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Abstract: This paper is concerned with generating test cases for communicating systems. Instead of considering that a
complete and up-to-date specification is provided, we assume having an event log collected from an imple-
mentation. Event logs are indeed more and more considered for helping IT personnel understand and monitor
system behaviours or performance. We propose an approach allowing to extract sessions and business knowl-
edge from an event log and to generate an initial set of test cases under the form of abstract test models. The
test architecture is adaptable and taken into consideration during this generation. Then, this approach applies
11 test case mutation operators on test cases to mimic possible failures. These operators, which are specialised
to communicating systems, perform slight modifications by affecting the event sequences, the data, or injecting
unexpected events. Executable test cases are finally derived from the test models.

1 INTRODUCTION

This paper focuses on the test of communicating
systems, i.e. systems made up of concurrent compo-
nents, e.g., Web services or Internet of things (IoT)
components, which interact through a message pass-
ing protocol, e.g. HTTP. Testing such systems is
known to be a hard process due to the problems in-
herent in controlling or monitoring many concurrent
components interacting with one another simultane-
ously. Several works proposed solutions to develop
test architectures, which include points of observa-
tion (PO), to collect information from the implemen-
tation and points of control and observation (PCO),
to collect information but also to control the interac-
tions with the implementation. Others proposed to ap-
ply test strategies, or to perform Model-based Testing
(MbT), e.g., (Ulrich and König, 1999; van der Bijl
et al., 2004; Cao et al., 2009; Torens and Ebrecht,
2010; Kanso et al., 2010; Aouadi et al., 2015; Hi-
erons, 2001). Despite these significant contributions,
generating test cases for this kind of systems is still
difficult and long. With most of the approaches pro-
posed in the literature, a complex specification must
be written and verified, then a model-based testing ap-
proach is applied to generate test cases with respect to
a static test architecture.

In the Industry, models are often neglected
though. Writing models is indeed known to be a hard

and error-prone task. Besides, keeping them up-to-
date is also difficult especially over the long term. In-
stead of using specifications, we propose to rely on
event logs, collected from a system under test, which
we denote SUT. Although no specification is given,
some approaches might be yet considered to generate
test cases:

• a basic record and replay technique: from an event
log, it is possible to extract sessions, i.e. se-
quences of correlated events interchanged among
different components. Then, these sessions could
be converted to executable test cases to evaluate
SUT again. Unfortunately, this technique does not
work well for communicating systems, as SUT
may include non deterministic components, or not
testable ones (not observable, or not controllable).
Test cases must be adapted w.r.t. these properties;

• model learning followed by test case generation:
model learning is a research field gathering al-
gorithms specialised in the construction of mod-
els by inference. On the one hand, active model
learning algorithms interact with SUT by means
of tests to get sequences of reactions encoded
with models. Few approaches are specialised to
communicating systems, e.g., (Petrenko and Avel-
laneda, 2019) and these ones are time-consuming
and cannot produce large models. On the other
hand, passive model learning approaches, e.g.,



(Mariani and Pastore, 2008; Beschastnikh et al.,
2014; Salva and Blot, 2020) are able to gener-
alise behaviours retrieved in large event logs and
to encode them into models. But, this general-
isation might lead to the generation of incorrect
test cases leading to false positives. Once models
are retrieved, classical MbT approaches can be ap-
plied to produce test cases. These approaches (re-
)generate test data along with concrete execution
paths to construct test cases. Again this is a time
consuming activity.

This paper presents another approach to generat-
ing test cases for communicating systems from event
logs, which is devised with the previous attention
points in mind. The resulting test cases aim at exper-
imenting the whole system. In short, our approach
performs an analysis of event logs to extract some
business knowledge, reverse-engineers abstract test
models (but no specification) from event logs, mutates
them with specialised mutation operators and finally
generates executable test cases. The test architecture,
i.e. the number of PCOs, POs along with their capa-
bilities (what they are able to observe), is adaptable
and taken into consideration while the test case gen-
eration. Test case mutation (Köroglu and 0001, 2018;
Paiva et al., 2020) is an approach that builds new test
cases by performing slight modifications on existing
test cases in order to later check whether the system
under test is resilient to errors, to security attacks etc.
In other terms, we gather some advantages of pas-
sive model learning (extraction of sessions from event
logs, knowledge extraction), which we associate with
test case generation (test selection, generation of test
cases w.r.t. the PCOs and POs) and test case mutation.

The paper is organised as follows: we provide
some definitions used throughout the paper in Sec-
tion 2. Our approach is presented in Section 3 with
a motivating example. We present two algorithms to
build test cases from event logs and 11 test case mu-
tation operators specialised for communicating sys-
tems. Section 4 summarises our contributions and
draws some perspectives for future work.

2 DEFINITIONS

We denote E the set of events of the form e(α)
with e a label and α an assignment of parameters in P
to a value in the set of values V . We write x := ∗ the
assignment of the parameter x with an arbitrary ele-
ment of V , which is not of interest. The concatenation
of two event sequences σ1, σ2 ∈ E∗ is denoted σ1.σ2.
ε denotes the empty sequence. For sake of readability,
we also write σ1 ∈ σ2 when σ1 is a (ordered) subse-

quence of the sequence σ2. pre f ix(σ) denotes the set
of initial segments of σ.

We also use the following notations on events to
make our algorithms more readable:

• f rom(e(α)) = c denotes the source of an event;

• to(e(α)) = c denotes the destination;

• isreq(e(α)), isresp(e(α)) are boolean expressions
expressing the nature of the event.

We formulate a test case with a deterministic Input
Output Labelled Transition System (IOLTS) having a
tree form and whose sink states are either labelled by
the test verdicts pass, fail, or inconclusive. Its transi-
tions are labelled by events in E∪{θ}, with θ a spe-
cial label expressing the absence of reaction (Phillips,
1987).

Definition 1 (Test Case) A test case is a determinis-
tic IOLTS 〈Q,q0,Σ,→〉 where:

• Q is a finite set of states; Q contains three special
states: pass, fail and inconclusive

• q0 is the initial state;
• (Σ⊆ E)∪{θ} is the finite set of events. ΣI ⊆ Σ is

the finite set of input events beginning with ”?”,
ΣO ⊆ Σ is the finite set of output events beginning
with ”!”, with ΣO∩ΣI = /0;

• →⊆ Q×Σ∪{θ}×Q is a finite set of transitions

A transition (q,e(α),q′) is also denoted q
e(α)−−→ q′.

3 TEST CASE GENERATION AND
MUTATION

The ability of our approach to generate test cases
from an event log produced by a communicating sys-
tem SUT, is dependent on the following realistic as-
sumptions:

• A1 Event log: the communications among the
components can be monitored by POs using dif-
ferent techniques, e.g., wireless sniffers or server
logs. These POs may have different observa-
tion capabilities. The latter are known and de-
fined with a relation PO : Component × E →
{true, f alse}. The resulting event logs are col-
lected in a synchronous environment made up
of synchronous communications. They include
timestamps showing when the events occurred.

• A2 Event content: components produce com-
munication events or non-communication events.
Both include parameter assignments allowing to
identify the source and the destination of each



event. For non-communication events, both the
source and the destination refer to the same com-
ponent that has produced the event. Besides, a
communication event can be identified either as a
request or a response;

• A3 Component collaboration: Workflows of
events are correlated by means of parameter as-
signments.

• A4 Component Controllability: we assume
knowing the set of components that can be exper-
imented, which is denoted PCO;

Figure 1: Example of system made up of 3 components; the
test architecture has 3 POs and 1 PCO

Let’s illustrate these notions of POs and their ca-
pabilities with the example of system and test archi-
tecture of Figure 1. Consider that we can observe
for all the components c1, c2 and c3 any received
request and the associated response. For c1, this
can be formulated by PO(c1,e(α)) : (isreq(e(α))∧
to(e(α)) == c) ∨ (isresp(e(α)) ∧ f rom(e(α)) ==
c). Consider now that for c2 nothing can be ob-
served (there is no point of observation), we have
PO(c2,e(α)) : f alse.

Figure 2: Classical event types that can be considered for
measuring PO observability

The relation PO may indirectly be used to eval-
uate the capability of observation for every compo-
nent. For a component c, we define this measure as
follows: obs(c) = ∑e(α)∈E PO(c,e(α)) == true. It is
worth noting that dealing with all the potential events
is not required; it is usually sufficient to consider the
five event types illustrated in Figure 2.

Figure 3 illustrates the successive steps of the test
case generation. The event log is initially segmented
into sessions by means of A3. As a lot of sessions
may express the same behaviours of SUT, Step 2 as-
sembles those expressing similar behaviours and cov-

Figure 3: Approach Overview

ers them to extract knowledge, e.g., the fact that an
event represents an error or a failure, the fact that
an event sequence represents a token generation, etc.
This knowledge, expressed under the form of labels
will be used for the test case generation and muta-
tion. This step returns a set of sequences of elements
< e(α), l >, with e(α) an event whose parameter val-
ues are hidden and l a list of labels expressing knowl-
edge. These sequences are called abstract traces.

Step 3 generates a first test case set from abstract
traces. It applies a selection of abstract traces to keep
in priority those that should trigger crashes and er-
rors, and those allowing to cover the most components
and events. This step also transforms the selected ab-
stract traces to insert the notion of input and output
and to take into consideration the capabilities of the
POs. Then, test cases, given under the form of IOLTS
trees, are generated.

The next step applies 11 mutation operators on
the initial test case set, which modify events or data.
These operators mostly produce test cases dedicated
to test the robustness or security of SUT. Finally, ev-
ery test case tree is converted into an executable test
case. These steps are detailed below.

3.1 Session Extraction

The recovery of sessions from an event log is quite
straightforward when the parameters used to identify
sessions, namely a correlation set, is known in ad-
vance. When, this is not the case, we proposed in
(Salva et al., 2021) an algorithm (and a tool) to re-
trieve sessions by exploring the correlation set space
that can be derived from an event log. Our algorithm
can return the best session set that meet a predefined
set of quality attributes defined by the user, or returns
several solutions and sort them from the best to the
lowest quality.

The tool returns a set S of sessions along with a
correlation set Corr(σ) for every session σ ∈ S. All
the assignments p := v found in σ whose parameters
are also used in Corr(σ) are replaced by p := ∗.



3.2 Session Clustering and Knowledge
Extraction

This step takes as input the session set S and builds
a set of abstract traces of the form < e1(α1), l1 >
· · · < ek(αk), lk > such that the parameter values
are replaced by ”*” except for the parameters from,
to. l1, . . . , lk are label lists expressing some business
knowledge about the sessions, e.g., ”error” or ”crash”.

Definition 2 (Abstract Traces) Let L be a set of la-
bels. An abstract trace is a sequence < e1(α1), l1 >
· · ·< ek(αk), lk >∈ (E×L)∗ such that ei(αi)1≤i≤k ∈E,
and every parameter in P \ { f rom, to} is assigned to
”*” and li ⊆ L(1≤ i≤ k) is a set of labels.

To build abstract traces, we begin to partition the
session set S into classes of equivalent sessions. We
formulate that two sessions are equivalent if they
share the same sequence of abstract events. Given an
event e(α), an abstract event e(α′) simply results from
the replacement of the parameter values by ”*” ex-
cluding the parameters from and to. The equivalence
relation between two sessions is defined by means of
a projection, which performs this event abstraction:

Definition 3 Two event sequences σ1 σ2 ∈ E∗, are
equivalent, denoted σ1 ∼b σ2 iff pro j{ f rom,to}σ1 =
pro j{ f rom,to}σ2 with: pro jQ : E∗ → E∗ is the projec-
tion e1(α

′
1) . . .ek(α

′
k) = pro jQ(e1(α1) . . .ek(αk)) and

α′i = {x := ∗ | x := v ∈ αi∧x /∈Q}∪{x := v | x := v ∈
αi∧ x ∈ Q}

Now, given a class of equivalent sessions cl =
{σ1, . . . ,σm}, we analyse the events and parameter
values to extract knowledge by means of an expert
system. The latter is an inference engine that applies
a set of rules on a base of facts. In our context, the
former base of facts is a session set. The rules encode
expert knowledge about communicating systems and
build abstract traces. It is worth noting that an expert
system offers the benefit to save time by allowing its
reuse on several communicating systems.

We represent inference rules with this format:
When conditions on facts Then actions on facts (for-
mat taken by the Drools inference engine1). To ensure
that this step is performed in a finite time and in a de-
terministic way, the inference rules have to meet these
hypotheses:

• Finite complexity: a rule can only be applied a
limited number of times on the same knowledge
base,

1https://www.drools.org/

rule "LabelCrash 1"

when

$ev: Event(paramStatus>=500);

then

insert(new Aevent($ev, L("crash"));

end

Figure 4: Inference rule example

• Soundness: the inference rules are Modus Ponens
(simple implications that lead to sound facts if the
original facts are true).

We devised inference rules that analyse event con-
tent or event sequences to recognise crashes, errors,
the authentication of users, and the generation of Ac-
cess tokens, which temporally provide accesses to
specific user’s data. Figure 4 Figure 4 exemplifies a
rule for recognizing a system crash with an HTTP sta-
tus of above 500. It creates an abstract event having a
new label ”crash”.

Once the equivalent class cl = {σ1, . . . ,σm} has
been analysed by the expert system, we obtain
one abstract trace of the form < e1(α

′
1), l1 > · · · <

ek(α
′
k), lk >. From the equivalent classes of sessions

cl1, . . . ,cln, we obtain a set of n abstract traces, which
is denoted ATraces.

Figure 5 illustrates an example of 3 sessions ex-
tracted from an event log, itself produced by 3 com-
ponents API, Produts and Pay, using the architecture
of Figure 1. The two first sessions are equivalent as
they share the same sequence of labels and parameters
with different data. Our approach builds two clusters
of equivalent sessions cl(t1) and cl(t2). It also builds
2 abstract traces. t2 includes one new label ”crash”
as the expert system has detected that the last event
expresses a crash of the component Pay.

3.3 Test Case Generation

Test cases are generated in the form of IOLTS trees
whose final states are labelled by a verdict. The use of
the IOLTS formalism allows to synthesize generic test
cases from which, written with various languages, can
be derived concrete test scripts. Besides, it is easier
to define transformations or mutations on IOLTS test
cases.

Test cases are built using the set PCO and the re-
lation PO while taking the controllability and observ-
ability of the components into account. At this point,
a user may decide to adapt the system’s POs with re-
gards to the available tooling. As the initial event log
has been collected from every component c in accor-
dance with a certain level of observability given by
obc(c), the user may only lower this level by redefin-
ing PO(c,e(α)).



/order(from:=Cl,to:=API,m:=POST,body:=1,key:=*)
/supply(from:=API,to:=Products,m:=POST,body:=1,key:
=*)
/payment(from:=Products,to:=Pay,m:=GET,key:=*)
ok(from:=Pay,to:=Products,status:=200,key:=*)
ok(from:=Products,to:=API,status:=200,key:=*)
ok(from:=API,to:=Cl,status:=200,key:=*)

Abstract Trace t1 Abstract Trace t2

Session S1 Session S2 Session S3

S1
S2

S3

cl(t1) cl(t2)

/order(from=:Cl,to:=API,m:=POST,body:=1,key:=*)
/supply(from:=API,to:=Products,m:=POST,body:=1, 
key:=*)
/payment(from:=Products,to:=Pay,m:=GET,key:=*)
ok(from:=Pay,to:=Products,status:=200,key:=*)
ok(from:=Products,to:=API,status:=200,key:=*)
ok(from:=API,to:=Cl,status:=200,key:=*)

/order(from=:Cl,to=:API,m:=POST,body:=1,key:=3)
/supply(from:=API,to=:Products,m:=POST,body:=1,key:
=*)
/payment(from=:Products, to:=Pay,m:=GET,key:=*)
error(from=:Pay,to:=Products,status:=500,key:=*)

</order(from:=Cl,to:=API,m:=*,body:=*,key:=*), {}>
</supply(from:=API,to:=Products,m:=*,body:=*,key:=*), {}>
</payment(from:=Products,to:=Pay,m:=*,m:=*,key:=*), {}>
<ok(from:=Pay,to:=Products,status:=*,key:=*), {}>
<ok(from:=Products,to:=API,status:=*,key:=*), {}>
<ok(from:=API,to:=Client,status:=*,key:=*), {}>

</order(from:=Cl,to:=API,m:=*,body:=*,key:=*), {}>
</supply(from:=API,to:=Products,m:=*,body:=*,key:=*), {}>
</payment(from:=Products,to:=Pay,m=*,key:=*), {}>
<error(from:=Pay,to:=Products,status:=*,key:=*), {crash}>

Figure 5: Example of sessions and abstract traces

The test case generation is implemented by Al-
gorithms 1 and 2. Algorithm 1 takes as input a
set of abstract traces ATraces and returns the set
SelectedATraces. As the set ATraces may be large,
it performs a selection according to 3 criteria (lines
1-11):
1. Crash/Error coverage: it selects in priority all the

abstract traces whose at least one event expresses
a crash or an error;

2. Component coverage: it completes them
with abstract traces in such a way that ev-
ery component of SUT will be covered by
the tests. This is performed with the relation
<c, which sorts the abstract traces having the
most events produced by components not yet
referenced in SelectedATraces: <c: t1 <c t2
iff | f rom({t1}) \ f rom(SelectedATraces)| >=
| f rom({t2}) \ f rom(SelectedATraces)|, with
f rom(E) =

⋃
σ∈E{ f rom(e(α)) |< e(α), l >∈ σ};

3. Event coverage: it also selects other abstract
traces until the ratio of selected events over the
total number of events reaches a given threshold.
These events are selected with the relation <e,
which orders the abstract traces having the most
events not used in SelectedATraces: t1 <e t2
iff |event({t1}) \ event(SelectedATraces)| >=
|event({t2}) \ event(SelectedATraces)| with
event(E) =

⋃
σ∈E{e(α) |< e(α), l >∈ σ}.

Then, Algorithm 1 adapts the selected abstract
traces with respect to PCO and PO. It only keeps
the abstract traces whose first event is performed by
a component c that can be experimented (c ∈ PCO).
Besides, the algorithm also calls the procedure InOut,
which covers the events of an abstract trace t to insert
the notion of input and output. Meanwhile, the pro-
cedure filters out the unobservable events performed

by a component with respect to the relation PO
(the event e(α) such that PO( f rom(ei(αi)),ei(αi))∨
PO(to(ei(αi),ei(αi)) is false is not kept to build a test
case line(17)).

Algorithm 1:
input : ATraces
output: SelectedATraces

1 foreach t ∈ ATraces such that
∃1≤ i≤ k : ”error” ∈ li ∨ ”crash” ∈ li do

2 if to(e1(α1)) ∈ PCO then
3 InOut(t);

4 while f rom(SelectedATraces) 6= f rom(Atraces) do
5 Order traces in ATraces w.r.t. <c and take the first trace t;
6 if to(e1(α1)) ∈ PCO then
7 InOut(t);

8 while Aevent(SelectedATraces)/Aevent(Atraces)<treshold do
9 Order traces in ATraces w.r.t. <t and take the first trace t;

10 if to(e1(α1)) ∈ PCO then
11 InOut(t);

12 Procedure InOut( t =< e1(α1), l1 > · · ·< ek(αk), lk > ): is
13 t2 := ε; cl(t2) := cl(t);
14 for 1≤ i≤ k do
15 if (isreq(ei(αi))∧ (to(ei(αi) ==

to(e1(α1))∧ ( f rom(ei(αi) == f rom(e1(α1)) then
16 t2 := t2. <?ei(αi), li >;

17 if PO( f rom(ei(αi)),ei(αi))∨PO(to(ei(αi)),ei(αi))

then
18 t2 := t2. <!ei(αi), li >;

19 if (isresp(ei(αi))∧ ( f rom(ei(αi) == c) then
20 t2 := t2. <!ei(αi), li >;

21 Update cl(t2) w.r.t. t2;

22 SelectedATraces := SelectedATraces∪{t2};
23 ATraces := ATraces\{t};

Algorithm 2 takes the set SelectedATraces and
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produces IOLTS test cases. Given an abstract trace
t, the algorithm selects one event sequence of the
class cl(t) and builds an initial test case tc com-
posed of parameter values (lines 2-4). The IOLTS
tc is derived by means of the operator lts : (E×
L)∗×E∗×{ f ail, pass}→ IOLT S, which takes an ab-
stract trace, its related event sequence, a verdict v and
returns an IOLTS 〈Q,q0,Σ,→〉 defined by the rule
< e1(α

′
1), l1 > · · ·< ek(α

′
k), lk >,e1(α1) . . .ek(αk),v`

q0
e1(α1),l1−−−−−→ q1 . . .qk−1

ek(αk),lk−−−−−→ v. A verdict v of tc is
established by means of the labels found in the ab-
stract trace. This test verdict denoted v(< e1(α1), l1 >
· · · < ek(αk), lk > is fail iff ∃1 ≤ i ≤ k : ”crash” ∈ li,
otherwise v(< e1(α1), l1 > · · ·< ek(αk), lk > is pass.

Algorithm 2 now checks whether other events
may be observed after experimenting SUT with an ar-
bitrary event sequence of pre f ix(traces(tc)) (lines 5-
9). After an execution of events in pre f ix(traces(tc)),
depending on the SUT internal states, one might in-
deed observe the same output event with different pa-
rameter assignments, or different output events, or the
fact that SUT does not react (formulated wit the label
θ). Given an event sequence σ (collected from SUT),
we formulate this notion of observation after the exe-
cution of σp ∈ σ with:

out(σ,σp) =

{
{!e(α)} if σp!e(α) ∈ σ

{θ} otherwise
We can now say that SUT may produce two dif-

ferent observations after being experimented with
the event sequence σp iff it exists two sessions σ1
and σ2 such that σp ∈ pre f ix(σ1)∩ pre f ix(σ2) and
out(σ1,σp) 6= out(σ2,σp). Algorithm 2 hence cov-
ers every abstract trace t2 and session σ2 in cl(t2)
to check whether different observations are possible
against the current test case tc (line 5). If this happens,
an IOLTS tc2 is built from σ2 and tc is completed with
tc2 by means of the parallel synchronisation operator
‖.

Furthermore, as event logs do not necessarily en-
code all the behaviours of SUT, the test case tc
is completed (line 10) with the operator compl :
IOLT S→ IOLT S defined by these rules:

r1 :q1
?e(α),l−−−−→ q2,q2 ∈ {pass, f ail} ` q1

?e(α),l−−−−→ q11
θ−→

q2,q11
!∗−→ f ail,q1

!∗−→ f ail

r2 :q1
?e(α),l−−−−→ q2 /∈ {pass, f ail} ` q1

?e(α),l−−−−→ q2,

q1
!∗−→ f ail

r3 :q1
!e(α),l−−−→ q2 ` q1

!e(α),l−−−→ q2,q1
!∗−→ inconclusive

r4 :q1
!e(α),l−−−→ q2,q1

?e(α),l−−−−→ q3 /∈→` q1
θ−→ f ail

The inference rule r1 means that when the test case

tc is finished by an input event, a transition to a ver-
dict state and labelled with θ is added to formulate
that the absence of event is expected. Two transitions
to fail are added to express that the observation of any
other output event (label !*) is incorrect. Similarly, r2
targets the other transitions labelled by input events.
r3 completes the test case when an output event is ex-
pected. It adds a new transition q1

!∗−→ inconclusive
modelling that we cannot conclude whether the be-
haviour is correct when we observe any other unex-
pected output event from q1. r4 completes the previ-
ous rule in the case there are only outgoing transitions
labelled by output events from q1. The rule adds a
transition to fail modelling that the observation of no
reaction is faulty.

Algorithm 2:
input : ATraces
output: TC

1 foreach t =< e1(α1), l1 > · · ·< ek(αk), lk >∈ ATraces do
2 Choose arbitrary σ ∈ cl(t) ;

3 cl(t) := cl(t)\{σ};
4 tc := lts(t,σ,v(t));
5 foreach t2 ∈ ATraces,σ2 ∈ cl(t2) such that

∃σp ∈
⋃

σ∈traces(tc) pre f ix(σ)∩ pre f ix(σ2) : out(σ,σp) 6=
out(σ2,σp) do

6 tc2 := lts(σ2,v(t2));
7 cl(t2) := cl(t2)\{σ2};
8 tc := tc ‖ tc2;

9 ATraces := ATraces\{t2};

10 tc := compl(tc);
11 complete the input events of tc;

12 TC := TC∪{tc};
13 ATraces := ATraces\{t};

Figure 6: Test case example
Figure 6 illustrates a test case obtained from

the abstract traces of Figure 5 after having re-
moved the PO for the component ”Products”
(PO(”Products,e()α) : f alse). The events /supply()

ssalva



and the response ok() were hence removed from the
test case to comply with the new test architecture.

3.4 Test Case Mutation

We now have an initial set TC of test cases, which
somehow mimic the behaviours encoded in the event
log w.r.t. observability and controllability of the com-
ponents. This test case set is completed to experi-
ment SUT with further executions. To generate ad-
ditional test cases, we apply 11 mutation operators
on TC whose purposes are to perform slight test case
modifications to mimic possible failures. These mod-
ifications may affect the sequence of events (Event
duplication, swapping, removal), change data (HTTP
Verb change, Data alteration, Token removal, Al-
teration, Session id Alteration) or add unexpected
events(Delay Addition, Session Closure, Stress Test-
ing).

The list of mutation operators along with short
descriptions are given in Table 1. Several opera-
tors refer to the notion of nested events, which oc-

cur between a request q1
?req(α),l−−−−−→ q2 and its response

q1
!resp(α′),l′−−−−−−→ q2. These nested events have to be taken

into account while the test case mutation. For in-
stance, for Event Removal, if the operator deletes
?req(α) and its response into a test case, it also
needs to delete the potential nested requests and re-
sponses !e1(α1), . . . , !ek(αk) such that to(?req(α)) =
f rom(!e1(α1)), to(!ei(αi)) = f rom(!ei+1(αi+1))(1≤
i < k) and to(!ek(αk)) = f rom(!resp(α′)).

Figure 7: Test case example obtained with the mutation op-
erator ”HTTP Verb Change”

If we take back the example of Figure 6 and if we
apply the operator ”HTTP Verb Change” we obtain
the test case of Figure 7. The verb Post was replaced
by Delete in the request /order; any output event not
expressing a crash is allowed.

Finally, executable test cases are generated from
the IOLTS trees. Some input events may still have
assignments of the form p := ∗. These ones refer to
parameter that belong to a correlation set. The first
input event of a test case tc is completed by means of
the data found in Corr(σ) and translated into source
code. Every other input event of tc is also translated

but the source code refers here to the correlation sets
recovered in the output events preceding this input.

4 CONCLUSION

We proposed in this paper a solution to gener-
ate test cases for communicating systems from event
logs. Instead of proposing a basic ”record and replay”
technique or an approach combining model learning
and MbT, we presented algorithms allowing to ex-
tract knowledge by means of an expert system and
generate an initial test suite made up of IOLTS test
cases. By doing this, we intend to extract test ver-
dicts, save computation time, and avoid the impreci-
sion brought by models produced with passive model
learning techniques. Besides, we proposed 11 test
case mutation operators to expand the initial test case
set.

We have implemented this approach in a tool pro-
totype. Due to lack of room, we briefly summarise
its features here: the tool is specialised for Web ser-
vice compositions. It takes event logs as inputs and
generates sessions by means of the tool presented in
(Salva et al., 2021). The tool Drools is the expert sys-
tem used to analyse sessions. Then, our tools pro-
duces test cases written with the Citrus framework2.
A complete evaluation will be presented in a future
work.
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