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Abstract: This paper presents a novel design and development of a low-cost and multi-touch sensor
based on capacitive variations. This new sensor is very flexible and easy to fabricate, making it an
appropriate choice for soft robot applications. Materials (conductive ink, silicone, and control boards)
used in this sensor are inexpensive and easily found in the market. The proposed sensor is made of
a wafer of different layers, silicone layers with electrically conductive ink, and a pressure-sensitive
conductive paper sheet. Previous approaches like e-skin can measure the contact point or pressure of
conductive objects like the human body or finger, while the proposed design enables the sensor to
detect the object’s contact point and the applied force without considering the material conductivity
of the object. The sensor can detect five multi-touch points at the same time. A neural network
architecture is used to calibrate the applied force with acceptable accuracy in the presence of noise,
variation in gains, and non-linearity. The force measured in real time by a commercial precise force
sensor (ATI) is mapped with the produced voltage obtained by changing the layers’ capacitance
between two electrode layers. Finally, the soft robot gripper embedding the suggested tactile sensor
is utilized to grasp an object with position and force feedback signals.

Keywords: soft sensor; tactile sensor; capacitive sensor; calibration; neural network; soft robot; soft
pneumatic actuator

1. Introduction

Inspired by nature, scientists have tried to build a new field of robotics influenced
by human body interactions called soft robotics. Thanks to recent advances in smart and
soft materials, the new types of soft actuators can perform different complex tasks. They
have several advantages, including infinite degrees of freedom (DOFs) and lightweight,
easy, and cost-effective fabrication. Unlike conventional robots, soft robots utilize various
types of actuation, such as pressurized fluids, electric or magnetic fields, temperature, and
chemical reactions [1]. This specificity increases the variety of soft robot applications in
different areas, including manipulation [2], grasping [3], locomotion [4], medical appli-
cations [5], and underwater robot [6] applications. Although their deformable features
enable them to be used in uncontrolled environments without requiring complex pro-
tection or stability control algorithms as in hard robots, their morphological structures
restrict utilizing traditional sensors such as encoders, metal or semiconductor strain gauges,
or inertial measurement units (IMUs) [7]. In magnetic sensors, the stiffness of the soft
actuator is changed by adding the magnet and the Hall element [8], and optoelectronic
sensors require a transparent material for transmitting light [9], but resistive or capaci-
tive sensors are the most commonly used method due to fewer limitations in measuring
force, curvature, or tactile sensing. Elastomer sensors allow a minimal impact on robot
actuation. On the other hand, soft robots’ sensing design should be at least flexible or
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ideally stretchable. Moreover, the integrated sensors should not increase the stiffness of
the soft actuator. Recent embedded sensor advances and applications in soft actuators in
terms of performance, resolution, stretchability, self-healing, and self-powered capability
are reviewed in [10,11]. Tactile sensors are generally made of lightweight, stretchable,
and elastic materials. Li et al. reviewed the last developed sensing technologies in soft
robotic systems, including resistive, capacitive, optoelectronic, and magnetic sensors [12].
Wang et al. [13] reviewed the advances and potential challenges in soft robotics sensing.
Therefore, flexible and curvature sensors are still interesting subjects for closed-loop control
of soft actuators. In a resistive sensor, applying mechanical pressure changes the strain and,
consequently, the conductivity. In a capacitive sensor, the conductivity is dependent on
the geometry area of the dielectric materials between two electrodes [14]. Koivikko et al.
integrated resistive sensors in a soft gripper to detect the curvature [15]. Yang et al. [16]
used a thin layer of paper as electrodes, which was printed using resistive and capacitive
nano-silver ink. The proposed sensor was able to detect the bending angle and the object’s
proximity. Most electrode materials embedded in soft grippers as capacitive sensors are
made of conductive particles of carbon black (CB) [17], conductive ink [18], graphene [19],
liquid metal [20], and carbon nanotubes [21]. Other types of materials are reviewed in [22]
that can be operated as electrodes in flexible sensors. Gafford et al. used a rapid prototyping
method, namely shape deposition manufacturing (SDM), to fabricate a surgical three-finger-
gripper with an embedded microelectromechanical pressure sensor on its fingertips [23].
Cheng et al. [24] implemented a large-area, highly-twistable, artificial skin by winding the
copper wires around an elastic nylon line. The applied force and tactile sensing can be
detected through electrical resistance and pressure, respectively. Ho et al. [25] developed
elastomer fingers with a multi-layer fabric capacitive sensor to detect proximity and contact
feedback information, and to grasp delicate objects. A highly stretchable tactile capacitive
sensor for a soft pneumatic actuator is proposed in [26]. Lee et al. [27] presented a flexible
capacitive 8 × 8 sensor array. The sensor structure consists of parallel plate capacitors that
simultaneously enable sensing normal and shear directions. The copper electrodes are
patterned on the PDMS substrate. By applying an external force, the air gaps are deformed,
leading to a change in capacitance. A flexible polymer-based, three-axial, capacitive sensor
was developed by Brzynska et al. [28]. They integrated three kinds of polymers with
standard metallization in a cleanroom batch-type fabrication process. This sensor can be
used as a promising candidate for artificial skin applications. A capacitive pressure sensor
with polyvinylidene fluoride (PVDF) was proposed in [29]. The pattern transformation
of anodized aluminum oxide is utilized for fast, large-scale sensor fabrication. However,
most of the mentioned methods required complex and expensive fabrication techniques,
while the main important goal of soft robot systems is simplifying the robot mechanisms,
including mechanical and electrical components without reducing the robot’s functionality.
The 3D-printing method is employed to integrate hydrogel electrodes into the silicone.
Due to better performance, easier implementation, and calibration compared to resistive
soft sensors, capacitive sensors are widely used in tactile sensors. Furthermore, they can
also detect multi-touch gestures and allow for the inferring of information. Due to these
advantages, capacitive sensing was selected in this study for soft robot applications.

In this work, a new multi-touch, large-area, capacitive sensor is proposed. Our
proposed sensor exhibits several advantages, such as stretchability, fast response, and low-
cost materials for measuring contact points and applied forces on soft grippers. Compared
to conventional grippers, soft grippers can grasp an object with a larger contact area, which
consequently requires covering a wide range of sensing regions with high spatial resolution.
Figure 1 compares the grasping technique of a conventional rigid gripper with a soft gripper.
The rigid gripper generally grasps an object with the tipping point of each finger. The
force or tactile sensor can be embedded at the fingertip to cover this area. For this purpose,
many commercial sensors with small dimensions are suggested in the literature, including
the Hall effect sensor [30], tactile sensor [31], and force-resistive sensor [32]. While in the
soft gripper, as shown in Figure 1a, large areas are used for obtaining the object, and the
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sensor should be able to cover this area. Many soft, flexible, and stretchable sensors for
soft grippers have been proposed, but most of them focused only on the tipping point
of the gripper, which is in contrast with the nature of the application of the soft grippers.
For instance, Cho et al. [33] developed an EGaIn tactile sensor to measure forces at the
end of the finger. Then, the sensing response experiment confirmed the performance of
the object’s grasping state. In a similar work, Hao et al. [34] developed an EGaIn tactile
sensor at the fingertip of the gripper to identify objects with sensory feedback. Therefore,
it is necessary to develop a large-area sensor specifically according to the soft gripper
dimension. Moreover, unlike a rigid gripper, the object can have multiple contact points
with each soft finger, as shown in Figure 1b. Hence, the sensor should be capable of
measuring multiple points simultaneously. Although most capacitive sensors like e-skin
sensors are highly stretchable and can detect multiple contact points, they are just sensitive
to conductive objects (e.g., the human body) [35], while the behavior of the proposed sensor
is independent from the object material.
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Figure 1. Comparison of the grasping performance of a soft and a conventional rigid gripper. Soft
grippers have advantages including (a) large-area contact points and (b) multi-touch contact points
at the same time.

In the following study, a neural network is used to calibrate the applied forces to
achieve higher accuracy. Then, the calibrated sensor is embedded into a soft finger to
validate the grasping of an object by sending out the contact position and related force as a
feedback signal. Sensor calibration includes a non-linear process. Recently, artificial neural
networks (ANN) have been used for modeling non-linear systems. They can solve highly
complex problems on mathematical calculations or other classical procedures without
needing to explicitly define the model structure [36]. They reduce the modeling process
to network training, which is useful, especially for non-linear sensor calibrations when
sensor array signals are used to calculate the parameters [37]. In the literature, ANN-based
soft sensors are usually employed to find the relationship between inputs and outputs
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by minimizing the mean square error. After calibrating the sensors, the trained model
can predict the output whenever required. One drawback of ANNs is that the training
time is long. Almassri et al. [38] proposed the Levenberg–Marquardt back-propagation
artificial neural network (LMBP-ANN) model for self-calibrating a pressure sensor for
reliable grasping by wearable robotic hand gloves. The model successfully predicted the
pressure in the presence of hysteresis, creep, and nonlinearity. The back-propagation (BP)
neural network was suggested by Ye et al. [39] for self-calibration of the non-array tactile
sensor’s structure. This design does not require arrays of electrodes; therefore, it is easy
to fabricate and covers a large force detection area. The rest of this paper is organized
as follows: The following section presents the conceptual and operating principles of the
proposed sensor. Then we discuss the manufacturing procedure and tactile performance of
the sensor. After that, an application of the designed sensor in a soft gripper is introduced.
Finally, a conclusion and future work are reported.

2. Methods

Capacitive sensors mainly consist of two conductive layers separated by a dielectric
elastomer layer. The capacitance changes when the object moves nearer to the electrodes
(Figure 2a). This also changes the local electric field. In the most recent approaches, the
object should be conductive or semiconductive with significant impedance for observable
changes in the electric field. However, some approaches depend on the sensitivity material
of electrodes, such as an elastic carbon nanotube (CNT). In this case, the capacitance is
also altered by non-conductive materials [21]. Our work aims to develop a new type of
capacitance sensor that can measure contact points by applying pressure with any object
without requiring conductive materials. The schematic view of the working principle
of the proposed sensor is presented in Figure 2b. The contact point can be detected by
changing the capacitance of the touching point area. It consists of two orthogonal arrays of
electrodes: vertical lines (Tx) for sending, and horizontal lines (Rx) for receiving. A small
voltage is applied to Tx to build an electrical field between the electrodes. The displacement
current resulting from changing the electric field is measured at Rx. A conductive flexible
substrate with a ground connection is designed at the top of the layers, as described in
Figure 3. Bringing the object closer to the surface drains a certain amount of field lines
between Tx and Rx, which can be observed to specify the touchpoints. Furthermore, the
other complementary effect of this design type is pressure sensitivity. By applying an
external force, the electrode distance changes, as shown in Figure 2b. The amount of force
can be measured from the produced current displacement. The capacitance for a parallel
plate can be described as calculated by Equation (1),

Csensor = ε
A
d

= k ε0
A
d

(1)

where A represents the electrode area, d represents the dielectric thickness, ε0 is the permit-
tivity of the vacuum, and k is called the dielectric constant of the layer between two plates.
The capacitance can be varied by changing the thickness of the dielectric layer between two
plates. Our sensor is composed of two capacitors that are connected in parallel. The total
capacitance is calculated as

CT = C1 + C2 (2)

with
C1 = k1 ε0

A1

d1
, C2 = k2 ε0

A2

d2
(3)

we obtain
CT = ε0 (k1

A1

d1
+ k2

A2

d2
) (4)

where ε0 equals 8.854 × 10−12 F/m and k1 for air is considered as 1 F/m, while for the
Ecoflex 00-50, this constant is around k2 = 2.65 F/m [40].
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Figure 3. Schematic illustration of the proposed sensor’s internal layers.

3. Materials and Fabrication of the Flexible Capacitive Sensor

Figure 4 presents the fabrication procedures of our flexible capacitive sensor. The
sensor architecture was developed with a top layer of silicone, two conductive layers for
horizontal and vertical tracks, two layers of silicone elastomer, and a conductive shield
as a bottom layer. It should be fabricated layer by layer. Due to its prominent features,
including lightweight, hyper elasticity, and fast and easy fabrication, silicone is one of
the most widespread materials used in soft robotic systems. Ecoflex is one of the popular
silicones frequently used. It is commercialized by Smooth-On [41]. Considering the
application, the shore hardness range of silicone can be selected from 00-10 to 00-50. In this
article, the silicone Ecoflex 00-50 was used to fabricate the sensor layers. The elastomer
material properties are summarized in Table 1. These properties allow Ecoflex to expand
from its primary dimension many times without tearing, making it a proper choice for soft
sensor applications. For more information about other types of silicone used in soft robot
applications and their mechanical properties, the reader is referred to the review article [42].
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The conventional molding technique was used to fabricate different layers of the proposed
sensor. A 3D printer was used to make the layer frames with different thicknesses to find
the optimal thickness of the layers related to the sensor’s sensitivity. Ecoflex consists of
two parts that should be mixed well with the same ratio, according to the manufacturer’s
instructions. After mixing the two silicone parts and before pouring them into the mold,
vacuum degassing was applied for around three minutes to remove air bubbles. Ecoflex
layers were cured after three hours at room temperature. The curing time can be less than
an hour by utilizing an oven to heat the mixing liquid up to a temperature of around 70◦.
Table 2 compares the materials cost of the proposed sensor with the most used materials to
fabricate tactile/capacitance sensors. As shown in this table, the total price of our proposed
sensor is noticeably lower than the other methods.
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Table 1. Material properties of Ecoflex 00-50.

Specific gravity 1.07 g/cc
Cure time 3 h

Shore hardness 00-50
Tensile strength 315 psi
100% modulus 12 psi

Elongation @ break 980%
Mixing ratio 1A:1B

Color Translucent
Mixed viscosity 8000 cps
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Table 2. Comparison of the total cost of our proposed soft tactile/capacitance sensor with previous
well-known approaches.

Method
Sensor Body Electrodes

Fabrication Cost
Type Price Type Price

Proposed sensor Silicone + Conductive ink + +

Kim et al. [20] Silicone + Liquid metal
EGaIn ++++ +++

Cheng et al. [24] Polydimethylsiloxane
(PDMS) ++ Copper wires + ++

Lipomi et al. [43] PDMS ++ Carbon nanotube ++ +++

Yao et al. [44] Silicone + Silver nanowire
AgNW ++++ +++

The fabrication process starts by pouring Ecoflex (Figure 4c) with 2 mm as the base
substrate. After curing the top layer consisting of Ecoflex 00-50 with a thickness of 3 mm,
the painted paper, including 9 horizontal electrodes, is placed on the top layer. The distance
between these electrodes is set to 10 mm (Figure 4b). Then, these electrodes are covered
by a very thin layer of silicone (Figure 4d), which affects the measured range of pressures
according to Equation (1). To achieve maximum sensitivity, different manufacturable
silicone layers (0.2 to 1 mm) were tested to find the largest variance of the forces. Each layer
was tested by applying normal force produced by a stepper motor, and then measuring
the output signal. The thickness of silicone less than 0.5 mm shows a wide range of signal
change outputs, which is desirable for the proposed sensor. In the next step, the second
layer of electrodes is laid down perpendicularly compared to the previous electrode layer to
build a 9 × 9 electrode matrix grid (Figure 4e). Finally, the conductive paper shield covered
by silicone is attached to the electrode layer with an air gap. To find the appropriate value
of the air gap between the electrode layer and the conductive shield, ensuring maximum
sensitivity, different distances between 1 mm to 5 mm were tested. The optimal air gap
was found between 2 and 3 mm. An air gap lower than 2 mm increases the shortcut circuit
and saturation possibility, and an air gap bigger than 3 mm reduces the sensitivity by
reducing the variance of output signal changes. To easily make the prototype samples, the
water-based, non-toxic Bare Conductive electric paint, namely Bare Conductive [45], was
chosen for electrodes and the conductive shield, which is provided by the manufacturer
in a 10 mL tube. The electric paint dries at room temperature and is used to draw the
electrodes. The resistivity range of these materials varies between 33–55 Ω/m [46]. It
contains conductive carbon, water, and natural resin. Therefore, it can be solved easily in
water. To have a unified electrode size, the conductive ink is patterned on a filter glass
with a 2 mm thickness (Figure 4a). The electrodes are then connected with wires (Figure 4f)
to the hardware-sensing platform by a Muca breakout. This data acquisition system was
presented by Tesseyer et al. in [47]. The FT5316DME controller in this breakout provides
33 connectors (maximum 12 sensing electrodes and 21 transmitting electrodes). This sensor
can detect 5 multi-touch coordinates at the same time and send them out via i2C to the
Arduino Uno. A serial communication then transports the data from the Arduino to a
PC. The external touch position can be calculated by reading the row and column data
separately, which represent the X and Y coordinates, respectively. The MATLAB software
is utilized for communicating with the microcontroller board to receive, log, visualize, and
analyze the external contacts in real time. The measurement results in the 100 × 100 mm
soft rectangular pad and mutual-capacitive readout are represented in Figure 5. When the
object is touching the surface of the pad, the x, y coordinates and magnitude of contact
force are calculated and depicted in real time. Two types of experiments, a non-conductive
object (plastic pen) and a conductive object (human finger), are tested to show the sensor’s
performance. As shown in Figure 5, the sensor can detect three touchpoints with different
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pressure amounts simultaneously. The circle radius shows the capacitance changes of the
touching pad. By increasing the pressure, circle size will be increased. For instance, we
applied more pressure with our thumb finger. To reduce the background noises, small
changes in capacitance (less than 5%) were filtered and are not presented in these pictures.
Figure 6 shows the designed experimental setup to evaluate the impact of the touch
durability and the consistency of the proposed sensor. The sensor is divided into five zones.
In each zone, the same position is touched 10 times with a five-second delay. A stepper
motor controls the contact speed and applies a constant force for each touch. Then, the
sensor’s average distance error between the measured and actual position of the contact
point value is calculated. This procedure is repeated 10 times, and average amounts are
plotted in Figure 7a. The results show that the sensor performs better in the center zone
area 3. In the second experimental test, 10 probes of different sizes are used to assess the
sensitivity of the sensor. A 3D printer is used to fabricate 10 probes with a range size
between 1 mm to 20 mm. Each probe touches the point center of the sensor 10 times,
and the average distance error is calculated and depicted in Figure 7b. The results show
that the sensor can detect the contact point of different probe sizes with good accuracy
even after 100 touches. The sensor shows better precision for sharp objects. One potential
challenge of using silicone as a substrate of the sensor is during cyclic loading. Hysteresis
due to the nonlinear viscoelastic behavior of silicone can be observed, especially when large
deformation occurs. Some research has been done in this field, focusing on fiber-reinforced
elastomers to reduce the effect of cyclic loading and hysteresis [48]. In our sensor, we
used paper for electrodes and a top layer of silicone, which acts as a fiber reinforcement,
increasing the durability of the sensor. Moreover, in this case, the deformation of the sensor
is small. Therefore, in this study, the hysteresis effects can be neglected.
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4. Calibration Procedure for Soft Robot Applications

In our previous works, we developed a soft robotic finger with a movable joint for
enhancing the shape control of soft actuators [49]. Later, we proposed a soft robotic gripper
with three fingers for in-hand manipulation [50]. An open-loop control law was applied to
control the pressure. The installation of the proposed tactile sensor on the fingers of this
gripper can increase its grasping quality by using its data as feedback for the fingers’ control.
The fabrication of the sensor here is composed of five horizontal lines and two vertical lines
(5 × 2) to gather the sensing data as in the previous section regarding the surface dimension
of the finger (50 × 25 mm). As shown in Figure 8, the sensor can be attached easily to
the finger by pouring a very thin layer of silicone between the sensor and the soft finger.
After curing the silicone, the sensor and finger are unified. The finger was used to push on
the ATI FT14000 sensor, and the produced voltage corresponding to the applied force was
measured by the ATI sensor. The maximum force that the finger can apply was measured
by the ATI sensor and was around 3.2 N. To produce this force range, a small pump with a
working pressure of around 14 kPa was used. Due to the background crosstalk, finding the
proper equation between the force and voltage is very difficult. Artificial neural networks
are a familiar way to model the behavior of unknown systems in different areas such as
robotics, manufacturing, and optimization. Several studies have been conducted on the
application of ANNs to model and forecast various applications because of the ANN’s
ability in modeling complex relationships between inputs and outputs or finding data
patterns. ANN can be described as a group of simple processing elements called neurons.
Neurons aim to find a mapping between the input space (input layer) and the desired
space (output layer) by identifying the relationship between their data. Each hidden
layer is responsible for transforming the propagated data to the next layer. The learning
process continues for several iterations until the average mean square error (MSE) attains an
asymptotic value. Figure 9 represents the flowchart of the ANN development. The process
used for network training is called a learning algorithm, which is designed to change the
junction weights of the network to obtain the desired objectives. The ANN in this study
consists of a two-layer feedforward network with a tangent sigmoid transfer function
(tansig) between the input and hidden layer, a linear transfer function (purelin) between
the hidden and output layer, and Levenberg–Marquardt back-propagation training due
to its fast convergence compared to alternative back-propagation methods. A sample of a
two-layer feedforward network is illustrated in Figure 10. These networks include input,
hidden, and output layers, where the hidden layer neurons’ number is determined by an
experimental design and analytical method. Five hundred experiments were executed.
The data are randomly divided into three training, validation, and testing subsets to avoid
any bias (70% for training, 15% for validation, and 15% for testing). Therefore, 350, 75,
and 75 samples were used for training, validation, and testing subsets, respectively. Many
methods are available in the literature to determine the number of hidden layer neurons. In
this research, the formula proposed by Hecht–Nielsen [51] was used to specify the number
of neurons in the hidden layer. One of the best predictions for the number of neurons in
the hidden layer is as follows:

m = 2n + 1, (5)

where m represents the number of neurons in the hidden layer and n is the number of input
neurons. Considering that there is one input, the number of hidden layer neurons is 3. To
compare the optimization algorithms, first, it is necessary to design an ANN, and then
evaluate the performance of the ANN in predicting the objective function value. Indeed,
it is essential to measure how well the ANN adapts to the training data. It is observed
that if the ANN generalizes well, it has captured the system characteristics. Some different
performance measures are used through the training process to evaluate ANN architectures.
In this study, the mean square error (MSE) and determination coefficient (R2) are considered
as the performance function. The mean square error (Equation (6)) is used to determine
how well the ANN output fits the desired output presented in the training data. Therefore,
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the determination coefficient (Equation (7)) is related to the difference between the network
output and the desired output [52].

MSE =
1
N

N

∑
i=1

(yprd,i − yexp,i)

2

(6)

R2 = 1 −
∑N

i=1 (
∣∣∣yprd,i − yexp,i

∣∣∣)
∑N

i=1 (yprd,i − ym)
(7)

where yprd,i represents the predicted value of the objective function using the ANN model,
yexp,i is the experimental value of the objective function, N shows the number of data, and
ym represents the average of the experimental value of the objective function. Figure 11a
plots the values of the ANN model plotted versus the corresponding experimental values to
visualize the modeling capabilities of the ANN models. The R2 for the training, validation,
and testing datasets are 0.99994, 0.99993, and 0.99993, respectively.
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Figure 11. (a) Approximation capability of the trained neural network and (b) mean squared error of
the finger’s force.

The high values of R2 show that the trained ANN model is capable of finding the
relationships between the decision variables and the objective function with high accuracy.
Consequently, the designed neural network is sufficiently efficient to predict the values of
the objective function. The ANN converged very fast to the desired accuracy. Figure 11b
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reports the average mean square error (MSE) for 51 runs. At 45 epochs, the value of the
MSE is 6.9001 × 10−5, which is the best performance. Table 3 shows the specifications and
parameter values that are used in the LMBP-ANN model. To evaluate the applicability
of the proposed sensor, we carried out experiments of the calibrated sensor assembled
with a soft gripper (Figure 12a). The soft gripper consists of two fingers to grasp the object.
Figure 12 shows that the applied force on several contact points can be detected with a
good approximation in the task of grasping a cube. The captured data have been smoothed
by calculating the moving average values over ten sensing data frames. The measured
force limit can be increased by changing silicone layer softness and thickness between the
two electrodes. A separate ANN real-time calibration model is used for each attached
sensor to measure the finger’s forces applied to the object. Equal pressure with small
pumps and solenoid valves is applied to two fingers simultaneously. Figure 12b shows the
calculated forces with 10 kPa pressure in each calibrated sensor as the radius of the circle.
The two sensors show approximately the same force of 2.5 N. The potential challenge of this
sensor is when the bending angle is large and affects the sensor’s performance. Dividing
the sensor into separate parts and designing some spacers between each part could solve
this problem. However, this will require a precise fabrication and molding procedure.

Table 3. Specifications and parameters of the ANN model.

Training Parameters Values

Neural network model Feedforward
Input layer 1

Hidden layer 1
Hidden layer neurons 3

Output layer 1
Training network algorithm Levenberg–Marquardt back-propagation

Training percentage 70%
Testing percentage 15%

Validation percentage 15%
Transfer function hidden layer Tan-sigmoid
Transfer function output layer Pure line

Data division Random
No. of epochs 51

Validation checks (iterations) 6
Performance Mean squared error (MSE)
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5. Conclusions

This work presented a wide area covering tactile sensors for soft robotic applications.
The lower layer was made of silicone films embedded in a paper completely covered with
conductive ink. The top layer was made of a paper shield employed with conductive
ink, which helps measure the electric field changes even for non-conductive objects. A
novel, fast, cost-effective fabrication method for this tactile sensor was also proposed in
this paper. A large-area 100 × 100 mm soft pad tactile sensing array was presented to
study the performance of the proposed sensor. Bringing the object near the surface changes
the generated electric field and increases the mutual capacitance. The spatial sensitivity
of the sensor was measured, and its capacity to detect simultaneous multi-touch points
and to obtain their corresponding contact forces was validated. An experimental setup
with different probes was designed to show the consistency and durability of the sensor’s
performance. Then, a calibration technique by neural networks was proposed to find the
best calibration model. An ATI force sensor was used as a reference for measuring the
applied force. An LMBP-ANN training algorithm was executed with a MATLAB program
to calculate outputs based on the proposed procedure. The training process of the presented
model continued by updating the weight amounts until reaching the highest performance,
achieving the minimum MSE. After calibration, the derived models were tested by using a
two-fingered soft gripper to grasp a Rubik’s cube, where two of the proposed soft sensors
were pushed against this object. The experiment showed that the sensors measured the
applied forces and contact points with a good approximation. The proposed sensor covered
a large surface area of the gripper, which is very useful for soft robot grippers in detecting
several contact points, while in rigid grippers, only the tipping point is important as a
contact location. Future works will be primarily needed to improve the sensor’s long-term
stability and resolution. These may include efforts to print the electrodes with conductive
ink and use resin-coated papers to reduce the resistance and increase the sensitivity.
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