
HAL Id: hal-03901424
https://uca.hal.science/hal-03901424

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monitoring a Fleet of Autonomous Vehicles through A*
like Algorithms and Reinforcement Learning

Mourad Baiou, Aurélien Mombelli, Alain Quilliot

To cite this version:
Mourad Baiou, Aurélien Mombelli, Alain Quilliot. Monitoring a Fleet of Autonomous Vehicles through
A* like Algorithms and Reinforcement Learning. Recent Advances in Computational Optimization,
1044, Springer International Publishing, pp.111-133, 2022, Studies in Computational Intelligence, 978-
3-031-06839-3. �10.1007/978-3-031-06839-3_7�. �hal-03901424�

https://uca.hal.science/hal-03901424
https://hal.archives-ouvertes.fr

Monitoring a Fleet of Autonomous Vehicles
through A* like Algorithms and Reinforcement

Learning

Mourad BAIOU, Aurélien MOMBELLI, Alain QUILLIOT

LIMOS CNRS 6158, Labex IMOBS3, Clermont-Ferrand, France
mourad.baiou@isima.fr, aurelien.mombelli@uca.fr, alain.quilliot@isima.fr

1 Introduction

Intelligent vehicles, provided with an ability to move with some level of auton-
omy, recently became a hot spot in the mobility field. Still, determining what
can be exactly done with new generations of autonomous or semi-autonomous
vehicles able to follow their own way without being physically tied to any kind
of track (cable, rail,. . .) remains an issue. Most people are doubtful about the
prospect of seeing such vehicles moving without any external control inside
crowded urban areas. Instead they foresee that the use of those vehicles is likely
to be restricted to protected areas for specific purposes: relocation of free access
vehicles inside large parking areas, rural or urban logistics inside closed areas,
pick up and delivery transactions inside warehouses (see [1, 17]), rescue or repair
interventions in a context of natural disaster.

This point of view raises the general
challenge of monitoring a fleet of such
vehicles, required to perform internal
logistics tasks while safely interacting
with other players: workers, machines
and standard vehicles. Related deci-
sion problems are at the intersection
of Robotics and are at the intersection
of Robotics and Operations Research.

Fig. 1. An Autonomous Vehicle

When it comes to the management autonomous vehicle fleets, current trend
is to the implementation of a 3-levels supervision architecture:

• The first level, or embedded level, is defined by the monitoring and sensing
devices which are embedded inside the vehicles, with the purpose of control-
ling trajectories in real time and adapting them to the possible presence of
obstacles: currently, most effort from the robotics community remains de-
voted to this embedded level (see [3]), which mostly involves optimal control
and artificial perception techniques.

2 M. BAIOU, A. MOMBELLI, A. QUILLIOT

• The second one, or middle one, is in charge of small tricky areas, like for
instance crossroads (see Figure 2). It sends signals and instructions to the
vehicles in order to regulate their transit and avoid them to collide when
they get through those areas (see [3, 10]).

• The third one, or global one, refers to the dynamic planning and routing of
the fleet, in order to make this fleet achieve some internal logistics requests
(see [6, 14, 16]).

A true challenge is about the synchronization of those monitoring levels and
about the control of communication processes which will allow them to interact.

Fig. 2. Hierarchical Supervision Architecture

We deal here with the global control level, while assuming that this level is
in charge of vehicle routing and scheduling decisions. At a first glance, one may
think into related problem as a kind of PDP: Pick up and Delivery problem (see
[2]), since an elementary task will consists for a vehicle in moving from some
origin to some destination, performing some loading or unloading transaction
and keeping on. But some specific features impose new challenges:

• The time horizon for autonomous or semi-autonomous vehicles is usually
short and decisions have to be taken on line, which means that decisional
processes must take into account the communication infrastructure (see [13])
and the way the global supervisor can be provided, at any time, with a
representation of the current state of the system and its short term evolution;

• As soon as autonomous vehicles are involved, safety is at stake (see [12, 11]).
The global supervisor must compute and schedule routes in such a way that
not only tasks are going to be efficiently performed, but also that local and
embedded supervisors will perform their job more easily.

Taking care of safety requires quantifying the risk induced by the introduction
into the system of any additional vehicle. Addressing this issue means turning

Monitoring a Fleet of AVs through A* like Algorithms and RL 3

real time collected traffic data into risk estimators (see [12, 15]). We do not do
it here. Instead, we focus on the way resulting estimators may be used in order
to take safe routing and scheduling decisions. So we assume that, at the time
when we are trying to route and schedule a given vehicle V , we are provided
with a procedure which, for any arc e = (x, y) or the transit network and any
time value t, can compute a rough estimation of the risk related to make V be
running on e at time t. Then our goal becomes to schedule the route Γ that V is
going to follow, in such a way that its arrival time is minimal and that induced
risk estimation remains bounded by some threshold. For the sake of simplicity,
we limit ourselves to one vehicle V and one origin/destination move (o, d). Our
problem may then be view as the search for a constrained shortest path (see [7]).
But two features make it significantly more difficult:

• We must deal with a time dependent network (see [4, 5, 9]);
• The on line context keeps us from relying on a heavy machinery like those

related to mathematical programming.

According to this purpose, we proceed in 3 steps:

• The first one is devoted to the setting of our SPR: Shortest Path under Risk
problem and to a discussion about its structural properties.
• The second step is devoted to the design of algorithms designed for a static

context: almost exact algorithms which adapt well-know A* algorithm for
path searching in a large state space (see [8]); local search heuristic algo-
rithms, which estimate the quality of a given route Γ through application
of a filtered dynamic programming procedure. In both case, we try several
notions of arc traversal decisions, relying on respectively risk versus time,
risk versus distance and distance versus time estimations.
• The last step deals with the online issue. We turn above mentioned algo-

rithms designed according to a static paradigm into reactive algorithms for
on line contexts. According to this prospect, we apply statistical learning
and auto-adaptative reinforcement learning techniques, in order to associate,
with any current traffic patterns, ad hoc arc traversal decisions.

So the paper is organized as follows: in Section II we formally describe our model
and state some structural results. In Section III we describe the global structure
of an exact A* algorithm and a local search heuristic, and present the ways the
notion of arc traversal decision may be implemented. In Section IV, we address
the on line issue and explain how statistical learning techniques may be used in
order to turn static tree search or dynamic programming algorithms into fast
decision rule based algorithms. Section V is about numerical experiments.

2 The SPR: Shortest Path under Risk Model

We refer here to a fleet of autonomous vehicles, which evolves throughout the
time inside some kind of industrial infrastructure, for instance a warehouse, with
the purpose of achieving internal logistic tasks (item storing and retrieving,

4 M. BAIOU, A. MOMBELLI, A. QUILLIOT

maintenance, inventory,. . .). Those tasks have to be performed in a safe way
under small standard costs (time, energy,. . .). It comes that, in order to set
SPRC model, we first need to formalize here the safety notion.

2.1 Transit Network and Risk Function

We suppose that our fleet of vehicles moves inside a simple almost planar transit
network G = (N, A), N denoting the node set and A the arc set. This network
G is likely to represent for instance a warehouse (see Figure 3), or any kind of
similar industrial or rural restricted area.

Fig. 3. A Warehouse like Transit Network

To any arc e = (x, y) corresponds a length Le and a maximal speed vmaxe
: an

autonomous vehicles traversing e is not allowed to go faster than vmaxe
while

moving along e. We denote by L∗ the shortest path distance induced by values
Le, e ∈ A. We suppose that at time t = 0, when the global supervisor of the
fleet must take a decision about a target vehicle V, he is provided with some
knowledge about the routes which are followed by the other vehicles, their sched-
ule, and the tasks that they are going to perform. This knowledge allows him
to derive a risk estimation Πe(t) function whose meaning comes as follows: For
any small value dt, Πe(t).dt is an estimation of the Expected Damage in case V
moves at maximal speed vmaxe along e between time t and time t+ dt.

Obtaining functions Πe is not part of this study: it requires experimental data
analysis. But, since the global supervisor must maintain those risk estimation
functions all along the process, those functions must be expressed according to
a simple format. So we make the assumption that any function Πe is piecewise
linear (see Figure 4).

Monitoring a Fleet of AVs through A* like Algorithms and RL 5

Fig. 4. A piecewise function Πe

As a matter of fact, if additional vehicle V moves across arc e at a speed v less
than maximal speed vmaxe

, induced risk will decrease. We assume that, if V
traverses arc e during some interval [t, t + dt] at speed v ≤ vmaxe

, then related
Expected Damage is given by Equation 1:

Risk(v, t) = Φ

(
v

vmaxe

)
.Πe(t).dt (1)

where Φ is an increasing convex function with values in [0, 1], such that for any
u, Φ(u)≪ u, which mean that Φ(u) is significantly smaller than u. The meaning
of condition Φ(u) ≪ u is that, since going slower implies for vehicle V a larger
traversal time, Φ(u)≪ u will also implies that the risk induced by the traversal
of e decreases while the speed decreases, even if the traversal time increases. In
the next sections, we shall set Φ(u) = u2.

It comes that if vehicle V moves across arc e between time T and time T + δ,
according to speed function t 7→ v(t), then related Expected Damage is given by
Equation 2:

T+δ∫
T

Φ

(
v

vmaxe

)
.Πe(t). (2)

Speed Normalization: We only care here about traversal times of arcs e ∈ A,
and not about their true length, in the geometric sense. So we suppose here that,
for any arc e, vmaxe = 1. According to this we deal with reduced speed values
u ∈ [0, 1] and Le means the minimal traversal time for arc e.

2.2 Routing Strategies and the SPR Problem

Let us suppose now that origin o and destination d are given, which are both
nodes of the transit network G = (N,A). A routing strategy from o to d for
additional vehicle V , is going to be defined by a pair (Γ, u), where:

6 M. BAIOU, A. MOMBELLI, A. QUILLIOT

• Γ is a path from o to d in the network G.
• u is a speed function, which, to any time value t ≥ 0, makes correspond

the reduced speed u(t) ≤ 1 of the vehicle V . Notice that if we refer to the
previously described speed normalization process the true speed v(t) of V is
going to depend on the arc e where V is located.

Such a routing strategy (Γ, u) being given, path Γ may be viewed in a standard
way as a sequence e1, . . . , en of arcs of G. If we set t0 = 0 and denote by ti when
V arrives to the end-node of ei, then values ti are completely determined by
speed function t 7→ u(t). Then we set:

• Time(Γ, u) = tn = global duration induced by the routing strategy (Γ, u)

• Risk(Γ, u) =
∑
i

ti∫
ti−1

Φ(u(t))Πe(t)dt = global risk induced by (Γ, u).

Then the SPR: Shortest Path Under Risk comes in a natural way as follows:

{SPR: Shortest Path Under Risk: Given origin o and destination d,
together with some threshold Rmax, compute a routing strategy (Γ, u)such

that Risk(Γ, u) ≤ Rmax and Time(Γ, u) is the smallest possible}.

2.3 Some Structural Results

As it is stated, SPR looks more like an optimal control problem than like a
combinatorial one. But, as we are going to show now, we may impose restrictions
on speed function u, which are going to make the SPR model get closer to a
discrete decision model.

Proposition 1. Optimal solution (Γ, u) of SPR may be chosen in such a way
that u is piecewise constant, with breakpoints related to the times ti when vehicle
V arrives at the end-nodes of arcs ti, i = 1, . . . , n, and to the breakpoints of
function Πe

i , i = 1, . . . , n.

Proof. Let us suppose that V is moving along some arc e = ei, and that δ1, δ2
are 2 consecutive breakpoints in above sense. If u(t) is not constant between δ1
and δ2 then we may replace u(t) by the mean value u∗ of function t 7→ u(t)
between δ1 and δ2. Time value Time(Γ, u) remains unchanged, while risk value
Risk(Γ, u) decreases because of the convexity of function Φ. So we conclude.

Proposition 2. If optimal SPR trajectory (Γ, u) is such that u(t) ̸= 1 at some
t, then Risk(Γ, u) = Rmax.

Proof. Let us suppose that path Γ is a sequence e1, . . . , en of arcs of G. We
proceed by induction on n.

• First case: n = 1.
Let us suppose above assertion to be false. Breakpoints of e = e1, may be
written t0 = 0, t1, . . . , tQ = Time(Γ, u), and we may set:

Monitoring a Fleet of AVs through A* like Algorithms and RL 7

◦ q0 = largest q such that u < 1 between tq and tq+1;
◦ u0 = related speed; l0 = distance covered by V at time tq0 .

Let us increase u0 by ϵ > 0, such that u0+ϵ ≤ 1 and that induced additional
risk taken between tq0 and tq0+1 does not exceed Rmax −Risk(Γ, u). Then,
at time tq0+1, vehicle V covered a distance l > l0. If l < Le, then it keeps
on at speed u = 1, and so arrives at the end of e before time tQ, without
having exceeded the risk threshold Rmax. We conclude.
• Second case: n > 1.

Let us suppose above assertion to be false and denote by R1 the risk taken
at the end of arc e, and by t1 related time value. Induction applied to arcs
e2, . . . , en, and risk threshold Rmax−R1 implies that the speed of V is equal
to 1 all along the arcs e2, . . . , en. Let us denote by τ0 = 0, τ1, . . . , τQ the
breakpoints of e1 which are between 0 and t1 and let us set τQ+1 = t1 and:
◦ q0 = largest q such that u < 1 between τq and τq+1;
◦ u0 = related speed; l0 = distance covered by V at time tq0+1.

Then we increase u0 by ϵ > 0, such that u0 + ϵ ≤ 1 and that induced addi-
tional risk taken between τq0 and τq0+1 does not exceed (Rmax − Risk(Γ,u))

2 .
While moving at speed u0 + ϵ along e1, vehicle V faces 2 possibilities: ei-
ther it arrives at the end of e1 before time τq0+1 or it may keep on moving
from time τq0+1 on along e1 at speed u = 1. In any case, it reaches the end
of e1 at some time t1 − β, β < 0, with an additional risk no larger than
(Rmax − Risk(Γ,u))

2 . So, for any i = 2, . . . , n we compute speed value ui such
that moving along ei at speed ui between ti−1 − β and ti−1 does not in-
duce an additional risk more than (Rmax − Risk(Γ,u))

2n . So we apply to V
the following strategy: move as described above on arc e1 and next, for any
i = 2, . . . , n, move along ei at speed ui between ti−1 − β and ti−1 and next
at speed 1 until the end of ei. The additional risk induced by this strategy
cannot exceed (Rmax − Risk(Γ, u)). On another side, this strategy makes
vehicle V achieve its trip strictly before time tn. We conclude.

Proposition 3. Given an optimal SPR trajectory (Γ, u), with Γ = {e1, . . . , en}
and u satisfying Proposition 1. Let us denote by ti the arrival time at the end
of arc ei. Then, for any i = 1, . . . , n, and any t in [ti−1, ti] such that u =
u(t) < 1, the quantity Φ′(u(t)).Πeq (t) is independent on t, where Φ′(u) denotes
the derivative of Φ in u.

Proof. Once again, let us denote by ti time when vehicle V arrives at the end of
arc ei. For a given i, we denote by δ1, . . . , δH(i), the breakpoints of function Πei

which are inside interval]ti−1, ti[, by Π
iq
q related value of Πeq on the interval

]δj , δj+1[, by u0, . . . , uq, . . . , uH(q), the speed values of V when it leaves those
breakpoints, and by Rq the risk globally taken by V when it moves all along
eq. Because of proposition 2, vector (u0, . . . , uH(q)) is an optimal solution of the
following convex optimization problem:

• Compute (u0, . . . , uH(q)) such that
∑

q uq.(δq+1 − δq) and which minimizes∑
q Φ(uq)Π

ei
q (δq+1 − δq).

8 M. BAIOU, A. MOMBELLI, A. QUILLIOT

Then, Kuhn-Tucker conditions for the optimality of differentiable convex opti-
mization program tell us that there must exists λ ≥ 0 such that: for any q such
that uq < 1, Φ′(uq).Π

ei
q = λ. As a matter of fact, we see that λ cannot be equal

to 0. We conclude.

Remark 1. In case Φ(u) = u2, above equality Φ′(uq)Π
ei
q = λ becomes uqΠ

ei
q = λ

2

where uqΠ
ei
q means the instantaneous risk per distance dR

dL value at the time
when V moves along ei between times δq and δq+1.

2.4 A consequence: Risk Versus Distance Reformulation of the SPR
Model

Remark 1 leads us to define the Risk versus Time coefficient for arc ei as the
value 2Φ′(uq)Π

ei
q involved in Proposition 3. This proposition, combined with

Proposition 1, allows us to significantly simplify SPR: We define a risk versus
distance strategy as a pair (Γ, λRD) where:

• Γ is a path, that means a sequence {e1, . . . , en} of arcs, which connects origin
node o do destination node d;
• λRD

e associates, with any arc e in Γ , Risk versus Distance coefficient λRD
e =

2Φ′(u)Πe. In case Φ(u) = u2, we notice that this coefficient means the
amount of risk per distance unit induced on arc e at any time t such that
u(t) < 1, by any trajectory (Γ, u) which satisfies Proposition 3.

Let us suppose that we follow a trajectory (Γ, u) which meets Proposition 3, and
that we know value λRD

e for any arc e of Γ .Since Φ is supposed to be convex and
such that Φ(u) ≪ u, we may state that Φ′ admits a reciprocal function Φ′−1.
Then, at any time t when vehicle V is inside arc e, we are able to reconstruct
value

u(t) :

{
Φ′−1(

λRD
e

2Πe
), if Φ′−1(

λRD
e

2Πe
) < 1

1, otherwise
(3)

According to this and Proposition 3, SPR may be rewritten as follows (we extend
the notations Risk(Γ, u) and Time(Γ, u) as Risk(Γ, λRD) and Time(Γ, λRD):

Risk versus Distance SPR Reformulation: Compute risk versus distance
strategy (Γ, λRD) such that Risk(Γ, λRD) ≤ Rmax and Time(Γ, λRD) is the

smallest possible.

2.5 Discussion about the Complexity

The time dependence of the transit network together with the proximity of
the SPR model with Shortest Path Constraint models suggests that SPR is
a complex problem. Practical difficulty of SPR may be captured through the
following example, which makes appear that if (Γ, u) defines an optimal SPR
trajectory, the risk per distance value λRD

e = 2Φ′(u(t))Πe may be independent
on t on arc e as told in Proposition 3, but cannot be considered as independent

Monitoring a Fleet of AVs through A* like Algorithms and RL 9

on arc e.
Path Γ contains 2 arcs, e1 and e2, both with length 1 and maximal speed 2.
Function Πe2 is constant and equal to 1. Function Πe1 takes value 2 for 0 ≤ t ≤ 1,
and a very large value M (for instance 100) for t > 1. Rmax = 3

4 ; Function
Φis : u 7→ Φ(u) = u2.Then we see that vehicle V must go fast all along the arc
e1, in order to get out of e1 before this arc becomes very risky. That means that
its speed is equal to 1 on e1, and that its risk per distance value is equal to 1

2 .
Next it puts the brake, in the sense that its speed remains equal to 1 but its risk
per distance value decreases to 1

4 . It is easy to check that this routing strategy
is the best one, with Risk(Γ, u) = 3

4 and Time(Γ, u) = 2.
Sill, identifying the complexity of SPR is not that simple, since we are

dealing with continuous variables. As a matter of fact, complexity also depends
on function Φ. We conjecture that:

Conjecture 1. If Φ(u) = u2 then SPR is in NP time and is NP-Hard.

3 Algorithms

Our algorithms all rely on notions of state and decision. A state is a 3-uple
(i, T,R), where:

• i is a node of G where vehicle V is currently located;
• T is the times spent in order to reach i, and R is the amount of risk induced

by this process of moving from origin o to node i.

Then a decision will consist in:

• Choosing the arc e = (i, io) along which the vehicle is going to move;
• Choosing some parameter λ which is going to determine the speed function

u along the arc e.

Previous section 2 suggests the use of risk versus distance coefficient λRD
e as

decision parameter λ. But other choices are possible. We restrict ourselves to
the case when Φ(u) = u2.

3.1 Decision Scheme

As told above, a natural approach is to refer to Proposition 3 and consider
λ = λRD as expressing the mean Risk versus Distance coefficient Φ′(u)Πe. But
another intuitive approach is to consider λ = λSP as expressing the mean speed
of V along e, and deduce this way the arrival time on io in a straightforward
way. Finally, we may also consider that λ = λRS expresses the mean Risk Speed
of V along e, which means the amount of risk vehicle V takes per time unit as
it advances along e. We are going to describe here those 3 possibilities, together
with the way resulting state (io, Ro, T o) may be deduce from λ and (i, R, T).

• First approach: The Risk versus Distance approach.

10 M. BAIOU, A. MOMBELLI, A. QUILLIOT

Since Phi(u) = u2, Φ′(u(t))Πe(t) = 2u(t)Πe(t) for any t during the traver-
sal of e. It comes that if we fix λRD the speed value u(t) is given by: u(t) =
Inf(1, λRD/Πe(t)). Resulting state (io, Ro, T o)will be obtained from λRD and
(i, R, T) through the following iterative process:

Risk_Distance Transition procedure:
Let us set t0 = T , and let us denote by t1, . . . , tQ the breakpoints of Πe

which are larger than T and by Πe0, . . . ,Πe
Q related Πe values.

Initialization: t← t0; r ← R; L← 0; q ← 0; Not Stop ;
While Not Stop do

π ← Πe
q ; q ← q + 1; δ ← tq − t; u = Inf(1, λRD/π);

If Le > L+ uδ then
L← L+ uδ; r ← r + Φ(u)πδ; t← tq;

Else
δ ← δLe−L

uδ ; t← t+ δ; r ← r + Φ(u)πδ; L← Le; Stop;
Ro ← r; T o ← t;
If Ro > Rmax then Fail else Success;

• Second approach: The Mean Speed approach.

Fixing λSP means fixing the time T o as: T o = T+ Le
λSP . In order to determine the

function t 7→ u(t) and the value Ro, we solve the following quadratic program:
Mean_Speed Program:
Let us denote by t0 = T , t1, . . . , tq = T o the breakpoints of Πe which belong
to [T, T o] and by Πe

1 , . . . ,Π
e
Q related Πevalues.

Then we must compute speed values u1, . . . , uQ ∈ [0, 1] such that:∑
q uq(tq − tq−1) = T o − T∑
q u

2
qΠ

e
q (tq − tq−1) < Rmax.

This quadratic convex program may be solved through direct application of
Kuhn-Tucker 1st order formulas for local optimality. Then we get Ro by setting:
Ro = R +

∑
q u

2
qΠ

e
q .(tq − tq−1). If Ro > Rmax then the Mean Speed transition

related to λSP yields a Fail result.

• Third approach: The Risk Speed approach.

Since Φ(u) = u2 we have that at any time t during the traversal of e, related
risk speed dR

dT (t) is equal to u(t)2Πe(t). It comes that if we fix λRS we get:

u(t) = Inf(1,
(

λRS

Πe(t)

)1/2

).

Resulting state (io, Ro, T o) will be obtained from λRD and (i, R, T) through the
same following iterative process a for the Risk versus Distance approach.

3.2 A Local Search Algorithm Involving Dynamic Programming.

This local search heuristic LS_SPR works in 2 steps:

Monitoring a Fleet of AVs through A* like Algorithms and RL 11

LS_SPR Algorithm:
Initialize Γ as the shortest path according to L from o to d; Not Stop;
While Not Stop do

First step: Evaluate Γ , and get the arrival time Ti of vehicle V in any
node i of Γ ;
Second step: Update Γ ;

Keep the best path solution Γ ever obtained.
Several kinds of controls may be applied to above process: one may do a random
walk descent. In any case, we need to discuss both Update and Evaluate steps.

• Update step: It relies on a pre-process which is applied to the transit
network G and involves some proximity threshold S_Prox. For any two
nodes i, j of G such that L∗

i,j ≤ S_Prox, we pre-compute a collection Pathi,j

of elementary path from i to j. This provides us with an operator Detour,
which acts on any path Γ though parameters i, j, γ as follows:
◦ i, j are nodes of Γ such that i precedes j in Γ ; γ is some path in Pathi,j ;
◦ Detour(Γ, i, j, γ) replaces the restriction Γi,j of Γ from i to j by path γ.

Fig. 5. Detour Operator

Since Detour may admit a rather large number of parameters values (i, j, γ),
we first identify pairs of nodes (i, j) in Γ , such that the slowdown coefficient(

Tj−Ti

T∗
i,j

)
is large, and pick up such a pair (i, j). Next we choose path γ in

Pathi,j under the condition that is not very crowded between time Ti and
time Tj , that means which is such that the sum, for the arcs e of γ of mean
Πe(t) values between time Ti and time Tj is small.

• Evaluation step: This evaluation step relies on a dynamic programming
procedure DP_Evaluate whose main features come as follows:
◦ Let us denote by e1, . . . , en the arcs of Γ , and by i0, . . . , in related nodes;

So the time space of DP_Evaluate comes in a natural as the set
{0, 1, . . . , n} and a state at time q = 0, 1, . . . , n, is a pair (T,R), where T
means the time when vehicle V arrives in iq, and R the cumulative risk
at this time. Clearly, initial state is (0, 0) and final state should be any
pair (T,R) such that R ≤ Rmax.

◦ Then a decision at time q becomes a value λ, (λRD, λSP , λRS) in the
sense of Section 3.1 and such a decision induces a transition (q,R, T)→
(q+1, Ro, T o) as described in Section 3.1, with cost Ro−R. This decision
is feasible if it does induce a Fail result.

12 M. BAIOU, A. MOMBELLI, A. QUILLIOT

According to this, Bellman principle may be applied:
the algorithm DP_Evaluate scans the time space {0, 1, . . . , n}, and, for
any q = 0, 1, . . . , n, computes related state set State[q], according to the
following instructions:
◦ Initialize State[0] as {(0, 0)} and State[q] as Nil for any q > 0;
◦ For q = 1, . . . , n− 1 do

Generate decision set Λ;
For any λ in Λ and any state (T,R) in State[q] do (I1)
Compute (in case λ is feasible) resulting state (T o, Ro);
If there does not exist (t1, R1) in State[q+1] such that t1 ≤ T o and R1 ≤
Ro then insert (T o, Ro) into State[q + 1] and remove from State[q + 1]
any (t1, R1) such that t1 ≥ T o and R1 ≥ Ro.

In case we are already provided with some feasible SPR solution (Γ ∗, u∗)
with value T ∗, then we may apply the following filtering rule:
◦ Lower Bound Based Filtering Rule: Let (T o, Ro) be the state involved

in instruction (I1). If T o + L∗
i(q+1),d ≥ T ∗ then state (T o, Ro) may be

killed: we do not insert it into State[q + 1], since we cannot expect it to
be extended into a better solution than current solution (Γ ∗, u∗).

Remark 2. We turn LS_SPR algorithm into a greedy algorithm by removing
the update step and by generating Λ in such a way its cardinality is 1.

3.3 A A* Algorithm

A* algorithm [8] was designed in order to deal with path search for robots evolv-
ing in very large (possibly infinite) state spaces. It can be adapted to our prob-
lem, since solving SRP means searching for a shortest path in a Risk Expanded
network, whose nodes are pairs (i, T,R), i ∈ N, 0 ≤ R ≤ RMax, T ≥ 0, and arcs
corresponds to transition ((i, T,R) → decisionλ → (io, T o, Ro)) as described in
Section 3.1. In the present case, it will rely on the following data structures:

• An expansion list LE, which contains states (i, T,R), ordered according to
increasing optimistic estimation value W . The optimistic estimation value of
state (i, T,R) is equal to T +L∗

i,d and provides us with a lower bound to the
best possible value of a SPR solution (Γ, u) which would extend the path
which allowed us reaching state (i, T,R).
• A pivot list LPivot, which contains states (i, T,R), together with optimistic

estimation value W , which already appeared as the first element (Head) of
LE. There should not exist in LE an element (i, T,R) which is dominated
by another element (i, T1, R1) in LPivot

⋃
LE, that means which is such

that T1 ≤ T and R1 ≤ R.

Then A*_SPR algorithm may be described as follows:
A*_SPR Algorithm:
Initialize LPivot as Nil and LE as {(o, 0, 0)}; Not Stop;
While (NotStop) ∧ (LE ̸= Nil) do

Monitoring a Fleet of AVs through A* like Algorithms and RL 13

(i, T,R)← Head(LE);
If i = d then

Stop; Retrieve the SPR solution Γ related to (i, T,R);
Else

Remove (i, T,R) from LE and Insert it into LPivot;
Generate λdecisionsetΛ; (I2)
For any arc e = (i, io) and any λ in Λ do

Compute resulting state (io, T o, Ro) together with value
W o = T o + L∗io,d;
If Ro ≤ RMax and if there does not exist (io, T1, R1) in
LPivot

⋃
LE such that such that T1 ≤ T o and R1 ≤ Ro then

Insert (io, T o, Ro) into LE and remove from LE any (io, T1, R1)
such that T1 ≥ T o and R1 ≥ Ro. Do it in such a way that LE
remains ordered according to optimistic estimation values W ;

Remark 3. If we are able to generate all decisions likely to appear inside a given
optimal decision sequence, then above algorithm A*_SPR is optimal.

Remark 4. We turn A*_SPR algorithm into a shortest path algorithm by re-
ducing Λ to 1 element.

3.4 Discussion: The Decision Set Λ

Both above algorithms rely on an instruction ‘Generate λ− decisionsetΛ’. But
λ values are continuous ones. So, we must decide about the way we generate a
finite λ− decisionsetΛ.

The simplest case is the case when we deal with Risk versus Distance decisions
λRD, since in such a case, propositions Proposition 2 and Proposition 3 suggests
us that a mean value for λRD is going to be given by λRD

mean = Rmax

L∗
o,d

. Then a

natural way to generate Λ is to fix an odd number 2.K + 1 of λRD values, a
geometric step value δ > 0, and to set:

Λ = {λRD
mean}∧{(1+ δ)k.λRD

mean, k = 1, . . . ,K}∧{(1+ δ)−k.λRD
mean, k = 1, . . . ,K}

(4)
According to this, Λ is determined by K and δ. We may consider K as a flexible
parameter. As for the choice of value δ, it becomes determined by K and by the
minimal and maximal values λRD

max = (1+ δ)kλRD
mean and λRD

min = (1+ δ)−kλRD
mean

which we want to assign to λRD. If we want to allow the vehicle to move with
a speed twice as large as the speed suggested by λRD

mean, then we see that we
must choose a value λRD

max = 2λRD
mean. That means that δ is determined by the

acceleration coefficient ρ we may want to apply to the vehicle in order to make
him possible to reach the end of an arc before some risky situation occurs on
this arc. We shall test for instance ρ ∈ [2, 3, 4].

In the case of Risk over Time and Mean Speed decisions λRS and λSP ,
we must arbitrarily fix mean values λSD

mean and λSO
mean, and try to learn them

throughout the computational process. This opens the way to next section.

14 M. BAIOU, A. MOMBELLI, A. QUILLIOT

4 Speeding Algorithms through Statistical Learning
Techniques

We consider here two ways of speeding our algorithms in order fit with a dynamic
contexts. The first one impose a small number K of possible decisions and the
second one is to bound the number of states (T,R) related to any node i. We
do it while focusing on the case λ = λRD.

4.1 Bounding Decisions

Once acceleration parameter ρ has been tuned, controlling the size of decision
set Λ means fixing value K. If we set K = 1 (greedy algorithm in the case of
DP_Evaluate and shortest path algorithm in the case of A*_SPR), then the
choice is about λRD

mean, which, in a first approach, should be equal to Rmax

L∗
o,d

. If
K ̸= 1, then we apply the following statistical learning process:

• We apply DP_Evaluate to instances which fit parameter ρ, while using
some reference decision number Kref . For any instance I, we retrieve the
optimal decision sequence {λ1, . . . , λn}, Every decision λi is related to some
number ki in −Kref , . . . , 0, . . . ,Kref .

• Then we compute, for every value k in {−Kref , . . . , 0, . . . ,Kref}, the per-
centage τ(k) of occurrence of k in those decision sequences.
• Finally, K being the target decision number, we split the decision range
[λRD

min, λ
RD
max] for possible decisions λRD into 2(K+1) intervals corresponding

to same percentages of decisions λi. For instance, if K = 1, we split interval
[λmin, λmax] into 4 intervals [λmin, λ

1
4], [λ

1
4 , λ

1
2], [λ

1
2 , λ

3
4] and [λ

3
4 , λmax] in

such a way that:
◦ 1/4 of decisions λi belong to interval [λmin, λ14];
◦ 1/4 of decisions λi belong to interval [λ

1
4 , λ

1
2];

◦ 1/4 of decisions λi belong to interval [λ
1
2 , λ

3
4];

◦ 1/4 of decisions λi belong to interval [λ
3
4 , λmax].

Then restricted Λ becomes the set {λ 1
4 , λ

1
2 , λ

3
4 }.

4.2 Bounding States

In order to filter state set State[i] related to a given node i and impose a pre-
fixed lower bound S on the cardinality of State[i], several techniques may be
applied. One may for instance consider as equivalent 2 states (T,R) and (T ′, R′)
if |T −T ′|+ |R−R′| does not exceed some rounding threshold. We are not going
to follow this approach which does not guaranty that we are going to maintain
the cardinality of State[i] below imposed threshold S. Instead, we are going to
do as if there were existing a natural conversion rate ω which turns risk into
time. According to this, we are going to rank pairs (T,R) State[i] according to
increasing values ωT + R and keep on with the S best ones according to this
ordering, while killing the others.

Monitoring a Fleet of AVs through A* like Algorithms and RL 15

Key issue here becomes about the value of ω. Intuitively, ω should be equal
to Rmax

T o , where T o is the optimal SPR value, and we should be able to learn this
value as a function of the main characteristics of SPR instances: most relevant
characteristics seem to be risk threshold Rmax, the length (expected length) L∗

of path Γ , the mean value ∆ of functions Πe, e ∈ A, and the frequency B of the
breakpoints of those functions. We may notice that in case all functions Πe are
constant and equal to some value ∆, then speed u is going to be constant and
equal to Rmax

L∗∆ , and so that time value T o will be equal to L∗

u = ∆L∗2

Rmax
. This will

lead to initialize ω as ω =
R3

max

∆L∗2 .
In order to refine this initial choice for ω we retrieve, for any instance, the

optimal decision sequence {λ1, . . . , λn}, related state sequence
s1 = (T1, R1), . . . , sn = (Tn, Rn). Then, for any such an instance, we look for the
value ω which statistically makes states si be always among the best ones for
the ranking related to quantity ωT + R. As a matter of fact, while performing
numerical experiments, we focus on an estimation of optimal value T o as a
function of Rmax, L∗, B and ∆, and next test the ranking of states si among
the state subsets State[i] for ω = Rmax

T o .

Bounding States through Reinforcement Learning. Still, this way of per-
forming learning may induce distortions. A lack of flexibility in the pruning pro-
cedure associated with a non fully well-fitted value ω may yield, for a given
node i, a collection State[i] poorly balanced, in the sense that one would expect
related values (T,R) to distribute themselves as a wide Pareto set. More pre-
cisely, we may qualify a pair (T,R) as risky if R∑

j≥i+1

Lj
is large with respect to

Rmax

L∗ , or cautious if the converse holds. Then it may happen that our pruning
technique yields pairs (T,R) which, taken as a whole, are either too risky or too
cautious. In order to control this kind of side-effect, we make ω value become
auto-adaptive.

More precisely, we start, as previously explained, from some pre-learned ω
value, and make it evolve through Reinforcement Learning, that means through-
out an (or several) execution the DP_Evaluate (or A*_SPR or LS_SPR).
In order to explain it better, we focus on the case of DP_Evaluate algorithm,
while supposing that state threshold S has been fixed and that initial value ω has
been computed as described above. So let us suppose that, at some time during
the process, we just dealt with arc ei and so computed current state set State[i],
while updating value ω. Applying decisions of Λ and filtering resulting states
(T,R) through Bellman principle provides us with a state subset State[i + 1]
whose size is likely to exceed S. Then we rank states (T,R) of State[i + 1] ac-
cording to ωT +R values. Ideally, states (T,R) ordered this way should make S
best states (T,R) be balanced in the sense that risky states should get along with
cautious ones, or, in other words, that the ratio R

Rmax
should be centered around

the ratio L∗
0,i

L∗ . If, for instance, those values are centered significantly above this
ratio, then we are moving in a too risky way and must make ω decrease. Con-

16 M. BAIOU, A. MOMBELLI, A. QUILLIOT

versely, if those best values are centered below this ratio, then we are too careful
and must make ω increase.

We implement this principle by performing a kind of statistical analysis of
those best values in State[i + 1], in order to derive, from those S best states
(T,R), an indicator Risk_Balance, which takes symbolic values
{Risky,Normal, Careful} depending on the way the mean R

Rmax
value is lo-

cated with respect to L∗
0,i

L∗ . Then our filter&learn Filter_Learn works as follows:
Filter_Learn Procedure:
Rank states (T,R) of State[i+ 1] according to ωT +R values;
Select S best pairs (T,R) according to this ranking and compute RiskBalance;
If RiskBalance = Normal then

Keep only the S best states in State(i+ 1);
If RiskBalance = Risky then

Split State[i+ 1] into 2 subsets S1 and S2 with same size: S1 is made of
the best states (S,R) according to our tanking and S2 = S − S1;
Keep only the S

2 best states in S1 and S2 in State(i+1); Make ω decrease;
If RiskBalance = Cautious then

proceed as in previous case, while making ω increase.

Adaptation ot the State Bounding Scheme to A*_SPR Algorithm.
In the case of the A*_SPR algorithm, we apply the same principle, with the
idea that, in the list LE ∧ LPivot, the number of states (i, T,R) related to a
given i should not exceed some target threshold S. We structure elements of LE
and LPivot according to lists LE[i] and LPivot[i], where each list LE[i] and
LPivot[i] is a list of states (T,R) in the DP_Evaluate sense and apply the
learn&filter process only to the LE[i] lists.

5 Numerical Experiments

Goal: We perform numerical experiments with the purpose of studying

• the behavior of static DP_Evaluate, LS_SPR, A*_SPR algorithms of
Section 3. We pay special attention to the dependence of those algorithms to
the choice of the decision mode (Mean Speed, Risk versus Time, Risk versus
Distance), to the characteristics of decision set Λ;
• the way we may efficiently turn those static algorithms into efficient dynamic

algorithms through the use of statistical an reinforcement learning techniques
described in Section 4.

Technical Context: Algorithms were implemented in Python3.7.6 in a
Docker environment on an Intel i5-9500 CPU at 4.1GHz.

Instances: We generated networks (N,A) as connected symmetric partial
grids, which means grids n ∗ n, modified through removal of 25% of its arcs.
Those partial grids are summarized through their number |N | of nodes and
their number |A| of arcs. Length values Le, e ∈ A, are uniformly distributed

Monitoring a Fleet of AVs through A* like Algorithms and RL 17

between 3 and 10. Function Φ is taken as function u 7→ Φ(u) = u2. Function
Πe are generated by fixing a time horizon Tmax, a mean frequency B of break
points tei , and an average value ∆ for value Πe(t): More precisely, values Πe are
generated within a finite set {2∆, 3∆

2 , ∆, ∆
2 , 0}. As for threshold Rmax, we notice

that if functions Πe are constant with value ∆ and if we follow a path Γ with
length Ldiam, where Ldiam is the diameter of network G, at speed 1

2 = vmax

2 ,
then the expected risk is Ldiam∆

2 . It comes that we generate Rmax as a quantity
αLdiam∆

2 , where α is a number between 0.2 and 2. Finally, since an instance is
also determined by origin/pair (o, d), we denote by L∗ the value L∗

o,d.

Table 1 presents a package of 12 instances with their characteristics.

Table 1. Instances’ characteristics

Instance |N | |A| B ∆ α L∗

1 16 88 3 2.02 0.2 34.6
2 16 60 3 2.04 1 35.7
3 16 76 3 2.02 2 42.7
4 16 80 9 1.98 0.2 32.3
5 16 76 9 2.00 1 30.2
6 16 76 9 2.00 2 43.3
7 100 560 3 1.99 0.2 108.6
8 100 580 3 1.97 1 109.5
9 100 544 3 2.01 2 113.9

10 100 520 9 2.01 0.2 124.2
11 100 528 9 2.01 1 107.6
12 100 548 9 2.00 2 104.5

Outputs related to the behavior of the procedure DP_Evaluate
For every instance, L∗ value is the length of path Γ in the L sense. We apply
DP_Evaluate while testing the role of parameters λ = λRD, λSP , λRS , as well
as K and δ. So, for every instance, we compute:

• in Table 2: The risk value R_DPmode, the time value T_DPmode, and the
CPU times (in s.) CPUmode, induced by application of DP_Evaluate with
λmode = λRD, λSP , λRS , K = 10, ρ = 4;

• in Table 3: For the specific mode λRD, related number State of states per
node i, together with time value TRD, when K = 1, 3, 5, 7, 10 and ρ = 4;

• in Table 4: For the specific mode λRD, related number State of states per
node i, together with time value TRD, when K = 10 and ρ = 1.5, 2, 3, 4, 8.

CPU times are in seconds.

18 M. BAIOU, A. MOMBELLI, A. QUILLIOT

Table 2. Impact of λmode, with K = 10 and ρ = 4

Instance RRD TRD cpuRD RSP TSP cpuSP RRS TRS cpuRS

1 6.74 104.0 0.48 6.90 117.7 0.73 4.58 112.6 0.47
2 36.10 37.2 0.62 35.66 38.7 0.52 34.00 38.9 0.78
3 85.48 41.3 0.72 77.57 44.7 0.86 81.28 41.7 1.02
4 5.42 99.4 0.51 6.41 105.0 1.57 3.96 102.5 0.49
5 30.07 41.5 0.97 30.18 45.0 1.99 30.18 43.7 2.03
6 84.62 34.5 1.10 79.93 37.1 1.89 86.67 36.1 2.22
7 7.99 362.8 4.02 21.58 390.2 5.66 6.27 370.1 5.28
8 107.73 144.6 5.88 107.68 177.6 7.27 91.08 164.1 9.05
9 227.87 98.3 6.61 227.57 99.6 8.47 228.39 98.2 9.26

10 11.44 410.5 8.42 74.17 423.1 13.07 8.52 388.7 13.59
11 106.38 143.7 10.16 107.61 167.6 20.06 88.08 157.5 19.35
12 203.65 87.5 10.55 202.81 91.7 19.53 207.34 86.3 23.54

Table 3. Impact of K, with ρ = 4

K 1 3 5 7 10
instance TRD States TRD States TRD States TRD States TRD States

1 111 10.67 108 28.33 128 36.67 130 44.00 104 60.50
2 46 17.00 38 38.17 40 47.50 37 59.67 37 66.00
3 43 13.00 41 38.17 41 49.17 41 62.67 41 72.33
4 99 13.50 98 24.83 100 35.50 100 42.00 99 49.00
5 51 15.83 44 37.50 42 48.17 52 60.33 42 78.33
6 43 15.83 35 31.50 35 49.83 35 56.67 34 68.83
7 362 23.17 365 34.50 365 49.56 366 52.89 363 65.78
8 148 25.17 178 41.11 175 57.83 175 63.50 145 103.83
9 111 25.06 107 46.39 99 63.50 99 75.50 98 91.50

10 420 24.10 392 48.00 466 60.90 466 74.80 410 94.20
11 171 28.22 147 50.72 164 60.67 157 70.22 144 107.44
12 103 26.11 85 47.67 88 66.06 84 74.83 88 94.11

Table 4. Impact of ρ, with K = 10

ρ 1.5 2 3 4 8
instance TRD States TRD States TRD States TRD States TRD States

1 132 21.50 120 39.33 128 36.67 108 42.17 112 37.83
2 54 31.83 50 42.33 40 47.50 40 47.33 46 42.83
3 43 46.83 42 49.50 41 49.17 41 45.50 42 42.33
4 113 18.67 107 27.33 100 35.50 96 37.67 96 34.83
5 53 45.33 52 42.83 42 48.17 46 45.17 49 42.00
6 38 41.83 36 50.67 35 49.83 36 42.50 37 39.50
7 416 22.39 411 37.06 365 49.56 355 55.39 348 51.78
8 182 49.28 179 53.44 175 57.83 172 60.28 168 55.11
9 136 53.39 109 59.22 99 63.50 104 57.56 128 56.72

10 474 40.40 387 63.40 466 60.90 368 74.85 367 72.15
11 202 52.61 195 53.83 164 60.67 163 73.06 163 61.89
12 103 55.11 87 62.83 88 66.06 95 61.94 113 55.06

Monitoring a Fleet of AVs through A* like Algorithms and RL 19

Outputs related to the behavior of A*_SPR and LS_SPR. We test the
ability A*_SPR and LS_SPR. to catch optimal solution, and observe the
characteristics of resulting path. We rely on λ = λRD, K = 10 and ρ = 4. For
every instance, we compute:

• in Table 5: The time value T_A∗, the risk value R_A∗, CPU time (in s.)
CPUA∗

, the number Node of visited nodes, the number StateA
∗

of generated
states, and the deviation DevA

∗
between the length of resulting path Γ and

L∗, induced by A*_SPR with λmode = λRD, K = 10 and ρ = 4;
• in Table 6: The time value TLS, CPU time (in s.) CPULS , the number Trial

of trials, the number State of generated states, and the deviation DevLS

between the length of resulting path Γ and L∗, which derives from applying
LS_SPR with λmode = λRD, K = 10 and ρ = 4.

CPU times are in seconds.

Table 5. Behavior of A*_SPR, with λmode = λRD, K = 10 and ρ = 4

Instance T_A∗ R_A∗ Node cpuA∗
StatesA

∗
ρA

∗

1 94.1 5.64 14.00 0.41 17.00 4.26
2 38.9 35.95 5.00 0.20 14.60 0.00
3 41.4 84.21 5.00 0.04 1.80 0.00
4 99.5 6.39 12.00 0.62 14.42 0.00
5 42.9 30.14 9.00 0.63 11.89 0.00
6 36.9 82.30 5.00 0.06 1.40 0.00
7 310.4 20.58 97.00 7.80 18.98 10.94
8 132.3 107.55 44.00 5.53 16.09 5.08
9 98.3 228.03 17.00 0.42 1.88 0.00

10 349.2 24.88 96.00 14.16 18.65 1.30
11 132.1 106.97 45.00 12.81 14.24 0.41
12 85.5 208.41 17.00 0.81 1.06 0.00

Table 6. Behavior of LS_SPR, with λmode = λRD, K = 10 and ρ = 4

Instance T_LS R_LS Trial cpuLS StatesLS ρLS

1 102.5 5.60 2.00 0.35 31.33 5.09
2 39.5 34.85 1.00 0.31 47.50 0.00
3 41.4 84.07 1.00 0.35 49.17 0.00
4 99.6 4.72 1.00 0.30 35.50 0.00
5 41.8 29.04 2.00 0.86 47.00 0.00
6 34.6 84.14 1.00 0.61 49.83 0.00
7 365.0 6.28 4.00 7.48 46.32 0.00
8 160.9 107.72 10.00 22.47 58.31 18.50
9 99.1 227.33 1.00 3.39 63.50 0.00

10 458.8 9.81 5.00 20.11 60.61 2.48
11 164.3 88.26 1.00 5.43 60.67 0.00
12 88.3 205.68 1.00 5.93 66.06 0.00

20 M. BAIOU, A. MOMBELLI, A. QUILLIOT

Comments:
We see that A*_SPR and LS_SPR are very close to each other with λmode =
λRD. Also, they often use the shortest path but not every time especially when
working with small Rmax values.

Outputs related to characteristics of the solutions (Learning pre-
process). We apply the learning devices of Section 4 and test the behavior of
DP_Evaluate with no more than 3 possible decisions and 6 possible states for
every i = 1, . . . , n. For every instance, we compute in Table 7, related risk value
R_Fast_DP , the time value T_Fast_DP , and CPU times CPU_Fast_DP .
CPU times are in seconds.

Table 7. Behavior of Fast-DP_Evaluate

Instance R_Fast_DP T_Fast_DP T_DP cpu_Fast_DP

1 5.05 113.20 113.20 0.01
2 34.43 46.10 46.10 0.02
3 81.64 43.70 43.70 0.02
4 2.65 106.00 106.00 0.02
5 26.11 51.80 51.80 0.04
6 84.70 41.20 41.20 0.03
7 7.09 414.40 427.60 0.09
8 71.59 177.50 179.00 0.11
9 192.39 140.70 135.60 0.16

10 9.02 468.40 476.40 0.22
11 62.21 195.70 195.70 0.37
12 161.48 116.60 107.20 0.35

Comments: We can see that Fast-DP_Evaluate is, by far, the best method
not because of the solution returned by because of how fast it computes a nearly
equal solution.

6 Conclusion

We dealt here with a shortest path problem with risk constraints, which we
handled under the prospect of fast, reactive and interactive computational re-
quirements. But in practice, a vehicle is scheduled in order to perform some
kind of pick up and delivery trajectory while performing retrieval and storing
tasks. It comes that a challenge becomes to adapt previously described models
and algorithms to such a more general context. Also, there exist a demand from
industrial players to use our models in order to estimate the best-fitted size of
an AGV fleet, and the number of autonomous vehicles inside this fleet. We plan
addressing those issues in the next months.

References

1. Amazon.com, inc. amazon prime air. Available :http://www.amazon.com/primeair
(2013)

Monitoring a Fleet of AVs through A* like Algorithms and RL 21

2. B. Berbeglia, J-F. Cordeau, J-F., I. Gribkovskaïa, G. Laporte: “Static pick up and
delivery problems : a classification scheme and survey”. TOP: An Official Journal
of the Spanish Society of Statistics and Operations Research 15, p 1-31, (2007)

3. L. Chen, C. Englund: “Cooperative intersection management: a survey”; IEEE
Transactions on Intelligent Transportation Systems 17-2, p 570-586, (2016)

4. A. Franceschetti, E. Demir, D. Honhon, T. Van Woensel, G. Laporte, and M. Sto-
bbe. “A metaheuristic for the time dependent pollution-routing problem”; European
Journal of Operational Research, 259 (3) :972 – 991, (2017)

5. S.O.Krumke, A.Quilliot, A.Wagler, J.T.Wegener: “Relocation in carsharing systems
using flows in time-expanded networks”; LNCS 8504, 87-98 (Special Issue SEA 2014),
(2014)

6. T. Le-Anh, M. B. De Koster:: “A review of design and control of automated guided
vehicle systems” European Journal of Operational Research, 171, 1-23, (2006)

7. L.Lozano, A.L.Medaglia. “On an exact method for the constrained shortest path
problem”. Computer&Operations Research 40, p 378-384, (2013)

8. J. Nilsson: Artificial Intelligence; J.Wiley Ed, N.Y, (1975)
9. I. Park, G. U. Jang, S. Park, J. Lee: “Time dependent optimal routing in micro-scale

emergency situations”; In 10 th Int. Conf. on Mobile Data Management, p 714-719,
IEEE, (2009)

10. C. Philippe, L. Adouane, A.Tsourdos, H.S. Shin, B.Thuilot: “Probability collective
algorithm applied to decentralized coordination of autonomous vehicles”; 2019 IEEE
Intelligent Vehicles Symp., 1928–34. IEEE, Paris, (2019)

11. V. Pimenta, A. Quilliot, H. Toussaint, D. Vigo: “Models and algorithms for relia-
bility oriented DARP with autonomous vehicles”; European Journ. of Operat. Res.,
257, 2, p 601-613, (2016)

12. C. Ryan, F. Murphy, F., Mullins: “Spatial risk modelling of behavioural hotspots:
Risk aware paths planning for autonomous vehicles”; Transportation Research A
134, p 152-163 (2020)

13. K.C. Vivaldini, G. Tamashiro, J. Martins Junior, M. Becker: “Communication in-
frastructure in the centralized management system for intelligent warehouses”. In:
Neto, P., Moreira, A.P., et al. (eds.) WRSM 2013. CCIS, vol. 371, pp. 127–136.
Springer, Heidelberg (2013)

14. I.F. Vis: (2006): “Survey of research in the design and control of AGV systems”;
European Journal Operations Research 170:677–709

15. M. Zhang, R. Batta, R. Nagi R (2008): “Modeling of workflow congestion and
optimization of flow routing in a manufacturing/warehouse facility”. Management
Sciences 55:267–280, (2008)

16. M. Koes and al.: “Heterogeneous multi-robot coordination with spatial and tem-
poral constraints”; In Int. Conf. on Artificial Intelligence, p 1292-1297, (2005)

17. Q. Ren and al. “Cooperation of multi-robots for disaster rescue”; In ISOCC Conf.
Proceedings; p 133134, (2017)

