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Introduction

The number of wireless networks is ever increasing. Cellular phones are now more common than wired ones, the number of mobile connections to Wireless Local Area Networks (WLANs) is increasing, and wireless devices are now used everyday at homes, companies and administrations. Wireless devices have become so small and cheap that they can be used in sensor networking applications such as environmental or building monitoring. These devices communicate by relaying packets of other devices across multiple wireless links (hops). Since the devices are often mobile the topology of the network can change over time. Even if the nodes are static, a node can disappear from the network due to battery shortage, temporary interference or physical damage, which will also alter the network configuration. As a result one of the main issues for these networks is that each node must discover or rediscover which nodes are within its communication range: a process called neighborhood discovery.

Neighborhood discovery protocols are basic components in mobile wireless systems. Knowledge of the neighbors of a node is for instance essential for routing protocols. The goal of a neighborhood discovery protocol is to identify as neighbors only those devices that are really neighbors, even in presence of intruders.

Designing a secure neighborhood discovery protocol is not an easy task, as illustrated in [START_REF] Anderson | Security Engineering: A Guide to Building Dependable Distributed Systems[END_REF] with the famous "MIG-in-the-middle" attack mounted in the late 1980s. In this attack, Angolan MIG airplanes were able to be impersonate a South African unit by relaying challenge messages from South African defense to another South Africa units, which then answered the challenge for them. The Angolan MIGs could therefore bomb their targets without being attacked by the South African air defense. A secure neighborhood discovery system would have prevented such a problem, by detecting that the MIG is not actually in range for the authentication protocol, and then preventing further impersonation by enemy forces. In [PPS + 08], the authors survey the question of secure neighborhood discovery, providing definitions of neighborhood types and neighbor discovery protocol properties. They also describe different attacks against wireless networks.

We consider that two nodes are neighbors if they can communicate directly together, without the help of another node. In this, they are closely related to distance bounding protocols, which are designed to determine a upper bound on the distance separating two nodes. Our aim is to define formally this neighborhood property. The ability to verify that two nodes are neighbors can be used to prevent some attacks like wormhole attacks [START_REF] Hu | Packet leashes: a defense against wormhole attacks in wireless networks[END_REF]. In this context, we consider that an attack is any situation in which two nodes communicate together believing that they are neighbors when in fact, other possibly malicious nodes are relaying the communication, whether nodes are MIGs, smart-cards or wireless sensors.

One aim of modern security is to provide rigorous guaranties that the designed system satisfies the required security properties. It is about giving rigorous models for systems, formal definitions of security properties and rigorous proofs under precisely identified assumptions. Proving that a protocol is secure is not an easy task, even for simple and short protocols. In 1996 G.Lowe [START_REF] Lowe | Breaking and fixing the Needham-Schroeder public-key protocol using FDR[END_REF] found an attack on the famous Needham-Schroeder protocol [START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF] seventeen years after his publication. He found this flaw using his automatic verification tool Casper [START_REF] Lowe | Casper: A compiler for the analysis of security protocols[END_REF] based on the CSP (Communicating Sequential Processes) model checker FDR [Hoa85, Sch96, RSG + 00]. The protocol proposed by Needham and Schroeder was proven secure by using a formalism called BAN logic under different assumptions on the intruder model: only for one single execution of the protocol. The flaw proposed uses two parallel executions of the same protocol with different participants and assumes the so-called perfect encryption hypothesis. More precisely it means that the only way to uncrypt a cipher text is to know the inverse key. This hypothesis abstracts the cryptography in order to detect "logical flaw" due to all possible interleavings of different execution of the protocol. In this formalism:

• messages are represented by terms build over a signature • intruder controls the network • perfect encryption assumption is done • intruder has a limited abilities.

The intruder capabilities are usually represented by the so-called Dolev-Yao intruder model [START_REF] Dolev | On the security of public key protocols[END_REF]. This intruder model captures the perfect encryption hypothesis. This approach is called symbolic by contrast to the computational approach proposed by the cryptographer. The discover of the "logical" attack by G. Lowe shows that even experts can miss some flaws even on small protocol (only three message exchanges) and certainly underestimate the complexity of the security analysis of such protocols. It also indicates that automatic analysis is critical for assessing the security of cryptographic protocols, because humans can not reasonably verify their correctness. Hence symbolic and automatic verification of cryptographic protocols became a main and active topic in security. In [START_REF] Basin | Model Checking Security Protocols[END_REF] one can find a survey of formal approaches for proving security protocols.

Motivational scenario

Let us consider a wireless network, intended to assist firefighters during an operation inside disaster sites. This kind of WSNs are being investigated since a few years. For instance in [START_REF] Wilson | A wireless sensor network and incident command interface for urban firefighting[END_REF], Wilson et al. present the SmokeNet WSN, used to provide firefighters critical data about the building currently on fire, and also monitor personnel health and position. SmokeNet itself is a pre-existing network consisting of small sensors (motes) scattered through the building. All the motes regularly emit localization data. Additionally, some motes also monitor smoke, temperature, carbon monoxide levels, which combined give the possibility to follow the progress of an hypothetical fire. The applications are designed to resist node failures, and thus empty batteries, physical damage, and other causes of disruption are not critical. Firefighters usually are organized in a command post, outside of the building, and agents inside the building. The command post has access to the SmokeNet data, and can thus monitor the progress of the fire. Agents inside do not have the time to sort through all of this data, and instead must be relayed orders from the command post. This relaying happens through a network which is built with the cooperation of both the pre-existing motes and the equipment worn by each firefighter. They also consider the possibility of relay motes dropped by firefighters as they progress into the building.

Taking all of this into account, we propose a few changes in the SmokeNet system and firefighters equipment which would enable new features. In certain kinds of incidents (chemical, for instance), firefighters are required to stay within a certain range of each other (rescue distance). We can use SmokeNet for this, but the current localization systems in place in the network requires pre-existing calibration of the motes, maps, and mote placement information. This may not be available in all buildings, and to work around this, our proposition does not need this data.

Let us assume that the command center wants firefighters to stay at 40 meters of each other, but sensors can only communicate with another sensor 20 meters away at most. How could we guarantee that if the distance between two firefighters gets higher than 40 meters, then the sensors detect it and alert their wearers ? By ensuring that two worn nodes can always communicate directly, or through one other node. Alerts when the distance is less than 40 meters are not much of an issue, but if the distance is dangerous, the sensors must react. This is where neighborhood detection and distance bounding gets useful. If we can use a proven protocol which detects the distance between nodes, we can keep track of the firefighter rescue radius. If we know the communication range, using the mere possibility of communication is similar. All of this does not require any localization data. And since we do not want to be restricted by the range of the sensors, it should be possible to use more than two nodes in the distance detection.

To worsen things, we would like to be able to guarantee that within some known limits, these protocols still provably work in presence of serious malfunctions. In order to model this, we choose a worst-case assumption, malicious sensors which actively try to disrupt the protocol. This is a more demanding requirement than simple faults in sensors.

Contributions:

One of our main goals is to formally define the concept of neighborhood. In order to achieve it and based on the observation that the neighborhood is a physical property2 , we distinguish two layers: the physical layer representing physical characteristics of the communications (radio for instance) and the abstract layer modelling node behavior. Then we formalize the communication between nodes by a tracebased model inspired by the symbolic approach proposed by Paulson in [START_REF] Paulson | The inductive approach to verifying cryptographic protocols[END_REF]. For this, we introduce send and receive events for the two layers for modelling the communications between nodes. We propose a system of rules for modeling exchanges between nodes given a topology which represents the environment and position between nodes. Moreover, we notice that most of the neighborhood discovery protocols use time measurements and can work even for mobile nodes, so we add timestamps in all our events. We also explain how it is possible to model a protocol in our framework, by generating new rules according to the specification of a given protocol. Finally we give a deduction system which models the abilities of an intruder. Using all these ingredients we can define the property of neighborhood by generating a special event called END when a nodes conclude that he is neighbor of another node. Consequently, an attack is the situation where a nodes concludes that another node is his neighbor according to the protocol but indeed they are not able to communicate directly. A protocol is secure for this property if for any execution in presence of intruder, in a given topology, there exists no attack. Then we extend it to (k)-neighborhood, i.e. we propose a formal definition for modelling that two nodes can communicate with k hops. We give examples illustrating how our framework works to discover attack on a protocol given an intruder and a topology or to prove the security of a protocol under some assumptions. Finally we propose a protocol, called Sharek protocol, for discovering the (k)-neighborhood of a node based on a secure (1)-neighborhood secure protocol. This protocol can be used to securely discover the set of neighbors of neighbors, and further. It can help to determine the dominating sets of a wireless network, as explained in [DB97, [START_REF] Wu | On calculating connected dominating set for efficient routing in ad hoc wireless networks[END_REF][START_REF] Bose | Routing with guaranteed delivery in ad hoc wireless networks[END_REF]. The main goal of this protocol is to present, as far as we know, the first secure protocol which can be used to securely discover the (k)-neighborhood of a node. Of course using our formalism, we then provide a formal proof of security for this protocol.

Related works:

Neighborhood discovery and analysis of protocols are active research topics in wireless networks security. One of the first neighborhood discovery protocol was given by S. Brands and D. Chaum in [START_REF] Brands | Distance-bounding protocols[END_REF]. Later other works have approached the problem differently using for instance directional antennas [START_REF] Vasudevan | On neighbor discovery in wireless networks with directional antennas[END_REF][START_REF] Du | Neighbor discovery in a sensor network with directional antennae[END_REF], probabilistic protocols and challenge-response in RFID context [START_REF] Hancke | An rfid distance bounding protocol[END_REF], or specific protections against some attacks by analyzing network topology based on time of flight of messages in [SPR + 09].

One of the first formal verification of neighbor discovery protocol is the work done by Meadows et al. in [MPP + 06]. In this paper they developed a formal methodology to prove properties of distance bounding protocols [MPP + 06]. They extend the authentication logic to reason about distance bounding property and they extend the protocol of S. Brands and D. Chaum. However, they do not consider (k)-neighborhoods, and deal only with static nodes.

In [START_REF] Poturalski | Secure neighbor discovery in wireless networks: formal investigation of possibility[END_REF], the authors investigate the possibility of neighborhood detection. They consider several transmission speeds, directional emissions, localization and clock synchronization, and conclude by proving that time-based protocols cannot securely detect neighborhoods if and only if intruders can forward faster than legitimate nodes. They also consider protocols which use location data.

Another formal approach for distance bounding protocols is introduced by Basin et al. in [START_REF] Schaller | Modeling and verifying physical properties of security protocols for wireless networks[END_REF]. Their approach also uses notions of distances, time and eventstrace. They use the Isabelle/HOL proof assistant [START_REF] Nipkow | Isabelle/HOL -A Proof Assistant for Higher-Order Logic[END_REF] to check results from their model. They apply their model on three security protocols, the authentication ranging protocol [START_REF] Capkun | Secure positioning of wireless devices with application to sensor networks[END_REF], the distance bounding protocol of [START_REF] Brands | Distance-bounding protocols[END_REF], which calculates distance between two nodes using communication time and finally the TESLA protocol of [START_REF] Perrig | The tesla broadcast authentication protocol[END_REF]. In their work they only consider static nodes and do not use (k)-neighborhoods.

In [START_REF] Thayer | Metric strand spaces for locale authentication protocols[END_REF] the authors present a systematic technique for verifying that location discovery protocols satisfy locale authentication whereby an entity can authenticate the physical location of a device, even in the presence of malicious adversaries. They extend the strand space theory with a metric that captures the geometric properties of time and space. They prove that several prominent location discovery protocols including GPS do not satisfy the local authentication goal and analyze a location discovery protocol that does satisfy the goal under some reasonable assumptions.

In some recent works, C. Cremers et al [START_REF] Cremers | Distance hijacking attacks on distance bounding protocols[END_REF] propose distance bounding protocols resistant to distance hijacking attacks. The authors in [START_REF] Poturalski | Towards Provable Secure Neighbor Discovery in Wireless Networks[END_REF] and [START_REF] Poturalski | Secure Neighbor Discovery in Wireless Networks: Formal Investigation of Possiblity[END_REF] build a formal model based on traces. They apply their model on a protocol they introduced and on the temporal packet leash protocol [START_REF] Hu | Packet leashes: a defense against wormhole attacks in wireless networks[END_REF]. However their method does not take the mobility of the nodes into account.

More recently, in [ABK + 11] the authors propose a framework for analyzing distance bounding protocols in RFID, using a computational approach and proposed a white-box and black-box point of view. Our work differs from those by using a symbolic approach which abstracts a way most of the cryptographic considerations.

Outline:

In Section 1.2, we present our model. We first give the network representation, the events and traces definitions, and show how to specify a protocol and an intruder. We also illustrate by a running toy example all our definitions. Then in Section 1.3, we define the neighborhood property. We extend the usual notion of (1)-neighborhood to (k)-neighborhood. In Section 1.4, we illustrate our approach by analyzing a protocol proposed in [START_REF] Poturalski | Secure neighbor discovery in wireless networks: formal investigation of possibility[END_REF]. We prove that it is secure against a certain class of intruders, but is vulnerable against stronger intruders. In Section 1.5, we propose a secure protocol to build the (k)-neighborhoods of a node, based on any secure (1)-neighborhood protocol. Finally we prove it is secure against a class of intruders, before concluding in the last section.

Timed Model

Let us consider the topology depicted in Figure 1.1. In this case, if communication times are proportional to the distances, then, due to signal reflection on the wall and to the presence of a wall between A and B, we have that the transfer time between A and I plus the transfer time between I and B is strictly smaller than the transfer time between A and B. This simple situation shows that in some setting triangular inequality may not always hold in wireless connections. It is why we consider transfer time and not distances in our approach.

Moreover our model is only relying on the possibility of communication between two nodes. We consider the time needed to transmit a message between two nodes. By consequence two nodes are neighbors if they can communicate directly, i.e. their transmission time is finite. Moreover, in order to analyze the security of the protocols we consider either honest nodes, which follow the protocol, or malicious nodes. We illustrate our model by using a flawed toy example: Ping-Pong protocol. This protocol finds neighbors of a node by simply sending them a solicitation (the Ping), to which neighbors will answer with their name and a Pong, denoted by the tuple B, P ong . Once the Pong is received, the protocol claims that the initiator and the node whose identity is in the Pong message are neighbors. It is obviously not secure, but will help us to present our framework. A high-level description of this protocol is given in Figure 1.2.

A P ing -------→ B A B,P ong ←----------B Fig. 1.2 Ping-Pong protocol communications diagram
In this section we start by formally defining characteristics of a network and nodes. Then we model behaviors of nodes using two family of events with timestamps. We explain using rules describing a given protocol how to build traces, which are sequences of events. We model by a set of rules the intruder capabilities. Finally, we explain two realistic assumptions, which allow us to consider mobility in our approach.

Networks and Nodes

Wireless Sensors Networks are composed of several nodes, that are small devices usually equipped with sensors, a battery and a radio. They use their radio for sending their measurements through the network. To keep each device cheap, they have a small memory and limited computing power. Each node has an identity and can also possess pre-shared cryptographic keys depending on the application. A network is composed of a set of nodes (identified by an unique number) and a topology, which represents communications between nodes.

Definition 1 (Network).

A network N is defined by two components (V, T) where:

• V denotes the set of all node identities, which is partitioned into two sets: V P denotes all the honest nodes who are following the protocol and V I represents the intruder nodes which are malicious.

• T represents the matrix containing the time of communication between two nodes. More precisely, T A,B denotes the time that a message takes starting from node A to reach node B. If A can not reach directly B then T A,B is equal to +∞. We also require that the communication time between a node and itself is null:

∀A ∈ V, T A,A = 0.
We denote honest node identities by A, B, C, ..., and I, J, .. for intruders. By extension, we will often refer to nodes by their identity (for example, node A).

This definition models only static networks. In order to express the possible movements of nodes, we need to take into account the changes in topology over time, and so we extend the previous definition by making the communication time depend on time. N = (V, T) becomes N = (V, T(t)), where the element of the matrix are functions with parameter t. Each element T A,B (t) models how much time a message emitted by the node A at time t takes to reach node B. If needed, we use

T A,B (t) instead of T A,B .
We denote N the set of all possible networks, which takes into account any number of nodes, any number of intruders, and any possible evolution of the connections over time. Here are a few examples of useful network families:

• N 0 is the family of networks where no intruder is present at all. This allows us to show that a protocol is insecure even when no intruder is present.

N 0 = {N = (V, T(t)) ∈ N | V I = ∅} .
• N sym is the family of networks where message transfer times are symmetrical.

N sym = {N = (V, T(t)) ∈ N | ∀t, ∀A, B ∈ V, T A,B (t) = T B,A (t)} .
• N f ully_connected is the family of networks where each node can communicate with any other node at any time.

N f ully_connected = {N = (V, T(t)) ∈ N | ∀t, ∀A, B ∈ V, T A,B (t) = +∞} .
• N still is the family of networks where there is no change in transfer times depending on time, or in other words a static network.

N still = {N = (V, T(t)) ∈ N | ∀t 1 , t 2 , ∀A, B ∈ V, T A,B (t 1 ) = T A,B (t 2 )} .

Events

Neighborhood is a physical property, which is linked to communication channels. In order to isolate physical communications and abstract commands, we consider two distinct layers, one of which is strictly restricted to model physical behavior, and the other corresponding to the abstract behavior of the nodes, which correspond to computations performed by a node. In order to model communication between nodes and behaviors of a node on these two layers we define the following events:

• send φ (A, m, t) : A transmits m at time t using the physical layer.

• recv φ (A, m, t) : A receives m at time t using the physical layer.

• send α (A, m, t) : A orders the transmission of m at time t using the logical layer.

• recv α (A, m, t) : A received and processed m at time t using the logical layer.

Physical events are annotated by φ and abstract events are annotated by α. In order to construct meaningful sequences of events, nodes need to be able to know when a message was sent or received at the physical layer. It is why each event has a timestamp. In the Ping-Pong protocol the first action performed by A is modeled by the event send α (A, P ing, t 0 ) and send φ (A, P ing, t 1 ), where t 0 is the time when the node A transmit to the radio the message P ing and t 1 is the time when the radio of the node A emits the message.

We also introduce an extra event END(N 1 , ..., N k , t prop , t), which models the fact that a protocol ended well at time t, and concludes something about the nodes N 1 , ..., N k at time t prop . For example, if we keep our objective of neighborhood discovery protocols, that conclusion could be the possibility of direct communication between the specified nodes at the time of the property. In our running example, A would like to conclude after the exchange of messages that he has B as neighbor. We model it by the event END(A, B, t 2 , t 4 ), where t 4 is the time when the protocol ended and t 2 is the time when the node A concludes that he has B as neighbor. We decide to store in the event END(A, B, t prop , t) both the time t prop when the message was sent by A to B, because if B receives it they are neighbors and the time t when A receives a reply from B, because here also they are neighbors.

Rules and Traces

We now explain how to construct possible communications between different nodes. We build traces which are sequence of events. In order to generate these sequence we use three sets of rules which model the protocol, the communications between nodes and also the intruder. We first present how to use a set of rules for building a trace. We illustrate how to model a protocol with our running example, before showing set of communication rules which are always present in our model. Finally we give the description of intruder rules in Section 1.2.4.

Building traces from rules

Our approach is based on the trace-based modeling presented originally by Paulson for cryptographic protocols in [START_REF] Paulson | The inductive approach to verifying cryptographic protocols[END_REF]. The rules represents a step in the construction of a trace and has the following form:

(R) H 1 . . . H n C
where R is the name of the rule, H 1 . . . , H n are the hypothesis that have to be satisfied in order to produce the conclusion C. A trace is a set of events which models the communication between nodes during the execution of a protocol in a given network and a given intruder behavior. Each node can emit and receive messages on the abstract layer, messages can be transferred from a layer to another, and lastly the communication between two nodes's physical layers allow messages to go from a node to another. Those three processes are modeled with rules which are common to all networks (details are given in the next paragraphs). We remark that the traces are sets of events, not sequences as in Paulson's model: since we have timestamps for each event, the order is implicit.

Intruders are modeled by I, a set of rules that describes their abilities and behaviors. A precise description of the intruder model is given in 1.2.4. The behavior of a node which respects a protocol is modeled by a set of rules denoted P. Usually protocols are specified at the logical layer, and generate an END event when the protocol finishes to model what the protocol claims. We denote by S N,I,P the set of all traces, i.e. possible executions, built by successive applications of rules of the system.

We now write the three rules of P P ingP ong needed to model this protocol.

(P ingP ong_1) tr ∈ S N,I,P (tr ∪ {send α (A, P ing, t)}) ∈ S N,I,P (P ingP ong_2) tr ∈ S N,I,P recv α (A, P ing, t 1 ) ∈ tr t 1 ≤ t 2 (tr ∪ {send α (A, A, P ong , t 2 )}) ∈ S N,I,P (P ingP ong_3) tr ∈ S N,I,P send α (A, P ing, t 1 ) ∈ tr send φ (A, P ing, t 2 ) ∈ tr recv α (A, B, P ong , t 3 ) ∈ tr

t 1 ≤ t 2 ≤ t 3 ≤ t 4 (tr ∪ {END(A, B, t 2 , t 4 )}) ∈ S N,I,P
The two first rules correspond to the two rules of the protocol, properly specified with timestamps on the abstract layer. The last rule raises the END flag, which models the fact that the protocol reached a conclusion about A and B.

Communication Rules

In Figure 1.3, we present the set of rules inherent to all networks. The first rule is the initialization of a trace which is made by axiom (Begin). It means that all trace starts empty. Application of other rules adds events in order to obtain a complete execution trace. To generate events from one layer to the other, there are two rules (Con0) and (Con1), where δ denotes the delay a node needs to relay a message. Finally we have the rule (P hy) which allows messages to go from a node's physical layer to another node, in a time greater than or equal to T A,B (t 1 ). This rule may be applied multiple times for a single send event, to model signal reflections which may cause a message to be received twice or more, as shown in Figure 1.4. It is why there is no upper bounds on t 2 . We also assume that all the nodes have access to a N ew_N once() function, which returns a fresh random value at each new call. We consider our running example and give the trace corresponding to the following scenario. A ordered the broadcast of message "P ing", which was transferred to the physical layer. Then B receives the message in their physical layer, which later on got shifted onto the logical layer. Finally B replies to A, his name and "P ong", and A concludes that he is neighbor with B. We obtain the following trace assuming that δ = 1 and the communication between A and B is symmetric and for all t, T A,B (t) = 10. For the END event, see rule (P ingP ong 3 ) for the choice of t prop = 1.

• send α (A, P ing, 0)

• send φ (A, P ing, 1)

• recv φ (B, P ing, 11)

• recv α (B, P ing, 12)

• send α (B, B, P ong , 12)

• send φ (B, B, P ong , 13)

• recv φ (A, B, P ong , 23)

• recv α (A, B, P ong , 24) • END(A, B, 1, 24)
The first time stored in the event END(A, B, 1, 24) corresponds to the time when A sent a message to B and the second one is the time when A receives an answer from B. With these times we catch all the times where the nodes are neighbors. It helps us to cover for instance the following situation: node B receives a message from A qnd moves out to the range of A during a while, then he answers when he is again at communication distance of A.

Intruder Rules

Intruder capabilities are described by the set of rules denoted I, common to all the intruder nodes. I describes both what an intruder node can know, and what it can do.

Intruder knowledge

Each of the intruder nodes has some knowledge, which is built with rules, alongside the execution of the protocol. That knowledge depends on both what the intruder node was able to hear, and what it knew before the protocol executes. This knowledge is specific to a given node: what a node learns does not instantly propagates to other intruders' memories.

We call that knowledge IK I for the node I (and IK J for J, and so on). More precisely, IK I (tr, t) represents what I knows at time t assuming the events from trace tr happened, and IK I (tr, t) represents what I can deduce from IK I (tr, t). We denote IK I (∅, 0) the initial knowledge of the intruder I. For instance, in a classical outsider attack, all of the IK I (∅, 0) would contain the identifiers of the nodes in the network and some fictive ones.

On the abstract level, we adapt the classical Dolev-Yao intruder models [DY83] for building the intruder knowledge. The adapted Dolev-Yao deduction system is given by the rules in Figure 1.5 (containing the basic knowledge-building rules) and 

Mobility

Mobility of nodes is already included in the model, since the values of T(t) varies with time. However, we need to add two realistic assumptions in our model.

Assumption 1 A node moves much slower than a message.

This allows us to assume that values in T(t) takes into account the (negligible) movements of the nodes during the subsequent transfer time (since T(t) stores a fixed configuration of nodes and their movement depending on time). This is straightforward: radio messages travel near the speed of light, while wireless sensors are usually slower.

Assumption 2 δ is in the same order of magnitude of value as the message transfer time.

This assumption is related to rules (Con0) and (Con1). Remember that δ is the time needed to forward a message.

Taking into account the previous assumption and this one, we can deduce that sending and relaying messages does not take a significant time with regard to node movement. To restate these two rules in a less formal way, we assume that it is possible that during message transfers and relayings, the values of t transf er (A, B, t) do not change significatively, no matter which N is used.

On the other hand, it is always possible to add arbitrary delays to operations: see rules (P hy), (Con0), (Con1) and (Intrude_replay). For instance, these delays may be used in an attack by allowing synchronization of multiple sessions of a protocol.

Neighborhood and (k)-Neighborhoods

Neighborhood

A node A is neighbor or (1)-neighbor to the node B at time

t if T A,B (t) is finite which means that A is in communication range of B.
Definition 2 (Neighborhood). Let N = (V, T(t)) be a network, the neighborhood of a node at time t, denoted by Ng 1 A (t), is the set of nodes that A can reach with a message sent at time t. It is formally defined by:

Ng 1 A (t) = {X | X ∈ V ∧ T A,X (t) < +∞} .
If tr ∈ S N,I,P is a trace, we denote by tr the set of all possible traces that can be inferred from tr using rules defined previously. It allows us to define t transf er (A, B,), the smallest time possible needed to send a fresh message m from A to B at time t using only communication rules.

We also define a protocol P F orward and an intruder I F orward which consist in the following unique rule which makes nodes forward message on abstract layer:

(F orward) tr ∈ S N,I,P recv α (A, m, t 1 ) ∈ tr t 1 ≤ t 2 (tr ∪ {send α (A, m, t 2 )}) ∈ S N,I,P
Definition 3 (t transf er (A, B, t)). Let N = (V, T(t)) be a network, and tr = {send φ (A, m, t)} be a trace in S N,I F orward ,P F orward . We define t transf er (A, B, t) by:

• t transf er (A, B, t) = min{x -t | recv φ (B, m, x) ∈ tr ⊆ S N,I F orward ,P F orward }.

• If the event recv φ (B, m, t) does not belong to S N,I F orward ,P F orward then we state that t transf er (A, B, t) = +∞.

We use I F orward and P F orward to consider the simplest situation, where node can only forward messages. The send event introduced in all generated trace allows us to build all possible routes taken by this message. Note that the (F orward) rule does not impose to forward the message immediately.

t transf er (A, B, t) is different than T A,B (t), because it can take into account multiple hops, and the relay times needed in the intervals. Also, there may be routes which are faster than the direct ones (with some conditions on δ and N, as in the first example in Figure 1.1).

We denote by t max_emitter the maximum positive finite time in T(t), i.e. the maximal communication time of two connected nodes. If we assume that δ > t max_emitter then we are able to characterize the definition of Ng 1 A (t) by relations between t max_emitter and t transf er (A, B, t).

Lemma 1. Let N ∈ N be a network containing at least the two nodes A and B. If we assume that δ > t max_emitter , the following properties are equivalent:

1. B ∈ Ng 1 A (t) 2. t transf er (A, B, t) ≤ t max_emitter
Proof. We prove a double implication.

• 1 ⇒ 2: Let us assume that B ∈ Ng 1 A (t). We know there exists a sequence of events in S N,I F orward ,P F orward containing only the event send φ (A, m, t). Since B ∈ Ng 1 A (t), we can generate a valid trace tr = {send φ (A, m, t), recv φ (B, m, t+T A,B (t))}, using (P hy). Therefore, t transf er (A, B, t) ≤ T A,B (t). We now prove that this time is the smallest value for t transf er (A, B, t). We assume the opposite t transf er (A, B, t) < T A,B (t) meaning that t -t < T A,B (t) where recv φ (B, m, t ). The only other way to generate a trace containing recv φ (B, m, t ) would be to consider that there exists a node X who has sent m to B (using rule (P hy) again). In other words there is a trace containing send φ (X, m, t s X ) with t > t s X . Since m is fresh, this event can only be generated from a trace containing a recv φ (X, m, t r X ) event (using rules (Con0) and (Con1)), and we know that t s X -t r X ≥ δ > t max_emitter (by hypothesis). Moreover, also due to the freshness of m, we have t r X > t. We deduce that t -t > t s X -t r X > t max_emitter . This leads to a contradiction with t -t < T A,B (t). We conclude that t transf er (A, B, t) = T A,B (t) then by definition of t max_emitter we obtain that t transf er (A, B, t) ≤ t max_emitter .

• 2 ⇒ 1: We make a proof by contradiction. We assume that B ∈ Ng 1 A (t), our aim is now to prove that t transf er (A, B, t) > t max_emitter . We distinguish two cases:

t transf er (A, B, t) = +∞. In this case, by definition of t max_emitter , we immediately conclude. t transf er (A, B, t) is finite. It means that there exists a way to send a fresh message m between A and B, using a forwarder node which take at least δ units of time.

Since δ > t max_emitter , we conclude that t transf er (A, B, t) > t max_emitter .

As we have already explained, the description of a protocol makes claims (by the mean of an END event). In the modeling of the protocol this rule can only be used if the protocol claims that a node is a (1)-neighbor of another node. Our aim is to give a definition which is satisfied only if the protocol is secure: meaning that the protocol reach the flag END and the two considered nodes are really neighbor. Our idea for (1)-neighborhood is to prove that if a protocol claims to satisfy (1)neighborhood then there exists a direct way of communication between the nodes. It is captured by the following definition. 

if ∀N = (V, T(t)) ∈ N , ∀A, B ∈ V , tr ∈ S N,I,P such that END(A, B, t, t x ) ∈ tr ∧ B ∈ Ng 1 A (t).
To state it otherwise, a protocol does not verify a neighborhood property in presence of an intruder I over a set of networks N if and only if there is at least a trace tr in the networks in N , built by the given protocol and intruder rules, such that END(A, B, t prop , t) ∈ tr and there is no direct communication possibility between those nodes at time t prop . This trace contains an example attack.

Let us illustrate the neighborhoods, the intruder's rules and the formal definition of verifying a property by building an attack on our running example. We define N by ∀t, Ng 1 A (t) = Ng 1 I (t) = {A, I} which is simply two nodes in range of each other, one being honest (A) and one malicious (I). We assume for simplicity that nodes do not move and can communicate in finite time.

Regarding the intruder, we consider a basic I who can forward and forge messages as previously described. We also choose IK I (∅, 0) = {A, I, Z, P ing, P ong}, the initial knowledge of I at time 0, with Z an nonexistent node identity.

The scenario of the attack is the following: A starts the protocol by broadcasting P ing using rules (Begin) and (P ingP ong_1). The intruder I receives the P ing using (Con_0), (P hy) and (Con_1). Now, I forges Z, P ong , which is known since both parts are in IK 0 , and sends that message to A (rule (Intrude_f orge)). Then using (P ingP ong_1) it is possible to infer END(A, Z, t 2 , t 9 ) ∈ tr with the appropriate time values. The final trace we obtain corresponds to a possible attack, and contains the following set of events: {send α (A, P ing, t 1 ), send φ (A, P ing, t 2 ), recv φ (I, P ing, t 3 ), recv α (I, P ing, t 4 ), send α (I, Z, P ong , t 5 ), send φ (I, Z, P ong , t 6 ), recv φ (A, Z, P ong , t 7 ), recv α (A, Z, P ong , t 8 ), END(A, Z, t 2 , t 9 )}, where t 1 < t 2 < t 3 < t 4 < t 5 < t 6 < t 7 < t 8 < t 9 . Now let us go back to Definition 4. Here, we have a N, where Z ∈ Ng 1 A (t 2 ), because there is no Z in the network. We just built a possible trace in this setting including END(A, Z, t 2 , t 9 ), which means the protocol has detected a neighborhood relation between A and Z at time t 2 . Therefore the protocol does not verify the neighborhood property with respect to the previously defined intruder I, with his knowledge IK I (∅, 0), on all the families of networks N which contain this example N.

.

(k)-neighborhood

We extend our definition in order to determine if a node is neighbor to another one after k hops. For simplicity's sake, we consider that all nodes have the same relaying time δ. We can easily generalize our results with a different time for each node in the network.

Definition 5 ((k)-or-less-neighborhood). Let N = (V, T(t)) be a network, Ng ≤k A (the (k)-or-less-neighborhood of A) is the set of all the nodes B for which there is a path starting at A at time t and ending at B with k hops or less, taking into account the minimal flight time of messages and the relaying time δ. We define it recursively by:

Ng ≤k A (t) = B | X ∈ Ng 1 A (t) ∧ B ∈ Ng ≤(k-1) X (t + T A,X (t) + δ) .
This recursive definition means that the (k)-or-less neighborhood of A at time t is the union, for all the neighbors X reachable by A at time t, of the (k -1)-or-lessneighborhoods of the different X at time t+T A,X (t)+δ. Colloquially, a (k)-neighbor of A is a node which can be reached in k or less hops by a message sent from A at time t, and relayed through any other nodes. As expected, the (1)-or-less-neighborhood is the same thing as the neighborhood given in Definition 2. According to our definition, (k)-or-less-neighborhood has the following straightforward property.

Property 1 Let N = (V, T(t)) be a network, then we have:

Ng ≤k A (t) ⊆ Ng ≤(k+1) A (t).
We now define the (k)-neighborhood, which is the set of nodes for which there is a path (in the sense of the previous definition) of length exactly k. It is the set of all the nodes B for which there is a path starting at A at time t and ending at B with k hops, but there is no such path with k -1 hops or less.

Definition 6 ((k)-neighborhood). Let N = (V, T(t)) be a network, Ng k A ((k)neighborhood of A) is defined by:

Ng k A (t) = Ng ≤k A (t) \ Ng ≤k-1 A (t) .
Now, as in the previous subsection, we can formally define what is a protocol which verifies the (k)-or-less-neighborhood relation in our framework. Definition 7. Let N be a network family. A protocol P verifies the (k)-or-lessneighborhood relation in presence of an intruder I if and only if ∀N = (V, T(t)) ∈ N , ∀A, B ∈ V , tr ∈ S N,I,P such that END(A, B, t, t x ) ∈ tr ∧ B ∈ Ng ≤k A (t).

Example: Authenticated Ranging Protocol

We consider the protocol proposed in [START_REF] Poturalski | Secure neighbor discovery in wireless networks: formal investigation of possibility[END_REF]. This protocol aims to verify (1)neighborhood between two nodes, by using an upper bound on message transfer time between neighbors. We first describe the protocol, then we give a modelling of this protocol, and after that we prove its correctness in our setting.

Description of the Protocol

The idea of the protocol is simple: a message is sent with a nonce, and anyone hearing it replies with that nonce, signed. An Alice-Bob representation of this protocol is given in Figure 1.8. 

A N A ------→ B A {B,N A } sk B ← ------------B

Protocol Modelling

This protocol is in one way a secured version of the Ping Pong protocol described above. If the resulting message is received before t send + 2 * t max_emitter + δ, then the emitter is a neighbor (since it is both closer than t max_emitter and able to communicate with us). This way, the protocol can successfully determine if the node is in communication range or not based on physical property induced by the properties of the nodes. We now give the rules modelling this protocol:

(AuthRanging_1) tr ∈ S N,I,P (tr ∪ {send α (A, N ew_N once(), t)}) ∈ S N,I,P (AuthRanging_2) tr ∈ S N,I,P recv α (A, N B , t 1 )

t 1 ≤ t 2 (tr ∪ {send α (A, A, {N B } sk A , t 2 )}) ∈ S N,I,P (AuthRanging_3) tr ∈ S N,I,P send α (A, N A , t 1 ) send φ (A, N A , t s A ) recv φ (A, B, {N A } sk B , t r A ) recv α (A, B, {N A } sk B , t 4 ) t 1 ≤ t s A ≤ t r A ≤ t 4 ≤ t 5 t r A -t s A ≤ (2 * t max_emitter + δ) (tr ∪ {END(A, B, t s A , t 5 )}) ∈ S N,I,P

Authenticated Ranging Protocol Satisfies the Neighborhood Property

In order to keep our proof concise, we assume symmetry in the time needed to send and receive a message, i.e. T A,B = T B,A (the N sym family of networks). We first precise the intruder model we are using, then we show a proof of the protocol. We consider that there is at most one compromised secret key and one compromised node in the whole network. Otherwise, if an intruder has access to a secret key that is not his own (whether it's shared between different nodes, or the intruder has access to a set of them), it is easy to find a trace where an intruder I masquerades as the other intruder J and leads to a END(A, J) event, which by Definition 4 and 7 makes the protocol insecure. Therefore we assume intruders can only use their own secret key. We show that if δ < t max_emitter then we can find an attack, but we also prove that if δ ≥ t max_emitter then the protocol is correct. Our analysis allows us to deduce sufficient conditions of application for the protocol.

Existence of an Attack if δ < t max_emitter

We consider a network containing three nodes A, B and an intruder I, with constant time of transfer . The topology of this network is given in Figure 1.9, where there is no link between nodes A and B, and I can communicate with A and B. Applying the rules of the authenticated ranging protocol, we can construct the following valid tr in S N,I,P which contains:

• send α (A, N A , 0) • send φ (A, N A , 0.5δ) (Emission time for A) • recv φ (I, N A , 0.5δ + ) • recv α (I, N A , 1δ + ) • send α (I, N A , 1δ + ) • send φ (I, N A , 1.5δ + ) • recv φ (B, N A , 1.5δ + 2 ) • recv α (B, N A , 2δ + 2 ) • send α (B, {B, N A } sk B , 2δ + 2 ) • send φ (B, {B, N A } sk B , 2.5δ + 2 ) • recv φ (I, {B, N A } sk B , 2.5δ + 3 ) • recv α (I, {B, N A } sk B , 3δ + 3 ) • send α (I, {B, N A } sk B , 3δ + 3 ) • send φ (I, {B, N A } sk B , 3.5δ + 3 ) • recv φ (A, {B, N A } sk B , 3.5δ + 4 ) (Reception time for A) • recv α (A, {B, N A } sk B , 4δ + 4 ) • END(A, B, 0.5δ, 4δ + 4 )
Now, the END event could only be generated if (3.5δ + 4 ) -(0.5δ) < 2 * t max_emitter +δ, according to rule (AuthRanging 3 ). It can be simplified to δ+2 * < t max_emitter . Since the END event claims neighborhood between A and B at time 0.5δ while there is no neighborhood relation between them, the protocol is flawed if δ < t max_emitter .

1.4.3.2 The protocol is Secure if δ ≥ t max_emitter
In other words we prove that the protocol will never claim there is a neighborhood property between two nodes, when there is actually none. In order to do this, we proceed by contradiction, assuming the protocol is broken and showing a contradiction. We assume the protocol does not satisfy the definition, this means that:

∃tr ∈ S N,I,P s.t. END(A, B, t s A , t) ∈ tr ∧ B ∈ Ng 1 A (t s A ).
Due to the cryptographic primitives, we are sure that the replied message is forged by B and cannot be modified, since an intruder who is not B would not have access to sk B . Hence we are sure that the message went through B. Then we compute a lower bound for the running time of the protocol by decomposing it in three phases: from A to B, during B's computations and from B to A.

• From A to B: Following the rules of the protocol, in order to generate END(A, B, t s A , t) ∈ tr, the following properties must be true :

- 

send φ (A, N A , t s A ) ∈ S N,I,P -recv φ (A, B, {N A } sk B , t r A ) ∈ S N
A ∈ Ng 1 B (t s B ) ⇔ t r A -t s B > t max_emitter
By summing all these bounds we get:

t r A -t s A = (t r A -t s B ) + (t s B -t r B ) + (t r B -t s A ) > 2 * t max_emitter + δ
According to the hypothesis related to the END event, we have t r A -t s A ≤ 2 * t max_emitter + δ which leads us to a contradiction.

(k)-or-less-Neighbors Discovery Protocol

Assuming that we have a secure (1)-neighbor discovery protocol, we propose a (k)or-less-neighbor discovery protocol based on it. This protocols aims to construct the (k)-or-less-neighborhood, by using the knowledge each node has about its neighborhood. For this protocol, we need to consider several END events, each being a stepping stone towards a final conclusion. For instance END k (A, B, t prop , t) expresses the (k)-or-less neighborhood property between A and B at time t prop . We notice that definitions of how a protocol verifies a property follows the same idea as before: there should not exist a trace where an END contradicts the physical property it claims. We call this protocol the Sharek protocol.

Description of the protocol

In the first phase of the protocol, each node floods the network with its (1)neighborhood. After this, no more communications happen.

Then, all the nodes try to map their (2)-or-less-neighborhoods based on two or more of their (1)-neighbors claiming neighborhood to another node. After that, each node continues by computing its upper neighborhood based on its previous deductions. We do not require that each node knows its whole (1)neighborhood, but only a subset of it. We model this with the V iew function, which is used in the rules of the protocol.

This protocol is sensitive to the number of intruders, this simple version works only when there is only one intruder in the network. This way, the single intruder can not create false conclusions by lying, since there will not be the same claim from another (necessarily legitimate) node unless it was true in the first place. If we increase the number of approving nodes in the deduction, then we can tolerate more intruders.

There is a small improvement we stacked on top of this : if two nodes claim neighborhood with a third one, but are not at the same level of neighborhood with the center, then the third one will be accepted at the highest level. Since the (k -1)or-less neighborhood is included in the (k)-or-less neighborhood, we can choose the most conservative option and still satisfy the conditions for the verification of neighborhood properties.

The security proof shows that if the protocol ends by reaching a conclusion, the results are secure. We also assume one of the two following assumptions:

• Nodes have synchronized clocks. This is required by the protocol, which makes nodes use the timestamped data sent by their neighbors. If honest nodes send erroneous times, then the intruder can easily leverage this and trick the protocol into a false conclusion. In the rest, we consider this assumption. • Nodes are static. i.e. N still as defined above. Then, the neighborhoods will not change over time, and the timestamps become trivially useless. It is easy to infer a proof with this assumption from the previous case.

We model the knowledge of a part of the (1)-neighbors by the View function, which returns the part of the (1)-neighbors that the node knows. A high level description of Sharek Protocol is given in Figure 1.10, where the double arrow symbolize the flooding by repeated broadcasts. Proof. We do a proof by contradiction. We assume that there is a N ∈ N 1,sym and a tr ∈ S N,I,P such that END k+1 (A, D, t prop , t) ∈ tr ∧ D ∈ Ng ≤k+1 A (t prop ). Since END k+1 (A, D, t prop , t) ∈ tr then it can only be build from (Sharek_makestep), meaning that we must have all the hypothesis true, in particular: We deduce that D ∈ Ng 1 X (t prop + t X ) for X ∈ {B, C} with t X the minimal time needed to forward a message from A to X at t prop . Both messages contained in the receive events are signed by their pretended emitters, respectively B and C. We can then conclude that both B and C crafted their respective claims of neighborhood with D. But C and B claims in these messages that D is in their (1)-neighborhood. Since nodes can not lie about their neighborhoods using rules in P, this means that both their messages were built by (Intrude_f orge), and as both messages are forged by their pretended emitter, we can conclude that both B and C are intruders. This is in contradiction with our initial hypothesis that the network consists of only one intruder.

• recv α (A,

Conclusion

We have proposed a way of modeling physical properties in a wireless network in order to verify protocols in the presence of intruders, taking into account time and movement of nodes. We focused on the protocols which discover the distance between nodes, from a single hop (usually called neighborhood property) to an arbitrary number of them ((k)-neighborhood). After introducing the model, we have applied the model to two protocols and proved that one is correct under some assumptions about the network, and the intruder. Finally we propose the Sharek protocol, which securely discover (k)-neighbors based on the knowledge of the (1)neighborhood, in presence of one intruder. We can generalize this protocol in order to be resistant to several intruders. We also provide a formal proof of the security of the Sharek protocol as a third example of an application using our formal model. This formal modelling of the (k)-neighborhood is the first step toward an automatic tool for verifying neighborhood discovery protocols.
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  ∀N ∈ N 1,sym , ∀i ≤ k, tr ∈ S N,I,P s.t. END i (A, D, t prop , t) ∈ tr ∧ D ∈ Ng ≤i A (t prop ) ⇒ ∀N ∈ N 1,sym , tr ∈ S N,I,P s.t. END k+1 (A, D, t prop , t) ∈ tr ∧ D ∈ Ng ≤k+1 A (t prop )

  The rules to link the transmission model and the intruder knowledge are given in Figure1.7. (IK_recv) is used so that intruders can hear communications, and learn from them. The rule (Intrude_replay) models how the intruder can replay messages it heard. The rule (Intrude_f orge) represents how an intruder can deduce and build new messages from his knowledge and send them. The distinction between those two rules allows simple intruders which would only be able to relay messages, formally described by not including (Intrude_f orge) in I. Usually, I can forge the same messages as the protocol P, in the case of an intruder with a large enough initial knowledge IK I (∅, 0).

	(IK_init) 1.2.4.2 Intruder Actions	m ∈ IK I (tr, t) m ∈ IK I (∅, 0)
	(IK_hat_promotion)	m ∈ IK I (tr, t)
				m ∈ IK I (tr, t)
	(IK_lef t)		m, n ∈ IK I (tr, t)
				m ∈ IK I (tr, t)
	(IK_right)	m, n ∈ IK I (tr, t)
				n ∈ IK I (tr, t)
	(IK_pair)	m ∈ IK I (tr, t)	n ∈ IK I (tr, t)
	m ∈ IK I (tr, t) m, n ∈ IK (IK_encrypt_asym_pk) (IK_recv) recvα(I, m, t 1 ) ∈ tr	pk ∈ IK I (tr, t) t 1 ≤ t 2
				{m} pk ∈ IK I (tr, t)
	(IK_nonce)	N I = N ew_N once()
				N I ∈ IK I (tr, t)
	Fig. 1.6 Cryptography-related intruder knowledge building rules

I (tr, t) Fig. 1.5 Basic intruder knowledge building rules Figure 1.6, which describes the rules for symmetric and asymmetric cryptography, and nonce generation. To avoid confusion, all symmetric keys are labelled k, and asymmetric keys are couples (sk, pk) and encryptions are represented by {m} k .

Notice that an intruder I can increase his knowledge using a message m at time t 2 only if there is a recv α (I, m, t 1 ) ∈ tr with t 1 ≤ t 2 . (IK_decrypt_sym) {m} k ∈ IK I (tr, t) k ∈ IK I (tr, t) m ∈ IK I (tr, t) (IK_encrypt_sym) m ∈ IK I (tr, t) k ∈ IK I (tr, t) {m} k ∈ IK I (tr, t) (IK_decrypt_asym_sk) {m} sk ∈ IK I (tr, t) pk ∈ IK I (tr, t) m ∈ IK I (tr, t) (IK_encrypt_asym_sk) m ∈ IK I (tr, t) sk ∈ IK I (tr, t) {m} sk ∈ IK I (tr, t) m ∈ IK I (tr, t 2 ) (Intrude_replay) tr ∈ S N,I,P m ∈ IK I (tr, t 1 ) t 1 ≤ t 2 (tr ∪ {sendα(I, m, t 2 )}) ∈ S N,I,P (Intrude_f orge) tr ∈ S N,I,P m ∈ IK I (tr, t 1 ) t 1 ≤ t 2 (tr ∪ {sendα(I, m, t 2 )}) ∈ S N,I,P

  We deduce that: t r B -t s A > t max_emitter B also has access to N A at least at time t r B (and not before).• During B's computations: Applying the rules, we know that the forward time (t s B -t r B ) is greater or equal to δ. • From B to A: We have t transf er (B, A, t s B ) ≤ t r A -t s B . Because we are in a symmetrical network and due to assumption 1 and 2, we also have A ∈ Ng 1 B (t s B ) then we apply lemma 1 once again regarding this message, and therefore A receives the signed answer at best at time t r A such that:

,I,P t r A -t s A ≤ (2 * t max_emitter + δ) N A has been sent by A at t s A , the time when B receives it is denoted by t r B . Hence we have that t transf er (A, B, t s A ) ≤ t r B -t s A . Applying lemma 1 we obtain: B ∈ Ng 1 A (t s A ) ⇔ t transf er (A, B, t s A ) > t max_emitter .

  { t prop , B, {D, ...} } sk B , t 1 ) ∈ tr • recv α (A, { t prop , C, {D, ...} } sk C , t 2 ) ∈ tr • END k (A, B, t prop , t x ) ∈ tr • END i (A, C, t prop , t y ) ∈ tr, i ≤ kWe apply the induction hypothesis on the two last items. We obtain that B ∈ Ng ≤k A (t prop ) and C ∈ Ng ≤i A (t prop ) ⊆ Ng ≤k A (t prop ) (and due to property 1). By hypothesis we know that D ∈ Ng ≤k+1A (t prop ), which is equivalent to X ∈ V s.t. X ∈ Ng ≤k A (t prop ) ∧ D ∈ Ng 1 X (t prop + t X ) .

We remark that is not the case for the authentication which is a property based on exchanged messages.
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Rules of Sharek Protocol

We give the few rules modeling our protocol:

tr.END max(b,c)+1 (A, D, t prop , t d ) ∈ S N,I,P

Security of Sharek

In order to prove that the protocol verifies the (k)-or-less-neighborhood property, we proceed with a proof by induction. First we prove that our protocol verifies (1)-neighborhood property in Lemma 2, then we assume Sharek protocol verifies all (i)-neighborhood property for i ≤ k and we show that it verifies (k+1)-neighborhood property in Lemma 3. We define N 1,sym as the family of networks where there is only a single intruder, and where all the connections are symmetric.

Lemma 2. The protocol verifies the (1)-neighborhood property over N 1,sym :

Proof. We assume that ∃tr ∈ S N,I,P s.t. END 1 (A, B, t prop , t) ∈ tr∧B ∈ Ng 1 A (t prop ). The only way we can generate a END 1 (A, B, t prop , t) event in a trace tr ∈ S N,I,P is using (Sharek_basis). This rule requires B ∈ V iew(A, Ng 1 A (t prop )). The V iew function, by definition, returns a subset of Ng 1 A (t prop ) : therefore, there is a contradiction.

Lemma 3. If the protocol verifies all the i-or-less neighborhood properties, 0 < i ≤ k over N 1,sym , then it verifies the (k + 1)-neighborhood property over N 1,sym . More formally it means that: