the BS methods regarding the ones of the BI methods. For an easier com-
parison, we presents the results of CS method regarding the ones of the BS method in
Figure 6. Despite, we believed that the contraction step reduces the boxes before the
bisection process, hence reduces the number of iterations of the algorithm, it appears
that, for some problems, the number of iterations (and so the computation time) of
the CS method is larger than the number of iterations for the BS method. This phe-
nomena is due to the bisection process. During the BS method the diameter of the
interval is equal to the initial size of the interval divided by 2k, with k the number of
bisection of this interval. The bisection process choose to bisect the input with the
maximal diameter and in case of equality bisect the first input of the queue is bisected.
Since all the inputs have the same initial size, this case of equality appears at each
iteration. During the CS method, the contraction step may reduce one or several input
intervals, hence the case of equality may appear at the beginning of the process and
becomes very rare after some iterations. Because of those properties of the bisection
process and of the contraction, the BS method and the CS method do not explore the
search space in the same order, hence a non-intuitive difference on results could be
noticed in terms of computation time and number of iterations.
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Figure 4: Comparison of the Interval Contraction and the Interval Bisection methods
to solve CSP.

4.2.2 Solving Optimization problem

We also assess our methods on additional optimization problems. We consider the
same constraints than in CSP and consider two different cost functions. The cost
function of Problem 1 to 9 is the sum of the square joint position

∑n
i=1 q

2
i . However,

Problem 11 to 19 consider the sum of square joint torque
∑n
i=1 Γ2

i as cost function.
As for the CSP, the CI method is not suitable for optimization problem. Hence, we
choose not to present the results of the CI here for the sake of clarity.

Figure 7 and Figure 8 present the results of the BS method and of the CS method
for eighteen complex optimization process regarding the result of the state-of-the-art
BS method. As for solving a CSP, the two proposed methods produce a fewer number
of iterations, but with a comparable computation time. Figure 9 compares the results
of BS and CS methods. Since there is no contraction for the evaluation of the cost
function, the two methods seem to present nearly the same performance regarding the
number of iterations and the computation time.

4.3 3D Robot

To assess the effectiveness of our method on more complex systems, we consider the
following problem:

Find q ∈ Q ⊂ Rn
such as min

q

∑
i q

2
i

with x = xd + [−0.01; 0.01]
y = yd + [−0.01; 0.01]
z = zd + [−0.01; 0.01]

∀j = {1, . . . , n} Γj ∈ [−Γj : Γj ]

(43)

We present the results for two different 3D robots (with n = 4 and n = 6 degrees of
freedom) which derive from the KUKA LWR as presented on Figure 10. The 4-dof
robot is obtained by considering constant the joint number 3 and 5.

The solution of Problem 43 is the static posture, i.e. the joint position, that
minimizes the sum of joint angles square and ensures that the end effector position
{x, y, z} is within a 0.02 meter width box center on a desired position {xd, yd, zd} and
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Figure 5: Comparison of the BSplines Contraction and the Interval Bisection methods
to solve CSP.

that the joint torque Γi are within the joint limits. Theses function can be obtained
by using the forward kinematic model and the inverse dynamics model as presented
in [33].

4.3.1 Constraint Evaluation

Tables 3 and 4 present the performance of the evaluation of the kinematic model
for the 4 and 6-dof robots. In order to evaluate the improvement of the BSplines
based inclusion function on the constraint evaluation we compute the end-effector box
position for several box joint position. One can notice that for the largest ([−0.5; 1.5])
interval of the 4-dof robot the natural inclusion function produces less pessimism:
this is mainly due to the polynomial approximation of the non-linear functions that
produce large error value. It is important to notice that, for nearly all the boxes of the
joint position, the BSplines based evaluation produce less pessimism than the natural
interval inclusion function.

4.3.2 Solving Optimization problem

Since the use of the CI method did not provide good results for solving the CSP of
planar robots, we do not evaluate this method for 3D robots. In this part, we compare
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input eval diam(x) diam(y) diam(z)

[−0.5 : 1.5]
Interval 2.762 2.845 4.968
BSplines 3.628 3.633 2.070

[0 : 1]
Interval 1.554 1.329 2.390
BSplines 1.523 1.246 0.896

[0.25 : 0.75]
Interval 0.903 0.733 1.281
BSplines 0.099 0.385 0.666

[0.45 : 0.55]
Interval 0.191 0.151 0.262
BSplines 0.106 0.101 0.141

[0.495 : 0.555]
Interval 0.019 0.015 0.026
BSplines 0.010 0.010 0.014

Table 3: Comparison of the evaluation of the end effector {X,Y, Z} Cartesian position
depending on the diameter of joint position interval for the 4 dof Robot

input eval diam(x) diam(y) diam(z)

[−0.5 : 1.5]
Interval 9.89 10.14 10.19
BSplines 8.68 8.68 3.86

[0 : 1]
Interval 3.389 3.292 3.805
BSplines 1.053 0.942 1.068

[0.25 : 0.75]
Interval 1.503 1.490 1.789
BSplines 0.146 0.294 0.679

[0.45 : 0.55]
Interval 0.283 0.285 0.346
BSplines 0.137 0.128 0.143

[0.495 : 0.555]
Interval 0.028 0.028 0.035
BSplines 0.015 0.013 0.014

Table 4: Comparison of the evaluation of the end effector {X,Y, Z} Cartesian position
depending on the diameter of joint position interval for the 6-dof Robot
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Figure 6: Comparison of the Bsplines Contraction and the Bsplines Bisection methods
to solve CSP.

the performance of the BI, BS and CS methods on four different problems for the 4
and 6 dof-robots. The problems 1 and 3 consider a desired end effector position at
{x, y, z} equal to {0.6, 0.6, 0.6} and {0.4, 0.4, 0.7} for problems 2 and 4. The problem
1 and 2 consider the nominal maximal torque value and the problem 3 and 4 only 10%
of the maximal torque. Consequently, the problem 4 is infeasible, and it is used to
assess the performance of our method on infeasible problems.

Tables 5 and 6 emphasize that our methods (BS an CS) solve the optimization
problem with less iterations than the state-of-the-art method (BI). They emphasize
that the use of the Bsplines properties reduces the number of iterations, due to a less
pessimistic evaluation of the constraints. It is also clear that the use of a contraction
process (CS) decreases more the number of iterations than pure bisection processes
(BI and BS) since it makes possible to reduce the size of the box during the bisection
process.

Regarding the computation time, it appears that our method is faster than the
state-of-the-art BI method in most of the cases. For the most complex problem (6-
dof robot), our method is still the faster one even when we consider the preparation
phase (except for one case). It seems that our method is more relevant to prove
that the problem has no solution (problem 4) since the number of iterations and the
computation time are drastically reduced.

5 Conclusion and perspectives

Interval Analysis is an interesting method that ensures the optimality and the lack of
solutions for optimization problems. Unfortunately, it suffers from the pessimism that
prohibits its use in complex problems. We propose the use of the BSplines properties
and of the Kronecker product in order to reduce the pessimism. We prove that our
contribution deals with more complex optimization problems and decreases the com-
putation time. From the given results, our method seems to be the more effective to
prove that there is no solution to complex optimization problems.

In this paper, we introduced a new formulation of the optimization problem. How-
ever, the computation time could be decreased by some improvements. For instance,
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problem solver
number of
iterations

computation
time (s)

preparation
phase (s)

cost function

1
BI 155715 9.51 2.71
BS 37437 5.42 30.2 2.68
CS 32331 5.00 27.4 2.68

2
BI 159951 9.64 2.71
BS 37057 5.36 28.6 2.68
CS 32015 4.93 23.8 2.68

3
BI 940343 59.5 2.59
BS 61001 8.17 20.3 1.74
CS 53733 8.20 29.8 1.74

4
BI 22761 1.39 unfeasible
BS 1581 0.25 28.6 unfeasible
CS 1609 0.29 27.8 unfeasible

Table 5: Comparison of the performances of the three solvers for the posture opti-
mization of the 4-dof robot.

problem solver
number of
iterations

computation
time (s)

preparation
phase (s)

cost function

1
BI 944808895 5-02:12:29 2.43
BS 116028803 3-08:50:05 455 2.39
CS 100293163 1-15:07:25 356 2.39

2
BI 1430891169 1-10:09:15 2.43
BS 111337437 3-11:29:08 715 2.39
CS 93289815 1-21:36:39 430 2.39

3
BI 72155242357 67-13:54:41 2.51366
BS 311645729 6-06:41:52 490 1.66
CS 258134817 3-19:48:31 367 1.66

4
BI 513515683 0-12:25:01 unfeasible
BS 741335 0-00:27:47 489 unfeasible
CS 570171 0-00:28:41 368 unfeasible

Table 6: Comparison of the performances of the three solver for the posture optimiza-
tion of the 6-dof robot.
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(c) computation time with the preparation
phase

Figure 7: Comparison of the BSplines Bisection and the Interval Bisection methods
to solve optimization problems.

in our work, a very simple bisection process is considered. That is not relevant in
some cases. The main avenue of future works will be the use of the control points in-
formations in order to guide the bisection process in a more effective way. Obviously,
the use of multi-threading will also be investigated to decrease the computation time.
Future works may study the advantages of the BSplines inclusion function to more
elaborate optimization algorithms. In addition, we plan to evaluate our method on
more complex optimization problems such as robotic motion optimization and to take
into account some uncertainties on the models we use.
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