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ABSTRACT

Volcanic tephra fall deposits, which form
during explosive eruptions, are commonly
characterized in terms of their thickness
and grainsize. While significant efforts have
been undertaken to relate spatial trends in
thickness to plume dispersion processes,
comparably few studies have focused on
understanding variations in grainsize. Yet,
grainsize is a key parameter providing in-
sight into eruption dynamics, from magma
fragmentation to plume transport processes,
and modulates the impacts of tephra. Here,
we present a set of grainsize data extracted
from the published record for 56 deposits
that represent a range of eruption intensities
and magnitudes. We systematically analyze
the deposits in terms of modality (bimodal
or unimodal grainsize distributions) and
provide the median particle diameter with
distance from source for component distri-
bution modes. We found that bimodal fall
deposits are formed by eruptions with large
amounts of fine particles (<100 pm) and that
all tephra-fall deposits show characteristic
patterns of grainsize decay with distance
from source that can be related to eruption
plume height and thus intensity. The grain-
size decay trends are also related to ash
dispersion and deposition processes such as
individual particle settling versus collective
settling mechanisms. The maximum distance
from source reached by particles of different
sizes is controlled by a combination of source
and transport processes. This data set pro-
vides insight into the preservation potential
of deposits of different grainsizes at vary-
ing distances from their sources. Finally, we
emphasize the importance of using grainsize
trends in combination with thickness trends
to interpret tephra-fall deposit records.

fjulia.eychenne @uca. fr.

INTRODUCTION

Explosive volcanic eruptions inject great
amounts of particles, called tephra, into the
atmosphere, which can be transported long dis-
tances before they are deposited on the ground,
where they create widely dispersed, continuous
layers blanketing topography. These tephra-
fall deposits generally decrease in thickness
and grainsize away from source (Thorarinsson,
1954; Pyle, 1989; Bonadonna et al., 2015c),
which enables eruption size to be inferred (i.e.,
volume, magnitude, and intensity; Pyle, 1989,
1995, 2000; Bonadonna et al., 2015a) and the
study of eruption processes (i.e., eruption col-
umn dynamics, plume height, explosivity, style;
Walker, 1971; Walker, 1973; Carey and Sparks,
1986; Burden et al., 2011; Rossi et al., 2019).
In particular, the grainsize of tephra-fall deposits
provides information about magma ascent and
fragmentation processes (e.g., Alidibirov and
Dingwell, 1996; Rust and Cashman, 2011; Del-
lino et al., 2012; Liu et al., 2015) and the mecha-
nisms of volcanic plume formation, dispersion,
and sedimentation through the atmosphere (e.g.,
Carey and Sigurdsson, 1982; Costa et al., 2010;
Girault et al., 2014; Manzella et al., 2015; Del
Bello et al., 2017).

The grainsize of fall deposits is generally
measured at individual locations by combin-
ing mechanical clast sieving and fines-sensitive
analytical methods, such as laser diffraction
and dynamic image analysis (e.g., using CAM-
SIZER or MORPHOLOGI G3; Eychenne et al.,
2012; Buckland et al., 2021). These individual
measurements are often spatially interpolated to
obtain the total grainsize distribution (TGSD) of
the deposit (Bonadonna and Houghton, 2005;
Bonadonna et al., 2015a; Costa et al., 2016;
Pioli et al., 2019), which is an estimate of the
total particle size distribution within the buoy-
ant convective column before transport fraction-
ation processes occurred. TGSDs are widely
used as inputs in numerical models of tephra
transport and deposition (Costa et al., 2006;

Osman et al., 2020) and to assess mechanisms
of magma fragmentation (Rust and Cashman,
2011; Cashman and Scheu, 2015). Trends in
maximum grainsize form the basis of a plume
ascent model (Carey and Sparks, 1986) updated
in Burden et al. (2011) and Rossi et al. (2019)
that is still used today to assess the plume height
at the vent during explosive eruptions. In addi-
tion, numerical models of tephra transport and
deposition are overwhelmingly developed and
validated using thickness (or mass load) spatial
variations (Folch et al., 2010; Beckett et al.,
2015; Tadini et al., 2020) with relatively few
studies validating model outputs using grainsize
(Bonadonna et al., 2002a). The spatial varia-
tions of individual grainsize distributions in
tephra-fall deposits are underexploited in com-
parison to other measurements such as deposit
thickness.

Characteristic grainsize decay can be
observed in several individual fall deposits. For
example, the fall deposits from the Campan-
ian Ignimbrite and Minoan eruptions show a
decrease in median grainsize away from source
before reaching a plateau of constant grainsize
at large distances from source (constant grain-
size between 950 km and 2300 km from vent in
the Campanian Ignimbrite deposit, and 300 km
and 500 km in the Minoan deposit; Sparks and
Huang, 1980; Engwell et al., 2014). Similar
trends were observed in the deposit from the 18
May 1980 Mount St. Helens eruption (Eychenne
et al., 2015), and an analysis of published grain-
size information for a large number of fall depos-
its (Engwell and Eychenne, 2016) implies that
this is the same for deposits from a wide range
of eruption dynamics. In comparison, a recent
analysis of several phreatomagmatic deposits
shows little change in grainsize with distance
from vent (Osman et al., 2020). How these char-
acteristic spatial grainsize trends vary across dif-
ferent eruption types, and how they relate to the
fragmentation mechanisms, eruption dynamics,
and the transport and deposition processes, are
open questions.
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Answering these questions would bring valu-
able new insights into the physics of explosive
eruptions (from magma ascent to ejection) and
volcanic plumes (from the formation at the vent to
the dispersion in the atmosphere). Terms such as
“proximal,” “medial,” and “distal” are commonly
used when describing distance from source of vol-
canic deposits. These terms identify regions close
to, intermediate from, and far from vent, respec-
tively, and correspond to different absolute dis-
tances for fall deposits from eruptions of different
sizes. No objective criteria exist to define proxi-
mal, medial, and distal regions, but this gap could
be filled by using grainsize trends with distance.

Additionally, documenting how tephra is
transported and spatially distributed in differ-
ent eruption scenarios is key information for
mitigating the impacts from tephra fall, such
as those on aviation or health. Indeed, aircraft
engines are particularly susceptible to ingestion
of fine particles (Vasseur et al., 2013; Kueppers
et al., 2014), and therefore it is important to
understand to what distances such grainsizes are
transported. The respiratory hazard for humans
during or after eruptions is caused by the poor air
quality resulting from the suspension of volcanic
particles (Carlsen et al., 2015). Human respira-
tory systems are particularly susceptible to parti-
cles of less than 10 pm, which cause acute health
effects (Baxter et al., 1981; Horwell and Baxter,
2006; Baxter et al., 2014). Quantifying the prob-
ability of tephra of given sizes reaching given
distances in the atmosphere and on the ground
is thus critical for these applications.

Finally, a thorough description and classifi-
cation of grainsize trends in tephra-fall deposits
would provide an invaluable tool for refining
numerical models of tephra transport and depo-
sition. Indeed, the major challenge with current
models relates to the difficulty in reproducing the
processes of particle sedimentation in the Earth’s
complex atmosphere (Watt et al., 2015; Pouli-
dis et al., 2021). Spatial grainsize trends on the
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ground could be a robust means to test and vali-
date these models. While the decay of grainsize
distributions away from vent has been described
for many deposits (e.g., Fisher, 1964; Brazier
et al., 1983; Sparks et al., 1983; Engwell et al.,
2014; Engwell and Eychenne, 2016) and has
been related to eruptive plume height and used for
eruption classification (Pyle, 1989; Bonadonna
and Costa, 2013), these studies typically have
focused on a single or small number of eruptions.

To fill these gaps in knowledge, we analyzed
grainsize information at various distances from
vent from several tephra-fall deposits and sys-
tematically compiled this information into a self-
consistent data set that allows the comparison
and classification of fall deposits from eruptions
spanning a wide range of magnitudes and inten-
sities. We present characteristic spatial grainsize
trends and correlate them with eruption dynam-
ics. Our findings enable description of the hetero-
geneity of tephra-fall deposits and their spatial
variability for different eruption scenarios and
provide novel insight into the physical controls
on tephra-fall deposit grainsize, from fragmen-
tation to transport processes. They also have
important implications for ash transport in distal
reaches and the use of tephra-fall deposit records.

DATA SET

This study uses grainsize data and source
parameters from 56 tephra-fall deposits from a
range of magmatic and phreatomagmatic erup-
tions (Fig. 1 and Table 1). Grainsize and eruption
information was collected from the published
record (mostly peer-reviewed publications and
some published masters and doctoral theses)
and open access volcanological databases (e.g.,
Global Volcanism Program [Smithsonian Insti-
tution, https://volcano.si.edu/], the International
Association of Volcanology and Chemistry of
the Earth’s Interior Commission on Tephra Haz-
ard Modeling [https://thm.iavceivolcano.org/],

Figure 1. Maximum column
height versus magnitude is
plotted for all of the eruptive
events compiled in our data set
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events and associated deposits,
magnitudes, and plume height
values, as well as references.
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and the Independent Volcanic Eruption Source
Parameter Archive [Aubry et al., 2021]). All ref-
erences are provided in Table 1 and listed in the
Supplemental Material.!

Information was collected on the character-
istics of each tephra-fall deposit (e.g., stratifica-
tion, grainsize polymodality, and grainsize mea-
surement method; Table S1 [see footnote 1]). All
of the grainsize distributions (GSD) compiled
in this study were either unimodal or bimodal.
Bimodal distributions have two distinguishable
peaks, i.e., two modes. Narrow peaks (often a
single phi or half-phi interval, where phi = —log,
(particle diameter in mm)) in the coarse lapilli
range (>8 mm) are not considered to be modes,
as these are found in samples close to vent and
most likely were caused by ballistic clasts (see,
for example, GSDs from the 13 February 2014
Kelud eruption in Maeno et al., 2019).

Information on each associated eruption
was also collected from the published record
(Table 1) and includes:

(1) Eruption type, categorizing eruptions as
either magmatic or phreatomagmatic.

(2) Magnitude of tephra-fall deposit, esti-
mated from the mass of the tephra-fall deposit
using the relation: M = log10[erupted mass (kg)]
— 7 (Pyle, 2000). The deposit mass was either
calculated from the deposit volume using a mea-
sured or assumed deposit bulk density or directly
assessed from isomass maps in the publications
(see Table S1).

(3) Maximum column height above vent, typi-
cally defined by observations (e.g., webcams,
radar, or satellite remote sensing) or by applying
empirical methods to deposits such as the model
from Carey and Sparks (1986). The method used
for each example is given in Table S1, along with
the associated references.

(4) Occurrence of pyroclastic density currents
(PDC), based on observations made during the
eruptions or observations of PDC deposits strati-
graphically associated with an eruption.

For some eruption parameters, the values
inferred in the literature varied among sources, in
which case we used an average or a consensual
value. In cases where it was not clear whether
plume height related to height above vent or sea
level, we followed a methodology similar to that
defined by Deligne (2021), whereby, for exam-
ple, plume heights from pilot reports or satellite
imagery are assumed to represent height above
sea level rather than height above vent.

!Supplemental Material. Containing one pdf file
with Supplemental Information (Figs. S1-S4 and list
of references from Table 1) and 3 Excel spreadsheets
(Tables S1-S3). Please visit https://doi.org/10.1130
/GSAB.S.21066313 to access the supplemental
material, and contact editing@ geosociety.org with
any questions.
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METHODS

Compiling and Processing Grainsize
Information

The grainsize data set (Table S2; see foot-
note 1) includes the distance from vent (Dist)
of individual tephra samples and the median
diameter (Md) for each unimodal GSD, or, for
bimodal GSDs, the Md of each individual decon-
volved subpopulation, as explained below. Md is
expressed here in millimeters and was converted
from the Mdphi values (Inman, 1952) found in
the relevant publications or calculated herein
after deconvolution. Md represents the grainsize
separating the lowest 50% from the highest 50%
of values, and it is inferred graphically from a
cumulative density function without assum-
ing any distribution shape. All of the tephra
samples compiled here correspond to tephra-fall
deposits, i.e., areas where tephra deposition was
significant enough to create a deposit identifi-
able by eye.

Several tephra-fall deposits in our data set are
characterized by bimodal GSDs (Fig. S1; see
footnote 1). The Md of a bimodal GSD is a poor
measure of its characteristics because it does
not correlate with the grainsizes of maximum
occurrence (represented by the GSD’s modes;
Fig. S1). The Mds of the two subpopulations
extracted from the GSDs by deconvolution
define distinct and delimited variation fields.
These cannot be identified from the analyses of
the GSD Md variations (Fig. S2; see footnote 1),
which highlights the lack of resolution of this
latter parameter. Hence, in our grainsize data
set, unimodal GSDs are described by a single
Md, while bimodal GSDs are deconvolved by
fitting each observable peak with a subpopu-
lation distribution that is then described by
its own Md.

In the published record, grainsize information
is presented in various ways. In some sources,
raw GSDs are provided as volume or weight
probability density functions. They are often
presented on phi scales and more rarely on
metric scales. In other cases, only distribution
statistics (e.g., mode, median, and sorting) are
presented, commonly plot against sample loca-
tion distance from vent. In the case of layered
tephra-fall deposits, grainsize data refer in some
sources to the complete deposit and in others
to individual layers. To build a homogeneous
data set and enable direct comparison of erup-
tions and deposits, we only include GSDs that
reflect the whole deposit, including those show-
ing stratification. Stratified deposits are identi-
fied in Table S1. While a deposit may exhibit
individual units in proximal regions, it is often
impossible to distinguish different units in distal

Geological Society of America Bulletin, v. 135, no. 7/8
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deposits, which likely represent either the most
intense phase of the eruption or a contribution
from multiple eruption phases, including both
Plinian and co-PDC contributions. We used
published Md values or calculated Md values
from available GSDs. Published Md values
were only used if evidence for the unimodality
of the GSD was provided or if they referred to
deconvolved subpopulations of bimodal GSDs.
It is important to note that due to the criteria
used, some of the grainsize information exist-
ing in the published record were not included
in our data set.

The grainsize data compiled here were
acquired by combining sieving in the coarse
range (roughly coarser than 100 pm, but this
varies among studies) and a variety of differ-
ent measurement methods in the fine range. The
grainsize analytical methods for each of the 56
eruptions in our data set are indicated in Table
S2. These methods include (1) laser diffraction,
based on the principle of light scattering (using
instruments such as the Malvern Mastersizer or
Beckmann Coulter); (2) sedimentation, based on
the assessment of the particle size from the set-
tling velocity using Stokes’ law (pipette method,
Sedigraph instrument); (3) electrosensing zone,
based on the resistive pulse sensing in an electri-
cal field (using instruments such as the Elzone
Celloscope); and (4) dynamic image analyses,
based on image acquisition and analyses of
the particles dispersed in a flowing fluid (using
instruments such as the Camsizer). Different
measurement techniques can produce various
grainsize distributions for a given sample (Buck-
land et al., 2021), which could explain some of
the differences in grainsize among the tephra-fall
deposits compiled here.

Deconvolution of Bimodal Grainsize
Distributions

Raw bimodal GSDs were deconvolved using
the fully automated DECOLOG software (Bel-
lotti et al., 2010; Caballero et al., 2014), which
uses an iterative algorithm for nonlinear fitting
of log normal or Weibull functions. Follow-
ing the approach described in Eychenne et al.
(2015), only peaks with an overlap smaller
than ~70% were deconvolved into individual
subpopulations to avoid inaccurate deconvolu-
tion results. The deconvolution methods used
in the publications from which we extracted
pre-deconvolved Md values included (Table
S2) software-based DECOLOG, SFT (Wohletz
et al., 1989), and LOGN2D (Eychenne et al.,
2012), as well as hand-fitting (Brazier et al.,
1983). We hereafter refer to the two subpopula-
tions extracted from the bimodal distributions as
“coarse” and “fine.”
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RESULT OF THE GRAINSIZE
ANALYSIS

Characteristics of the Eruptions in the Data
Set

The 56 tephra-fall deposits in our data set
(Table 1) were generated by magmatic and
phreatomagmatic eruptions with a wide range
of plume heights and magnitudes (Fig. 1). The
plume height is a measure of the intensity of an
eruption, i.e., the rate at which material is erupted
(Pyle, 2000; Mastin et al., 2009). The magnitude
refers to the total amount of material erupted
(Pyle, 2000), and hence represents a measure
of eruption size. There is a positive correlation
between the amount of material erupted during
an explosive eruption and the rate at which it
is erupted (Carey and Sigurdsson, 1989; Pyle,
2000), as illustrated by the correlation between
plume height and magnitude in our data set
(Fig. 1). The deposit data set compiled here spans
a representative range of magmatic eruptions,
from low to high intensities and magnitudes.
Only six eruptions in the data set are phreato-
magmatic, but they span a comprehensive range
of eruption intensities and magnitudes.

Different numbers of grainsize distributions
from individual locations are available for each
eruption. The number of data points, and the
minimum and maximum distances from source
at which these data points were collected for
each eruption, are reported in Table S1. In gen-
eral, eruptions with lower plume heights have
more grainsize information closer to source,
while for the largest eruptions, more data are
available at large distances from vent.

Categories of Tephra-Fall Deposits

The 56 tephra-fall deposits analyzed here
(Table 1 and Fig. S3; see footnote 1) can be
grouped into distinctive categories based on their
grainsize characteristics. Some deposits, hereaf-
ter referred to as unimodal deposits, are char-
acterized by unimodal GSDs across the deposit
extent (Fig. 2A) or are dominated by unimodal
GSDs with rare bimodal GSDs at scattered loca-
tions (Fig. 2B). The boundary between unimodal
deposits with and without scattered bimodal
GSDs is indistinct; some deposits classified
as unimodal here include subordinate bimodal
samples that were disregarded due to the lack of
raw data for deconvolution (e.g., the 1104, 1300,
1693, and 1766 Hekla eruptions; Janebo et al.,
2018). Other deposits, hereafter referred to as
bimodal deposits, are characterized by bimodal
grainsize distributions throughout (Fig. 2C) or
are dominated by bimodal GSDs but also show
unimodal GSDs at distal locations (Fig. 2D).
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Figure 3. Variations in median diameter (Md) of the grainsize distributions (GSDs) are plotted with distance from vent for the (A-D) mag-
matic and (E) phreatomagmatic eruption deposits compiled in our data set. Magmatic eruptions are plotted separately based on the maxi-
mum plume heights above vent: eruptions with plume heights above vent (A) >30 km, (B) between 20 km and 30 km, (C) between 10 km
and 20 km, and (D) between 0 km and 10 km. The data points are colored by deposit/eruptive event (see Table 1 for more information on
the eruptions and references for the plume heights reported here) and ordered in the legend by decreasing plume heights. Symbols are used
to distinguish Md values from unimodal GSDs (open circles), coarse subpopulations (filled circles), fine subpopulations (crosses), as well as
distal unimodal GSDs (triangles). The gray lines represent the best fit through the coarse trend of deposits grouped by plume heights and
magmatic versus phreatomagmatic eruptions. The blue arrows represent the distance from vent at which the best fit lines reach 100 pm.
The red arrows highlight the grainsize at which the coarse and distal trends reach a plateau in Md distally.

trend as the fine trend where present, and that is
restricted to large distances from vent, and shows
little change in Md with distance (triangles in
Figs. 2 and 3). Within each individual deposit

Geological Society of America Bulletin, v. 135, no. 7/8

(Fig. 3), a range in Md is observed at constant
distances from vent, which represents the cross-
wind changes in grainsize. Despite this scatter,
the coarse, fine, and distal unimodal trends have
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distinctive characteristics that can be interpreted
in terms of downwind variations.

The coarse trend spans a wide range of Md
values, from 200 mm to 6 pm, and shows a
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general decrease in Md with distance from
source at a rate correlated with the eruption
plume height (Fig. 2E). This correlation is
valid for magmatic eruptions only. The depos-
its from phreatomagmatic eruptions follow
a different pattern and show little grainsize
change with distance (Figs. 3 and 4). This has
been demonstrated using a compilation of bulk
(i.e., non-deconvolved) grainsize data (Osman
et al., 2020). Within a given range in plume
height (Fig. 4), magmatic eruptions display
decay trends that reach Md values of 100 pm
at increasing distances from vent with increas-

Eychenne and Engwell

ing plume heights (Fig. 3). This means that at
a given distance from vent, tephra-fall deposits
show decreasing Md values (on average) with
decreasing plume height, which is well dem-
onstrated by the boxplots in Figure 4. Most
deposits from eruptions with plume heights
of <10 km are unimodal, with Md grouping
along a similar trend with distance from source
(Fig. 3D). While there are more bimodal depos-
its for eruptions with plume heights of 10-20 km
and 20-30 km, the unimodal Md and coarse Md
again show similar decay trends with distance
from source (Figs. 3B and 3C). For eruptions

with plume heights of >30 km above vent, two
parallel coarse trends with similar decay rates
are distinguishable (Fig. 3A). The upper trend is
described by the Md data from the Taupo deposit
at distances of <200 km from vent and the
Campanian and Mazama deposits at distances
of >500 km from vent. In this upper trend, Md
values of 100 um are observed ~800 km from
vent (Fig. 3A). The lower trend consists of the
Md data from the Rungwe and Huaynaputinia
eruptions at distances of <100 km from vent
and the Pinatubo, Minoan, and Tambora erup-
tions at distances of >100 km from vent. In this
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Figure 4. Plots show distributions of median diameter (Md) in the coarse and fine trends as a function of distance from vent (horizontal
panels) and maximum plume height above vent for magmatic eruptions. The coarse trend is defined by the unimodal GSDs excluding the
distal unimodal ones, and coarse subpopulations. The fine trend is defined by the fine subpopulations. The phreatomagmatic eruptions are
counted separately and represented by white boxplots. The distributions are represented by Tukey whiskers plots, where the thick middle
line is the median, and the box spans the interquartile range (25th and 75th percentiles). The lower and upper whiskers show the smallest
and largest values no farther than 1.5 X the interquartile range (i.e., distance between the first and third quartiles). Outliers are plotted
individually. Statistical parameters are summarized in Table S3 (see footnote 1).
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lower trend, Md values of 100 um are observed
~400 km from vent (Fig. 3A).

In most deposits for each plume-height cat-
egory, we observe that the coarse trend reaches
a plateau in Md distally, where Md remains con-
stant with distance from vent around a grainsize
value that varies among plume height categories
(Fig. 3). These results indicate that at a given dis-
tance from source, the median grainsize in the
coarse trend is correlated with the type (mag-
matic versus phreatomagmatic) and the intensity
of the eruption, with coarser deposits at a given
distance resulting from higher intensity mag-
matic eruptions. This behavior is less obvious (1)
at very proximal distances from vent (<10 km),
where we observe some overlap among mag-
matic deposits (Fig. 4), which highlights that a
wide range of eruptions can deposit particles of
similar grainsize at such close distances from
vent, and (2) for eruptions with plume heights
of >30 km above vent, which deposit a wide
range of grainsizes at a given distance (see the
wider boxplots for this plume height category
in Fig. 4).

The fine trend spans a narrow range of Md
values, from 200 um to 2 um (except for two
values between 700 pm and 800 pm), and shows
a very shallow decrease in Md with distance
from source (Figs. 2 and 3). Two subparallel
trends are apparent (Figs. 2E and 4). The coars-
est trend mostly includes the fine subpopula-
tions of the bimodal deposit from the Plinian
1845 Hekla eruption (Fig. 3B), which remains
constant with distance with an Md value of
100 pm. The finest trend (<63 pm) mostly
includes deposits from eruptions with high
intensities (plume heights of >10 km). A slight
decrease in Md in this trend is most apparent at
distances of 10-100 km from vent (Figs. 2 and
4), while at distances of >100 km from vent,
very little change in the fine trend of Md can
be observed, with Mds of between 10 pm and
40 pm (Fig. 4 and Table S1).

The distal unimodal trend, mostly seen in
deposits from eruptions with plume heights of
>30 km (except for the 18 May 1980 Mount
St. Helens eruption, whose plume height was
between 20 km and 30 km above vent, Fig. 3B),
spans a narrow range of Md values, from 100 um
to 15 um, and shows little variation with distance
from source (Fig. 2D).

A common pattern can be identified in
the downwind variations of the grainsize:
the steep decay of the coarse trend and the
shallow decay of the fine trend meet in dis-
tal areas, where the distal unimodal trend is
found (Figs. 2-4). The fine trend meets the
distal unimodal and coarse trends between
500 km and 1000 km from vent (Figs. 2 and
3). The convergence in modes with distance
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from vent has been identified in some tephra-
fall deposits from ignimbrite-forming erup-
tions (Sparks and Huang, 1980; Brazier et al.,
1983; Sparks et al., 1983; Engwell et al., 2014)
and from lower intensity eruptions (Eychenne
et al., 2012, 2015; Engwell and Eychenne,
2016). Based on the data compiled here, we
demonstrate that the spatial variation patterns
of the coarse and fine subpopulations follow
universal behavior.

What Grainsizes Go Where?

Examining the distribution of Md at various
intervals from source (Fig. 4 and Table S3) allows
identification of spatial variation patterns among
tephra-fall deposits. Because we are analyzing
Md sizes, i.e., the median of the size distribution
of grains at a given location, our data cannot be
interpreted in terms of maximum grainsize trans-
ported. In fact, both coarser and finer material
are present in the tephra samples. Given that we
are working on deconvolved GSDs, we can be
confident that the Md refers to a unique mode of
the distribution and that the Md values are robust
proxies of the most frequent grainsize found at
the sampled locations.

Up to distances of 100 km from vent (Fig. 4),
the Mds of the GSDs observed in fall deposits
range from lapilli (64-2 mm) to fine ash sizes
(<63 pm). At 50-100 km from vent, only erup-
tions with plume heights of >30 km above vent
still deposit particles of lapilli-sized Md. Erup-
tions with lower plume heights deposit particles
in the ash-sized range. Further than 100 km
from vent, the deposits have an ash-sized Md
ranging from coarse (2 mm to 63 pm) to fine
ash (<63 pm). Interestingly, fine ash is depos-
ited at all distances from vent for most erup-
tion intensities (Fig. 4). At distances of <10 km
from vent, only deposits from eruptions with
the greatest plume heights (>30 km) lack fine
subpopulations and hence a fine trend (Fig. 4).
This reflects a lack of proximal measurements
for these examples in our data set rather than an
absence of bimodal deposits within this category
at these distances.

The data presented here relate to distinct
deposits that are identifiable by eye and do not
include more diffuse deposits that can only be
sampled as cryptotephra (Ponomareva et al.,
2015; Stevenson et al., 2015; Cashman and Rust,
2020). However, the information can be used to
inform the distances at which identifiable depos-
its occur for different eruption types (Fig. 4),
similar to results using deposit thickness in
Mabhony et al. (2016). At distances of >500 km
from vent, some grainsize information exists
for eruptions with plume heights of >10 km
above vent, but mostly for eruptions with plume
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heights of >30km (Fig. 4). Eruptions with
intermediate plume heights tend to have grain-
size data extending to distances between 200 km
and 500 km from vent (Fig. 4). Eruptions with
smaller plume heights tend to show observable
deposits to a maximum distance of 200 km from
vent (Fig. 4). These distances could be inferred
to represent the locations at which distinct ash
clouds are present in the atmosphere; however,
particles are likely to travel as dilute clouds far-
ther than the maximum distances inferred here
and are deposited as cryptotephra (Cashman and
Rust, 2020; Gouhier et al., 2019).

DISCUSSION

Origin of the Bimodality in Tephra-Fall
Deposits

Our work indicates that two main categories
of tephra-fall deposits exist: those dominated
by unimodal GSDs and those dominated by
bimodal GSDs (Fig. 2). Our analysis shows
that deposits dominated by bimodal GSDs are
from high-intensity eruptions (plume heights
of >10km, Figs. 2C and 2D), while depos-
its dominated by unimodal GSDs occur for a
wide range of eruption intensities (Figs. 2A and
2B). The absence of bimodality, and hence fine
subpopulations, in deposits from low-intensity
eruptions (plume heights of <10 km; Table 1)
can be attributed to the small amounts of fine
ash produced by these eruptions. In our data set,
these eruptions are typically lava-fountaining in
type and therefore have low fragmentation effi-
ciency (Rust and Cashman, 2011). Most phre-
atomagmatic deposits are unimodal in our data
set (Fig. 3E), but this is not universal behavior.
Other phreatomagmatic deposits from high-
intensity eruptions that are not included here
show evidence of bimodality (e.g., Tierra Blanca
Joven, El Salvador [Pedrazzi et al., 2019]; Taupo
Hatepe, New-Zealand [Walker, 1981]; and Sou-
friere St. Vincent, 1979 [Brazier et al., 1982]).
We can thus conclude that there is no relation
between the unimodality or bimodality of a
tephra-fall deposit and the involvement of water
in the fragmentation process.

Our analyses shows that high-intensity erup-
tions, which have high fragmentation efficien-
cies and thus the potential to produce fine, ash-
rich plumes, can form both deposits dominated
by unimodal GSDs and deposits dominated
by bimodal GSDs. This demonstrates that the
bimodality of fall deposits is not solely caused
by source processes and that transport and
deposition processes also play an important
role. Previously, the presence of a prevalent fine
grainsize subpopulation in tephra-fall deposits
has been related to a contribution of fine ash

1851



from co-pyroclastic density current plumes
(co-PDC, i.e., plumes generated by the lift-off
of PDCs during their emplacement). Evidence
for such processes has been observed (1) in
detailed sedimentological studies of individual
tephra-fall deposits (e.g., Campanian ignimbrite,
Minoan ignimbrite, 800 yr B.P. Quilotoa, 1974
Fuego, 1980 Mount St. Helens, 2006 Tungura-
hua; Sparks and Huang, 1980; Di Muro et al.,
2008; Rose et al., 2008; Eychenne et al., 2012;
Engwell et al., 2014; Eychenne et al., 2015), (2)
as well as in a compilation of numerous depos-
its for which there is record of co-PDC plume
formation (Engwell and Eychenne, 2016). This
relation was demonstrated based on the compar-
ison between the grainsize of distinct co-PDC
deposits and the fine subpopulation of bimodal
GSDs, as well as the geometry of the bimodal
fallout deposits and the spatial prevalence of
the fine subpopulation (Engwell and Eychenne,
2016). However, several of the tephra-fall
deposits dominated by bimodal GSDs analyzed
in this study are not thought to be associated
with PDCs (Fig. S3 and Table S2), namely the
1845 Plinian Hekla eruption (Gudnason et al.,
2018) and the 1991 Plinian Cerro Hudson erup-
tion (Scasso et al., 1994). Other potential fine
ash contributors to fall deposits that have been
invoked to explain bimodality (Gudnason et al.,
2018; Janebo et al., 2018), are (1) fine ash from
waning or ash-venting eruption phases, which
have lower energy and disperse tephra at low
altitudes, hence depositing fine ash at the same
distances from vent as coarser material from the
climatic phase, and (2) syn- and post-eruptive
wind remobilization of the contemporaneous
fallout deposits, which is a size-selective process
responsible for the resuspension and redistribu-
tion of fine ash only (Liu et al., 2014). Another
potential process of fine ash enrichment of fall
deposits is related to the late settling of co-Plin-
ian ash. This term was first defined by Fierstein
and Hildreth (1992) in the context of the mul-
tiple episodes of the 1912 Plinian Novarupta
eruption. Fierstein and Hildreth (1992) describe
fine ash that remains aloft after energetic Plin-
ian phases, due to their low terminal velocities,
and ends up mixed in with the deposits of sub-
sequent explosive phases. Using the change in
magma chemistry that occurred during the erup-
tion, they demonstrated that as much as 4.5%
and 12.5% of the fallout volume from the first,
largely unimodal, Plinian rhyolitic episode was
found in the dacitic fallouts from the second and
third Plinian episodes, respectively, which both
show bimodality (Fierstein and Hildreth, 1992).
Mixing of co-Plinian and co-PDC ash was also
proposed to explain the fine contribution in the
800 yr B.P. Quilotoa and Campanian Ignimbrite
tephra-fall deposits (Perrotta and Scarpati, 2003;
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Di Muro et al., 2008), which both have marked
bimodality.

Bimodality of fall deposits can also be
explained by some mechanisms that enhance
the deposition of fine ash in proximal to medial
locations. In fact, this is the most commonly
invoked process to interpret tephra-fall depos-
its dominated by bimodality or the occurrence
of bimodal GSDs in deposits otherwise domi-
nated by unimodal GSDs (e.g., Carey and Sig-
urdsson, 1982; Brazier et al., 1983; Bonadonna
etal.,2002b, 2011; Gudnason et al., 2017). Such
enhanced deposition mechanisms include (1) ash
aggregation (Brown et al., 2012), by which small
particles cluster together to form a bigger grain
with higher settling velocity (Carey and Sigurds-
son, 1982), or small particles coat coarser grains
and are thus scavenged from the plume (Bagh-
eri et al., 2016), or hydrometeors induce particle
aggregation and settling (Durant et al., 2009; Van
Eaton et al., 2015; Gudnason et al., 2017); (2)
en-masse settling due to gravitational instabili-
ties (Carazzo and Jellinek, 2013; Manzella et al.,
2015); and (3) fine ash entrainment in the tail of
bigger grains by a process called wake capture
(Lovell and Rose, 1991). All of these processes
will be discussed in the next section in relation
to the grainsize trends, but they are most promi-
nent in high-concentration plumes. During the
18 May 1980 Mount St. Helens eruption, which
produced a strongly bimodal deposit, coarse and
fine ash were documented falling concomitantly
by syn-eruptive time series sampling, which led
to bimodal grainsizes (Scheidegger et al., 1982).
Ash clusters were also observed and sampled
syn-eruptively for the first time (Sorem, 1982).

Another well-known process that creates
polymodality in tephra deposits is a change in
wind direction during eruptions. The resulting
shift in the plume dispersal axis generates a
shift in the tephra depositional axis, leading to
overlapping particle sizes on the ground. Such
a process was well described during the 2008
long-lasting eruption of Chaiten (Watt et al.,
2009) and is generally accompanied by multi-
lobate fall deposits.

This grainsize compilation suggests that both
a high fine ash content and enhanced deposition
processes are prerequisite conditions for gener-
ating deposits dominated by bimodality, while
deposits dominated by unimodal GSDs but dis-
playing scattered subordinate bimodal samples
could solely result from enhanced fine ash depo-
sition without requiring an additional source of
fine ash. For example, the 17 June 1996 Rua-
pehu eruption (Table 1, Fig. 3) generated several
bimodal samples despite the deposit being domi-
nated by unimodal GSDs and produced less than
5 wt% of fine ash as inferred from one of the
most comprehensive TGSD reconstructions in

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/135/7-8/1844/5895407/b36275.1.pdf
bv auest

the literature (Bonadonna and Houghton, 2005).
The data presented here show that the Ruapehu
grainsize decay plateaus around 100 pm in dis-
tal areas (>100 km from vent; Fig. 3D), which
confirms that a small amount of fine ash was
available during this eruption. On the contrary,
all of the deposits dominated by bimodality in
our data set were generated by eruptions for
which prominent secondary sources of fine ash
exist (Table S2). Even the 1845 Hekla and the
1991 Cerro Hudson deposits (Figs. 3B and 3C),
which are not considered to be associated with
large PDCs and therefore are not enriched by co-
PDC ash, have other secondary sources of fine
ash. In the case of the 1845 Hekla event, witness
accounts describe late settling of fine particles
(Gudnason et al., 2018), which could be related
to the settling of co-Plinian ash or ash from a
waning or ash-venting phase after the main
Plinian event. Additionally, wind erosion and
remobilization of the tephra-fall deposit were
also described after this event (Gudnason et al.,
2018). In the case of the 1991 Cerro Hudson
eruption, consistently strong winds, combined
with pulsatory eruptive activity (Scasso et al.,
1994), promoted the mixing of co-Plinian ash
with tephra from succeeding phases.

Physical Controls on the Spatial Grainsize
Trends

Our work highlights two major findings: (1)
all of the tephra-fall deposits contribute to two
distinct trends of grainsize decay, coarse and
fine, which converge in distal regions where they
reach similar grainsizes (Figs. 2 and 3), and (2) a
relation exists between the patterns of grainsize
decay in the coarse trend and the eruption inten-
sity (plume height; Fig. 4). Here, we discuss the
physical controls on these two main results.

Controls on the Coarse and Fine Trends:
Differences in Sedimentation Behavior

The steep grainsize decay with distance
from vent in the coarse trend, and the shal-
low grainsize decay in the fine trend (and the
phreatomagmatic deposits), are related to the
contrasting settling mechanisms controlling the
sedimentation of coarse and fine particles. The
coarse decay is well explained in the literature
by individual particle settling at terminal fall
velocity using different physical models (e.g.,
Walker et al., 1971; Brazier et al., 1982; Carey
and Sigurdsson, 1986; Carey and Sparks, 1986;
Sparks et al., 1992; Rose, 1993; Eychenne et al.,
2017). Based on the thickness trends with dis-
tance, settling regimes for individual particles
and sedimentation laws have been determined
(Fierstein and Hildreth, 1992; Hildreth and
Drake, 1992; Rose, 1993; Bonadonna et al.,
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Figure 5. Thickness and median grainsize are plotted versus distance for some key examples.
For grainsize information, see Table S1 (see footnote 1). Thickness data are from Engwell
et al. (2014), Sarna-Wojcicki et al. (1981), McGimsey et al. (2001), and Edwards et al. (2018).

1998). Bonadonna et al. (1998) showed that
three breaks in slope can be identified in the
thinning rates of tephra-fall deposits. While
the most proximal change in slope is related to
the transition from column margin to umbrella
cloud fallout (see data for Mt. Spurr in Fig. 5),
the other two breaks in slopes are interpreted
as resulting from the particles’ settling regime
changing as the plume disperses away from
vent. This is a consequence of a decrease in
the Reynolds number of the particles, which is
mostly related to a decrease in particle grain-
size (Rose, 1993), which leads to transitions in
particle settling regimes from turbulent (lapilli
range), to transitional (coarse ash range), and
laminar (fine ash range).

In many of the deposits compiled here, breaks
in slopes are observed in the grainsize decay of
the coarse trend with distance (Figs. 5 and S3),
mimicking the changes identified in the thin-
ning rates of fall deposits by Bonadonna et al.
(1998). A steep decline of the grainsize decay is
observed close to source, and a shallower decay
is observed at greater distances: e.g., Askja D,
Hekla 1947; Spurr, Tungurahua, Hekla 1991;
Etna January 2011 (Figs. S3 and 5). The first
break in slope occurs roughly at grainsizes
around 10 mm (abrupt change) and the second
sometimes identifiable break in slope is around
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100 pm (more gradual change). Based on the
theory of particle settling, these breaks in slopes
can be related to the transition from turbulent
to transitional and transitional to laminar set-
tling regimes, respectively (Bursik et al., 1992;
Ganser, 1993; Bagheri and Bonadonna, 2016).
However, applying the particle settling scheme
of Ganser (1993) to the August and September
1992 Spurr eruptions, Eychenne et al. (2017)
demonstrated that in medial to distal areas,
the shallow decay theoretically generated by
particles falling in the laminar regime departs
from the individual settling decay. This was
also identified and discussed in other deposits
(e.g., 2011 Cordén Caulle and 1980 Mount St.
Helens eruptions; Durant et al., 2009; Rose and
Durant, 2009; Bonadonna et al., 2015b). This
implies that sedimentation in the depositional
areas where grainsize and thickness show very
little change with distance (i.e., the sedimen-
tation of particles roughly below 100 um) is
controlled by a process other than individual
settling.

Our compilation highlights that the shallow
distal grainsize decay is the continuation of a
shallow and fine trend in proximal and medial
areas, which is composed of the fine subpopula-
tions of bimodal deposits and the phreatomag-
matic deposits (Fig. 3). The deposition of the
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fine subpopulation of bimodal deposits cannot be
caused by individual particle settling, given that
at the same distances the particles settling indi-
vidually comprise the coarse trend (Carey and
Sigurdsson, 1986; Sparks et al., 1992; Eychenne
etal.,2017). The questions raised by these obser-
vations are: (1) In proximal and medial areas of
tephra-fall deposits, what are the processes con-
trolling the sedimentation of fine ash (roughly
below 100 pm) and generating the fine subpopu-
lations of bimodal deposits and fine GSDs of
phreatomagmatic deposits? (2) Are the same pro-
cesses controlling the sedimentation of fine ash
in distal areas and forming the distal unimodal
deposits? These questions have been explored
in the literature. It is anticipated that in proxi-
mal regions, both the high concentration of ash
in the atmosphere and the wide range of particle
sizes available can trigger aggregation (Brown
et al., 2012) and other enhanced settling pro-
cesses, such as hydrometeor formation (Durant
et al., 2009; Van Eaton et al., 2015; Gudnason
et al., 2017), deposition by gravitational insta-
bilities (Carazzo and Jellinek, 2013; Manzella
etal., 2015), and wake capture (Lovell and Rose,
1991). However, in more distal reaches, where
volcanic plumes are more dilute and depleted in
coarse material, processes triggered by particle
interactions in highly concentrated mixtures, or
by fine particle entrainment in the wake of coarse
grains, are less likely to occur. Yet, even in distal
ash clouds, fine ash particles can interact to form
loose ash clusters (Sorem, 1982; Brown et al.,
2012), and there is evidence of aggregate types
changing from proximal (accretionary pellets) to
distal (ash clusters) locations in individual fallout
deposits (Brown et al., 2012). Additionally, atmo-
spheric processes could be critical in controlling
deposition of fine ash in distal areas. Vertical
variations in atmospheric turbidity, humidity,
and temperature can modulate the efficiency of
aggregate and hydrometeor formation (Durant
and Rose, 2009; Durant et al., 2009), while wind
shear, convection, and orographic effects are
also major controls on fine ash distribution and
deposition (Eychenne et al., 2017; Poulidis et al.,
2018). These different atmospheric processes,
as well as the physico-chemical characteristics
of the ash particles (i.e., density, texture, and
shape), which strongly affect their transport and
sedimentation behavior (Saxby et al., 2020), are
all likely to make individual settling irrelevant for
the deposition of fine ash.

To conclude, the distinctive coarse and fine
grainsize decay observed in tephra-fall depos-
its provides evidence of the decoupled set-
tling behavior between particles in the lapilli
and coarse ash range and particles in the fine
range. This leads to decoupled sedimentation
behaviors in proximal/medial and distal areas.
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The deposition of fine ash itself does not result
from a single ubiquitous process but is likely
different in proximal and distal locations and
sensitive to atmospheric conditions and particle
characteristics.

Controls on Grainsize Decay Rates:
Competition between Eruption Dynamics
and Transport Processes

The patterns of grainsize decay in the coarse
trend appear to be related to the eruption dynam-
ics through the mass eruption rate (i.e., inten-
sity), which is represented here by the maxi-
mum plume height above vent (Figs. 3 and 4).
The decay in the coarse trend can be described
in terms of (1) rate of decay (rate at which the
grainsize decreases with distance from vent),
and (2) position of the decay (grainsize found
at a given distance from vent). This is evident
when comparing eruptions with different inten-
sities but parallel decay trends (Fig. 2E). In the
case of magmatic eruptions, both are correlated
with the plume height (Fig. 3). The correlation
between decay rate and plume height means
that the Md of tephra-fall deposits decreases
more rapidly with distance from vent for high-
intensity magmatic eruptions than low-intensity
magmatic eruptions or phreatomagmatic erup-
tions (Fig. 3). The correlation between posi-
tion of decay and plume height translates to the
presence of coarser particles at a given distance
(Fig. 4), and wider deposit extents, for more
intense eruptions. Note for example the distance
from vent at which the average grainsize of the
deposits get below 100 pm in Figure 3.

The decay rate is theoretically related to the
time it takes the particles to be transported and
to settle through the atmosphere, and hence to
particle transport and sedimentation mecha-
nisms (Carey and Sparks, 1986; Pyle, 1989).
These processes are mainly controlled by the
type of settling mechanisms (individual or col-
lective settling), the characteristics of the par-
ticles available for fallout in the plume (size,
density, and shape), gravity current momentum
in proximal areas, and wind velocity and other
atmospheric processes. This latter dependence
on atmospheric conditions explains the variabil-
ity observed between decay rates within plume-
height categories (Fig. 3). For example, the
decay trend from the Pululagua eruption appears
steeper than the rest of the coarse trend in Fig-
ure 3B and corresponds to a circular tephra-fall
deposit (Volentik et al., 2010), which means
that it was generated by a plume dominated
by gravitational spreading and was not signifi-
cantly affected by wind advection. The general
increase in grainsize decay rate with increasing
plume height (Figs. 2E and 3) could thus be
explained by the larger effect of gravity spread-
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ing on the settling mechanisms of high intensity
eruption plumes. Overall, the steep decay rates
encountered in fall deposits from high-intensity
eruptions reflect a high settling efficiency of
particles in the plumes, which was previously
demonstrated based on the lower proportion of
far-traveled fine ash observed in high-intensity
eruption plumes by satellite retrieval methods
(Gouhier et al., 2019).

The position of the decay should be related to
the grainsize distribution of the material avail-
able for fallout in the plume (specifically the
maximum grainsize and the amount of fine ash)
and the height of particle release (i.e., plume
height). Indeed, the finer the grainsize distri-
bution and the higher the particles released,
the further they can be transported (Carey and
Sparks, 1986; Pyle, 1989). The grainsize dis-
tribution of particles within the initial plume is
controlled by the efficiency of fragmentation and
the mass eruption rate. The higher the fragmen-
tation efficiency, the higher the amount of fine
ash produced (Cashman and Scheu, 2015), and
the higher the mass eruption rate, the coarser
the maximum tephra grainsize entrained and
the higher the plume (Carey and Sparks, 1986).
Fragmentation efficiency and mass eruption rate
are strongly related, which explains why such a
strong positive correlation between the position
of decay and the maximum plume height above
vent is observed in our data (Figs. 3 and 4).

To conclude, the patterns of grainsize decay
are controlled by both transport mechanisms
and source processes (i.e., the eruption dynam-
ics, e.g., fragmentation, mass eruption rate, and
height of particle release). The competition
between transport and source processes controls
the spatial grainsize variations in tephra-fall
deposits.

Implications for Ash Transport in Distal
Reaches

We demonstrate that tephra-fall deposits in
distal areas show characteristic grainsize varia-
tions, regardless of eruption dynamics, whereby
grainsize distributions are unimodal and show no
change in Md with distance from vent (Figs. 2
and 3). This has been documented in depos-
its from large explosive eruptions such as the
Campanian Ignimbrite, the Mazama, and Tam-
bora 1815 eruptions (Kandlbauer et al., 2013;
Engwell et al., 2014; Engwell and Eychenne,
2016; Buckland et al., 2020). We also show
that the median grainsize in distal fall depos-
its, and the distance at which a deposit can be
considered to be distal, vary among case studies
and are strongly correlated to eruption inten-
sity (Figs. 3 and 4). Most tephra deposits from
eruptions with smaller (<10 km) plume heights
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extend less than 60 km from vent and never see
their median grainsizes become constant or go
below a value of 100 pm, apart from the Janu-
ary 2011 Etna eruption, which reaches a clear
plateau at a Md value of 115 pm between 60 km
and 100 km from vent (Fig. 3D). Deposits from
eruptions with moderate plume heights (10—
20 km) plateau between 100 km and 300 km
from vent, at Md values of between 100 pm and
50 pm (Fig. 3C). In eruptions with large plume
heights (20-30 km), the distal deposit behavior
is observed 200-500 km from vent at Md values
of <50 pm (Fig. 3B), while for eruption deposits
from very large plumes (>30 km), the transition
is observed beyond 600 km from vent, at Md
values of <50 pm (Fig. 3A).

The first implication of these findings is that,
based on this grainsize pattern, it is possible to
use objective and systematic criteria to identify
“distal” areas of tephra-fall deposits. Indeed, the
term “distal” is used ubiquitously in the descrip-
tion of volcanic deposits; however, it is rarely
described in a quantitative way. We propose that
the term “distal” be used where the grainsize of
ash plateaus. The use of our criteria will allow
fall deposits to be compared more effectively
and better interpretation of the dispersion and
sedimentation processes in play.

Our analyses of a comprehensive suite of fall
deposits reinforce the previously reported obser-
vation that in distal areas, particles do not settle
as individual particles due to their small sizes
(<100 pm). Distal deposits represent what is left
in the plume after particles that settle according
to their terminal velocities have already been
deposited. Given that distal plumes have rather
low concentrations, fine ash must reach the
ground in distal areas because they are coupled to
atmospheric flows (Eychenne et al., 2017; Pou-
lidis et al., 2018, 2021) or due to loose aggrega-
tion (Brown et al., 2012). Quantifying the con-
tribution of these processes in distal settling is
challenging. But our data demonstrate a relation
between the median grainsize of distal deposits
and the eruption intensity (Fig. 3), which shows
that eruption characteristics are key in control-
ling ash sedimentation in distal reaches. In distal
deposits from low-intensity eruptions (plume
height of <10 km), the absence of fine ash in
high amounts at the source means that a plateau
in grainsize is rarely seen, and when it occurs, it
is in the coarse ash-size range (Md of ~100 pm).
The contrasting grainsizes observed in distal
deposits from eruptions with plume heights of
>30 km above vent, compared to plume heights
between 20 km and 30 km (40 and 25 pm,
respectively; Fig. 3), could be predominantly
controlled by the shape and textural properties
of the grains (Riley et al., 2003; Saxby et al.,
2018). Indeed, eruptions with plume heights of
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>30 km have extremely high intensities and tend
to fragment highly vesicular magma and generate
ash dominated by extreme shapes such as platy
glass shards (Rose and Chesner, 1987; Engwell
et al., 2014). These particles have low terminal
velocities (Saxby et al., 2020), which means that
40 pm particles may be roughly aerodynamically
equivalent to 25 pm particles with more standard
shapes. This would lead to a relatively coarse
grainsize threshold (~40 um), below which
individual settling becomes irrelevant, and to
relatively coarse-grained distal deposits.

The major implication of these results is that
processes not yet well understood control the
dispersion and sedimentation of fine ash in dis-
tal reaches, and consequently the amount of fine
ash that remains suspended in the atmosphere,
where it is capable of traveling great distances.
Far-traveled ash is a critical hazard in volcanol-
ogy because of the severe impacts it has on (1)
aviation, with disruption to air traffic and the
potential for substantial economic loss (Budd
et al., 2011), and (2) air quality, with potential
adverse health effects (Horwell and Baxter,
2006; Carlsen et al., 2015) even at distances from
vent of >1000 km (Balsa et al., 2016). There is
discussion in the volcanology community about
the size and amount of ash that reaches great dis-
tances, which varies depending on the records
used, and in particular how information from
tephra-fall deposits, satellite ash retrievals, and
cryptotephra can be used together (Stevenson
et al., 2015; Cashman and Rust, 2020; Gouhier
et al., 2019). Deposit and cryptotephra records
report coarser grainsizes than satellite data at
the same distances from vent (Stevenson et al.,
2015). The discrepancy between what is mea-
sured in the atmosphere and what is measured on
the ground is difficult to resolve, given the fun-
damental differences in measurement methods
and the limits of satellite ash-retrieval techniques
(Stevenson et al., 2015). Here, we suggest using
the constant and ubiquitous grainsizes observed
in distal deposits as a benchmark to refine satel-
lite ash-retrieval methods. As mentioned before,
deposits and cryptotephra do not describe the
same portion of the drifting ash plume, and we
can suppose that cryptotephra are the continua-
tion of distal tephra-fall deposits. The grainsizes
measured in these two records should be care-
fully compared, as has been done in a few cases
(Stevenson et al., 2015; Cashman and Rust,
2020), to understand the behavior of dilute ash
clouds in ultra-distal reaches.

Implications for the Use of Tephra-Fall
Deposit Records

Tephra-fall deposit records are used to inter-
pret the dynamics (magnitude and intensity) of
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volcanic eruptions, specifically past eruptions
that were not witnessed (e.g., Walker, 1973;
Pyle, 1989; Bonadonna and Costa, 2013). They
are also widely used as benchmarks for validat-
ing numerical models of tephra transport and
deposition (e.g., Bonadonna et al., 2005; Folch
et al., 2010; Woodhouse et al., 2013). These dif-
ferent applications have predominantly relied
on thickness data and on trends of thickness
variations with distance. When tephra thick-
ness versus distance variations are compared
to grainsize decay with distance, very similar
trends are observed (i.e., steep decline in both
grainsize and thickness close to source, with
a levelling out at greater distances; Fig. 5).
In most examples, the magnitude of change
in grainsize over the extent of a deposit is
comparable to that of tephra thickness. For a
given eruption, the variability in grainsize at
a given distance from source is considerably
less than the variability in thickness (Fig. 5).
Analysis of thickness and grainsize informa-
tion from the Campanian Ignimbrite eruption
showed that higher thickness variability was
related to depositional environment and sec-
ondary processes such as deposit remobiliza-
tion and sedimentation (Engwell et al., 2014),
with a comparatively smaller effect on deposit
grainsize. Grainsize decay trends are excellent
indicators of tephra transport and sedimenta-
tion processes. We thus argue that grainsize
data provide a robust parameter for validating
numerical model results, and that thickness and
grainsize trends should be used conjointly.

CONCLUSIONS

We present an unprecedented data set com-
piling grainsize information for 56 tephra-fall
deposits. This data set allows the inter-compar-
ison of grainsize characteristics of fall deposits
generated by eruptions of low to high intensities
and magnitudes.

We highlight that fall deposits can show
scattered or ubiquitous grainsize bimodality
or unimodality. We demonstrate that depos-
its dominated by bimodal GSDs result from a
high fine ash content at the source and enhanced
deposition processes, while deposits displaying
scattered subordinate bimodal GSDs result from
local enhanced fine ash deposition processes.

We identified universal grainsize trends with
distance from vent, whereby all tephra-fall
deposits contribute to one of two distinct trends
of grainsize decay: a coarse trend decreasing
with distance from vent and a fine trend showing
little change with distance. Both trends converge
with distance in distal regions, where they reach
a plateau of constant grainsize. These decoupled
coarse and fine trends result from particle size-
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dependent contrasting sedimentation behaviors.
In the lapilli and coarse ash size range, tephra
sedimentation is dominated by individual par-
ticle settling at terminal fall velocity. In the fine
ash size range, a combination of mechanisms is
in play, from aggregation and other collective
settlings to particle coupling with atmospheric
flows. The contribution and relevance of these
different processes are difficult to quantify, but
we show that they do not have a particle size-frac-
tionation effect with distance from vent for par-
ticles sub ~100 microns. This leads to constant
grainsizes in distal reaches of fall deposits, due to
a depletion of the plume in particles capable of
settling individually at such distances from vent.

We demonstrate that a correlation exists
between plume height and grainsize decay in
the coarse trend. This translates into larger Md
at a given distance from vent for increasing erup-
tion intensities and suggests that fragmentation
and eruption dynamics at the vent (mass eruption
rate) explain most of the variability among fall
deposits from eruptions of different sizes, which
overprints the effects of transport processes.

Our findings have implications for under-
standing the behavior of far-traveled volcanic
ash, which is a major hazard that impacts avia-
tion and health, and for improving the usage
of tephra-fall deposit records. Further work is
needed on employing records of observable
tephra-fall deposit and cryptotephra to decipher
the dispersion and sedimentation of volcanic ash
at great distances from vent. We propose greater
use of grainsize distribution data in addition to
maximum grainsize and thickness data for inter-
preting deposits in terms of eruption dynamics
and for validating numerical models of tephra
transport and deposition.
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