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A new method to invert InSAR data to resolve stress

changes on a fracture embedded in a 3D heterogeneous crust

Oliver Bodart?, Valérie Cayol † & Farshid Dabaghi‡

1 INTRODUCTION

2 PHYSICAL AND COMPUTATIONAL MODEL

2.1 Mathematical modelling of the solid

From a mathematical point of view, a volcano is a bounded open set Ω ⊂ R3, occupied by an elastic

solid. This set is assumed to have a smooth boundary ∂Ω which we separate in two (non empty) parts

∂Ω := ΓD ∪ ΓN, with ΓD ∩ ΓN = ∅. As depicted on Figure 1, the subset ΓN is actually the ground

of the volcano and free to move. The subset ΓD is an artificial boundary defined in order to work on a

finite size object and is assumed to to satisfy a 0 displacement condition. We assume that the elastic

solid occupying Ω is subject to a body force field f . In the sequel, boldface letters will be used to

denote (usually 3-dimensional) vector fields. Plain letters will represent scalar quantities.

We denote by x = (x, y, z) the generic point in R3, and by u = u(x) the displacement field of

Ω

ΓN

ΓDΓD

ΓD

ΓC

n

Figure 1. Volcanic domain Ω and its boundaries
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the solid Ω. The Cauchy stress σ(u) and strain ε(u) are given by

σ(u) = λTr
(
ε(u)

)
IR3 + 2µε(u) and ε(u) =

1

2
(∇u +∇uT),

where (λ, µ) are the Lamé coefficients of the material, IR3 the identity matrix, and Tr(·) the matrix

trace.

We also assume the presence of a crack in the volcano, which is represented mathematically

by a 2-D surface ΓC ⊂ Ω on which a traction or pressure force will be exerted (see also Figure

1). In a volcanic context, ΓC might represent a magma–filled crack on a fault. As already said in

the introduction, the shape and position of the crack are supposed to be known in this work. The

deformation field u of the solid is supposed to satisfy the following elastostatic system:

−div σ(u) = f in Ω, (1)

u = 0 in ΓD, (2)

σ(u) · n = 0 on ΓN, (3)

σ(u) · n± = t± on ΓC. (4)

The first equation is the equilibrium law describing the (linear) elastic behaviour of the material.

Condition (2) describes the fact that the displacement vanishes on the underground boundary of the

solid. In equation (3), and in the sequel, n denotes the unit normal vector on the boundary of Ω,

oriented externally. This condition describes the free movement of the ground part of the volcano.

Finally, equation (4) describes the force acting on the crack ΓC. The vectors n+ and n− = −n+

are unit normal vectors on the crack ΓC (see Figure 2). The vector functions t±(x) denote the force

exerted on the crack. They are such that t+ = −t−. When this force acts normally to the crack, that

is t±(x) = p(x)n±, the force is called a pressure, otherwise in general it is called a traction force.

This traction force is the actual unknown of our problem. From the mathematical point of view it

is supposed to be quadratically integrable as well as its gradient.

In order to derive a finite element approximation of the state equations (1)–(4), we need a weak

formulation of the system. This is done by multiplying the equation (1) by a regular vector field v

such that v = 0, and then integrating by parts over Ω. Using the conditions (2)–(4) then yields:∫
Ω
σ(u) : ε(v) dΩ =

∫
Ω
f · v dΩ +

∫
ΓC

(t±) · v dΓC, (5)

where : is the double inner product for matrices, i.e. for A = (aij)i,j=1,2,3 and B = (bij)i,j=1,2,3,

A : B =
3∑
i=1

3∑
j=1

aijbij .
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Figure 2. Splitting a volcanic cracked domain by domain decomposition method

Notice that this approach allow us to deal with situations where the elastic material is nonhomo-

geneous and anisotropic, that is when the Lamé coefficients are not constant.

2.2 Finite element model

The direct problem (1)–(4) efficiently will have to be solved iteratively during the inversion proce-

dure. Therefore we need an efficient algorithm to do so. To this aim, we use a domain decomposition

method. More precisely, following Bodart et al. (2016), the domain Ω is split into two sub-domains

such that each point of the domain lies on one side of the crack or on the crack. For this purpose, we

use an artificial extension Γ0 of the crack ΓC. Assuming that ΓF = ΓC ∪ Γ0 splits the domain into

two subdomains Ω+ and Ω−, we have Ω = Ω+ ∪ ΓF ∪ Ω−, ΓN = Γ+
N ∪ Γ−N and ΓD = Γ+

D ∪ Γ−D . We

define on ΓC two opposite unit outward normal vectors n+ (from Ω+) and n− (from Ω−). The global

unknown u is split into u+ = u|Ω+ and u− = u|Ω− .

Therefore, the equations (1)–(4) can be rewritten with u+ and u− as unknowns:

−div σ(u±) = f± in Ω±, (6)

u± = 0 on ΓD ∩ ∂Ω±, (7)

(σ(u) · n)± = 0 on ΓN ∩ ∂Ω±, (8)

(σ(u) · n)± = t± on ΓC, (9)

[[u]] = 0 on Γ0, (10)

[[σ(u)]] · n+ = 0 on Γ0, (11)

where [[v]] = v+−v− denotes the jump of a function across Γ0. The equations and conditions (6)–(9)

are a straightforward rewriting of (1)–(4). The two last conditions (10) and (11) are imposed to enforce

the continuity of displacement and stress across Γ0 to ensure that u = (u−,u+) solves the original

problem (1)–(4).

Let us now describe the discretization of this problem via the finite element method. A lagrange
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multiplier λ defined on Γ0 is introduced to enforce the continuity of the displacement across the Γ0.

Defining the associated lagrangian functional and expressing the associated saddle point conditions

give a weak formulation for Problem (6)–(11) which unknown is in the form X = (u+,u−,λ)> (see

Bodart et al. (2016) for details).

In order to numerically approximate the system, consider a tetrahedral mesh of Ω (as e.g. in Figure

3). Let ϕ±i be a finite element basis defined on this mesh. Also defining a mesh of the extended crack,

we build finite elements bases ψi and θj on Γ0 and ΓC respectively.

Identifying the unknowns u+, u− and λ with there value on the nodes of the mesh, the discretized

form of Problem (6)–(11), then reads

KX = F. (12)

The matrix K of this system is built from the stiffness matrices A±, and the constraint coupling ma-

trices on Γ0 denoted by B±. More precisely, we have

K =


A+ 0 B+T

0 A− −B−T

B+ −B− 0

 ,

where

A± :=

[∫
Ω±

σ(ϕ±i ) : ε(ϕ±j ) dΩ±
]
ij

, B± :=

[∫
Γ0

ϕ±i ·ψj dΓ0

]
ij

The right hand side vector F± is given by

F =


F+

F−

0

 , F± :=

[∫
Ω±

f± ·ϕ±i dΩ± +

∫
ΓC

t± ·ϕ±i dΓC

]
i

,

which boils down to the algebraic formulation

F =


F+

F−

0

 =


M+

Ω f+

M−Ω f−

0

+


+MCt

−MCt

0

 ,

where the mass matrices M±Ω and the coupling matrix on ΓC, denoted by MC , are given by[
M±Ω

]
ij

=

∫
Ω±
ϕ±i ·ϕ

±
j dΩ±, [Mc]ij =

∫
ΓC

ϕ±i · θj dΓC.

Eventually, we can naturally define two matrices LΩ and LC such that we have

F = LΩf + LCt.

The matrix K is symmetric and positive definite, which allows the use of powerful classical
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solvers. The implementation of this model uses the finite element library GetFem++ Renard & Pom-

mier (http://home.gna.org/getfem). The library provides all the necessary tools to handle various types

of PDEs, and links to classical powerful solvers (conjugate gradient, SuperLU, MUMPS) as well

as other routines for mesh management, definition of cracks and boundaries via level set functions)

which make it quite versatile and powerful. We refer the reader to Bodart et al. (2016) for a detailed

mathematical and computational analysis of this method. See also Bodart et al. (2020, 2021) for a

mathematical analysis of similar optimal control problems aking use of the domains decomposition

technique.

3 INVERSION FROM FULL GROUND MEASUREMENTS

3.1 Mathematical formulation of the problem

Let us assume the displacement field of the volcano to be fully measured on the ground ΓN, and call

it ud. The inversion problem consists in finding a traction vector t such that the solution of Problem

(1)–(4) satisfies u = ud on ΓN. However this is known to be an ill-posed problem (e.g. the solution

is not unique), and moreover the measurements are perturbed by random uncertainties. Therefore we

adopt a least squares approach, combined with a regularization (i.e. smoothing) technique to build the

inversion process.

Consider the following cost function:

J(t) =
1

2

∫
ΓN

(u− ud)
>C−1(u− ud) dΓN +

α0

2

∫
ΓC

|t|2 dΓC +
α1

2

∫
ΓC

|∇t|2 dΓC, (13)

where C denotes the covariance operator of the measurements uncertainties (see e.g. Tarantola (2005)),

and is assumed to be positive definite, > denotes the transpose operator, and finally, the non–negative

constants α0 and α1 are the Tikhonov regularization (or smoothing) parameters.

We aim at minimizing this cost function over the space of feasible traction vectors. This space

consists in quadratically integrable vectors, which gradient is also quadratically integrable.

In Bodart et al. (2020, 2021), a simplified version of this problem is mathematically studied. The

cost function only features the first smoothing term. As it will be shown later on, our tests have proved

the necessity of smoothing the gradient, in a practical framework, to obtain a physically admissible

solution t. The optimal choices for the values of α0 and α1 will be discussed further.

To derive the optimality conditions for the Problem (13), we introduce the following Lagrangian:

L(u, t,φ) = J(t)−
∫

Ω
(σ(u) : ε(φ)− f) · φdΩ +

∫
ΓC

t± · φdΓC,

where φ is the Lagrange multiplier for the constraint (1)–(4) in the weak form (5). When ∇uL = 0

and ∇φL = 0, we have ∇tL = ∇J . Cancelling ∇φL gives problem (1)–(4). Cancelling ∇uL and
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performing integration by parts yields that φ is the solution of
−div σ(φ) = 0 in Ω,

φ = 0 in ΓD,

σ(φ) · n = C−1(u− ud) on ΓN,

(14)

called the adjoint state system. Finally, computing ∇uL, for u and φ satisfying (1)–(4) and (14),

gives:

∇J(t) = α0t + α1∇t + (φ · n±). (15)

We refer the reader to Bodart et al. (2020, 2021), for further details.

After splitting the computational domain Ω, the cost function J in the optimization problem (13)

becomes:

J(t) =
1

2

∫
Γ+

N

(u+ − u+
d )>C−1(u+ − u+

d ) dΓ+
N +

1

2

∫
Γ−

N

(u− − u−d )>C−1(u− − u−d ) dΓ−N

+
α0

2

∫
ΓC

|t|2 dΓC +
α1

2

∫
ΓC

|∇t|2 dΓC.

(16)

The previous optimality conditions rewrite naturally from this new formulation.

3.2 The Discrete Problem

The next step is to adapt the cost function, the adjoint state and the gradient of the cost function

to the discrete system (12). To this aim, it has to be noticed that all terms in (16) are symmetric.

Discretizing the two first terms will involve the introduction of mass matrices on Γ±N . On needs to

keep the symmetry of the discrete form. Since the covariance matrix C is positive definite, it is also

the same for its inverse and we can write

C = QDQ−1, C−1 = QD−1Q−1,

where Q is the matrix which columns are the eigenvectors of C and D the diagonal matrix of the

eigenvalues of C. This diagonalized form allows us to write C−1 = C−
1
2C−

1
2 , where

C−
1
2 = QD−

1
2Q−1.

In view of this, we rewrite the continuous cost function J as

J(t) =
1

2

∫
Γ+

N

(u+ − u+
d )>C−

1
2C−

1
2 (u+ − u+

d ) dΓ+
N +

1

2

∫
Γ−

N

(u− − u−d )>C−
1
2C−

1
2 (u− − u−d ) dΓ−N

+
α0

2

∫
ΓC

|t|2 dΓC +
α1

2

∫
ΓC

|∇t|2 dΓC.

(17)
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As in Section 2.2, we will identify the previous functions with their values at the mesh nodes.

Define a set of finite element basis functions χ±i (with 3 degrees of freedom at each mesh node)

defined on Γ±N . Then, define the ground mass matrix

MG =

 M+
G 0

0 M−G

 , (18)

with
[
M±G

]
ij

=

∫
ΓN

χ±i · χ
±
j dΓN. Let us also define the matrices MF0 and MF1 as

[MF0 ]ij =

∫
ΓC

θi · θj dΓC, [MF1 ]ij =

∫
ΓC

∇θi · ∇θj dΓC.

Recall that θj are the finite element basis functions defined on ΓC.

Finally, in view of the domain decomposition method, the mesh nodes located on the ground will

be on either side of the crack. Therefore, the measured displacement and the restriction to the ground

nodes of the computed displacement (denoted uG) can be written as

ud =

 u+
d

u−d

 , uG =

 u+
G

u−G

 .

Consider then the reduction matrix OR such that

ORX = uG,

where X is the solution of (12).

The discrete version of the cost function J defined by (17) is then

Jd(t) =
1

2
(ORX− ud)

TC−
1
2MGC

− 1
2 (ORX− ud) +

α0

2
(t>MF0t) +

α1

2
(t>MF1t). (19)

The optimality conditions for the minimizer of the discrete cost function Jd are obtained via the

characterization of the saddle point of the following (discrete) Lagrangian function:

Ld(X, t,φ) = Jd(t)− 〈KX− (LΩf + LCt),φ〉.

Computing the partial derivative of Ld and then cancelling them, lead to the discrete counterpart of

the adjoint problem (14) as:

Kφ = O>RC−
1
2MGC

− 1
2 (ORX− ud),

which rewrites, denoting uG = ORX,

Kφ = O>RC−
1
2MGC

− 1
2 (uG − ud), (20)

where K is the (symmetric) matrix of System (12). The gradient of Jd at any point t is then:

∇Jd(t) = α0MF0t + α1MF1t + L>Cφ. (21)
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3.3 Practical minimization algorithm

In a previous work (see Bodart et al. (2021)), we presented two methods to minimize a simpler version

of our cost function Jd : the conjugate gradient algorithm and a quasi-Newton method (low storage

BFGS). These two techniques are natural choices due to the quadratic structure of the cost function.

They were studied in depth in terms of computational performance and accuracy. The BFGS method

appeared to be converging faster when the mesh of the domain Ω is rather coarse. When the mesh

becomes finer, the number of unknowns in the problem increases and the two methods tend to give

similar results. In the framework of applications which we are interested in, we aim at fast processes,

that is we will most of the time consider meshes that are rather coarse except in the neighborhood

of the crack ΓC. Therefore we will use a BFGS algorithm (see BROYDEN (1970); Fletcher (1970);

Goldfarb (1970); Shanno (1970)) in our numerical tests. It involves the construction of a sequence of

approximation of the inverse of the Hessian matrix of the cost function Jd. We use a limited storage

version of the algorithm called L-BFGS (see Nocedal (1980)). The method is presented in Algorithm 1,

with the necessary adaptations to our problem.

As usual with this type of methods sequences are built and will be denoted as follows:

• tk: traction force vector,

• Xk: solution of the state equation (12),

• uk : displacement field on the ground,

• φk: solution of the adjoint state equation (20),

• gk: gradient of the cost function Jd at point tk,

• dk,wk: displacement directions for the optimization,

• ρk: optimal displacement step.

The number k ≥ 0 represents the iteration number.

Notice that the underlying quadratic form in the cost function allow to compute explicitely the

optimal step size at each iteration, via formula (28). The detailed computation is presented in the

Appendix.

In the algorithm, the domain decomposition technique is used to solve the discrete state and adjoint

state equations (12) and (20). Notice that the matrix K is symmetric and does not change during the

iterative process, which means that the computation cost due to matrix factorization is reduced.

The algorithm iterates until the gradient of Jd becomes sufficiently small, as precised in the algo-

rithm below.
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Algorithm 1 Algorithm to minimize Jd
Require: t0, ud and ε > 0

k ← 0

Solve (12) with t = t0→X0

u0 ← ORX0

Solve (20) with u = u0→ φ0

Initial gradient: g0 ← α0MF0t
0 + α1MF1t

0 + L>Cφ
0

Initial direction: d0 ← −g0

H0 ← IC

while ‖gk+1‖ΓC < ε‖g0‖ΓC do

Solve (12) with t = tk →Wk

wk ← ORWk

Compute step size ρk by (28) with u = uk, t = tk, d = dk, w = wk

tk+1 = tk + ρkdk

uk+1 = uk + ρkwk

Solve (20) with u = uk+1→ φk+1

gk+1 in (15) with tk+1 and φk+1

Compute Hk+1 via formula (30)

dk+1 = −Hk+1gk+1

k ← k + 1

end while

3.4 Numerical tests and validation with synthetic data

The numerical application is performed by a synthetic test via simulation of a flat volcano as follows:

A semi-infinite elastic domain at center with radius 100 km and extending down to [0, 20] km (see

Figure 3(a)), with the elasticity parameters: the Young modulus E = 5000.0 MPa and Poisson ratio

ν = 0.25. A horizontal circular fracture is defined with radius r = 1 km and located at (x, y, z) =

(0, 0, 0.3) km in the topo flat. The mesh generation and level set implementation is explained in Bodart

et al. (2020, 2021). The ground surface is free to move and the other sides is fixed i.e. satisfy the

boundary conditions on ΓN and ΓD respectively. We generated a synthetic solution ud associated to a

discontinuous traction t± = (0, 0,±1.5) MPa, applied on a part of the fracture ΓC, as shown in Figure
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(a) Topo flat mesh (b) Circular fracture
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(c) Surface synthetic displacements

Figure 3. Configuration of the synthetic test corresponding to a horizontal circular fracture beneath a flat topog-

raphy. (a) Progressive mesh used. The mesh has a radius of 100 km. The fine mesh region has a 1.5 km radius;

the intermediate mesh size goes from 1.5 to 15 km radius; further away the mesh gets coarser. (b) The source

is a pressurized disk with a 1 km radius located at different depths. The yellow patch is submitted to a normal

traction texact = (0, 0, 1.5) MPa and the blue patch has a null traction texact = (0, 0, 0). (c) Surface synthetic

displacements obtained by this pressure.

3(b) (the yellow patches) and t± = (0, 0, 0) on the rest of the fracture (the blue patches). In some

numerical experiments, this traction is interpreted as a pressure p± = 1.5 MPa applied on the yellow

zone.

Finding a robust and efficient method to compute appropriate regularization parameters α0 and α1

for given mesh and noisy data, is not straightforward. The admissible solution t is dependent on the

chosen α0 and α1 and it is crucial to obtain a good approximation of the solution to the optimization

problem. For choosing the optimal parameters, a series of tests is organized by using the graphical

tools. Indeed, three important criteria are compared by varying α0 and α1 as follows: we set α0 ∈

{1.0E − 12, 1.0E − 11, . . . , 1.0E0} and α1 ∈ {1.0E − 5, 1.0E − 4, . . . , 1.0E5}. Then we compare:
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Figure 4. Systematic exploration of the smoothing parameters α0 and α1 for minimizing the cost function in

equation (13). The source is located at −0.3 km depth beneath the flat topography. The acceptable combination

of smoothing parameters is found by comparing (a) relative ground error, (b) relative error of traction on the

disk and (c) iteration number. The source has 291 unknowns. The best compromises are indicated by the red

boxes.

A relative ground error defined by:

Eu =

∫
ΓN

|u− ud|2 dΓN∫
ΓN

|ud|2 dΓN

× 100.

A relative error of traction t on the fracture source, defined by:

Et =

∑
|t− texact|2∑
|texact|2 dΓC

× 100.

Note that an inevitable numerical error is already produced to compute the traction t on the fracture

source. Using the non-conformal mesh to implement the fracture by level set method, is the reason of

this error which can be reduced by using a finer mesh around the fracture.

finally, the iteration number for a given ε = 1.0E − 14 in Algorithm 1 to satisfying the convergence

criteria ∫
ΓC

|gk+1|2 dΓC∫
ΓC

|g0|2 dΓC

< ε.

The numerical tests presented in Figure 4, show that, α1 = 1 can be chosen as an acceptable param-

eter. Moreover, it seems, the above criteria are less sensitive to α0 between 1.0E − 7 and 1.0E − 4.

Accordingly, we employ L-curve, another graphical tool, to trade off between two criteria: the misfit

‖u− ud‖ =
( ∫

ΓN

|u− ud|2 dΓN
) 1

2 , (22)

and the norm of the traction or smoothing

‖t‖ =
( ∫

ΓC

|t|2 dΓC)
1
2 . (23)
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(b)(a)

(c)
(d)

Figure 5. L-curves used to find α1 representing the best compromise between the data fit (equation (22)) and

the smoothing (equation (23)) in the cost function (equation (13)). The fracture is located at −0.3 km. (a) L-

curve when solving for pressure p. The larger points indicate the best compromise. (b) L-curve when solving

for traction t. The larger points indicate the best compromise. (c) Fracture pressure corresponding to the best

α1 = 1.0E1. (d) Normal and (e) tangential tractions projected on the fracture corresponding to the best α1 =

1.0E1. Here, we set α0 = 1.0E− 7.

The L-curves are depicted by setting α0 = 1.0E− 7 and varying α1. Closest point to the origin shows

the best compromise between misfit and smoothing, and it will be the acceptable α1. In particular case

when we aim to find the pressure, the traction t may replaced by the pressure p. In Figure 5, for the

above fracture and mesh, two L-curves corresponding to both pressure p and traction t are illustrated.

Fracture pressure corresponding to α1 = 1.0E1 as an appropriate choice is presented in Figure

5(c). As shown in Figures 6 and 7, in 3D realistic volcanoes where we interested in large-scale prob-

lem, the values around the 1.0E1 are yet acceptable. Normal and tangential tractions are depicted in

Figure 7. Note that we suppose (0, 0,−1) as the unit normal vector n.

We then aim to consider the impact of the fracture depth to the approximated admissible solution.

To do that, the numerical experiments are repeated for the fracture at −0.9 km of depth. The best

combination for α1 = 1.0E − 1 and α0 between 1.0E − 7 and 1.0E − 4, in red box are shown in

Figure 8. The L-curves depicted for p and t in Figure 9(a, b) show that the closest point to the origin

for the 0.9 km is α1 = 1.0E0. The normal stress projected on the fracture presented in Figure 9(c)
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(b) α1 = 1.0E0
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(c) α1 = 1.0E2
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Figure 6. Fracture pressure located at −0.3 km, corresponding to (a) α1 = 1.0E−1, (b) α1 = 1.0E0 and (c)

α1 = 1.0E2

compare to exact solution confirms an acceptable approximated solution. As previous case the values

around the 1.0E0 for α1 are acceptable (see Figures ?? and ??). A comparison of the iteration number

presented in Table 1, indicates that the number of iterations is augmented for the greater values of α1.

As seen in the numerical simulations, we may trust to the L-curves results to find an appropriate

α1 for more complicated geometry of fracture and mesh, which is clearly help us to computational

cost.
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Figure 7. Normal and tangential tractions projected on the fracture located at −0.3 km, corresponding to (a)

α1 = 1.0E0, (b) α1 = 1.0E1 and (c) α1 = 1.0E2. The directions of the tangetial stress are shown by red

vectors.
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Figure 8. Systematic exploration of the smoothing parameters α0 and α1 for minimizing the cost function in

equation (13). The source is located at −0.9 km depth beneath the flat topography. The acceptable combination

of smoothing parameters is found by comparing (a) relative ground error, (b) relative error of traction on the

disk and (c) iteration number. The source has 107 unknowns. The best compromises are indicated by the red

boxes.

  

(a) (b)

(d)(c)

Figure 9. L-curves used to find α1 representing the best compromise between the data fit (equation (22)) and

the smoothing (equation (23)) in the cost function (equation (13)). The fracture is located at −0.9 km. (a) L-

curve when solving for pressure p. The larger points indicate the best compromise. (b) L-curve when solving

for traction t. The larger points indicate the best compromise. (c) Fracture pressure corresponding to the best

α1 = 1.0E1. (d) Normal and (e) tangential tractions projected on the fracture corresponding to the best α1 =

1.0E0. Here, we set α0 = 1.0E− 7.
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Depths α1 Unknown Number of iteration Number of unknowns

−0.3 km 1.0E1
Pressure p 71 291

Traction t 84 873

−0.9 km 1.0E0
Pressure p 48 107

Traction t 67 321

Table 1. Comparison between the number of iterations for two depths -0.3 and -0.9 km and when the unknowns

are pressure p and traction t for α0 = 1.0E−7.

4 TAKING INTO ACCOUNT THE EARTH-SATELLITE DIRECTIONS

4.1 Mathematical framework and new optimization problem

Before going further, let us first remark that the previous section can easily be adapted to the case

where the measurements of the displacement field are performed only on a part of the ground Γ̃N ⊂

ΓN. The cost function to be minimized becomes

J(t) =
1

2

∫
Γ̃N

(u− ud)
>C−1(u− ud) dΓN +

α0

2

∫
ΓC

|t|2 dΓC +
α1

2

∫
ΓC

|∇t|2 dΓC.

Rewriting the optimality conditions and adapting the algorithms is straightforward. This is what is

actually implemented in our software.

However, assuming the displacement field to be known in cartesian coordinates is not realistic

for the applications. In this section we aim at adapting our work to the case where measurements

are provides by satellite radar interferometry (as e.g. inFukushima et al. (????)). We will first state

precisely what measurements are made and then adapt our methods to this new framework.

Let ud = (ux, uy, uz)
> be a displacement field on ΓN, written in cartesian coordinates. A satellite

will aim at the ground to measure a displacement, and the resulting measurement will be in the form

p>ud where the aiming direction (also called earth-satellite direction) p = (px, py, pz) is a unit vector

oriented from the ground to the satellite. Let then N ≥ 1 be the number of satellites, each associated

to a direction pi = (pix, piy, piz) for i = 1, . . . , N . We can build a matrix P : R3 → RN as

P = (p1,p2, · · · ,pN )>, so that the actual measurement is

Rd = Pud.

The vector field Rd ∈ RN is defined on ΓN, and the matrix P also operates on the solutions of System

(1)–(4). Hence, given the field Rd, our new optimization problem consists now in finding the traction

vector t minimizing the following cost function:

J(t) =
1

2

∫
ΓN

(Pu−Rd)
>C−

1
2C−

1
2 (Pu−Rd) dΓN +

α0

2

∫
ΓC

|t|2 dΓC +
α1

2

∫
ΓC

|∇t|2 dΓC, (24)
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where α0 > 0 and α1 > 0 are the regularization parameters. The optimality conditions for this

problem are derived in the same way than in Section 3.1. We will not go into details about this and

focus on the discrete version of the problem.

Using the definitions of Sections 2.2 and 3.2, and in view of (19) and (24) the discrete cost function

becomes

Jd(t) =
1

2
(PORX−Rd)

TC−
1
2MGC

− 1
2 (PORX−Rd) +

α0

2
(t>MF0t) +

α1

2
(t>MF1t). (25)

where X is the solution of the discrete system (12). This finite dimensional problem then boils down

to finding the saddle point of the following Lagrangian

Ld(X, t,φ) = Jd(t)− 〈KX− (LΩf + LCt),φ〉.

Computing the partial derivative of Ld and then cancelling them, leads to the discrete adjoint problem

(14):

Kφ = O>RP>C−
1
2MGC

− 1
2 (PORX−Rd), (26)

and the gradient of Jd is:

∇Jd = α0MF0t + α1MF1t + L>Cφ. (27)

The minimization Algorithm 1 can then be adapted to the new adjoint state and gradient to obtain the

numerical approximation of the traction t on the crack by using the surface measurements provided

by radar interferometry rd.

4.2 Applications to synthetic test

The numerical applications here are proceeded in three different steps: First, we aim to the adaptation

of the theoretical results in Earth-Satellite directions. For the sake of simplicity, we assume the covari-

ance is an identity matrix. Next, in order to reduce the observed data, the identity covariance matrix is

reduced to the nodal mesh points. We then consider a problem with dense covariance matrix adapted

to a limited number of observed data.

The vector directions are chosen by using InSAR satellite directions, listed in Table 2. The nu-

merical tests are performed with one to four radar looks to confirm the theoretical results. We set the

same configuration as previous section for the problems in Cartesian coordinate. The horizontal cir-

cular fracture beneath the flat topography located at 0.3 km (see Figure 3). We still take α0 = 10−7

and by depicting the L-curves, we find the best α1 with the best compromise between misfit and the

traction norm t or pressure p (see Figure 10) Normal and tangential tractions projected on the frac-

ture corresponding to the best α1 = 1 are presented in Section supplementary Material, Figure ??. A

comparison between the iteration numbers listed in Table 3 for the observed synthetic data provided
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S4: D R 151 0.056 [0.56 -0.14 0.80]

S6: A R 144 0.056 [-0.66 -0.17 0.73]

TSX: A R 036 0.031 [-0.54 0.11 0.83]

TSX: D R 036 0.031 [0.59 -0.13 0.80]

Table 2. InSAR Unit vector directions

by different number of radar looks, show that the use of more radar looks leads to a decrease in the

number of iteration.

In a more realistic scenario, the number of observed data are limited. In the previous numerical

experiments, we assumed a synthetic ud in P2 finite elements. The degrees of freedom’s nodes of

a classical P2 Lagrange elements on a 3D tetrahedron, are located on the vertices or nodal mesh

points and the midpoints of the edges. In realistic volcano phenomenons (three-dimensional elasticity

problem), using the P2 finite element guarantees a good approximated solution. However, we aim to

reduce the synthetic ud to nodal mesh points on the ground surface as a P1 finite elements. On the other

side, to conserve the P2 finite elements for the elasticity problem, we should conserve the dimension

of the covariance C−
1
2 and the mass matrix MG in a P2 elements. Therefore, from implementation
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Figure 10. L-curves used to find α1 representing the best compromise between the data fit (equation (22))

and the smoothing (equation (23)) in the cost function (equation (24)) taking into account the earth-satellite

directions with identity covariance matrix. The fracture is located at −0.3 km, when solving for pressure p and

traction t. The larger points indicate the best compromise. (a) in S4 (b) in S4 and S6 (c) in S4, S6 and TSXA

(d) in S4, S6, TSXA and TSXD directions. Here, we set α0 = 1.0E− 7.
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Radar look α1 Unknown Number of iteration Number of unknowns

S4 1.0E1
Pressure p 93 291

Traction t 108 873

S4 S6 1.0E1
Pressure p 59 291

Traction t 80 873

S4 S6 TSXA 1.0E1
Pressure p 51 291

Traction t 58 873

S4 S6 TSXA TSXD 1.0E1
Pressure p 50 291

Traction t 58 873

Table 3. Comparison between the number of iterations taking into account the earth-satellite directions with

identity covariance matrix in InSAR unit vector directions. The fracture is located at−0.3 km, when solving for

pressure p and traction t. Here, we set α0 = 1.0E−7.

point of view, the degrees of freedom’s related to the midpoints of the edges in C−
1
2 and MG are set

to zero. Despite the increase in the iterations number, the numerical experiments presented still show

very satisfactory results (see Section Supplementary Material Figure ??).

Another step to approach the reality is using the dense covariance matrices for limited number of

data, obtained by InSAR and cGNSS.

To do that, we are using the DEfvolc interfaces The dense covariance matrices are provided by

DefVolc, pre and post-processor software. We started by creating the synthetic ud and the dense co-

variance matrix in S4 radar look. The results obtained in Figure 11 and first row of Table 4, confirm

the adaptability of our method to the dense covariance matrices. In reality, most of the time, the atmo-

spheric contribution caused masked and noisy InSAR data. Therefore, some numerical experiments is

performed by creating masked and noisy synthetic ud and covariance matrix. The numerical experi-

ments are presented in Figure 12. The L-curves are depicted for synthetic ud projected to S4 an S6

directions. First without any mask and noise in the data and then different possible cases by adding

the mask and noise to the synthetic data. We summarized appropriate choices for α1 and the number

of iterations to achieve the convergence with these α1, for different cases of synthetic ud, in Table 4.

Despite of choosing a greater α1, for the masked data, the number of iteration is reduced. However,

for the noisy data the convergence of the inversion process is much more harder. Moreover the vector

size of the synthetic ud for each case are listed in Table 4.
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Figure 11. L-curves used to find α1 representing the best compromise between the data fit (equation (22))

and the smoothing (equation (23)) in the cost function (equation (24)) taking into account the earth-satellite

directions with the dense covariance matrix in S4 radar look direction. The fracture is located at−0.3 km, when

solving for the traction t. The larger points indicate the best compromise. (b) Normal (c) tangential tractions

projected on the fracture corresponding to the best α1 = 1.0E1. Here, we set α0 = 1.0E− 7.

4.2.1 Noise influence

Radar look α1 Number of iteration Vector size ud

S4 1.0E1 98 1616

S4 S6 1.0E1 102 3232

S4 S6 with mask 1.0E2 56 1087

S4 S6 with noise 1.0E2.5 344 3232

S4 S6 with mask and noise 1.0E3 306 1087

Table 4. Comparison between the number of iterations for fracture at 0.3 km depth and when the unknowns are

the traction t for different radar looks with dense covariance matrix.
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(a) The solution for α1 = 1.0E1
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(d) The solution for α1 = 1.0E2
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(g) The solution for α1 = 1.0E2.5
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(j) The solution for α1 = 1.0E3
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Figure 12. L-curves used to find α1 representing the best compromise between the data fit (equation (22))

and the smoothing (equation (23)) in the cost function (equation (24)) taking into account the earth-satellite

directions with the dense covariance matrix. The fracture is located at −0.3 km, when solving for the traction

t. The larger points indicate the best compromise. The normal and tangential traction are presented for the

appropriate α1. The synthetic data ud is projected in S4 and S6 radar looks. (a) without any noise and mask, (d)

with mask, (g) with noise (j) with noise and mask. Here, we set α0 = 1.0E− 7.
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(a) The solution for α1 = 1.0E3
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(d) The solution for α1 = 1.0E3
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(g) The solution for α1 = 1.0E2.5
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(j) The solution for α1 = 1.0E2.5
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Figure 13. L-curves used to find α1 representing the best compromise between the data fit (equation (22))

and the smoothing (equation (23)) in the cost function (equation (24)) taking into account the earth-satellite

directions with the dense covariance matrix to consider the noise effect to the solutions. The fracture is located

at −0.3 km, when solving for the traction t. The larger points indicate the best compromise. The normal and

tangential traction are presented for the appropriate α1. The synthetic data ud is projected in S4 and S6 radar

looks. (a) with noise and variance 1.e-3 (d) with noise and mask and variance 1.e-3, (g) with noise and variance

1.e-4, (j) with noise and mask and variance 1.e-4 Here, we set α0 = 1.0E− 7.
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Radar look Variance α1 Number of iteration Vector size ud

S4 S6 with noise 1.0E− 2 1.0E2.5 344 3232

S4 S6 with mask and noise 1.0E− 2 1.0E3 306 1087

S4 S6 with noise 1.0E− 3 1.0E3 315 3232

S4 S6 with mask and noise 1.0E− 3 1.0E3 117 1087

S4 S6 with noise 1.0E− 4 1.0E2.5 191 3232

S4 S6 with mask and noise 1.0E− 4 1.0E2.5 55 1087

Table 5. Comparison between the number of iterations for fracture at 0.3 km depth and when the unknowns are

the traction t for different radar looks with dense covariance matrix for noise produced by different variance.
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5 APPENDIX

5.1 The optimal step size

This section is dedicated to some mathematical details for interested readers. First part is concerned

to compute the optimal step size. To simplify the presentation, let us introduce cN defined on ΓC

cN (w,w) =

∫
ΓN

w>C−1w dΓN,

so that the cost functional in (13) becomes

J(t) :=
1

2
cN (u− ud,u− ud) +

α0

2

∫
ΓC

|t|2 dΓC +
α1

2

∫
ΓC

|∇t|2 dΓC.

Then the directional derivative of J in the direction of a given d reads

〈∂J
∂t

(t),d〉α0,α1 = cN (u− ud,w) + α0

∫
ΓC

(t · d) dΓC + α1

∫
ΓC

(∇t · ∇d) dΓC,

where w is the solution to (5) with t = d. Therefore, we may compute the optimal step size ρ, with a

search direction d by solving

〈∂J
∂t

(t + ρd),d〉α0,α1 = 0,

that is

cN (u + ρw − ud,w) + α0

∫
ΓC

(
(t + ρd) · d

)
dΓC + α1

∫
ΓC

(
(∇t + ρ∇d) · ∇d

)
dΓC = 0,

which gives

ρ

[
cN (w,w) + α0

∫
ΓC

(d · d) dΓC + α1

∫
ΓC

(∇d · ∇d) dΓC

]
+ cN (u− ud,w)

+ α0

∫
ΓC

(t · d) dΓC + α1

∫
ΓC

(∇t · ∇d) dΓC = 0.

The optimal step size is therefore

ρ∗ = −
cN (u− ud,w) + α0

∫
ΓC

(t · d) dΓC + α1

∫
ΓC

(∇t · ∇d) dΓC

cN (w,w) + α0

∫
ΓC

(d · d) dΓC + α1

∫
ΓC

(∇d · ∇d) dΓC

. (28)

5.2 The optimal step size for Earth-Satellite direction

The optimal step size for Earth-Satellite direction as previous, is still obtained by solving

〈∂J
∂t

(t + ρd),d〉α0,α1 = 0

that is

cN (Pu + ρPw − rd,Pw) + α0

∫
ΓC

(
(t + ρd) · d

)
dΓC + α1

∫
ΓC

(
(∇t + ρ∇d) · ∇d

)
dΓC = 0,
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where w is still the solution to (5) with t = d. This gives the optimal step size

ρ∗ = −
cN (Pu− rd,Pw) + α0

∫
ΓC

(t · d) dΓC + α1

∫
ΓC

(∇t · ∇d) dΓC

cN (Pw,Pw) + α0

∫
ΓC

(d · d) dΓC + α1

∫
ΓC

(∇d · ∇d) dΓC

. (29)

5.3 L-BFGS Update

The second part is concerned to L-BFGS Update in minimization Algorithm 1

Hk+1 = (I − θkskyk>)Hk(I − θkyksk>) + θksksk
>
, (30)

with

sk = tk+1 − tk, yk = gk+1 − gk, θk =
1

yk
>
sk
.
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