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Chapter 1
Formal Model for (k)-Neighborhood
Discovery Protocols ?

Raphaël Jamet and Pascal Lafourcade

Abstract :
Neighborhood discovery is a critical part of wireless sensor networks, yet little

work has been done on formal verification of the protocols in presence of both
intruder nodes and mobility. We present a formal trace-based model to verify pro-
tocols doing neighborhood discovery, and we provide a formal definition of (1)-
neighborhood and (k)-neighborhood. We also analyze a protocol from the literature,
and show some conditions needed for its correctness. Finally, we present the ground-
work for a protocol which discovers (k)-neighborhood based on (1)-neighborhood
data under some assumptions, and prove that it remains secure even if an intruder
interferes.

Key words: Formal verification, Wireless Sensors Networks, Communication Pro-
tocols, Neighborhood Discovery.

1.1 Introduction

The number of wireless networks is ever increasing. Cellular phones are now more
common than wired ones, the number of mobile connections to Wireless Local Area
Networks (WLANs) is increasing, and wireless devices are now used everyday at
homes, companies and administrations. Wireless devices have become so small and
cheap that they can be used in sensor networking applications such as environmental
or building monitoring. These devices communicate by relaying packets of other
devices across multiple wireless links (hops). Since the devices are often mobile the
topology of the network can change over time. Even if the nodes are static, a node
can disappear from the network due to battery shortage, temporary interference or
physical damage, which will also alter the network configuration. As a result one
of the main issues for these networks is that each node must discover or rediscover
which nodes are within its communication range: a process called neighborhood
discovery.

Neighborhood discovery protocols are basic components in mobile wireless sys-
tems. Knowledge of the neighbors of a node is for instance essential for routing
protocols. The goal of a neighborhood discovery protocol is to identify as neigh-
bors only those devices that are really neighbors, even in presence of intruders.
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Designing a secure neighborhood discovery protocol is not an easy task, as illus-
trated in [And01] with the famous “MIG-in-the-middle” attack mounted in the late
1980s. In this attack, Angolan MIG airplanes were able to be impersonate a South
African unit by relaying challenge messages from South African defense to another
South Africa units, which then answered the challenge for them. The Angolan MIGs
could therefore bomb their targets without being attacked by the South African
air defense. A secure neighborhood discovery system would have prevented such a
problem, by detecting that the MIG is not actually in range for the authentication
protocol, and then preventing further impersonation by enemy forces. In [PPS+08],
the authors survey the question of secure neighborhood discovery, providing defini-
tions of neighborhood types and neighbor discovery protocol properties. They also
describe different attacks against wireless networks.

We consider that two nodes are neighbors if they can communicate directly to-
gether, without the help of another node. In this, they are closely related to distance
bounding protocols, which are designed to determine a upper bound on the distance
separating two nodes. Our aim is to define formally this neighborhood property. The
ability to verify that two nodes are neighbors can be used to prevent some attacks
like wormhole attacks [HPJ03]. In this context, we consider that an attack is any
situation in which two nodes communicate together believing that they are neigh-
bors when in fact, other possibly malicious nodes are relaying the communication,
whether nodes are MIGs, smart-cards or wireless sensors.

One aim of modern security is to provide rigorous guaranties that the de-
signed system satisfies the required security properties. It is about giving rig-
orous models for systems, formal definitions of security properties and rigorous
proofs under precisely identified assumptions. Proving that a protocol is secure is
not an easy task, even for simple and short protocols. In 1996 G.Lowe [Low96]
found an attack on the famous Needham-Schroeder protocol [NS78] seventeen
years after his publication. He found this flaw using his automatic verification tool
Casper [Low97] based on the CSP (Communicating Sequential Processes) model
checker FDR [Hoa85, Sch96, RSG+00]. The protocol proposed by Needham and
Schroeder was proven secure by using a formalism called BAN logic under different
assumptions on the intruder model: only for one single execution of the protocol.
The flaw proposed uses two parallel executions of the same protocol with different
participants and assumes the so-called perfect encryption hypothesis. More precisely
it means that the only way to uncrypt a cipher text is to know the inverse key. This
hypothesis abstracts the cryptography in order to detect “logical flaw” due to all
possible interleavings of different execution of the protocol. In this formalism:

• messages are represented by terms build over a signature
• intruder controls the network
• perfect encryption assumption is done
• intruder has a limited abilities.

The intruder capabilities are usually represented by the so-called Dolev-Yao intruder
model [DY81]. This intruder model captures the perfect encryption hypothesis. This
approach is called symbolic by contrast to the computational approach proposed by
the cryptographer. The discover of the “logical” attack by G. Lowe shows that even
experts can miss some flaws even on small protocol (only three message exchanges)
and certainly underestimate the complexity of the security analysis of such proto-
cols. It also indicates that automatic analysis is critical for assessing the security of
cryptographic protocols, because humans can not reasonably verify their correct-
ness. Hence symbolic and automatic verification of cryptographic protocols became
a main and active topic in security. In [BCM11] one can find a survey of formal
approaches for proving security protocols.
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Motivational scenario

Let us consider a wireless network, intended to assist firefighters during an operation
inside disaster sites. This kind of WSNs are being investigated since a few years. For
instance in [WBRW07], Wilson et al. present the SmokeNet WSN, used to provide
firefighters critical data about the building currently on fire, and also monitor per-
sonnel health and position. SmokeNet itself is a pre-existing network consisting of
small sensors (motes) scattered through the building. All the motes regularly emit
localization data. Additionally, some motes also monitor smoke, temperature, car-
bon monoxide levels, which combined give the possibility to follow the progress of
an hypothetical fire. The applications are designed to resist node failures, and thus
empty batteries, physical damage, and other causes of disruption are not critical.
Firefighters usually are organized in a command post, outside of the building, and
agents inside the building. The command post has access to the SmokeNet data,
and can thus monitor the progress of the fire. Agents inside do not have the time to
sort through all of this data, and instead must be relayed orders from the command
post. This relaying happens through a network which is built with the cooperation
of both the pre-existing motes and the equipment worn by each firefighter. They
also consider the possibility of relay motes dropped by firefighters as they progress
into the building.

Taking all of this into account, we propose a few changes in the SmokeNet system
and firefighters equipment which would enable new features. In certain kinds of
incidents (chemical, for instance), firefighters are required to stay within a certain
range of each other (rescue distance). We can use SmokeNet for this, but the current
localization systems in place in the network requires pre-existing calibration of the
motes, maps, and mote placement information. This may not be available in all
buildings, and to work around this, our proposition does not need this data.

Let us assume that the command center wants firefighters to stay at 40 meters
of each other, but sensors can only communicate with another sensor 20 meters
away at most. How could we guarantee that if the distance between two firefighters
gets higher than 40 meters, then the sensors detect it and alert their wearers ?
By ensuring that two worn nodes can always communicate directly, or through one
other node. Alerts when the distance is less than 40 meters are not much of an issue,
but if the distance is dangerous, the sensors must react. This is where neighborhood
detection and distance bounding gets useful. If we can use a proven protocol which
detects the distance between nodes, we can keep track of the firefighter rescue radius.
If we know the communication range, using the mere possibility of communication
is similar. All of this does not require any localization data. And since we do not
want to be restricted by the range of the sensors, it should be possible to use more
than two nodes in the distance detection.

To worsen things, we would like to be able to guarantee that within some known
limits, these protocols still provably work in presence of serious malfunctions. In
order to model this, we choose a worst-case assumption, malicious sensors which
actively try to disrupt the protocol. This is a more demanding requirement than
simple faults in sensors.

Contributions:

One of our main goals is to formally define the concept of neighborhood. In or-
der to achieve it and based on the observation that the neighborhood is a physical
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property2, we distinguish two layers: the physical layer representing physical charac-
teristics of the communications (radio for instance) and the abstract layer modelling
node behavior. Then we formalize the communication between nodes by a trace-
based model inspired by the symbolic approach proposed by Paulson in [Pau98].
For this, we introduce send and receive events for the two layers for modelling
the communications between nodes. We propose a system of rules for modeling
exchanges between nodes given a topology which represents the environment and
position between nodes. Moreover, we notice that most of the neighborhood dis-
covery protocols use time measurements and can work even for mobile nodes, so
we add timestamps in all our events. We also explain how it is possible to model a
protocol in our framework, by generating new rules according to the specification of
a given protocol. Finally we give a deduction system which models the abilities of an
intruder. Using all these ingredients we can define the property of neighborhood by
generating a special event called END when a nodes conclude that he is neighbor of
another node. Consequently, an attack is the situation where a nodes concludes that
another node is his neighbor according to the protocol but indeed they are not able
to communicate directly. A protocol is secure for this property if for any execution
in presence of intruder, in a given topology, there exists no attack. Then we extend
it to (k)-neighborhood, i.e. we propose a formal definition for modelling that two
nodes can communicate with k hops. We give examples illustrating how our frame-
work works to discover attack on a protocol given an intruder and a topology or to
prove the security of a protocol under some assumptions. Finally we propose a pro-
tocol, called Sharek protocol, for discovering the (k)-neighborhood of a node based
on a secure (1)-neighborhood secure protocol. This protocol can be used to securely
discover the set of neighbors of neighbors, and further. It can help to determine the
dominating sets of a wireless network, as explained in [DB97,WL99,BMSU01]. The
main goal of this protocol is to present, as far as we know, the first secure protocol
which can be used to securely discover the (k)-neighborhood of a node. Of course
using our formalism, we then provide a formal proof of security for this protocol.

Related works:

Neighborhood discovery and analysis of protocols are active research topics in wire-
less networks security. One of the first neighborhood discovery protocol was given by
S. Brands and D. Chaum in [BC94]. Later other works have approached the problem
differently using for instance directional antennas [VKT05,DKPR11], probabilistic
protocols and challenge-response in RFID context [HK05], or specific protections
against some attacks by analyzing network topology based on time of flight of mes-
sages in [SPR+09].

One of the first formal verification of neighbor discovery protocol is the work done
by Meadows et al. in [MPP+06]. In this paper they developed a formal method-
ology to prove properties of distance bounding protocols [MPP+06]. They extend
the authentication logic to reason about distance bounding property and they ex-
tend the protocol of S. Brands and D. Chaum. However, they do not consider
(k)-neighborhoods, and deal only with static nodes.

In [PPH08a], the authors investigate the possibility of neighborhood detection.
They consider several transmission speeds, directional emissions, localization and
clock synchronization, and conclude by proving that time-based protocols cannot
securely detect neighborhoods if and only if intruders can forward faster than legit-
imate nodes. They also consider protocols which use location data.

2 We remark that is not the case for the authentication which is a property based on exchanged
messages.
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Another formal approach for distance bounding protocols is introduced by Basin
et al. in [SSBC09]. Their approach also uses notions of distances, time and events-
trace. They use the Isabelle/HOL proof assistant [NPW02] to check results from
their model. They apply their model on three security protocols, the authentication
ranging protocol [CH05], the distance bounding protocol of [BC94], which calcu-
lates distance between two nodes using communication time and finally the TESLA
protocol of [PCTS02]. In their work they only consider static nodes and do not use
(k)-neighborhoods.

In [TSG10] the authors present a systematic technique for verifying that location
discovery protocols satisfy locale authentication whereby an entity can authenticate
the physical location of a device, even in the presence of malicious adversaries. They
extend the strand space theory with a metric that captures the geometric properties
of time and space. They prove that several prominent location discovery protocols
including GPS do not satisfy the local authentication goal and analyze a location
discovery protocol that does satisfy the goal under some reasonable assumptions.

In some recent works, C. Cremers et al [CRC11] propose distance bounding pro-
tocols resistant to distance hijacking attacks. The authors in [PPH08b] and [PPH07]
build a formal model based on traces. They apply their model on a protocol they in-
troduced and on the temporal packet leash protocol [HPJ03]. However their method
does not take the mobility of the nodes into account.

More recently, in [ABK+11] the authors propose a framework for analyzing dis-
tance bounding protocols in RFID, using a computational approach and proposed
a white-box and black-box point of view. Our work differs from those by using a
symbolic approach which abstracts a way most of the cryptographic considerations.

Outline:

In Section 1.2, we present our model. We first give the network representation, the
events and traces definitions, and show how to specify a protocol and an intruder. We
also illustrate by a running toy example all our definitions. Then in Section 1.3, we
define the neighborhood property. We extend the usual notion of (1)-neighborhood
to (k)-neighborhood. In Section 1.4, we illustrate our approach by analyzing a pro-
tocol proposed in [PPH08a]. We prove that it is secure against a certain class of
intruders, but is vulnerable against stronger intruders. In Section 1.5, we propose
a secure protocol to build the (k)-neighborhoods of a node, based on any secure
(1)-neighborhood protocol. Finally we prove it is secure against a class of intruders,
before concluding in the last section.

1.2 Timed Model

Let us consider the topology depicted in Figure 1.1. In this case, if communication
times are proportional to the distances, then, due to signal reflection on the wall
and to the presence of a wall between A and B, we have that the transfer time
between A and I plus the transfer time between I and B is strictly smaller than the
transfer time between A and B. This simple situation shows that in some setting
triangular inequality may not always hold in wireless connections. It is why we
consider transfer time and not distances in our approach.

Moreover our model is only relying on the possibility of communication between
two nodes. We consider the time needed to transmit a message between two nodes.
By consequence two nodes are neighbors if they can communicate directly, i.e.
their transmission time is finite. Moreover, in order to analyze the security of the
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Fig. 1.1 Triangle inequality counter-example.

protocols we consider either honest nodes, which follow the protocol, or malicious
nodes. We illustrate our model by using a flawed toy example: Ping-Pong protocol.
This protocol finds neighbors of a node by simply sending them a solicitation (the
Ping), to which neighbors will answer with their name and a Pong, denoted by the
tuple 〈B,Pong〉. Once the Pong is received, the protocol claims that the initiator
and the node whose identity is in the Pong message are neighbors. It is obviously
not secure, but will help us to present our framework. A high-level description of
this protocol is given in Figure 1.2.

A
Ping−−−−−−−→ B

A
〈B,Pong〉

←−−−−−−−−−− B

Fig. 1.2 Ping-Pong protocol communications diagram

In this section we start by formally defining characteristics of a network and
nodes. Then we model behaviors of nodes using two family of events with times-
tamps. We explain using rules describing a given protocol how to build traces, which
are sequences of events. We model by a set of rules the intruder capabilities. Fi-
nally, we explain two realistic assumptions, which allow us to consider mobility in
our approach.

1.2.1 Networks and Nodes

Wireless Sensors Networks are composed of several nodes, that are small devices
usually equipped with sensors, a battery and a radio. They use their radio for
sending their measurements through the network. To keep each device cheap, they
have a small memory and limited computing power. Each node has an identity
and can also possess pre-shared cryptographic keys depending on the application.
A network is composed of a set of nodes (identified by an unique number) and a
topology, which represents communications between nodes.

Definition 1 (Network). A network N is defined by two components (V,T)
where:

• V denotes the set of all node identities, which is partitioned into two sets: VP denotes
all the honest nodes who are following the protocol and VI represents the intruder
nodes which are malicious.
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• T represents the matrix containing the time of communication between two nodes.
More precisely, TA,B denotes the time that a message takes starting from node
A to reach node B. If A can not reach directly B then TA,B is equal to +∞.
We also require that the communication time between a node and itself is null:
∀A ∈ V,TA,A = 0.

We denote honest node identities by A,B,C, ..., and I, J, .. for intruders. By
extension, we will often refer to nodes by their identity (for example, node A).

This definition models only static networks. In order to express the possible
movements of nodes, we need to take into account the changes in topology over
time, and so we extend the previous definition by making the communication time
depend on time. N = (V,T) becomes N = (V,T(t)), where the element of the
matrix are functions with parameter t. Each element TA,B(t) models how much
time a message emitted by the node A at time t takes to reach node B. If needed,
we use TA,B(t) instead of TA,B .

We denote N the set of all possible networks, which takes into account any num-
ber of nodes, any number of intruders, and any possible evolution of the connections
over time. Here are a few examples of useful network families:

• N0 is the family of networks where no intruder is present at all. This allows us
to show that a protocol is insecure even when no intruder is present.

N0 = {N = (V,T(t)) ∈ N | VI = ∅} .

• Nsym is the family of networks where message transfer times are symmetrical.

Nsym = {N = (V,T(t)) ∈ N | ∀t,∀A,B ∈ V,TA,B(t) = TB,A(t)} .

• Nfully_connected is the family of networks where each node can communicate
with any other node at any time.

Nfully_connected = {N = (V,T(t)) ∈ N | ∀t,∀A,B ∈ V,TA,B(t) 6= +∞} .

• Nstill is the family of networks where there is no change in transfer times de-
pending on time, or in other words a static network.

Nstill = {N = (V,T(t)) ∈ N | ∀t1, t2,∀A,B ∈ V,TA,B(t1) = TA,B(t2)} .

1.2.2 Events

Neighborhood is a physical property, which is linked to communication channels. In
order to isolate physical communications and abstract commands, we consider two
distinct layers, one of which is strictly restricted to model physical behavior, and
the other corresponding to the abstract behavior of the nodes, which correspond
to computations performed by a node. In order to model communication between
nodes and behaviors of a node on these two layers we define the following events:

• sendφ(A,m, t) : A transmits m at time t using the physical layer.
• recvφ(A,m, t) : A receives m at time t using the physical layer.
• sendα(A,m, t) : A orders the transmission of m at time t using the logical layer.
• recvα(A,m, t) : A received and processed m at time t using the logical layer.

Physical events are annotated by φ and abstract events are annotated by α. In
order to construct meaningful sequences of events, nodes need to be able to know
when a message was sent or received at the physical layer. It is why each event has
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a timestamp. In the Ping-Pong protocol the first action performed by A is modeled
by the event sendα(A,P ing, t0) and sendφ(A,P ing, t1), where t0 is the time when
the node A transmit to the radio the message Ping and t1 is the time when the
radio of the node A emits the message.

We also introduce an extra event END(N1, ..., Nk, tprop, t), which models the
fact that a protocol ended well at time t, and concludes something about the nodes
N1, ..., Nk at time tprop. For example, if we keep our objective of neighborhood
discovery protocols, that conclusion could be the possibility of direct communication
between the specified nodes at the time of the property. In our running example, A
would like to conclude after the exchange of messages that he has B as neighbor.
We model it by the event END(A,B, t2, t4), where t4 is the time when the protocol
ended and t2 is the time when the node A concludes that he has B as neighbor.
We decide to store in the event END(A,B, tprop, t) both the time tprop when the
message was sent by A to B, because if B receives it they are neighbors and the
time t when A receives a reply from B, because here also they are neighbors.

1.2.3 Rules and Traces

We now explain how to construct possible communications between different nodes.
We build traces which are sequence of events. In order to generate these sequence
we use three sets of rules which model the protocol, the communications between
nodes and also the intruder. We first present how to use a set of rules for building
a trace. We illustrate how to model a protocol with our running example, before
showing set of communication rules which are always present in our model. Finally
we give the description of intruder rules in Section 1.2.4.

1.2.3.1 Building traces from rules

Our approach is based on the trace-based modeling presented originally by Paulson
for cryptographic protocols in [Pau98]. The rules represents a step in the construc-
tion of a trace and has the following form:

(R)
H1 . . . Hn

C

where R is the name of the rule, H1 . . . , Hn are the hypothesis that have to be
satisfied in order to produce the conclusion C.

A trace is a set of events which models the communication between nodes during
the execution of a protocol in a given network and a given intruder behavior. Each
node can emit and receive messages on the abstract layer, messages can be trans-
ferred from a layer to another, and lastly the communication between two nodes’s
physical layers allow messages to go from a node to another. Those three processes
are modeled with rules which are common to all networks (details are given in the
next paragraphs). We remark that the traces are sets of events, not sequences as in
Paulson’s model: since we have timestamps for each event, the order is implicit.

Intruders are modeled by I, a set of rules that describes their abilities and be-
haviors. A precise description of the intruder model is given in 1.2.4. The behavior
of a node which respects a protocol is modeled by a set of rules denoted P. Usually
protocols are specified at the logical layer, and generate an END event when the
protocol finishes to model what the protocol claims. We denote by SN,I,P the set
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of all traces, i.e. possible executions, built by successive applications of rules of the
system.

We now write the three rules of PPingPong needed to model this protocol.

(PingPong_1)
tr ∈ SN,I,P

(tr ∪ {sendα(A,P ing, t)}) ∈ SN,I,P

(PingPong_2)
tr ∈ SN,I,P recvα(A,P ing, t1) ∈ tr t1 ≤ t2

(tr ∪ {sendα(A, 〈A,Pong〉, t2)}) ∈ SN,I,P

(PingPong_3)

tr ∈ SN,I,P
sendα(A,P ing, t1) ∈ tr sendφ(A,P ing, t2) ∈ tr
recvα(A, 〈B,Pong〉, t3) ∈ tr t1 ≤ t2 ≤ t3 ≤ t4

(tr ∪ {END(A,B, t2, t4)}) ∈ SN,I,P

The two first rules correspond to the two rules of the protocol, properly specified
with timestamps on the abstract layer. The last rule raises the END flag, which
models the fact that the protocol reached a conclusion about A and B.

1.2.3.2 Communication Rules

In Figure 1.3, we present the set of rules inherent to all networks.

(Begin)
∅ ∈ SN,I,P

(Con0)
tr ∈ SN,I,P sendα(A,m, t1) ∈ tr t1 + δ/2 ≤ t2

(tr ∪ {sendφ(A,m, t2)}) ∈ SN,I,P

(Con1)
tr ∈ SN,I,P recvφ(A,m, t1) ∈ tr t1 + δ/2 ≤ t2

(tr ∪ {recvα(A,m, t2)}) ∈ SN,I,P

(Phy)
tr ∈ SN,I,P sendφ(A,m, t1) ∈ tr TA,B(t1) ≤ (t2 − t1)

(tr ∪ {recvφ(B,m, t2)}) ∈ SN,I,P

Fig. 1.3 Basic intruder knowledge building rules

The first rule is the initialization of a trace which is made by axiom (Begin). It
means that all trace starts empty. Application of other rules adds events in order to
obtain a complete execution trace. To generate events from one layer to the other,
there are two rules (Con0) and (Con1), where δ denotes the delay a node needs to
relay a message. Finally we have the rule (Phy) which allows messages to go from a
node’s physical layer to another node, in a time greater than or equal to TA,B(t1).
This rule may be applied multiple times for a single send event, to model signal
reflections which may cause a message to be received twice or more, as shown in
Figure 1.4. It is why there is no upper bounds on t2. We also assume that all the
nodes have access to a New_Nonce() function, which returns a fresh random value
at each new call.

We consider our running example and give the trace corresponding to the follow-
ing scenario. A ordered the broadcast of message “Ping”, which was transferred to
the physical layer. Then B receives the message in their physical layer, which later
on got shifted onto the logical layer. Finally B replies to A, his name and “Pong”,
and A concludes that he is neighbor with B. We obtain the following trace assuming
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A B

Fig. 1.4 Network where the same message hits the same node twice.

that δ = 1 and the communication between A and B is symmetric and for all t,
TA,B(t) = 10. For the END event, see rule (PingPong3) for the choice of tprop = 1.

• sendα(A,P ing, 0)
• sendφ(A,P ing, 1)
• recvφ(B,P ing, 11)
• recvα(B,P ing, 12)
• sendα(B, 〈B,Pong〉, 12)
• sendφ(B, 〈B,Pong〉, 13)
• recvφ(A, 〈B,Pong〉, 23)
• recvα(A, 〈B,Pong〉, 24)
• END(A,B, 1, 24)

The first time stored in the event END(A,B, 1, 24) corresponds to the time when
A sent a message to B and the second one is the time when A receives an answer
from B. With these times we catch all the times where the nodes are neighbors.
It helps us to cover for instance the following situation: node B receives a message
from A qnd moves out to the range of A during a while, then he answers when he
is again at communication distance of A.

1.2.4 Intruder Rules

Intruder capabilities are described by the set of rules denoted I, common to all the
intruder nodes. I describes both what an intruder node can know, and what it can
do.

1.2.4.1 Intruder knowledge

Each of the intruder nodes has some knowledge, which is built with rules, alongside
the execution of the protocol. That knowledge depends on both what the intruder
node was able to hear, and what it knew before the protocol executes. This knowl-
edge is specific to a given node: what a node learns does not instantly propagates
to other intruders’ memories.

We call that knowledge IKI for the node I (and IKJ for J , and so on). More
precisely, IKI(tr, t) represents what I knows at time t assuming the events from
trace tr happened, and ÎKI(tr, t) represents what I can deduce from IKI(tr, t). We
denote IKI(∅, 0) the initial knowledge of the intruder I. For instance, in a classical
outsider attack, all of the IKI(∅, 0) would contain the identifiers of the nodes in the
network and some fictive ones.

On the abstract level, we adapt the classical Dolev-Yao intruder models [DY83]
for building the intruder knowledge. The adapted Dolev-Yao deduction system is
given by the rules in Figure 1.5 (containing the basic knowledge-building rules) and
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(IK_init)
m ∈ IKI(∅, 0)
m ∈ IKI(tr, t)

(IK_hat_promotion)
m ∈ IKI(tr, t)

m ∈ ̂IKI(tr, t)

(IK_left)
〈m,n〉 ∈ ̂IKI(tr, t)

m ∈ ̂IKI(tr, t)

(IK_right)
〈m,n〉 ∈ ̂IKI(tr, t)

n ∈ ̂IKI(tr, t)

(IK_pair)
m ∈ ̂IKI(tr, t) n ∈ ̂IKI(tr, t)

〈m,n〉 ∈ ̂IKI(tr, t)

Fig. 1.5 Basic intruder knowledge building rules

Figure 1.6, which describes the rules for symmetric and asymmetric cryptography,
and nonce generation. To avoid confusion, all symmetric keys are labelled k, and
asymmetric keys are couples (sk, pk) and encryptions are represented by {m}k.
Notice that an intruder I can increase his knowledge using a message m at time t2
only if there is a recvα(I,m, t1) ∈ tr with t1 ≤ t2.

(IK_decrypt_sym)
{m}k ∈ ̂IKI(tr, t) k ∈ ̂IKI(tr, t)

m ∈ ̂IKI(tr, t)

(IK_encrypt_sym)
m ∈ ̂IKI(tr, t) k ∈ ̂IKI(tr, t)

{m}k ∈ ̂IKI(tr, t)

(IK_decrypt_asym_sk)
{m}sk ∈ ̂IKI(tr, t) pk ∈ ̂IKI(tr, t)

m ∈ ̂IKI(tr, t)

(IK_encrypt_asym_sk)
m ∈ ̂IKI(tr, t) sk ∈ ̂IKI(tr, t)

{m}sk ∈ ̂IKI(tr, t)

(IK_encrypt_asym_pk)
m ∈ ̂IKI(tr, t) pk ∈ ̂IKI(tr, t)

{m}pk ∈ ̂IKI(tr, t)

(IK_nonce)
NI = New_Nonce()

NI ∈ ̂IKI(tr, t)

Fig. 1.6 Cryptography-related intruder knowledge building rules
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1.2.4.2 Intruder Actions

The rules to link the transmission model and the intruder knowledge are given
in Figure 1.7. (IK_recv) is used so that intruders can hear communications, and
learn from them. The rule (Intrude_replay) models how the intruder can replay
messages it heard. The rule (Intrude_forge) represents how an intruder can deduce
and build new messages from his knowledge and send them. The distinction between
those two rules allows simple intruders which would only be able to relay messages,
formally described by not including (Intrude_forge) in I. Usually, I can forge the
same messages as the protocol P, in the case of an intruder with a large enough
initial knowledge IKI(∅, 0).

(IK_recv)
recvα(I,m, t1) ∈ tr t1 ≤ t2

m ∈ IKI(tr, t2)

(Intrude_replay)
tr ∈ SN,I,P m ∈ IKI(tr, t1) t1 ≤ t2

(tr ∪ {sendα(I,m, t2)}) ∈ SN,I,P

(Intrude_forge)
tr ∈ SN,I,P m ∈ ÎKI(tr, t1) t1 ≤ t2

(tr ∪ {sendα(I,m, t2)}) ∈ SN,I,P

Fig. 1.7 Intruder knowledge input and usage rules

1.2.5 Mobility

Mobility of nodes is already included in the model, since the values of T(t) varies
with time. However, we need to add two realistic assumptions in our model.

Assumption 1 A node moves much slower than a message.

This allows us to assume that values in T(t) takes into account the (negligible)
movements of the nodes during the subsequent transfer time (since T(t) stores
a fixed configuration of nodes and their movement depending on time). This is
straightforward: radio messages travel near the speed of light, while wireless sensors
are usually slower.

Assumption 2 δ is in the same order of magnitude of value as the message transfer
time.

This assumption is related to rules (Con0) and (Con1). Remember that δ is the
time needed to forward a message.

Taking into account the previous assumption and this one, we can deduce that
sending and relaying messages does not take a significant time with regard to node
movement. To restate these two rules in a less formal way, we assume that it is
possible that during message transfers and relayings, the values of ttransfer(A,B, t)
do not change significatively, no matter which N is used.

On the other hand, it is always possible to add arbitrary delays to operations: see
rules (Phy), (Con0), (Con1) and (Intrude_replay). For instance, these delays may
be used in an attack by allowing synchronization of multiple sessions of a protocol.
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1.3 Neighborhood and (k)-Neighborhoods

1.3.1 Neighborhood

A node A is neighbor or (1)-neighbor to the node B at time t if TA,B(t) is finite
which means that A is in communication range of B.

Definition 2 (Neighborhood). Let N = (V,T(t)) be a network, the neighborhood
of a node at time t, denoted by Ng1

A(t), is the set of nodes that A can reach with
a message sent at time t. It is formally defined by:

Ng1
A(t) = {X | X ∈ V ∧TA,X(t) < +∞} .

If tr ∈ SN,I,P is a trace, we denote by t̂r the set of all possible traces that can be
inferred from tr using rules defined previously. It allows us to define ttransfer(A,B,),
the smallest time possible needed to send a fresh message m from A to B at time t
using only communication rules.

We also define a protocol PForward and an intruder IForward which consist in
the following unique rule which makes nodes forward message on abstract layer:

(Forward)
tr ∈ SN,I,P recvα(A,m, t1) ∈ tr t1 ≤ t2

(tr ∪ {sendα(A,m, t2)}) ∈ SN,I,P

Definition 3 (ttransfer(A,B, t)). Let N = (V,T(t)) be a network, and tr =
{sendφ(A,m, t)} be a trace in SN,IForward,PForward

. We define ttransfer(A,B, t) by:

• ttransfer(A,B, t) = min{x− t | recvφ(B,m, x) ∈ t̂r ⊆ SN,IForward,PForward
}.

• If the event recvφ(B,m, t) does not belong to SN,IForward,PForward
then we state

that ttransfer(A,B, t) = +∞.

We use IForward and PForward to consider the simplest situation, where node
can only forward messages. The send event introduced in all generated trace allows
us to build all possible routes taken by this message. Note that the (Forward) rule
does not impose to forward the message immediately.
ttransfer(A,B, t) is different than TA,B(t), because it can take into account mul-

tiple hops, and the relay times needed in the intervals. Also, there may be routes
which are faster than the direct ones (with some conditions on δ and N, as in the
first example in Figure 1.1).

We denote by tmax_emitter the maximum positive finite time in T(t), i.e.
the maximal communication time of two connected nodes. If we assume that
δ > tmax_emitter then we are able to characterize the definition of Ng1

A(t) by
relations between tmax_emitter and ttransfer(A,B, t).

Lemma 1. Let N ∈ N be a network containing at least the two nodes A and B. If
we assume that δ > tmax_emitter, the following properties are equivalent:

1. B ∈ Ng1
A(t)

2. ttransfer(A,B, t) ≤ tmax_emitter

Proof. We prove a double implication.

• 1 ⇒ 2: Let us assume that B ∈ Ng1
A(t). We know there exists a sequence of events

in SN,IForward,PForward
containing only the event sendφ(A,m, t). Since B ∈ Ng1

A(t),
we can generate a valid trace tr′ = {sendφ(A,m, t), recvφ(B,m, t+TA,B(t))}, using
(Phy). Therefore, ttransfer(A,B, t) ≤ TA,B(t). We now prove that this time is the
smallest value for ttransfer(A,B, t). We assume the opposite ttransfer(A,B, t) <
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TA,B(t) meaning that t′ − t < TA,B(t) where recvφ(B,m, t′). The only other way
to generate a trace containing recvφ(B,m, t′) would be to consider that there exists
a node X who has sent m to B (using rule (Phy) again). In other words there is a
trace containing sendφ(X,m, tsX ) with t′ > tsX . Sincem is fresh, this event can only
be generated from a trace containing a recvφ(X,m, trX ) event (using rules (Con0)
and (Con1)), and we know that tsX − trX ≥ δ > tmax_emitter (by hypothesis).
Moreover, also due to the freshness of m, we have trX > t. We deduce that t′ − t >
tsX − trX > tmax_emitter. This leads to a contradiction with t′ − t < TA,B(t). We
conclude that ttransfer(A,B, t) = TA,B(t) then by definition of tmax_emitter we
obtain that ttransfer(A,B, t) ≤ tmax_emitter.

• 2 ⇒ 1: We make a proof by contradiction. We assume that B 6∈ Ng1
A(t), our aim is

now to prove that ttransfer(A,B, t) > tmax_emitter. We distinguish two cases:

– ttransfer(A,B, t) = +∞. In this case, by definition of tmax_emitter, we immedi-
ately conclude.

– ttransfer(A,B, t) is finite. It means that there exists a way to send a fresh message
m between A and B, using a forwarder node which take at least δ units of time.
Since δ > tmax_emitter, we conclude that ttransfer(A,B, t) > tmax_emitter.

ut

As we have already explained, the description of a protocol makes claims (by
the mean of an END event). In the modeling of the protocol this rule can only be
used if the protocol claims that a node is a (1)-neighbor of another node. Our aim
is to give a definition which is satisfied only if the protocol is secure: meaning that
the protocol reach the flag END and the two considered nodes are really neighbor.
Our idea for (1)-neighborhood is to prove that if a protocol claims to satisfy (1)-
neighborhood then there exists a direct way of communication between the nodes.
It is captured by the following definition.

Definition 4. Let N be a family of networks and I an intruder. A protocol P
verifies the (1)-neighborhood relation in presence of an intruder I over N if and
only if ∀N = (V,T(t)) ∈ N ,∀A,B ∈ V , @tr ∈ SN,I,P such that END(A,B, t, tx) ∈
tr ∧B 6∈ Ng1

A(t).

To state it otherwise, a protocol does not verify a neighborhood property in
presence of an intruder I over a set of networks N if and only if there is at least
a trace tr in the networks in N , built by the given protocol and intruder rules,
such that END(A,B, tprop, t) ∈ tr and there is no direct communication possibility
between those nodes at time tprop. This trace contains an example attack.

Let us illustrate the neighborhoods, the intruder’s rules and the formal definition
of verifying a property by building an attack on our running example. We define N
by ∀t,Ng1

A(t) = Ng1
I(t) = {A, I} which is simply two nodes in range of each other,

one being honest (A) and one malicious (I). We assume for simplicity that nodes
do not move and can communicate in finite time.

Regarding the intruder, we consider a basic I who can forward and forge mes-
sages as previously described. We also choose IKI(∅, 0) = {A, I, Z, P ing, Pong},
the initial knowledge of I at time 0, with Z an nonexistent node identity.

The scenario of the attack is the following: A starts the protocol by broadcasting
Ping using rules (Begin) and (PingPong_1). The intruder I receives the Ping
using (Con_0), (Phy) and (Con_1). Now, I forges 〈Z,Pong〉, which is known
since both parts are in IK0, and sends that message to A (rule (Intrude_forge)).
Then using (PingPong_1) it is possible to infer END(A,Z, t2, t9) ∈ tr with the
appropriate time values. The final trace we obtain corresponds to a possible attack,
and contains the following set of events:
{sendα(A,P ing, t1), sendφ(A,P ing, t2), recvφ(I, P ing, t3), recvα(I, P ing, t4),
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sendα(I, 〈Z,Pong〉, t5), sendφ(I, 〈Z,Pong〉, t6), recvφ(A, 〈Z,Pong〉, t7),
recvα(A, 〈Z,Pong〉, t8), END(A,Z, t2, t9)}, where t1 < t2 < t3 < t4 < t5 < t6 <

t7 < t8 < t9.
Now let us go back to Definition 4. Here, we have a N, where Z 6∈ Ng1

A(t2),
because there is no Z in the network. We just built a possible trace in this setting
including END(A,Z, t2, t9), which means the protocol has detected a neighborhood
relation between A and Z at time t2. Therefore the protocol does not verify the
neighborhood property with respect to the previously defined intruder I, with his
knowledge IKI(∅, 0), on all the families of networks N which contain this example
N.

.

1.3.2 (k)-neighborhood

We extend our definition in order to determine if a node is neighbor to another one
after k hops. For simplicity’s sake, we consider that all nodes have the same relaying
time δ. We can easily generalize our results with a different time for each node in
the network.

Definition 5 ((k)-or-less-neighborhood). Let N = (V,T(t)) be a network,
Ng≤kA (the (k)-or-less-neighborhood of A) is the set of all the nodes B for which
there is a path starting at A at time t and ending at B with k hops or less, taking
into account the minimal flight time of messages and the relaying time δ. We define
it recursively by:

Ng≤kA (t) =
{
B |

(
X ∈ Ng1

A (t)
)
∧
(
B ∈ Ng

≤(k−1)
X (t+TA,X(t) + δ)

)}
.

This recursive definition means that the (k)-or-less neighborhood of A at time t
is the union, for all the neighbors X reachable by A at time t, of the (k− 1)-or-less-
neighborhoods of the differentX at time t+TA,X(t)+δ. Colloquially, a (k)-neighbor
of A is a node which can be reached in k or less hops by a message sent from A at time
t, and relayed through any other nodes. As expected, the (1)-or-less-neighborhood
is the same thing as the neighborhood given in Definition 2. According to our
definition, (k)-or-less-neighborhood has the following straightforward property.

Property 1 Let N = (V,T(t)) be a network, then we have:

Ng≤kA (t) ⊆ Ng
≤(k+1)
A (t).

We now define the (k)-neighborhood, which is the set of nodes for which there is
a path (in the sense of the previous definition) of length exactly k. It is the set of
all the nodes B for which there is a path starting at A at time t and ending at B
with k hops, but there is no such path with k − 1 hops or less.

Definition 6 ((k)-neighborhood). Let N = (V,T(t)) be a network, NgkA ((k)-
neighborhood of A) is defined by:

NgkA(t) =
(
Ng≤kA (t)

)
\
(
Ng≤k−1A (t)

)
.

Now, as in the previous subsection, we can formally define what is a protocol
which verifies the (k)-or-less-neighborhood relation in our framework.
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Definition 7. Let N be a network family. A protocol P verifies the (k)-or-less-
neighborhood relation in presence of an intruder I if and only if ∀N = (V,T(t)) ∈
N ,∀A,B ∈ V , @tr ∈ SN,I,P such that END(A,B, t, tx) ∈ tr ∧B 6∈ Ng≤kA (t).

1.4 Example: Authenticated Ranging Protocol

We consider the protocol proposed in [PPH08a]. This protocol aims to verify (1)-
neighborhood between two nodes, by using an upper bound on message transfer
time between neighbors. We first describe the protocol, then we give a modelling of
this protocol, and after that we prove its correctness in our setting.

1.4.1 Description of the Protocol

The idea of the protocol is simple: a message is sent with a nonce, and anyone hearing
it replies with that nonce, signed. An Alice-Bob representation of this protocol is
given in Figure 1.8.

A
NA−−−−−−→ B

A
{B,NA}skB←−−−−−−−−−−−− B

Fig. 1.8 Authenticated protocol communications diagram, whereNA denotes the nonce generated
by A and {m}skB denotes the message m signed by B.

1.4.2 Protocol Modelling

This protocol is in one way a secured version of the Ping Pong protocol described
above. If the resulting message is received before tsend + 2 ∗ tmax_emitter + δ, then
the emitter is a neighbor (since it is both closer than tmax_emitter and able to
communicate with us). This way, the protocol can successfully determine if the
node is in communication range or not based on physical property induced by the
properties of the nodes. We now give the rules modelling this protocol:

(AuthRanging_1)
tr ∈ SN,I,P

(tr ∪ {sendα(A,New_Nonce(), t)}) ∈ SN,I,P

(AuthRanging_2)
tr ∈ SN,I,P recvα(A,NB , t1) t1 ≤ t2
(tr ∪ {sendα(A, 〈A, {NB}skA〉, t2)}) ∈ SN,I,P

(AuthRanging_3)

tr ∈ SN,I,P sendα(A,NA, t1) sendφ(A,NA, tsA)
recvφ(A, 〈B, {NA}skB , trA) recvα(A, 〈B, {NA}skB , t4)

t1 ≤ tsA ≤ trA ≤ t4 ≤ t5 trA − tsA ≤ (2 ∗ tmax_emitter + δ)

(tr ∪ {END(A,B, tsA , t5)}) ∈ SN,I,P
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1.4.3 Authenticated Ranging Protocol Satisfies the
Neighborhood Property

In order to keep our proof concise, we assume symmetry in the time needed to send
and receive a message, i.e. TA,B = TB,A (the Nsym family of networks). We first
precise the intruder model we are using, then we show a proof of the protocol. We
consider that there is at most one compromised secret key and one compromised
node in the whole network. Otherwise, if an intruder has access to a secret key that
is not his own (whether it’s shared between different nodes, or the intruder has
access to a set of them), it is easy to find a trace where an intruder I masquerades
as the other intruder J and leads to a END(A, J) event, which by Definition 4 and
7 makes the protocol insecure. Therefore we assume intruders can only use their
own secret key.

We show that if δ < tmax_emitter then we can find an attack, but we also prove
that if δ ≥ tmax_emitter then the protocol is correct. Our analysis allows us to
deduce sufficient conditions of application for the protocol.

1.4.3.1 Existence of an Attack if δ < tmax_emitter

We consider a network containing three nodes A, B and an intruder I, with constant
time of transfer ε. The topology of this network is given in Figure 1.9, where there
is no link between nodes A and B, and I can communicate with A and B. Applying

I

A B

Fig. 1.9 Network of this counter-example

the rules of the authenticated ranging protocol, we can construct the following valid
tr in SN,I,P which contains:

• sendα(A,NA, 0)
• sendφ(A,NA, 0.5δ) (Emission time for A)
• recvφ(I,NA, 0.5δ + ε)
• recvα(I,NA, 1δ + ε)
• sendα(I,NA, 1δ + ε)
• sendφ(I,NA, 1.5δ + ε)
• recvφ(B,NA, 1.5δ + 2ε)
• recvα(B,NA, 2δ + 2ε)
• sendα(B, {B,NA}skB , 2δ + 2ε)
• sendφ(B, {B,NA}skB , 2.5δ + 2ε)
• recvφ(I, {B,NA}skB , 2.5δ + 3ε)
• recvα(I, {B,NA}skB , 3δ + 3ε)
• sendα(I, {B,NA}skB , 3δ + 3ε)
• sendφ(I, {B,NA}skB , 3.5δ + 3ε)
• recvφ(A, {B,NA}skB , 3.5δ + 4ε) (Reception time for A)
• recvα(A, {B,NA}skB , 4δ + 4ε)
• END(A,B, 0.5δ, 4δ + 4ε)
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Now, the END event could only be generated if (3.5δ + 4ε) − (0.5δ) < 2 ∗
tmax_emitter+δ, according to rule (AuthRanging3). It can be simplified to δ+2∗ε <
tmax_emitter. Since the END event claims neighborhood between A and B at time
0.5δ while there is no neighborhood relation between them, the protocol is flawed
if δ < tmax_emitter.

1.4.3.2 The protocol is Secure if δ ≥ tmax_emitter

In other words we prove that the protocol will never claim there is a neighborhood
property between two nodes, when there is actually none. In order to do this, we pro-
ceed by contradiction, assuming the protocol is broken and showing a contradiction.
We assume the protocol does not satisfy the definition, this means that:

∃tr ∈ SN,I,P s.t. END(A,B, tsA , t) ∈ tr ∧B 6∈ Ng1
A(tsA).

Due to the cryptographic primitives, we are sure that the replied message is forged
by B and cannot be modified, since an intruder who is not B would not have access
to skB . Hence we are sure that the message went through B. Then we compute a
lower bound for the running time of the protocol by decomposing it in three phases:
from A to B, during B’s computations and from B to A.

• FromA toB: Following the rules of the protocol, in order to generate END(A,B, tsA , t) ∈
tr, the following properties must be true :

– sendφ(A,NA, tsA) ∈ SN,I,P
– recvφ(A, 〈B, {NA}skB , trA) ∈ SN,I,P
– trA − tsA ≤ (2 ∗ tmax_emitter + δ)

NA has been sent by A at tsA , the time when B receives it is denoted by trB .
Hence we have that ttransfer(A,B, tsA) ≤ trB − tsA . Applying lemma 1 we
obtain:

B 6∈ Ng1
A(tsA)⇔ ttransfer(A,B, tsA) > tmax_emitter.

We deduce that:
trB − tsA > tmax_emitter

B also has access to NA at least at time trB (and not before).
• During B’s computations: Applying the rules, we know that the forward time

(tsB − trB ) is greater or equal to δ.
• From B to A: We have ttransfer(B,A, tsB ) ≤ trA−tsB . Because we are in a sym-

metrical network and due to assumption 1 and 2, we also have A 6∈ Ng1
B(tsB )

then we apply lemma 1 once again regarding this message, and therefore A
receives the signed answer at best at time trA such that:

A 6∈ Ng1
B(tsB )⇔ trA − tsB > tmax_emitter

By summing all these bounds we get:

trA − tsA = (trA − tsB ) + (tsB − trB ) + (trB − tsA) > 2 ∗ tmax_emitter + δ

According to the hypothesis related to the END event, we have trA − tsA ≤
2 ∗ tmax_emitter + δ which leads us to a contradiction.
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1.5 (k)-or-less-Neighbors Discovery Protocol

Assuming that we have a secure (1)-neighbor discovery protocol, we propose a (k)-
or-less-neighbor discovery protocol based on it. This protocols aims to construct the
(k)-or-less-neighborhood, by using the knowledge each node has about its neighbor-
hood. For this protocol, we need to consider several END events, each being a step-
ping stone towards a final conclusion. For instance ENDk(A,B, tprop, t) expresses
the (k)-or-less neighborhood property between A and B at time tprop. We notice
that definitions of how a protocol verifies a property follows the same idea as before:
there should not exist a trace where an END contradicts the physical property it
claims. We call this protocol the Sharek protocol.

1.5.1 Description of the protocol

In the first phase of the protocol, each node floods the network with its (1)-
neighborhood. After this, no more communications happen.

Then, all the nodes try to map their (2)-or-less-neighborhoods based on two
or more of their (1)-neighbors claiming neighborhood to another node.
After that, each node continues by computing its upper neighborhood based on
its previous deductions. We do not require that each node knows its whole (1)-
neighborhood, but only a subset of it. We model this with the V iew function,
which is used in the rules of the protocol.

This protocol is sensitive to the number of intruders, this simple version works
only when there is only one intruder in the network. This way, the single intruder
can not create false conclusions by lying, since there will not be the same claim
from another (necessarily legitimate) node unless it was true in the first place. If
we increase the number of approving nodes in the deduction, then we can tolerate
more intruders.

There is a small improvement we stacked on top of this : if two nodes claim
neighborhood with a third one, but are not at the same level of neighborhood with
the center, then the third one will be accepted at the highest level. Since the (k−1)-
or-less neighborhood is included in the (k)-or-less neighborhood, we can choose
the most conservative option and still satisfy the conditions for the verification of
neighborhood properties.

The security proof shows that if the protocol ends by reaching a conclusion, the
results are secure. We also assume one of the two following assumptions:

• Nodes have synchronized clocks. This is required by the protocol, which makes
nodes use the timestamped data sent by their neighbors. If honest nodes send
erroneous times, then the intruder can easily leverage this and trick the protocol
into a false conclusion. In the rest, we consider this assumption.

• Nodes are static. i.e. Nstill as defined above. Then, the neighborhoods will not
change over time, and the timestamps become trivially useless. It is easy to infer
a proof with this assumption from the previous case.

We model the knowledge of a part of the (1)-neighbors by the View function,
which returns the part of the (1)-neighbors that the node knows. A high level
description of Sharek Protocol is given in Figure 1.10, where the double arrow
symbolize the flooding by repeated broadcasts.
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∀X
{V iew(Ng1

X (tprop))}skX======================⇒ ∗

Fig. 1.10 Sharek protocol communications diagram

1.5.2 Rules of Sharek Protocol

We give the few rules modeling our protocol:

(Sharek_begin)
tr ∈ SN,I,P

tr.sendα(A, {〈tprop, A, V iew(A,Ng1
A)〉}skA , t) ∈ SN,I,P

(Sharek_basis)
tr ∈ SN,I,P B ∈ V iew(A,Ng1

A(tprop)) tprop ≤ t
tr.END1(A,B, tprop, t) ∈ SN,I,P

(Sharek_forward)

tr ∈ SN,I,P
recvα(A, {〈tprop, B, {N1, ..., Nk}〉}skB , t1) ∈ tr

t1 ≤ t2
tr.sendα(A, {〈tprop, B, {N1, ..., Nk}〉}skB , t2) ∈ SN,I,P

(Sharek_makestep)

tr ∈ SN,I,P
recvα(A, {〈tprop, B, {D, ...}〉}skB , t1) ∈ tr
recvα(A, {〈tprop, C, {D, ...}〉}skC , t2) ∈ tr

ENDb(A,B, tprop, tb) ∈ tr
ENDc(A,C, tprop, tc) ∈ tr
∀tx ∈ {t1, t2, tb, tc}, tx ≤ td

(max(b, c) + 1) ≤ k
tr.ENDmax(b,c)+1(A,D, tprop, td) ∈ SN,I,P

1.5.3 Security of Sharek

In order to prove that the protocol verifies the (k)-or-less-neighborhood property,
we proceed with a proof by induction. First we prove that our protocol verifies
(1)-neighborhood property in Lemma 2, then we assume Sharek protocol verifies all
(i)-neighborhood property for i ≤ k and we show that it verifies (k+1)-neighborhood
property in Lemma 3.

We define N1,sym as the family of networks where there is only a single intruder,
and where all the connections are symmetric.

Lemma 2. The protocol verifies the (1)-neighborhood property over N1,sym:

∀N ∈ N1,sym,@tr ∈ SN,I,P s.t. END1(A,B, tprop, t) ∈ tr ∧B 6∈ Ng1
A(tprop)

Proof. We assume that ∃tr ∈ SN,I,P s.t. END
1(A,B, tprop, t) ∈ tr∧B 6∈ Ng1

A(tprop).
The only way we can generate a END1(A,B, tprop, t) event in a trace tr ∈ SN,I,P
is using (Sharek_basis). This rule requires B ∈ V iew(A,Ng1

A(tprop)). The V iew
function, by definition, returns a subset of Ng1

A(tprop) : therefore, there is a contra-
diction. ut

Lemma 3. If the protocol verifies all the i-or-less neighborhood properties, 0 < i ≤ k
over N1,sym, then it verifies the (k + 1)-neighborhood property over N1,sym. More
formally it means that:
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∀N ∈ N1,sym,∀i ≤ k,@tr ∈ SN,I,P s.t. ENDi(A,D, tprop, t) ∈ tr ∧D 6∈ Ng≤iA (tprop)

⇒

∀N ∈ N1,sym,@tr ∈ SN,I,P s.t. ENDk+1(A,D, tprop, t) ∈ tr ∧D 6∈ Ng≤k+1
A (tprop)

Proof. We do a proof by contradiction. We assume that there is a N ∈ N1,sym and
a tr ∈ SN,I,P such that ENDk+1(A,D, tprop, t) ∈ tr ∧ D 6∈ Ng≤k+1

A (tprop). Since
ENDk+1(A,D, tprop, t) ∈ tr then it can only be build from (Sharek_makestep),
meaning that we must have all the hypothesis true, in particular:

• recvα(A, {〈tprop, B, {D, ...}〉}skB , t1) ∈ tr
• recvα(A, {〈tprop, C, {D, ...}〉}skC , t2) ∈ tr
• ENDk(A,B, tprop, tx) ∈ tr
• ENDi(A,C, tprop, ty) ∈ tr, i ≤ k

We apply the induction hypothesis on the two last items. We obtain that B ∈
Ng≤kA (tprop) and C ∈ Ng≤iA (tprop) ⊆ Ng≤kA (tprop) (and due to property 1). By
hypothesis we know that D 6∈ Ng≤k+1

A (tprop), which is equivalent to(
@X ∈ V s.t. X ∈ Ng≤kA (tprop) ∧D ∈ Ng1

X(tprop + tX)
)
.

We deduce that D 6∈ Ng1
X(tprop + tX) for X ∈ {B,C} with tX the minimal time

needed to forward a message from A to X at tprop. Both messages contained in the
receive events are signed by their pretended emitters, respectively B and C. We can
then conclude that both B and C crafted their respective claims of neighborhood
with D. But C and B claims in these messages that D is in their (1)-neighborhood.
Since nodes can not lie about their neighborhoods using rules in P, this means
that both their messages were built by (Intrude_forge), and as both messages are
forged by their pretended emitter, we can conclude that both B and C are intruders.
This is in contradiction with our initial hypothesis that the network consists of only
one intruder. ut

1.6 Conclusion

We have proposed a way of modeling physical properties in a wireless network
in order to verify protocols in the presence of intruders, taking into account time
and movement of nodes. We focused on the protocols which discover the distance
between nodes, from a single hop (usually called neighborhood property) to an
arbitrary number of them ((k)-neighborhood). After introducing the model, we
have applied the model to two protocols and proved that one is correct under some
assumptions about the network, and the intruder. Finally we propose the Sharek
protocol, which securely discover (k)-neighbors based on the knowledge of the (1)-
neighborhood, in presence of one intruder. We can generalize this protocol in order
to be resistant to several intruders. We also provide a formal proof of the security
of the Sharek protocol as a third example of an application using our formal model.
This formal modelling of the (k)-neighborhood is the first step toward an automatic
tool for verifying neighborhood discovery protocols.
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