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Abstract: Ever greater technological advances and democratization of digital tools such as computers
and smartphones offer researchers new possibilities to collect large amounts of health data in order
to conduct clinical research. Such data, called real-world data, appears to be a perfect complement
to traditional randomized clinical trials and has become more important in health decisions. Due
to its longitudinal nature, real-world data is subject to specific and well-known methodological
issues, namely issues with the analysis of cluster-correlated data, missing data and longitudinal
data itself. These concepts have been widely discussed in the literature and many methods and
solutions have been proposed to cope with these issues. As examples, mixed and trajectory models
have been developed to explore longitudinal data sets, imputation methods can resolve missing
data issues, and multilevel models facilitate the treatment of cluster-correlated data. Nevertheless,
the analysis of real-world longitudinal occupational health data remains difficult, especially when
the methodological challenges overlap. The purpose of this article is to present various solutions
developed in the literature to deal with cluster-correlated data, missing data and longitudinal data,
sometimes overlapped, in an occupational health context. The novelty and usefulness of our approach
is supported by a step-by-step search strategy and an example from the Wittyfit database, which is
an epidemiological database of occupational health data. Therefore, we hope that this article will
facilitate the work of researchers in the field and improve the accuracy of future studies.

Keywords: methodological issues; modeling; occupational health; longitudinal data; missing data;
cluster-correlated data; real-world data

1. Introduction

In previous decades, randomized clinical trials have been the main experimental
methodology used to collect clinical data. Collected within a strict framework, the analysis
of randomized clinical trials data is used to answer specific questions related to a specific
population (namely the population selected for the study). This remains true provided
that analyses are performed rigorously with consideration for all required hypotheses and
methods (e.g., definition of a representative population sample, randomization, controlled
tests, application of appropriate models to the data). However, the advances in technology,
the democratization of computer tools such as computers and smartphones as well as
the increase in data storage capacities offer researchers new possibilities for collecting
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large amounts of health-related data for analysis. Such data, collected independently of
traditional trials, is also known as real-world data [1–3]. More broadly, the data can be
obtained from various sources such as patient health records, product and disease registers
or even digital health data collection platforms and applications. Many examples of real-
world databases can be listed and classified according to the sources from which they
come. As examples of this, we can cite records from patient registries such as the European
Cystic Fibrosis Society Registry database [4], healthcare databases such as Wittyfit and
Wittyfit Research [5], pharmacy and health insurance databases such as the Food and
Drug Administration’s Sentinel Initiative [6], social media such as PatientsLikeMe [7] or
patient-powered research networks such as PCORnet [8]. Big data management approaches
such as the management of chronic kidney disease [9], chronic obstructive pulmonary
disease [10], or lymphoma subtypes [11] have naturally emerged from such databases.

As a perfect complement to randomized clinical trials data and presenting a longitu-
dinal structure [12], the results of the analysis of real-world data, also called real-world
evidence, are very popular; for example, within pharmacology research, these data sets are
considered essential because they are crucial in pharmacological decision-making [13,14].
However, by construction, real-world databases are not immune to missing, noisy (outliers),
duplicate or inconsistent data phenomena [15].

A longitudinal study is a study investigating repeated data, i.e., where the same data
has been measured/collected on an individual several times over time [16]. Unlike cross-
sectional studies, cohort effects and time-related effects can be measured separately. The
main goal of a longitudinal study is to describe changes over time and measure the individ-
ual influence of variables to explain changes observed [17]. Longitudinal data may also
facilitate the change over time when investigating particular individuals [18]. For example,
it is possible to measure risk factors in the development of disease for particular individuals
in the population [19]. However, many challenges and methodological issues make it
difficult to analyze longitudinal data. These analytical problems include the correlated
structure of intra-individual data, the considerable size of data sets, irregular time-spaced
measurements, non-linear patterns (such as rapid growth or stationary responses), latent
constructs, and the mix of time-varying and static covariates.

There are also more difficult problems to consider, such as cluster-correlated data,
missing data and longitudinal modeling itself [20,21]. To sum up, studying such data types
requires understanding the specific concepts that are outlined in Figure 1.
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for the novelty and usefulness of our approach and main formulas surrounding cluster-correlated
data, missing data, and longitudinal data). SEM: structural equation model, CLPM: “cross-lagged”
panel model.
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Although a multitude of approaches have been proposed in the literature, it is still
difficult to account for all these concerns in a synchronized way. The purpose of this paper
is to review the state of the art of different methods and models designed to address issues
related to real-world longitudinal occupational health data in a holistic way to improve
the quality of future surveys on the topic. In the first part, we aim to introduce each
methodological issue and to present advanced methods for addressing them. In the second
part, we aim to present a case study in which all the issues overlap and present a method
to meet the objectives of the study using the solutions previously featured.

2. Methodological Issues and Methods for the Analysis of Longitudinal Data
2.1. Cluster-Correlated Data

Cluster-correlated data occur when pre-existing groups of individuals exist within
the population, allowing for a natural classification of subjects into groups, otherwise
known as clusters. Thus, the observations of the same cluster are correlated with each
other while the observations between the different clusters are uncorrelated. This structure
requires considering two possible sources of variability, namely intra- and inter-cluster
variability. These similarities in the data can, however, lead to a loss of statistical efficiency
and integrity of the models used, necessitating an increase in the size of the sample [22]. It
is therefore necessary to find an appropriate balance between the number of clusters and
the number of patients.

Correlated data occur in a number of different settings. They can be clustered, spatial
(grouping by location), multilevel or longitudinal data or even several at the same time [23].
A hierarchical or multilevel structure can be thought of as a series of several levels nested
within each other. Thus, the lowest level represents level 1, and the levels follow each
other upwards to the level where all the data is contained. The units formed at each
level can then be likened to clusters. A hierarchical structure is therefore a succession of
more and more specific clusters and, from observation of the lower levels, is a structure
that is “neither accidental nor ignorable” [24]. Multilevel structures widen the field of
possibilities in terms of questions that can be answered (e.g., presence of a group effect,
disparities within the different clusters). On the other hand, the structures question the use
of statistical methods that do not consider the nature of the structures, which could also
provide erroneous results [25,26]. Longitudinal data is a special form of clustered data. By
nature, an individual’s data is plausibly more positively correlated with each other than
with other individuals. Like correlated data, this intra-subject correlation must be taken
into account in the analyses, otherwise this can provide false positive results and erroneous
confidence intervals [21,27]. Figure 2 presents an example of a population divided into
clusters followed in a longitudinal study.

Thus, cluster-correlated data, regardless of its type, requires special analytical treat-
ment [28]. Cluster-correlated data analysis attempts to take into account the variability
associated with each level of the structure and must be interpreted separately from the
overall variability [29]. Indeed, misspecification of the cluster effect or careless interpreta-
tion of the model parameters can lead to erroneous results [30,31]. Hence, in the literature,
multilevel models (MLMs) have been designed to address these various issues and analyze
correlated-clustered data [24,29,32,33]. These models are similar to mixed models. In fact,
the “levels” described by the multilevel models can be assimilated to be the “random
effects” of the mixed model. This implies that cluster-correlated data can be analyzed
properly using the models defined above by considering the levels of the data as random
effects. Similarly, for longitudinal data, this implies that the individual effect must be
considered as a random effect also.
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Clustered data are not immune to the phenomenon of missing data. In the absence of
data, conventional imputation methods can be applied. However, the particular structure
of cluster-correlated data, which leads to multiple sources of variability (intra- and inter-
cluster), suggests proceeding differently. As a result, it appears preferable to apply the
imputation method chosen cluster by cluster [34]. To sum up, in the presence of cluster-
correlated data, it is preferable to estimate the missing values within clusters. When the
data of an individual is missing, estimates can be made using individuals from the same
cluster. For a hierarchical structure, the lowest level cluster in which the individual is
located will be preferred. If an entire cluster leaves the study, the missing data can be
estimated from the data of individuals at the level above. Finally, at the highest level of the
hierarchy, it can be estimated using the entire data set.

2.2. Missing Data

The phenomenon of missing data is a common problem in data analysis, especially in
longitudinal surveys. It is rare for a data set to be complete, particularly for long studies,
either because of occasional omissions or because of subject withdrawal. As a consequence,
data missingness causes three main issues [35]: it can introduce a significant amount of
bias, make it more difficult to process and analyze the data and induce a loss of statistical
power [36,37]. When faced with missing data, the most common used methods include
the complete case analysis (or listwise deletion) and the “last observation carried forward”
methods. However, these methods are too hazardous and can introduce a significant bias
in the estimation of the parameter under investigation [38–40]. As previously observed,
these ad hoc methods are no longer desirable or necessary. Likewise, in the presence of
clustered data, it is difficult to estimate what effect the loss of an individual or even an
entire cluster has on the outcome measures. Accordingly, it is better not to ignore missing
values but to try to estimate them using imputation methods. The purpose of these methods
is to estimate missing values from previously observed values, which can be considered
as measured data and therefore used for fitting analytical models. While these methods
may seem attractive, their use is not without problems [41]. Even though there are some
methods that are more effective than others, it is not really possible to say which method is
especially good [42]. These methods require understanding and apprehension of certain
concepts that we aim to outline below.

To be more effective and valid, statistical analysis must be performed with suitable
mechanisms and assumptions for missing data [37]. In other words, it is crucial to under-
stand the process behind it to ensure the validity of the statistical inferences and the absence
of bias [43]. Therefore, a careful preparation should be observed before using a method
that is very similar to an identification process. In particular, it is essential to identify the
two main parameters: the structure and the type of missing data.

The structure plays an important role in the choice of imputation methods that can
be applied [44]. There are three possible structures, which can overlap. The structure is
said to be univariate if one and only one variable of an individual has missing values. It
is said to be monotonic when several variables of an individual have missing values and
these variables can be classified according to their percentage. For longitudinal surveys,
this structure can be found when an individual leaves the study, for example in case of
attrition or even abandonment. Attrition, or random drop-out [45], is a major and common
problem in longitudinal studies, representing an important challenge when modeling [46]
as it may produce estimates of the effects that are often underestimated [47]. If it is not
possible to obtain the data of an individual at a given time (e.g., forgotten appointment,
forgotten connection), we often consider intermittent monotonic structures. The structures
can qualify as arbitrary (or non-monotonic) if they are neither univariate nor monotonic.
Figure 3 illustrates the different structures of missing data.
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After identifying the structure of missing data, it is necessary to deal with the iden-
tification of its type. We consider here again three different types: data which is missing
completely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR) [41]. A missing value is considered to be MCAR if its missingness does not
depend on other observations, whether they are observed or not. Under this assumption,
the results of the analyses appear to be generally unbiased, but it is rarely verified because
it is restrictive. A less restrictive assumption supposes that if it depends on observed
observations only, its type will be MAR. Otherwise, if it is neither MCAR nor MAR, it will
be MNAR. Despite this formulation, it is not always possible in practice to identify the
causes of data missingness and therefore to determine its type [48].

Finally, once the type and structure of the missing data are identified, an imputation
method can be used. Table 1 provides a non-exhaustive overview of the different methods
that can be used to calculate estimates of missing values [41,49].

Table 1. Imputation methods by type of missing data.

Missing Completely at Random Missing at Random Missing Not at Random

Ad hoc methods
Complete case analysis, available-case analysis, weighting methods Expectation maximization algorithm “Sensitivity analysis”

Single imputation
Implicit modeling

Hot/cold deck imputation,
substitution, composite methods

Explicit modeling
Mean/regression/stochastic

regression imputation
Multiple imputation

For the particular case of MNAR type data, it is necessary to perform a ”sensitivity
analysis”. Indeed, although there is a multitude of models to analyze this type of data, they
all rely on assumptions (e.g., the missing data mechanism) which, for this type of missing
data, are unverifiable. When the results are particularly sensitive to the assumptions made,
it becomes difficult to choose the most suitable model. That is, instead of fitting a single
model, it is wiser to consider alternative models and to assess the sensitivity of the results
to the assumptions made about the missing data mechanism [31,41,48].

2.3. Longitudinal Data and Modeling

Repeated data models have been the subject of many years of research and develop-
ment. Today, the literature on the subject is substantial and many of these models have
been used in longitudinal surveys. Among the models used most for the analysis for
longitudinal data [20,50], the most often used are variance models, whether univariate
(ANOVA) or multivariate (MANOVA), random effects models such as mixed models or
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generalized linear models (GLMs) using generalized estimating equations. Nevertheless,
other models such as trajectory models or alternatives to linear and mixed models such as
structural equation models (SEMs) or “cross-lagged” panel models (CLPMs) have appeared
in the literature and constitute promising alternatives for the analysis of longitudinal data.
These models are not all similar and are intended to answer different questions. While
mixed models and their alternatives are used to estimate the impact of factors on a response
variable, trajectory models are used to model individual trajectories within a population
and follow their evolution over time. Given a large amount of data, modeling should
be performed on a training sample and model validation on a test sample. We will now
describe the above-mentioned models in more detail.

2.3.1. Analysis of Variance for Repeated Measures

The analysis of variance for repeated measures represents a classical method to analyze
longitudinal data. Whether for ANOVA or MANOVA, they allow comparing groups’ means
on a dependent variable across time. However, it does not allow learning about individual
trajectories. In addition to other parameters, time is also treated as an explicative variable.
This means, among other things, that these models assume that individuals cannot have a
proper slope over time, which is rarely true. Moreover, these models are difficult to apply
in the absence of data and are applied using the complete cases or the “last observation
carried forward” methods. As a consequence, it is therefore best to avoid these models
and to turn to more suitable methods for repeated data analysis [27]. For example, mixed
models offer more advantages [36], especially by adding a subject-specific component to
the model and allowing the conduct of the analysis despite possible lack of data.

2.3.2. Mixed Models

Mixed models can be seen as natural extensions of regression models [51,52]. Unlike
the latter, they involve random effects specific to each individual. The mean and the
variance of the response are respectively modeled as a linear combination of fixed-effect
and random-effect components, where the impact of the factors is weighted and associated
with the coefficients of the model [53,54]. Unlike analysis of variance models, both marginal
and mixed models are unconditional. This feature makes it possible to model the response
variable as a function of both the covariates and time separately representing both within-
and between-subject effects [20]. They are also particularly effective for making individual
predictions even despite eventual missing data because the randomly missing estimates are
unbiased [41]. More broadly, generalized linear mixed models combine the specificities of
generalized linear models (GLMs) and mixed models, allowing for generalizing the type of
the explained variable. This change in construction is ideal for the analysis of longitudinal
data structures since it makes it possible to account for the intra-subject correlation through
random effects [55,56].

This makes mixed models a safe and effective method for the analysis of longitudinal
data. Other more specific models, as we will see below, have been designed subsequently
and added to the literature, but mixed models remain the most popular. Once a trajectory
is identified, it is possible to describe it over time but also in terms of static covariates using
a mixed model or equivalent.

2.3.3. Generalized Estimating Equations

In general, the estimation of GLM parameters is based on the maximum likelihood
method [57]. Yet, the generalized estimating equations method does represent a popular
alternative to likelihood-based generalized linear mixed models, allowing the model to be
extended to the analysis of correlated data. Afterwards, they simultaneously model the
link between explicative variables, the response and the within-subject dependence. This
method is particularly appreciated on the one hand because it gives efficient and unbiased
estimates of the parameters of a generalized linear model and on the other hand because it
accounts for intra-individual correlation [58,59]. Generalized estimating equations can deal
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with missing data under the assumptions that they are MCAR. When these data are MAR,
the estimates might be biased [60].

2.3.4. SEMs and CLPMs, Complementary Approaches to the Mixed Model

Despite its effectiveness, the mixed model is only a first step towards more complex
statistical methods allowing the move from a global analysis of the population to a more
personalized/individualized analysis of occupational data. Therefore, models such as SEMs
or CLPMs can be used as alternatives to mixed models for the analysis of longitudinal data.

SEMs can be viewed as a much more comprehensive regression method, including
dependent and independent variables. Where SEMs stand out is in the ability to addition-
ally take into account hypothetical latent constructs, and to examine relationships between
observed variables and these concepts [61–65]. As such, they can be seen as a natural
combination between factor analysis and regression or path analysis. Although they are
particularly powerful, SEMs stay very sensitive to the problem of missing values. In addi-
tion to the assumptions of normality and independence that they require, SEMs need a very
large sample size to fit. On average, at least 500 individuals and up to >2500 individuals if
one of the assumptions is not verified are needed to expect good estimates [65].

CLPMs are used to describe and estimate reciprocal relationships or directional in-
fluences between longitudinal variables [66,67]. Cross-analysis is particularly used to
describe causal relationships between variables. Often contested because of their low
statistical power and their limitations (e.g., the need for a large sample of longitudinal
data, the stationarity and synchronicity assumptions or the causal relationship assertion),
simpler methods such as multiple regression are often preferred [68]. Because of this,
alternative models to SEMs such as the random intercept “cross-lagged” panel models
have been developed to overcome their shortcomings [69]. In addition to the temporal
stability assumption of the classical method, these consider the trait-type stability invariant
of individuals over time.

2.3.5. Trajectory Models

By plotting longitudinal data, we obtain curves otherwise called individual trajec-
tories or developmental trajectories. A developmental trajectory describes and provides
information on the evolution of an individual over time. A trajectory is used to describe
a latent process that cannot be observed directly but can be explained over time using
measured (therefore observed) variables from which its trajectory is inferred [70,71]. These
methods that take into account unobserved heterogeneity are called person-centered [72].
Nowadays, several common methods [73,74] are used: generalizations of mixed effects
models such as growth curve models [75], growth mixture models [76,77], group-based
trajectory models [78–81], latent class analysis [82,83] and latent transition analysis [72].

Most of these methods identify several different trajectories within the population,
also called latent classes. For each trajectory, the estimated share of individuals in the
population belonging to it is given, which reflects its shape, and each individual has a
certain probability of belonging to each trajectory. Individuals are then assigned to the
group corresponding to the trajectory for which the probability of belonging is the highest.
Once a trajectory is identified, it is possible to explain its shape over time but also in terms
of static covariates using a mixed model or equivalent.

Although an individual trajectory can be estimated despite prospective missing values,
it is difficult to conclude on the validity of this trajectory, especially when data is NMAR [84].
It is essential to have a sufficient amount of data for an individual, otherwise it is impossible
to determine its trajectory [85]. These models are also considerably sensitive to assumptions,
and misspecification can lead to biased estimates for trajectories and an overestimation of
the number of classes by the model [73].
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3. Case Report
3.1. Introduction

We aim here to illustrate our suggestions with a complete and illustrated example
using the Wittyfit database [5]. Here, we focus on a small part of the approaches described
above, namely the contribution of trajectory models to mixed models in a real-world
longitudinal occupational health data framework.

Let us imagine that we want to analyze the annual evolution in job satisfaction of
workers at different companies between 2018 and 2021, and to observe if the gender and
the job position of a worker can affect job satisfaction. A first look at the objective allows
us to confirm that we are in the presence of clustered (multiple companies), correlated
(individual effect) and longitudinal (follow-up over time) data. If a worker did not express
his or her sentiment in a year, he or she is assigned a missing value. Thus, we are faced
with the main methodological issues mentioned in this paper.

3.2. Methods
3.2.1. Participants and Exlusion Criteria

Wittyfit software is a web-based platform designed to assess workers’ health through
a holistic approach of the individual. Volunteers are invited to express their feelings on
different health-related outcomes using visual analog scales. With more than 40,000 active
users in about nearly 80 companies, whose first registrations began in January 2018, the
Wittyfit database offers researchers a substantial behavioral and longitudinal database to
study the evolution of workers’ occupational health through various indicators such as job
satisfaction and stress. Workers not present at the baseline (2018) or with too few data [85]
were excluded.

3.2.2. Outcomes

Job satisfaction of workers was assessed using a related visual analog scale, scaled
from 0 to 100. Workers could rate their personal feeling of job satisfaction as many times as
they wanted. A worker’s overall annual job satisfaction score was computed as the average
of the notes that he or she filled in over the year.

Socio-demographic characteristics of workers (gender and job position) were filled
in by corporates clients of Wittyfit. The job position of a worker is defined according to
whether he is an employee or a manager.

3.2.3. Statistics

Statistical analyses were performed using R (version 4.1.1) in the RStudio
(version 1.4.1717) platform. The imputation of the data was done using “longitudinal-
Data” (with the ‘locf’ and ‘linear.interpol’ methods) and “mice” packages. Group-based
trajectory modeling was realized with the “latrend” package. We combine the commands
‘lcMethodLcmmGBTM’ and ‘lcMethods’ to define the model and the ‘latrendBatch’ com-
mand to fit it, with nonstructured matrix of variance-covariance. Model assumptions
(residual independence and normality, and variance homogeneity) were verified a posteri-
ori. Unless specified, we considered a p-value < 0.05 as statistically significant for analyses.

3.3. Data Application

First, we need to analyze the data structure to determine if it has a multilevel structure
in addition to a longitudinal structure itself. In our example, we count multiple companies
to which workers belong. Therefore, this observation indicates to consider the companies
as clusters. We now need to focus on missing data by analyzing its type and structure. The
missing data presents two different patterns: (1) a non-monotonic (e.g., due to a worker
who did not express in a year) and (2) a non-monotonic pattern (e.g., due to a worker who
did stop expressing over the years). For the second one, as data is longitudinal, a drop-out
phenomenon may occur. Since it is reasonable to assume that an individual’s drop-out may
depend on unobserved data (e.g., for an individual who quit during the studied period
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because of a lack of job satisfaction), we need to suppose that the drop-out is informative,
and therefore that the type of missing values is MNAR. This assumption should therefore
lead us to perform a sensitivity analysis by applying several imputation methods, for
example with the “last observation carried forward” and the linear regression interpolation
methods, but also using multiple imputation, taking into account the company effect.

To study the evolution of workers’ job satisfaction, we can first apply a linear mixed
model assessing the influence of time on job satisfaction (Figure 4a). Starting with a single
trajectory given by the mixed model, we can observe whether different evolutions exist in
the population. To do this, we can apply a trajectory model such as the GBTM on the original
dataset and confirm the results using the imputed datasets. The model allows us to identify
five latent classes within the population, with a minimal average posterior probability of
assignment of 70.5% and minimal odds of correct classification of 5.5, thus exceeding the
classical thresholds of 70% and 5 expected for this type of model [79] (Figure 4b).
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Figure 4. Evolutionary trajectories of job satisfaction among Wittyfit users: (a) mean trajectory using
a mixed model (standard errors of coefficient are symbolized by error bars), (b) individual trajectories
using a group-based trajectory model, where each group represent a possible evolution of the workers’
job satisfaction in the population (e.g., individuals belonging to “Group 3” are characterized by a
slight decrease between times 1 and 2, then by a sharp increase beyond time 2).

Finally, to explore the relationship between a worker’s sociodemographic character-
istics and job satisfaction, we can apply a generalized mixed model with the trajectory
to which the worker belongs as the outcome and the company effect as a random effect.
Thus, according to the model, both gender (β = 1.60, 95% CI 1.15 to 2.24, p = 0.005) and job
position affect the job satisfaction of the worker (β = 5.49, 95% CI 2.72 to 13.13, p < 0.001).
This result remains true regardless of the dataset, non-imputed or imputed.

3.4. Conclusions

From a self-imposed context, we presented here the many challenges we had to
face in analyzing real-world longitudinal occupational health data. This study had two
objectives, namely the identification of the existence of different evolutionary trajectories
of job satisfaction within a population of workers and the role of the job position on the
level of job satisfaction. Each methodological issue has been raised and addressed using
the appropriate methods in agreement with the purpose of our article, allowing us to meet
the aims of the study.

4. Conclusions

As a direct result of the rise of massive databases [5–8] and advances in computa-
tional and digital tools and their democratization, real-world data analysis has allowed
researchers to confirm the results of previous randomized clinical trials and provide new
knowledge, known as real-world evidence [1,3]. The progressive and incessant accumulation
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of data thus offers the possibility of collecting health-related, longitudinal, individual data, all
at a low cost, thus allowing the development of data-analysis-centered medical approaches.

Although the analysis of longitudinal data has become widespread over the last
30 years, particularly through mixed models, and has made it possible to study population
evolution, this article demonstrates that methodological issues remain and have begun to
find an echo in more recent approaches, allowing for a move towards a more predictive,
preventive, personalized and participatory medicine. Despite the advances offered by these
new approaches, some of these issues remain to be addressed before proceeding with the
analyses [20,21], in addition to the usual issues linked to any data analysis, limiting their
use and overall understanding [74].

In this article, we aimed to present the state of the art of the methods developed for
the analysis of real-world longitudinal occupational health data while exposing the three
main issues encountered during the analyses of such type of data, namely the concepts
of cluster-correlated data, missing data and longitudinal data itself. In addition, we have
provided an example of data analysis presenting these issues and discussed the steps
to be taken in the analysis process. A search strategy using numerous general article
databases was conducted, showing that there is currently no approach to deal with these
three methodological issues.

We believe this article can serve as a practical guide for future studies on the topic
to improve experimental quality, especially for non-statistician researchers who wish to
keep abreast of the new approaches available and the issues involved. Future studies will
focus on the comparison between the different models and approaches presented here.
Simulation work has already been done [86–89], but not in this specific framework.
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Appendix A. Novelty and Usefulness of Our Approach and Main Formulas
Surrounding Cluster-Correlated Data, Missing Data and Longitudinal Data

Many challenges and methodological issues make it difficult to analyze longitudinal
data. These analytical problems include the correlated structure of intra-individual data,
the considerable size of data sets, irregular time-spaced measurements, non-linear patterns
(such as rapid growth or stationary responses), latent constructs, mix of time-varying and
static covariates. There are also more difficult problems to consider, such as longitudinal
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modeling itself, missing data and cluster-correlated data. To sum up, studying such data
types requires understanding the specific concepts that are outlined in Figure 1.

The novelty and usefulness of our approach is validated by a step-by-step search
strategy. The search presented below has been computed on 8 February 2022 using the
PubMed database (details of other research can be found in Appendix B). First, we com-
puted the number of articles dealing with occupational data using keywords (“occupation*”
OR “profession*” OR “job-related” OR “work-related”) followed by one of the three con-
cepts: correlated-clustered data using keyword (“cluster*”), missing data using keywords
(“missing data” OR “missing value*”) and longitudinal data using keyword (“longitudi-
nal”). We retrieved n = 11,214 articles using the keywords (“occupation*” OR “profession*”
OR “job-related” OR “work-related”) AND (“cluster*”), n = 809 articles using the keywords
(“occupation*” OR “profession*” OR “job-related” OR “work-related”) AND (“missing
data” OR “missing value*”) and n = 19,436 articles using the keywords (“occupation*”
OR “profession*” OR “job-related” OR “work-related”) AND (“longitudinal”). Then, we
combined the two concepts. We retrieved n = 31 articles using the keywords (“occupation*”
OR “profession*” OR “job-related” OR “work-related”) AND (“cluster*”) AND (“missing
data” OR “missing value*”), n = 335 articles using the keywords (“occupation*” OR “pro-
fession*” OR “job-related” OR “work-related”) AND (“cluster*”) AND (“longitudinal”)
and n = 71 articles using the keywords (“occupation*” OR “profession*” OR “job-related”
OR “work-related”) AND (“missing data” OR “missing value*”) AND (“longitudinal”).
Lastly, we found only n = 3 articles using the keywords (“occupation*” OR “profession*”
OR “job-related” OR “work-related”) AND (“cluster*”) AND (“missing data” OR “missing
value*”) AND (“longitudinal”). Therefore, there is currently no approach to deal with the
methodological issues in analyzing real-world longitudinal occupational health data. The
results of our research can be summarized as shown in Figure A1.
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Main Formulas Surrounding Cluster-Correlated Data, Missing Data, and Longitudinal Data.

Appendix A.1. Cluster-Correlated Data

The intra-cluster correlation coefficient (ICC) is a measure of similarity of cluster-
correlated data. The ICC can be defined as follows:

ICC or ρ =
s2

b
s2

b + s2
w

(A1)

where s2
b represents the between-cluster variability and s2

w the within-cluster variability. As
the ICC increases, the sample size required to detect a significant effect becomes larger. The
“design effect” (DE) estimator is then used to estimate the increase in sample size needed
to account for the homogeneity of the clustered data:

DE = 1 + (n− 1)ρ (A2)

where n is the average size of a cluster. Finally, the “effective sample size” (ESS) can be
calculated as bellow:

ESS =
m× k

DE
(A3)

where m corresponds to the number of subjects in a cluster and k the total number of clusters.

Appendix A.2. Longitudinal Data

Appendix A.2.1. Linear Modeling

The linear model describes the relationship between one or more independent vari-
ables Xi (i = 1, · · · , n), also called the predictors and a continuous dependent variable y,
also called the response. The equation of a linear model is:

y = Xβ + ε (A4)

where X represents the matrix of the predictors Xi, β the vector of fixed effects and ε the
vector of errors terms following a normal distribution with mean zero and variance σ2 In.
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The generalized linear model is a generalization of the linear model, including a
linking function specifying the relationship between the predictors and the response [90].
The equation of a generalized linear model then is:

η = Xβ + ε (A5)

where η represent the link function. In the logistic regression case, the link function will be
the logit function described as follows:

η = logit(p) = log
(

p
1− p

)
(A6)

with p = P(y = 1).
The linear mixed model and generalized mixed model appear as extensions of the

linear model and generalized mixed model, respectively. Mixed models contain both fixed
effects (as describe in the two first models) and random effects [20,53]. The equation of a
generalized mixed linear model is:

η = Xβ + Zb + ε (A7)

where b is the vector of random effects and Z the design matrix relating b to y.
Although likelihood-based approaches are still the most commonly used to estimate

model parameters, there are alternatives such as Bayesian approaches [57], generalized
estimating equations [58,59] or Monte Carlo-based methods [91].

Appendix A.2.2. Structural Equation Modeling

The structural equation modeling is a set of techniques allowing the estimation of
the relationships between dependent and independent variables. Factually, the structural
equation models (SEMs) are, as the generalized model, a generalization of the linear model.
As such, the equation of a structural equation model seems very close to that of the linear
model. It can, be described as follows [61,63]:

η = βη + γξ (A8)

where η is the vector of dependent variables, β the matrix of the regression coefficients
between dependent variables, γ the matrix of regression coefficients between dependent
and independent variables and ξ the vector of independent variables.

Maximum likelihood, generalized least squares, elliptical distribution theory [92] or
the asymptotically distribution free method [93] represent possible estimation methods
for this model. The choice of the parameter estimation depends on the choice of the
weight matrix [65].

Appendix A.2.3. Cross-Lagged Panel Modeling

Cross-lagged panel models (CLPMs) can be useful to measure the evolution of several
variables and evaluate their mutual influences over time. Considering two variables x and y
measured at multiple times (i.e., x = (x1, · · · , xn) and y = (y1, · · · , yn)), the measurement
equations between the two variables for an individual i are:

xit = µt + pityit = ηt + qit (A9)

where µt and ηt are the means of the two variables at time t, respectively and where the
temporal deviations are defined as:

pit = αt pi,t−1 + γtqi,t−1 + uitqit = βtqi,t−1 + δt pi,t−1 + vit (A10)
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where αt and βt represent the auto-regressive effects, i.e., the effect of a variable on it-
self, and γt and δt the cross-lagged effects, i.e., the effect on a variable on the other, the
whole over time.

As for the SEMs, the estimation of the parameters can be computed using the max-
imum likelihood method [94]. Nevertheless, Bayesian estimation can also represent an
alternative to the first method [95].

Appendix A.3. Trajectory Modeling

Appendix A.3.1. Growth Curve Modeling

Trajectory models consist of statistical methods used to analyze the change over time
among a population of individuals. The growth curve model (GCM) allows in particular
analyzing both inter- (also called the between-person) and intra-individual (the within-
person) changes thanks to the mean and the covariance structure, respectively. As well,
considering a response vector y measured t times, the model can be written as [75]:

yti = η0i + λ1tη1i + γ2txti + εti (A11)

where λ1t is the measurement of the variable at the first time, the individual intercept η0i
with mean υ0 and random departure ξ0i is defined by:

η0i = v0 + γ0ζi + ξ0i (A12)

and the individual slope with mean υ1 and random departure ξ1i by:

η1i = v1 + γ1ζi + ξ1i (A13)

Finally, γ0 and γ1 represent the effects of the time-invariant covariate ζi and γ2t
of the time-varying covariate xti and εti the time-specific deviation, following a normal
distribution with mean zero and variance σ2

ε .

Appendix A.3.2. Growth Mixture Modeling

The growth mixture model (GMM) is quite similar to the GCM, with the exception
that it combines the techniques of the growth models with the latent concepts defined in
the latent class analysis. Considering an observed response y and a set of latent continuous
variables η, the model can be written as [76]:

yi = Pyηi + εi (A14)

where Py describes the matrix of the parameters and ε the vector of residuals with mean
zero and covariance D. Continuous latent variables η are for them related to the observed
covariate x and the latent categorical variables c by the relation:

ηi = Lci + Qη xi + ξi (A15)

where L describes the matrix of the intercept parameters of latent classes c, Qη describes the
matrix of the parameters and ξ the vector of residuals with mean zero and covariance D.

Appendix A.3.3. Latent Class Analysis

Latent class analysis assumes the existence of several underlying latent classes in a
population. Although the actual class membership of an individual is unknown, it can be
inferred through the covariates. The basic equation of the LCA is [82]:

P(Y = y) =
C

∑
i=1

P(X = x)P(Y = y|X = x) (A16)
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where P(X = x) is the probability of an individual belonging to latent class c among the C
existing latent classes.

Appendix A.3.4. Group-Based Trajectory Modeling

The estimation of the GBTM parameters is quite similar to the estimation of the LCA
parameters. Indeed, the equation of the GBTM is:

P
(
Yj
)
= ∑

j
πj(xi)Pj(Yj

)
(A17)

where Pj(Yj
)

is the probability of Yj (i.e., the trajectory of the individual i) if the subject
belongs to the group j and πj(xi) is the membership’s probability of the group j, determined
from the covariate xi.

Appendix A.4. Summary of Models Formula

Summary of the main formulas surrounding models for cluster-correlated data, miss-
ing data and longitudinal data can be found below (Table A1).

Table A1. Summary of the different models.

Model Search
Strategy Mathematical Formulation Missing Data Advantages Drawbacks

MULTILEVEL MODELING

MLM 3585
yij =

β0 + β1xij +
(
u0j + u1j xij + e0ij

) a
- Calculation of the intra-cluster

variability apart from the
overall variability

- Validity of conclusions
highly dependent on the
cluster effect specification
and definition and
interpretation or the
model parameters

FIRST APPROACHES

ANOVA
for

repeated
measures

1547 SSerror = SStotal − SSbetween −
SSsubject(SS : Sum o f Squares) a

- Comparison of group’s means
across time

- No information on possible
individual trajectories

- Time effect as fixed effect

Mixed
model 1983

y = Xβ + ε
η = Xβ + ε

η = Xβ + Zb + ε
b *

- Combination of fixed and
random effects

- Randomly missing estimates
unbiased

- Possible consideration of
subject-specific/cluster effect

- Only provides information
on the average trajectory
followed by the population

TRAJECTORIES

GCM 126 yti =
η0i + λ1tη1i + γ2t xti + εti

b

- Person-centered method
- Identification of different

trajectories within population
- Assigning individuals

to a trajectory
- Possibility to study each

trajectory shape with
static covariates

- Possible consideration of
cluster effect

- Questioning of the validity
of individual trajectories
caused by data missingness

- Need for sufficient amount
of data for each individual

GMM 50 yi = Pyηi + ε i

LCA 154
P(Y = y) =

C
∑

i=1
P(X = x)P(Y = y|X = x)

GBTM 78 P
(
Yj
)
= ∑

j
πj(xi)Pj

(
Yj
)

COMPLEMENTARY APPROACHES

SEM 380 η = βη + γξ a - Description of latent process - Need for a large sample size
to fit
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Table A1. Cont.

Model Search
Strategy Mathematical Formulation Missing Data Advantages Drawbacks

CLPM 105 xit = µt + pit
yit = ηt + qit

b - Study of causal relationships

- Need for a large sample size
to fit

- Strong assumptions
(stationarity and
synchronicity)

Legend: Missing data: a: complete-cases analysis, b: possible estimates computation despite missing data,
*: unbiased estimates. Number of articles (search strategy in PubMed): The keywords (“occupation*” OR
“profession*” OR “job-related” OR “work-related”) were linked with the following keywords: MLM: (multilevel
OR multi-level). Repeated measures ANOVA: (ANOVA). Mixed model: (mixed). GCM: (GCM OR growth curve).
GMM: (GMM OR growth mixture). LCA: (LCA OR LCGA OR latent class). GBTM: (GBTM or group-based
trajector*). SEM: (SEM or structural equation). CLPM: (CLPM or cross-lagged).

Appendix B. Details for the Search Strategy Used within Each Database

Results of different research conducted on the Cochrane Library/Embase/PsycInfo/
PubMed databases:

Cochrane Library
#1 occupational OR professional OR job-related OR work-related
#2 cluster
#3 missing data OR missing values
#4 longitudinal
#5 #1 AND #2 AND #3 AND #4
Filter Language = none in CENTRAL
Filter Dates = none
Results = 0
Embase
‘occupational’ OR ‘professional’ OR ‘job-related’ OR ‘work-related’ AND (’cluster*’)

AND (’missing data’ OR ’missing value*’) AND ’longitudinal ’
Filter Language = none
Filter Dates = none
Results = 2
PsycInfo
Any Field: occupational OR Any Field: professional OR Any Field: job-related OR

Any Field: work-related AND Any Field: cluster AND Any Field: missing data OR Any
Field: missing values AND Any Field: longitudinal

Filter Language = none
Filter Dates = none
Results = 2
PubMed
(“occupation*” OR “profession*” OR “job-related” OR “work-related”) AND “cluster*”

AND (“missing data” OR “missing value*”) AND “longitudinal”
Filter Language = none
Filter Dates = none
Results = 3
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