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Abstract. Anonymous attribute-based credentials (ABCs) are a power-
ful tool allowing users to authenticate while maintaining privacy. When
instantiated from structure-preserving signatures on equivalence classes
(SPS-EQ) we obtain a controlled form of malleability, and hence in-
creased functionality and privacy for the user. Existing constructions
consider equivalence classes on the message space, allowing the joint
randomization of credentials and the corresponding signatures on them.
In this work, we additionally consider equivalence classes on the signing-
key space. In this regard, we obtain a signer-hiding notion, where the
issuing organization is not revealed when a user shows a credential. To
achieve this, we instantiate the ABC framework of Fuchsbauer, Hanser,
and Slamanig (FHS, Journal of Cryptology ’19) with a recent SPS-EQ
scheme (ASIACRYPT ’19) modified to support a fully adaptive NIZK
from the framework of Couteau and Hartmann (CRYPTO ’20). We also
show how to obtain Mercurial Signatures (CT-RSA, 2019), extending the
application of our construction to anonymous delegatable credentials.
To further increase functionality and efficiency, we augment the set-
commitment scheme of FHS19 to support openings on attribute sets
disjoint from those possessed by the user, while integrating a proof of
exponentiation to allow for a more efficient verifier. Instantiating in the
CRS model, we obtain an efficient credential system, anonymous under
malicious organization keys, with increased expressiveness and privacy,
proven secure in the standard model.

Keywords: Anonymous credentials · Mercurial signatures · SPS-EQ

1 Introduction

Considering access to online services, designing protocols to manage the infor-
mation users can be requested to present is of utmost importance to protect
the user. A first step in the literature developed the concept of attribute-based
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credentials (ABC), to model how users could show a credential, containing a set
of attributes, to access different services.

Subsequently, the development of anonymous attribute-based credentials made
it possible protect the holders identity when showing a credential. Users could
present a credential disclosing no information other than that revealed by the at-
tributes they choose to show (anonymity), while also ensuring that the provided
information is authentic (unforgeability). Proposed alternatives consider a third
property unlinkability which ensures that multiple showings of the same creden-
tial cannot be linked. Credential systems that support an arbitrary number of
unlinkable showings are said to be multi-show. In contrast, those that only allow
a single use of an issued credential in an unlinkable fashion are called one-show.

Initial progress was made with respect to one-show constructions. Here, blind
signatures are issued on commitments to attributes so that users can later show
the signature and disclose some of the attributes, while proving knowledge of
those left unrevealed. Examples include [9, 4], and [30].

In the multi-show setting, pioneering constructions (based on Camenisch and
Lysyanskaya’s (CL) signatures [12, 13]) such as the one underlying the Idemix
credential system [53] rely on randomizing the signature to then prove in zero-
knowledge the correspondence between the set of attributes (disclosed and undis-
closed), and the signature.

A major drawback from such an approach is that the zero-knowledge proof
used during showings is of variable-length and may require multiple sub-proofs
On the other hand, more recent constructions (e.g., [14, 11, 47, 39, 50, 24, 33])
apply other techniques based on different lines of work to adapt the signature
and the message without using Zero-Knowledge Proofs of Knowledge (ZKPoK),
providing constant-size showings.

The concept of ABC has been recently extended to consider multi-authority
credentials (e.g., [39, 49, 23]), where users obtain a single credential for a set of
attributes not necessarily issued by a single authority. In this work we consider
the classical setting (single authority issuance).

1.1 Limitations of state-of-the-art ABCs

Constructions in the classical setting differentiate from each other by the ex-
pressiveness they provide, their efficiency, on whether or not they provide non-
interactive features, on their security model, and on how and if they manage
revocation features. Achieving all these properties simultaneously has been chal-
lenging and tends to rely on complex or non-standard assumptions.

When considering state-of-the-art credential systems, there are five lines of
work with respect to the underlying signature scheme that is used to build them;
(1) CL signatures [13]: Idemix [53] and [50]. (2) Aggregatable signatures: [14]
and [39]. (3) Sanitizable signatures: [15]. (4) Redactable signatures: [11] and [47].
(5) Structure-Preserving Signatures on Equivalence Classes (SPS-EQ): [33].

Proof settings. All previous work with the exception of [50] rely on security
proofs in the Generic Group Model (GGM) [48]. Our first motivation is to provide
an alternative to [50], building on [33] without relying on the GGM.
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Scheme |σ| |pk| Sign Verify ChgRep Assumptions

[41] 8|G1|+ 9|G2| (2 + ℓ)|G2| 29E 11P 19P+38E SXDH

Section 5 9|G1|+ 4|G2| (2 + ℓ)|G2| 10E 11P 19P+21E extKerMDH, SXDH

Table 1: Signatures comparison including pairings and exponentiations.

Signer-hiding properties. Showing protocols of previous constructions (in-
cluding [50]), verify signatures with a key that belongs to the authority that
issued the credential. This restricts the use of ABC in scenarios where one would
like to verify a valid credential without linking it to a particular authority.

Concrete efficiency. Most alternatives provide similar efficiency at the
asymptotic level. Yet, an up-to-date fine-grained analysis on their concrete effi-
ciency lacks in the literature.

1.2 Summary of contributions

We follow the ABC and SPS-EQ line of work from Fuchsbauer, Hanser and
Slamanig [33], improving over prior work in the following ways:

1. We extend the set-commitment scheme from [33] to build a more expressive
credential system allowing the generation of witnesses for disjoint sets ([33]
allows only selective disclosure of attributes).

2. We instantiate the ABC from [33], with a new SPS-EQ scheme based on
the one from [41] also using a CRS, a tight reduction, and under weaker
assumptions. Thus, we move away from a security proof in the GGM when
compared to the work from [33], and obtain a more efficient ABC than the
one resulting from instantiating [33] with [41] (see Table 1).

3. We incorporate a proof of exponentiation to outsource part of computational
cost from the verifier to the prover, which can be useful in some settings.

4. We adapt the signature scheme to build an SPS-EQ where one not only can
randomize the message together with the signature, but also the correspond-
ing public key used to verify the signature using a proof of well-formedness.
Thus, users can hide the identity of the signer during showings.

By doing so, the verifier can check a signature using a randomized public key,
knowing that it comes from a valid authority but not which one. Unlike solutions
using ring signatures where it is the signer (credential issuer) who chooses the
ring size, we let users do it independently (relying on SPS-EQ and an efficient
proof of correct randomization alone). Hence, once users get a credential from
a valid authority they can decide on the anonymity set themselves whenever
they use their credential. This approach is better aligned with the concept of
self sovereign identity and related applications that seek to empower users giving
them full control on their identity.

Along the way, we also describe how to build mercurial signatures [20] with
security proofs in the standard model (assuming a CRS). All the previous ones
[20, 21] have security proofs in the GGM. Consequently, our signature construc-
tion can also be used to build delegatable anonymous credentials [17, 5] as well.
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SPS [35]

OR-Proof [19]

OR-Proof [41]

OR-Proof [46]

OR-Proof [42]

SPS-EQ [41]

ABC [33]

SCDS

PoE [51]

DS [36]

SC [33]

Our work

OR-Proof [19] Signer-Hiding

Fig. 1: Summary of building blocks used in this work. Dashed boxes represent
replaced building blocks while grey boxes are used to highlight our contributions.
When applicable, references inside each box indicate the related previous work.

1.3 Roadmap

We begin by presenting related work with a focus on the development of SPS-EQ
and set-commitment schemes (Section 2) followed by the required cryptographic
background in Section 3. Our first contribution, extending the set-commitment
scheme (SC) in [33] to support non-membership proofs for disjoint sets (DS), is
presented in Section 4. We also define here the proof of exponentiation (PoE),
which can be seen as an optional plug-in to gain efficiency in this new set-
commitment scheme (SCDS).

In Section 5 we present our SPS-EQ scheme. It uses a new malleable NIZK
argument based on a recent work from Couteau and Hartmann [19], which we
use to replace the one underlying [41].

In [33] the authors discuss a concurrently secure variant of their ABC based
on a trapdoor commitment scheme to implement ZKPoK, assuming the ex-
istence of one-way functions and a CRS. Since our SPS-EQ makes use of a
CRS, we instantiate the previous variant with it, incorporate a Pedersen com-
mitment scheme to compute the relevant ZKPoK, and adapt the rest to our
set-commitment scheme and the proof of exponentiation (second and third con-
tributions). Thus, we dedicate Section 6 to present the resulting ABC.

Subsequently, we extend the previous construction to support another NIZK
argument that allows to hide the identity of the signer during showings. This
allows us to build another ABC as our fourth contribution. Furthermore, we also
outline in this section how to perform revocation and build mercurial signatures.

In Figure 1 we summarize the dependencies between the different building
blocks used in the previously mentioned sections highlighting our contributions.

Finally, a detailed comparison on the concrete efficiency of our constructions
when compared to other state-of-the-art alternatives is provided in Section 8,
while the conclusions of this work are presented in Section 9.
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2 Background and Related Work

2.1 Structure-Preserving Signatures on Equivalence Classes

In [37], Hanser and Slamanig introduced a novel structure preserving signa-
ture (SPS) scheme that allowed joint randomization of messages and their cor-
responding signatures, coining Structure-Preserving Signatures on Equivalence
Classes (SPS-EQ). They observed that if one considers a prime-order group G
and defines the projective vector space (G∗)ℓ, there is a partition into equiva-
lence classes given by the following relation R: m ∈ (G∗)ℓ ∼R m∗ ∈ (G∗)ℓ ⇐⇒
∃ µ ∈ Z∗

p : m∗ = µm. If the discrete logarithm problem is hard in G and one
restricts the vector components to be non-zero, given two vectors m and m∗, it is
difficult to distinguish whether they were randomly sampled or if they belong to
the same equivalence class. Hence, Hanser and Slamanig defined SPS-EQ as SPS
that produce signatures on an equivalence class instead of messages alone. Given
a message and its corresponding signature, SPS-EQ provides a controlled form of
malleability in which one can publicly (without requiring access to the secret key)
adapt a signature to change the representative (message). The equivalence rela-
tion provides indistinguishability on the message space if the DDH assumption
holds. If additionally, updated signatures are distributed like fresh signatures,
message-signature pairs falling into the same class are unlinkable. For unlinka-
bility to hold, signatures should also be randomized when adapting them to a
new representative of the class. As described in [33], given a representative and
its corresponding signature, a random representative of the same class with an
adapted signature are indistinguishable from a random message-signature pair.

Since their introduction, SPS-EQ have been used to build several crypto-
graphic protocols (e.g., [2, 32, 31, 3, 26, 10, 29]). They have been used in anony-
mous credentials [37, 24, 33], and delegatable anonymous credential systems, in
this case under the name of mercurial signatures [20, 21], which are an extension
of the equivalence classes to the signing keys. State-of-the-art constructions fo-
cus on building schemes under weaker assumptions and with tight security. The
first step was the work from Fuchsbauer and Gay [28]. Subsequently, Khalili et
al. [41] proposed a new SPS-EQ which is, to the best of our knowledge, the only
one under standard assumptions and with a tight security reduction to date.

The construction of [28] is based on the family of Matrix-Diffie-Hellman as-
sumptions [27]. They first modify an affine MAC from [6] to obtain a linear
structure-preserving MAC, which is made publicly verifiable using a known tech-
nique in the context of SPS [42]. This allows to use a tag to randomize both the
signature and message.

The resulting scheme is secure under a weaker notion of unforgeability (EUF-
CoMA). In [41], authors observe that using a structure-preserving MAC such as
the one from [28] has an inherent problem in the security game. As messages
and Matrix Decision Diffie-Hellman challenges belong to the same source group
of the bilinear group, one cannot do better than EUF-CoMA security following
this approach. Consequently, they proposed to use an OR-Proof based on that
in [35] to then construct tightly secure structure-preserving MACs based on the
key encapsulation mechanism of Gay et al. in [34]. This allows to circumvent
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the previous issue and obtain the first EUF-CMA secure SPS-EQ scheme with
a tight security reduction under standard assumptions.

In this work, we present an SPS-EQ scheme where the OR-based proof in [41]
is replaced by the one in [19], while adapting other building blocks accordingly.

2.2 Accumulators and Set-Commitments.

In [25], Derler, Hanser and Slamanig revisited the notion of cryptographic ac-
cumulators and proposed a unified formal model which included the notions of
undeniability and indistinguishability for accumulators, complementing the clas-
sical ones of correctness and collision-freeness. They showed how to construct
a commitment scheme using an indistinguishable accumulator in a black-box
manner. The relation stems from the fact that indistinguishability and collision-
freeness of accumulators resemble those of hiding and binding for commitments.

In subsequent work [37], Hanser and Slamanig built an ABC with constant-
size credentials and constant-size showings (for selective disclosure of attributes)
based on a polynomial commitment scheme with factor openings. They departed
from the work of Kate et al. on constant-size polynomial commitments [40] with
the following observations; (1) If a credential is seen as a set of attributes mapped
to roots of a monic polynomial, then one can generate a polynomial commitment
of constant-size to represent the credential using the approach from [40]. (2)
Instead of evaluating the polynomial at certain points, what is important to
prove possession of an attribute is to open factors of the polynomial instead. (3)
If one can open multiple factors in constant-size, a showing involving a selective
disclosure of attributes can be done in constant-size as well.
As a result they proposed an indistinguishable bilinear accumulator ([44]) with
batch membership proofs (i.e, factor opening), which was subsequently re-stated
as a set-commitment scheme in a follow-up work [33].

A drawback of the ABC from [33] is that the achieved level of expressiveness
is limited. It allows only to show proofs for the conjunction of attributes in
arbitrary subsets of attributes encoded in the credential (selective disclosure).
Another potential issue is that verification involves a number of exponentiations
that are linear in the size of the subset to be verified. This is undesirable when
verification of the credential should be fast.

Thakur [51] proposed a series of protocols for batch membership and non-
membership proofs for bilinear accumulators using proofs of exponentiation (an
idea previously introduced for accumulators in groups of unknown order by
Boneh et. al [8] and by Wesolowski [52]) to shift the computational cost from the
verifier to the prover. The main idea is to replace some of the exponentiations
by a single polynomial division and to use of a non-interactive proof obtained
via the Fiat-Shamir transform.

Batch proofs in the bilinear accumulator setting can be traced back to the
works by Papamanthou et al. [45] and by Ghosh et al. [36]. The latter presents
the same underlying ideas of the (non)membership proofs provided by Thakur,
and a Zero-Knowledge Dynamic Universal Accumulator, which strengthens the
notion of indistinguishability using the randomization ideas from [25].
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Scheme [13] [14] [15] [11] & [33] [50] [47] [39] Section 6

Issuing n-attr. credential

Comm. O(n) O(n) O(n) O(1) O(n) O(1) O(n) O(1)

User O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)

Issuer O(n) O(n) O(n) O(n) O(n) O(n) O(n) O(n)

Showing k-of-n attributes (selective disclosure)

|ek| O(n) O(n) O(n) O(n) O(n) O(n2) O(n) O(n)

Comm. O(n) O(1) O(k) O(1) O(1) O(1) O(1) O(1)

User O(n) O(n) O(k) O(n− k) O(n− k) O(n− k) O(1) O(max{n− k, k})
Verifier O(n) O(n) O(k) O(k) O(k) O(k) O(n) O(1)

Table 2: Asymptotic complexities of ABC systems where n is the number of
attributes in the credential and k the number of disclosed ones during a showing.

More recently, a new set-commitment scheme including set intersection and
set difference operations was proposed in [50]. It provides more expressiveness
when compared to the one from [33] but under a weaker hiding notion.

We incorporate the previous ideas from [25, 36], and [51] to extend the set-
commitment scheme from [33] to support disjoint sets (batch non-membership
proofs), while also allowing a faster verification and a stronger hiding notion.
Thus, we obtain a set-commitment scheme that is more expressive than the one
in [33] and almost as expressive as [50] (but better in efficiency and strength).

2.3 Attribute-based Credentials

We recall in Table 2 the asymptotic complexities for the issuing and showing
protocols, considering recent credential systems from each of the lines of work
mentioned in the introduction, and our construction in Section 6 . For showing
protocols we consider the selective disclosure of attributes (i.e., the ability to
show multiple attributes while hiding others during a showing). While the work
from [39] (based on aggregatable signatures) is the only one with O(1) complexity
for the user during a showing, this is obtained at the cost of a more expensive
verifier. Our work achieves O(1) complexity for the verifier but keeping better
asymptotics for the user. A more detailed comparison on the concrete efficiency
of ABC’s (as well as an implementation benchmark) was provided in [50], but
the recent works from [47] and [39] were not included. Therefore, we provide an
updated comparison for the most efficient ones in Section 8.

2.4 Signer-Hiding

Independent and concurrent work by Bobolz et al. [7] also addressed the problem
of hiding the identity of a credential issuer/signer under the notion of issuer-
hiding. There, the authors propose a sligthly different setting to avoid using an
OR-like proof as done in this work. In brief, the authors consider access policies
of the form {σi, pki}i∈[n], where σi is a signature on a given authority’s public
key pki produced by the verifier. As a result, users can prove the correspondence
between a public key (defined in the policy) and the credential verification under
that public key in zero knowledge, using a NIZK independent to the number
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of public keys defined in the policy. In this regard, we note that our work is
compatible with their formalization and, furthermore, under the previous setting
such NIZK can be avoided in our case. Since we use mercurial signatures, it would
suffice to randomize the access policy and the user credential consistently.

3 Preliminaries

Notation. Let BGGen be a p.p.t algorithm that on input 1λ with λ the security
parameter, returns a description BG = (p,G1,G2,GT , P1, P2, e) of an asymmetric
bilinear group where G1,G2,GT are cyclic groups of prime order p with ⌈log2
p⌉ = λ, P1 and P2 are generators of G1 and G2, and e : G1 × G2 → GT is an
efficiently computable (non-degenerate) bilinear map. BG is said to be of Type-3
if no efficiently computable isomorphisms between G1 and G2 are known. For
all a ∈ Zp, we denote by [a]s = aPs ∈ Gs the implicit representation of a in Gs

for s ∈ {1, 2, T}. For matrices (or vectors) A, B we extend the pairing notation
to e([A]1, [B]2) := [AB]T ∈ GT . Sampling r from set S uniformly at random is

denoted by r
$← S. Finally, we use the notation A(x; y) to indicate that a value

y (usually computed internally by A), is being passed directly to A on input x.

Assumptions. We recall the Diffie-Hellman assumptions in the billinear group
setting and the algebraic framework from [27] and [43], including a generalization
of the Strong Diffie-Hellman assumption from [33], in the full version (Appendix
A from [18]). Besides, we will also use the following generalization of the KerMDH
assumption introduced in [19]. It allows an adversary to extend the given matrix
but requiring it to output multiple, linearly independent vectors in the kernel.

Dk-extKerMDHAssumption. Let Dk be a matrix distribution, l, k ∈ N, and
s ∈ {1, 2}. We say that the Dk-extKerMDH assumption holds in Gs relative to

BGGen, if for every BG
$← BGGen(1λ), D

$← Dk, and all p.p.t. adversaries A the
following probability is negligible.

Pr

 [C]3−s ∈ Gl+1×k+l+1
3 ∧ [B]s ∈ Gl×k

s

∧ [C]3−s[D
′]s = 0

∧ rank(C) ≥ l + 1

∣∣∣∣∣∣
BG

$← BGGen(1λ);D
$← Dk

([C]3−s, [B]s)
$← A(BG, [D]s)

[D′]s := [DB]s


Characteristic Polynomial. For a set X with elements in Zp, we refer to

ChX (X) =
∏

x∈X (X + x) =
∑i=n

i=0 ci ·Xi (a monic polynomial of degree n = |X |
and defined over Zp[X]) as its characteristic polynomial. For a group generator
P , ChX (s)P can be efficiently computed (e.g., using the Fast Fourier Transform)

when given (siP )
|X |
i=0 but not s. This is because ChX (s)P =

∑i=n
i=0 (ci · si)P .

In addition to exploiting properties of characteristic polynomials, we will also
use the Schwartz-Zippel lemma and the Extended Euclidean Algorithm (EEA)
in our constructions following the ideas from [36].

Lemma 1 (Schwartz-Zippel)Let q1(x), q2(x) be two d-degree polynomials

from Zp[X] with q1(x) ̸= q2(x), then for s
$← Zp, the probability that q1(x) =

q2(x) is at most d/p, and the equality can be tested in time O(d).
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3.1 Non-interactive Zero-Knowledge Arguments and Malleable
Proof Systems

We next define fully adaptive NIZK arguments (i.e., the crs does not depend on
the language distribution or language parameters), and the notions of malleable
proof systems given in [16] and [41] respectively.

NIZK Syntax. A fully adaptive NIZK Π for a family of language distribution
{Dpp}pp consists of four probabilistic algorithms:

PGen(1λ): On input 1λ generates public parameters pp, a crs and a trapdoor td.
Prove(crs, ρ, x, w): On input a crs, a language description ρ ∈ Dpp and a state-

ment x with witness w, outputs a proof π for x ∈ Lρ.
Verify(crs, ρ, x, π): On input a crs, a language description ρ ∈ Dpp, a statement

x and a proof π, accepts or rejects the proof.
SimProve(crs, td, ρ, x): Given a crs, the trapdoor td, a language description ρ ∈
Dpp and a statement x, outputs a simulated proof for the statement x ∈ Lρ.

The following properties need to hold for NIZK arguments with respect to a
family of language distributions Dpp.

Perfect Completeness.

Pr

[
Verify(crs, ρ, x, π) = 1

∣∣∣∣∣ (pp, crs, td) $← PGen(1λ); ρ ∈ Supp(Dpp);

(x,w) ∈ Rρ;π
$← Prove(crs, ρ, x, w)

]
= 1

Computational Soundness. For every efficient adversary A,

Pr

[
Verify(crs, ρ, x, π) = 1

∧ x /∈ Lρ

∣∣∣∣∣ (pp, crs, td)
$← PGen(1λ);

ρ ∈ Supp(Dpp); (π, x)
$← A(crs, ρ)

]
≈ 0

where the probability is taken over PGen.

Perfect Zero-Knowledge. For all λ, all (pp, crs, td) ∈ Supp(PGen(1λ)), all
ρ ∈ Supp(Dpp) and all (x,w) ∈ Rρ, the distributions Prove(crs, ρ, x, w) and
SimProve(crs, td, ρ, x) are identical.

Let RL be the witness relation associated to a language L, then a controlled
malleable proof system is accompanied by a family of efficiently computable n-
ary transformations T = (Tx, Tw) such that for any n-tuple {(x1, w1), . . . , (xn, wn)}
∈ Rn

L it holds that (Tx(x1, . . . , xn),Tw(w1, . . . , wn)) ∈ RL. Intuitively, such a
proof system allows when given valid proofs {Ωi}i∈[n] for words {xi}i∈[n] with
associated witnesses {wi}i∈[n] to publicly compute a valid proof Ω for word
x := Tx(x1, . . . , xn) corresponding to witness w := Tw(w1, . . . , wn) using an
additional algorithm ZKEval which is defined as follows:

ZKEval(crs, T , (xi, Ωi)i∈[n]) takes as input a common reference string crs, a trans-
formation T ∈ T , words x1, . . . , xn and their corresponding proofs Ω1, . . . , Ωn,
and outputs a new word x′ := Tx(x1, . . . , xn) and proof Ω′.

Proofs computed by ZKEval should be indistinguishable from freshly com-
puted proofs for the resulting word x′ and corresponding witness w′. This notion
is captured by the following definition.
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Derivation Privacy. A NIZK proof system Π, malleable with respect to a set
of transformations T defined on some relation R is derivation private, if for all
p.p.t adversaries A, the following probability is negligible,

Pr



crs
$← PGen(1λ), b

$← {0, 1}
(st, ((xi, wi), Ωi)i∈[q], T )

$← A(crs),
if (T /∈ T ∨ (∃ i ∈ [q] : (Verify(crs, xi, Ωi) = 0) ∨ (xi, wi) /∈ R)
return ⊥,
else if b = 0 : Ω ← Prove(crs, Tx((xi)i∈[q]), Tw((wi)i∈[q])),
else if b = 1 : Ω ← ZKEval(crs, T, (xi, πi)i∈[q]),

b′
$← A(st, Ω)

: b = b′



4 A Set-Commitment Scheme supporting Disjoint Sets

We extend the set-commitment scheme in [33] to support non-membership proofs
for disjoint sets, while also including an optional proof of exponentiation to re-
place most of the exponentiations in the verifier (outsourcing them to the prover)
with a single polynomial division. To do so, we borrow the previously mentioned
ideas in [25], [36] and [51], and adapt them to the Type-3 setting.

SCDS Syntax. A set-commitment scheme supporting disjoint sets (SCDS) con-
sists of the following p.p.t algorithms:

Setup(1λ, 1q) is a probabilistic algorithm which takes as input a security param-
eter λ and an upper bound q for the cardinality of committed sets, both in
unary form. It outputs public parameters pp (including an evaluation key
ek), and discards the trapdoor key s used to generate them. Z∗

p \ {s} defines
the domain of set elements for sets of maximum cardinality q.

TSetup(1λ, 1q) is equivalent to Setup but also returns the trapdoor key.
Commit(pp,X ) is a probabilistic algorithm which takes as input pp and a set
X with 1 ≤ |X | ≤ q. It outputs a commitment C on set X and opening
information O.

Open(pp, C,X , O) is a deterministic algorithm which takes as input pp, a com-
mitment C, a set X , and opening information O. It outputs 1 if and only if
O is a valid opening of C on X .

OpenSS(pp, C,X , O,S) is a deterministic algorithm which takes as input pp, a
commitment C, a set X , opening information O, and a non-empty set S. If
S is a subset of X committed to in C, OpenSS outputs a witness wit that
attests to it. Otherwise, outputs ⊥.

OpenDS(pp, C,X , O,D) is a deterministic algorithm which takes as input pp, a
commitment C, a set X , opening information O, and a non-empty set D. If
D is disjoint from X committed to in C, OpenDS outputs a witness wit that
attests to it. Otherwise, outputs ⊥.

VerifySS(pp, C,S,wit) is a deterministic algorithm which takes as input pp, a
commitment C, a non-empty set S, and a witness wit. If wit is a valid witness
for S a subset of the set committed to in C, it outputs 1 and otherwise ⊥.
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VerifyDS(pp, C,D,wit) takes as input pp, a commitment C, a non-empty set D,
and a witness wit. If wit is a valid witness for D being disjoint from the set
committed to in C, it outputs 1 and otherwise ⊥.

PoE(pp,X , α) takes as input pp, a non-empty set X , and a randomly-chosen value
α. It computes a proof of exponentiation for the characteristic polynomial of
X and outputs a proof πQ and a witness Q.

A SCDS scheme is secure if it satisfies the properties of correctness, binding,
hiding, and soundness. These notions are defined next, modified to suit the
scheme, but following the usual convention.

Correctness. An SCDS scheme is correct if for all q > 0, all λ > 0, all
pp ∈ [Setup(1λ, 1q)], all non-empty S ⊆ X and all non-empty D : D∩X = ∅, the
following probabilities equal 1:

1. Pr
[
(C,O)

$← Commit(pp,X ) : Open(pp, C,X , O) = 1
]

2. Pr

[
(C,O)

$← Commit(pp,X );
wit← OpenSS(pp, C,X , O,S) : VerifySS(pp, C,S,wit) = 1

]
3. Pr

[
(C,O)

$← Commit(pp,X );
wit← OpenDS(pp, C,X , O,D) : VerifyDS(pp, C,D,wit) = 1

]
Binding. An SCDS scheme is binding if for all q > 0 and all p.p.t adversaries
A, the following probability is negligible,

Pr

[
pp

$← Setup(1λ, 1q),

(C,X , O,X ′, O′)
$← A(pp)

:
Open(pp, C,X , O) = 1 ∧

Open(pp, C,X ′, O′) = 1 ∧ X ≠ X ′

]

Hiding. We say that an SCDS scheme is hiding if for all q > 0 and all p.p.t
adversaries A with access to OSS, an opening oracle which allows queries for
sets X ′ ⊆ X0 ∩ X1, and to ODS, for sets X ′ s.t. X ′ ∩ {X0 ∪ X1} = ∅, there is a
negligible function ϵ(·) such that:

Pr


b

$← {0, 1}; pp $← Setup(1λ, 1q);

(X0,X1, st)
$← A(pp);

(C,O)
$← Commit(pp,Xb);

b∗
$← AOSS(pp,C,Xb,O,·),ODS(pp,C,Xb,O,·)(st, C)

: b∗ = b

− 1

2
≤ ϵ(k).

where X0 and X1 are two distinct sets s.t. 1 ≤ |Xb| ≤ q.
If the above holds for ϵ ≡ 0, the scheme is said to be perfectly hiding.

Soundness. An SCDS scheme is sound if for all q > 0 and all p.p.t adversaries
A, the following probabilities are negligible,

1. Pr

[
pp

$← Setup(1λ, 1q);

(C,X , O,S,wit) $← A(pp)
:
S ⊈ X ∧ OpenSS(C,X , O) = 1

∧ VerifySS(C,S,wit) = 1

]

2. Pr

[
pp

$← Setup(1λ, 1q);

(C,X , O,D,wit) $← A(pp)
:
D ∩ X ̸= ∅ ∧ OpenDS(C,X , O) = 1

∧ VerifyDS(C,D,wit) = 1

]
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SCDS.Setup(1λ, 1q):

BG
$← BGGen(1λ); s

$← Z∗
p

pp← (BG, (siP1, s
iP2)i∈[q])

return pp

SCDS.TSetup(1λ, 1q):

BG
$← BGGen(1λ); s

$← Z∗
p

pp← (BG, (siP1, s
iP2)i∈[q])

return (pp, s)

SCDS.PoE(pp,X , α):
Q← ChX (s)P2; Let h(X) and β s.t.
ChX (X)=(X+α)·h(X)+β; πQ ← h(s)P2

return (πQ, Q)

SCDS.Commit(pp,X ):
if |X | > q return ⊥; r $← Z∗

p

if ∃ s′ ∈ X : s′P1 = sP1

C ← rP1; O ← (1, (r, s′))
else C ← r · ChX (s)P1; O ← (0, r)
return (C,O)

SCDS.Open(pp, C,X , O):

if O = (1, (r, s′)) ∧ s′P1 = sP1

if C = rP1 return 1 else 0
if O = (0, r)

if C = r · ChX (s)P1 return 1 else 0

SCDS.OpenSS(pp, C,X , O,S):
if SCDS.Open(C,X , O) = 0 ∨
S ⊈ X ∨ S = ∅ return ⊥

if O = (1, (r, s′))
if s′ /∈ S return ChS(s

′)−1C
if O = (0, r) return r · ChX\S(s)P1

else return ⊥

SCDS.VerifySS(pp, C,S,wit, [PoE]):
if (S = ∅ ∧ wit = ⊥) return 1
if ∃ s′ ∈ S : s′P1 = sP1

if wit = ⊥ return 1 else 0
if PoE = ⊥

return e(wit,ChS(s)P2) = e(C,P2)
else

parse PoE = (α, πQ, Q)
β ← ChS(X)(mod (X + α))
return e(sP1+αP1, πQ)+e(βP1, P2)
= e(P1, Q) ∧ e(wit, Q) = e(C,P2)

SCDS.OpenDS(pp, C,X , O,D):
if (t = 0 ∨ |D ∩ X| > 0) return ⊥
if O = (1, (r, s′))

if s′ ∈ D return ⊥ else
γ

$← Z∗
p; (w0, w1)← (γP2,

1−γ·r
ChD(s)

P1)

if O = (0, r)

γ
$← Z∗

p; Let q1(X) and q2(X) s.t.
ChX (X) · q1(X) + ChD(X) · q2(X) = 1
q′1(s)← q1(s) + γ · ChD(s)
q′2(s)← q2(s)− γ · ChX (s)
(w0, w1)← ((r−1 · q′1(s))P2, q

′
2(s)P1)

return (w0, w1)

SCDS.VerifyDS(pp, C,D,wit, [PoE]):
if (D = ∅ ∧ wit = ⊥) return 1
if ∃ s′ ∈ D : s′P1 = sP1

if wit = ⊥ return 1 else 0
parse wit = (w0, w1)
if PoE = ⊥ return

e(C,w0)+e(w1,ChD(s)P2)=e(P1, P2)
else

parse PoE = (α, πQ, Q)
β ← ChD(X)(mod (X + α))
return e(sP1+αP1, πQ)+e(βP1,P2)
=e(P1, Q) ∧ e(C,w0)+e(w1, Q)=e(P1, P2)

Fig. 2: Our SCDS construction

4.1 Construction

Our construction is presented in Figure 2. As in [33] we use a special opening
for the case in which the commited set contains the trapdoor to achieve perfect
correctness and perfect hiding. To prove that a given set is disjoint with respect
to the commited set, the EEA is computed to obtain the Bézout coefficients.
This way, equality is checked randomizing q1, q2 and using a single PPE. Finally,
the PoE computes a polynomial division, and produces the corresponding proof.
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Theorem 1. The SCDS construction from Figure 2 is correct and perfectly
hiding. Furthermore, if the q-co-DL (resp. q-co-GSDH) assumption holds, SCDS
is computationally binding (resp. sound).

Proof. The proof strategy follows closely that of [33]. We extend these proofs
in a similar manner to consider disjoint sets. The full proof is provided in [18]
(Appendix B).

5 Our SPS-EQ construction

The starting point for the SPS-EQ construction in [41] was the tightly secure
SPS from [35], which builds on a structure-preserving MAC (based on the works
from [34] and [38]) and a NIZK OR-Proof from [46]. To couple with equivalence
classes, the authors proposed a way to adapt the OR-Proof so that it could be
randomized and malleable. Unfortunately, as the CRS used in the OR-Proof from
[46] was incompatible with the required randomization properties, the authors
were forced to build a QA-NIZK on top to overcome the limitation.

In this section we introduce a new SPS-EQ scheme based on the one from
[41], which we obtain replacing the underlying OR-Proof from [46] with one
given in [19], while adapting accordingly. As a result we obtain a more efficient
signature scheme based on a new malleable OR-NIZK argument. Before giving
the intuition of our construction, we recall the syntax and security properties
for SPS-EQ introduced in [33] and [41].

SPS-EQ Syntax. An SPS-EQ consists of the following p.p.t algorithms:

ParGen(1λ)is a probabilistic algorithm which takes as input a security parameter
λ and returns public parameters pp including an asymmetric bilinear group,
but without the related trapdoor.

TParGen(1λ)is like the ParGen algorithm but it also returns the trapdoor.
KGen(pp, ℓ)is a probabilistic algorithm which takes as input pp and a vector

length ℓ > 1, and outputs a key pair (sk, pk).
Sign(pp, sk,m)is a probabilistic algorithm which takes as input pp, a represen-

tative m ∈ (G∗
i )

ℓ for class [m]R, a secret key sk, and outputs a signature
σ′ = (σ, τ) (potentially including a tag τ) on the message m.

ChgRep(pp,m, (σ, τ), µ, pk)is a probabilistic algorithm which takes as input pp,
a representative message m ∈ (G∗

i )
ℓ, a signature σ (and potentially a tag τ),

a scalar µ and a public key pk. It computes an updated signature σ′ on new
representative m∗ = µm and returns (m∗, σ′).

Verify(pp,m, (σ, τ), pk)is a deterministic algorithm which takes as input pp, a
representative message m, a signature σ (potentially including a tag τ) and
public key pk. If σ is a valid signature on m it outputs 1 and 0 otherwise.

Correctness. An SPS-EQ scheme over (G∗
i )

ℓ is correct if for any λ ∈ N, any
ℓ > 1, any pp

$← ParGen(1λ), any pair (sk, pk), any message m ∈ (G∗
i )

ℓ, and any
µ ∈ Z∗

p, the following holds:
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Pr
[
Verify(m,Sign(sk,m), pk) = 1

]
= 1, and

Pr
[
Verify(ChgRep(m,Sign(sk,m), µ, pk), pk) = 1

]
= 1.

EUF-CMA. An SPS-EQ scheme over (G∗
i )

ℓ is existentially unforgeable under
adaptively chosen-message attacks, if for all ℓ > 1 and p.p.t adversaries A with
access to a signing oracle Sign, the following probability is negligible,

Pr

pp
$← ParGen(1λ),

(sk, pk)
$← KGen(pp, ℓ),

([m]∗i , σ
∗)

$← ASign(sk,·)(pk)

:
[m∗]R ̸= [m]R ∀ [m]i ∈ Q ∧

Verify([m]∗i , σ
∗, pk) = 1

 ,

where Q is the set of queries that A has issued to the signing oracle Sign. Note
that in the tag-based case this oracle returns (σi, τi).

The following notion is based on Definition 10 from [41], which defines per-
fect adaption of signatures in the CRS model. Perfect adaption mandates that
signatures output by the algorithm ChgRep are distributed identically to new
signatures on the respective representative. When this notion is defined consid-
ering adversaries who could maliciously generate signing keys, one obtains the
strongest possible notion for perfect adaption. Unlike [41], we opt to explicitly
state that perfect adaption is defined with respect to the message space. We do
this, as later on we will introduce a new a definition for perfect adaption with
respect to the key space.

Perfect adaption of signatures (under malicious keys in the honest pa-
rameters model) with respect to the message space: An SPS-EQ over Sm per-
fectly adapts signatures with respect to the message space if for all tuples
(pp, pk, [m]i, σ, µ) where pp

$← ParGen(1λ), [m]i ∈ Sm, µ ∈ Z∗
p, and Verify([m]i,

σ, pk) = 1, we have that the output of ChgRep([m]i, (σ, τ), µ, pk) is ([µ ·m]i, σ
∗),

with σ∗ being a uniformly random element in the space of signatures, conditioned
on Verify([µ ·m]i, σ

∗, pk) = 1.

5.1 Our Malleable NIZK argument

Our malleable NIZK argument is based solely on the fully-adaptive OR-Proof
from [19]. This allows us to circumvent the randomization problem in the OR-
Proof from [46], and to avoid the need to build a QA-NIZK atop.

As a result, we reduce the number of exponentiations required in the proving
and ZKEval algorithms, which leads to a more efficient signature scheme. This
comes at the cost of relying on the L1-1-extKerMDH assumption. We argue that
the change is justified as the extKerMDH is a natural extension of the KerMDH
assumption and in this case, the assumption is also falsifiable.

Intuition. We look for a NIZK proof which can be randomizable and malleable
so that randomized proofs look like fresh proofs, while the malleability allows to
update the proof statements. The goal is to obtain derivation privacy, which is
crucial to perform the change of representative in the signature scheme.

The fully-adaptive NIZK argument from [19] is based on a challenge z =
z0 + z1, where z is in the CRS, and z0 and z1 are elements of the proof and
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PGen(1λ):

BG
$← BGGen(1λ); z

$← Zp

return ((BG, [z]2), z)

PPro(crs, [x1]1,w1, [x2]1,w2):

// [xj ]1 = Aiwj with A ∈M2k×k

sj
$← Zk

p; z1−i
$← Z∗

p; δ
$← Z∗

p

[zi]2 ← δ[z]2 − [z1−i]2
[dj

i ]2 ← [zi]2wj + [sj ]2
[aj

i ]1 ← [Ai]sj
dj
1−i

$← Zk
p

[aj
1−i]1 ← A1−id

j
1−i − z1−ixj

return ([aj
i ]1, [d

j
i ]2, [zi]2, δP1)

j∈{1,2}
i∈{0,1}

PSim(crs, z, [x1]1, [x2]1):

z0
$← Zp; δ

$← Z∗
p; z1 ← δz − z0

for all i ∈ {0, 1}, j ∈ {1, 2} do

dj
i

$← Zk
p; [a

j
i ]1 ← Aid

j
i − zixj

return ([aj
i ]1, [d

j
i ]2, [zi]2, δP1)

j∈{1,2}
i∈{0,1}

PRVer(crs, [x]1, π):

parse π = ([ai]1, [di]2, [zi]2, Z1)i∈{0,1}

check e(Z1, [z]2)=e([1]1, [z0]2 + [z1]2)

for all i ∈ {0, 1} check

e([Ai]1, [di]2)=e([x]1, [zi]2)+e([ai]1, [1]2)

PVer(crs, [x1]1, [x2]1, Ω):

parse Ω = ([aj
i ]1,[d

j
i ]2,[zi]2,Z1)

j∈{1,2}
i∈{0,1}

check e(Z1, [z]2) = e([1]1, [z0]2 + [z1]2)

for all i ∈ {0, 1}, j ∈ {1, 2} check

e([Ai]1, [d
j
i ]2)=e([xj ]1, [zi]2)+e([aj

i ]1, [1]2)

ZKEval(crs, [x1]1, [x2]1, Ω):

parse Ω = ([aj
i ]1,[d

j
i ]2,[zi]2,Z1)

j∈{1,2}
i∈{0,1}

check PVer(crs, [x1]1, [x2]1, Ω)

α, β
$← Z∗

p; Z
′
1 ← αZ1

for all i ∈ {0, 1}
[z′i]2 ← α[zi]2; [a

′
i]1 ← α[a1

i ]1 + αβ[a2
i ]1

[d′
i]2 ← α[d1

i ]2 + αβ[d2
i ]2

return ([a′
i]1, [d

′
i]2, [z

′
i]2, Z

′
1)

Fig. 3: Malleable NIZK argument for language L∨
A0,A1

chosen such that the equation holds. To randomize a proof we need to random-
ize z0 and z1 and so, instead of checking the original equation we will check
for linear combinations of the equation αz = z0 + z1. We modify the original
proof to compute a random α and add an extra element Z = αP1 to the proof.
Consequently, the verification algorithm will now check an extra pairing.

As observed in [41], the malleability of the OR-NIZK proof can be achieved
by using a tag and a second NIZK for that tag with shared randomness. We
follow the same approach. The resulting malleable NIZK argument for the OR-
language (for fixed A0 and A1) is defined below and presented in Figure 3.

L∨
A0,A1

= {[x]1 ∈ G2k
1 |∃ w ∈ Zk

p : [x]1 = [A0]1 ·w ∨ [x]1 = [A1]1 ·w},

Theorem 2. The protocol in Figure 3 is a fully adaptive NIZK argument for
the OR-language L∨

A0,A1
if the falsifiable L1-(4k + 1)-extKerMDH assumption

holds in G2.

Proof. The proof follows [19] and is provided in [18] (Appendix C).

5.2 Signature Construction

Our construction is shown in Figure 4, where the higlighted sections note the
main differences to the scheme presented in [41]. In [18] (Appendix H), we also
show how to extend it to obtain mercurial signatures (later explained in Section
7.1).
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SPS-EQ.ParGen(1λ):

BG
$← BGGen(1λ); A,A0,A1

$← D1

(crs, td)
$← PGen(1λ;BG)

return (BG, [A]2, [A0]1, [A1]1, crs)

SPS-EQ.TParGen(1λ):

BG
$← BGGen(1λ); A,A0,A1

$← D1

(crs, td)
$← PGen(1λ;BG)

pp← (BG, [A]2, [A0]1, [A1]1, crs)

return (pp, td)

SPS-EQ.KGen(pp, 1λ):

K0
$← Z2×2

p ; K
$← Zℓ×2

p

[B]2 ← [K0]2[A]2; [C]2 ← [K]2[A]2
sk← (K0,K); pk← ([B]2, [C]2)

return (sk, pk)

SPS-EQ.Sign(pp, sk, [m]1):

r1, r2
$← Zp

[t]1 ← [A0]1r1; [w]1 ← [A0]1r2
Ω ← PPro(crs, [t]1, r1, [w]1, r2)

parse Ω = (Ω1, Ω2, [z0]2, [z1]2, Z1)

u1 ← K⊤
0 [t]1 +K⊤[m]1; u2 ← K⊤

0 [w]1
σ ← ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)

τ ← ([u2]1, [w]1, Ω2)

return (σ, τ)

SPS-EQ.Verify(pp, [m]1, (σ, τ), pk):

parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)

parse τ ∈ {([u2]1, [w]1, Ω2) ∪ ⊥}
check PRVer(crs, [t]1, Ω1, [z0]2, [z1]2, Z1)

check e([u1]
⊤
1 , [A]2) =

e([t]⊤1 , [B]2) + e([m]⊤1 , [C]2)

if τ ̸=⊥ check

PRVer(crs, [w]1, Ω2, [z0]2, [z1]2, Z1)

e([u2]
⊤
1 , [A2]) = e([w]⊤1 , [B]2)

SPS-EQ.ChgRep(pp, [m]1, σ, τ, µ, pk):

parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)

parse τ ∈ {([u2]1, [w]1, Ω2) ∪ ⊥}
Ω ← (Ω1, Ω2, [z0]2, [z1]2, Z1)

check PVer(crs, [t]1, [w]1, Ω)

check e([u2]
⊤
1 , [A]2) ̸= e([w]⊤1 , [B]2)

check e([u1]
⊤
1 , [A]2) ̸=

e([t]⊤1 , [B]2) + e([m]⊤1 , [C]2)

α, β,
$← Z∗

p

[u′
1]1 ← µ[u1]1 + β[u2]1

[t′]1 ← µ[t]1 + β[w]1 = [A0]1(µr1 + βr2)

for all i ∈ {0, 1}
[z′i]2 ← α[zi]2
[a′

i]2 ← αµ[a1
i ]2 + αβ[a2

i ]2
[d′i]1 ← αµ[d1i ]1 + αβ[d2i ]1

Ω′ ← (([a′
i]1, [d

′
i]2, [z

′
i]2)i∈{0,1}, αZ1)

σ′ ← ([u′
1]1, [t

′]1, Ω
′)

return (µ[m]1, σ
′)

Fig. 4: Our SPS-EQ scheme.

Theorem 3. The SPS-EQ in Figure 4 perfectly adapts signatures (under mali-
cious keys in the honest parameter model) with respect to the message space.

To prove Theorem 3 we follow almost verbatim the original proof from [41].

Proof. For all [m]1 and pk = ([K0A]2, [KA]2), a signature σ=([u1]1, [t]1, Ω1

,[z0]2, [z1]2, Z1) generated according to the CRS ([A]2, [A0]1, [A1]1, [z]2) satis-
fying the verification algorithm must be of the form: σ=(K⊤

0 [A0]1r1+K⊤[m]1,
[A0]1r1, [A0]s1, [A1]d

1
1 − z1[A0]1r1, [z0]2r1+[s1]2, [d

1
1]2, [z0]2, [z1]2, Z1). A sig-

nature output by ChgRep has the form σ=(K⊤
0 [A0]1(µr1 + βr2)+K⊤[µm]1,

[A0]1(µr1 + βr2), [A0]α(µs1 + βs2), [A1]α(µd
1
1 + βd21) − z1[A0]1α(µr1 + βr2),

α([z0]2(µr1 + βr2)+µ[s1]2+β[s2]2), α(µ[d
1
1]2 + β[d21]2), α[z0]2, α[z1]2, αZ1), for

new independent randomness α, β and µ so is a random element in the space
of all signatures. Furthermore, the signature output by ChgRep is distributed
identically to a fresh signature on message [m]1 output by Sign. □
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Theorem 4. If the KerMDH and MDDH assumptions hold, the SPS-EQ in Fig-
ure 4 is unforgeable.

Proof. The proof is provided in [18] (Appendix D).

6 Extending the ABC Model from [33]

In this section we present a new ABC model which extends [33] to consider
NAND showing proofs and the use of a CRS (denoted as pp). A NAND showing
proof allows users to demonstrate that a given set of attributes is not present in
their credential. The core differences in this extended ABC model follow natu-
rally from (1) the addition of disjoint sets in the SCDS scheme in section 4, and
(2) the removal of the key verification algorithm (as we work with a CRS).

ABC Syntax. An ABC scheme consists of the following p.p.t algorithms:

Setup(1λ, 1q) takes a security parameter λ and an upper bound q for the size of
attribute sets, and outputs public parameters pp discarding any trapdoor.

TSetup(1λ, 1q) similar to Setup but it also returns a trapdoor (if any).
OrgKeyGen(pp) takes pp as input and outputs an organization key pair (osk, opk).
UserKeyGen(pp) takes pp as input and outputs a user key pair (usk, upk).
Obtain(pp, usk, opk,X ) and Issue(pp, upk, osk,X ) are run by a user and the orga-

nization respectively, who interact during execution. Obtain takes as input
pp, the user’s secret key usk, an organization’s public key opk, and an at-
tribute set X of size |X | < t. Issue takes as input pp, a user public key upk,
the organization’s secret key osk, and an attribute set X of size |X | < t. At
the end of this protocol, Obtain outputs a credential cred on X for the user
or ⊥ if the execution failed.

Show(pp, opk,X ,S,D, cred) and Verify(pp, opk,S,D) are run by a user and a ver-
ifier respectively, who interact during execution. Show takes as input pp, an
organization public key opk, a credential cred for the attribute set X , poten-
tially non-empty sets S ⊆ X , D ⊈ X representing attributes sets being a
subset (S) or disjoint (D) to the attribute set (X ) committed in the creden-
tial. Verify takes as input pp, an organization public key opk, the sets S and
D. At the end, Verify outputs 1 or 0 indicating whether or not the credential
showing was accepted.

6.1 Security Properties

The following notions are based on the security model from [33] (Section 5.1),
which we adapt to consider the use of a crs (pp) and NAND showing proofs.
Informally, an ABC scheme is secure if it has the following properties:

Correctness. A showing of a credential with respect to a non-empty sets S and
D of attributes always verify if the credential was issued honestly on some
attribute set X with S ⊂ X and D ⊈ X .
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Unforgeablility. Given at least one non-empty set S ⊂ X or D ⊈ X , a user
in possession of a credential for the attribute set X cannot perform a valid
showing for D ⊂ X nor for S ⊈ X . Moreover, no coalition of malicious users
can combine their credentials and prove possession of a set of attributes which
no single member has. This holds even after seeing showings of arbitrary
credentials by honest users (thus, covering replay attacks).

Anonymity. During a showing, no verifier and no (malicious) organization (even
if they collude) is able to identify the user or learn anything about the user,
except that she owns a valid credential for the shown attributes. Furthermore,
different showings of the same credential are unlinkable.

To introduce the corresponding formal definitions, the following global vari-
ables and oracles are listed below.

Global variables. At the beginning of each experiment, either the experiment
computes an organization key pair (osk, opk) or the adversary outputs opk. In
the anonymity game there is a bit b, which the adversary must guess.

In order to keep track of all honest and corrupt users, we introduce the sets
HU, and CU, respectively. We use the lists UPK, USK, CRED, ATTR and OWNR to track
user public and secret keys, issued credentials and corresponding attributes and
to which user they were issued. Furthermore, we use the sets JLoR and ILoR to
store which issuance indices and corresponding users have been set during the
first call to the left-or-right oracle in the anonymity game.

Oracles. Considering an adversary A the oracles are as follows:

OHU(i) takes as input a user identity i. If i ∈ HU ∪ CU, it returns ⊥. Otherwise,

it creates a new honest user i by running (USK[i], UPK[i])
$← UsrKGen(opk),

adding i to the honest user list HU and returning UPK[i].
OCU(i, upk) takes as input a user identity i and (optionally) a user public key upk;

if user i does not exist, a new corrupt user with public key upk is registered,
while if i is honest, its secret key and all credentials are leaked. In particular,
if i ∈ CU or if i ∈ ILoR (that is, i is a challenge user in the anonymity game)
then the oracle returns⊥. If i ∈ HU then the oracle removes i from HU and adds
it to CU; it returns USK[i] and CRED[j] for all j with OWNR[j] = i. Otherwise
(i.e., i /∈ HU ∪ CU), it adds i to CU and sets UPK[i]← upk.

OObtIss(i,X ) takes as input a user identity i and a set of attributes X . If i /∈ HU,
it returns ⊥. Otherwise, it issues a credential to i by running

(cred,⊤) $← Obtain(pp, USK[i], opk,X ), Issue(pp, UPK[i], osk,X ).

If cred = ⊥, it returns ⊥. Else, it appends (i, cred,X ) to (OWNR, CRED, ATTR)
and returns ⊤.

OObtain(i,X ) lets the adversary A, who impersonates a malicious organization,
issue a credential to an honest user. It takes as input a user identity i and a
set of attributes X . If i /∈ HU, it returns ⊥. Otherwise, it runs

(cred, ·) $← Obtain(pp, USK[i], opk,X ), ·),

where the Issue part is executed by A. If cred = ⊥, it returns ⊥. Else, it
appends (i, cred,X ) to (OWNR, CRED, ATTR) and returns ⊤.
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OIssue(i,X ) lets the adversary A, who impersonates a malicious user, obtain a
credential from an honest organization. It takes as input a user identity i and
a set of attributes X . If i /∈ CU, it returns ⊥. Otherwise, it runs

(·, I) $← (·, Issue(pp, UPK[i], osk,X )),

where the Obtain part is executed by A. If I = ⊥, it returns ⊥. Else, it
appends (i,⊥,X ) to (OWNR, CRED, ATTR) and returns ⊤.

OShow(j,S,D) lets the adversary A play a dishonest verifier during a showing
by an honest user. It takes as input an index of an issuance j and attributes
sets S and D. Let i $← OWNR[j]. If i /∈ HU, it returns ⊥. Otherwise, it runs

(S, ·) $← Show(pp, opk, ATTR[j],S,D, CRED[j]), ·)

where the Verify part is executed by A.
OLoR(j0, j1,S,D) is the challenge oracle in the anonymity game where A must

distinguish (multiple) showings of two credentials CRED[j0] and CRED[j1]. The
oracle takes two issuance indices j0 and j1 and attribute sets S and D. If
JLoR ̸= ∅ and JLoR ̸= {j0, j1}, it returns ⊥. Let i0

$← OWNR[j0] and i1
$←

OWNR[j1]. If JLoR ̸= ∅ then it sets JLoR
$← {j0, j1} and ILoR

$← {i0, i1}. If
i0, i1 ̸= HU ∨ S ⊈ ATTR[j0] ∩ ATTR[j1] ∨ D ∩ {ATTR[j0] ∪ ATTR[j1]} ≠ ∅, it
returns ⊥. Else, it runs

(S, ·) $← (Show(opk, ATTR[jb],S,D, CRED[jb]), ·),

(with b set by the experiment) where the Verify part is executed by A.

Correctness. An ABC system is correct, if for all λ > 0, all t > 0, all X with
0 < |X | ≤ t and all ∅ ≠ S ⊂ X and ∅ ≠ D ⊈ X with 0 < |D| ≤ t it holds that:

Pr


pp

$← Setup(1λ, 1q);

(osk, opk)
$← OrgKGen(pp);

(usk, upk)
$← UsrKGen(pp);

(cred,⊤) $← (Obtain(pp, usk, opk,X ),
Issue(pp, upk, osk,X ))

:
(⊤, 1) $← (Show(pp, opk,X ,S,
D, cred),Verify(pp, opk,S,D))

 = 1.

Unforgeability. An ABC system is unforgeable, if for all λ > 0, all q > 0
and p.p.t adversaries A having oracle access to O := {OHU, OCU, OObtIss, OIssue,
OShow} the following probability is negligible.

Pr


pp

$← Setup(1λ, 1q);

(osk, opk)
$← OrgKGen(pp);

(S,D, st) $← AO(pp, opk);

(·, b∗) $← (A(st),Verify(pp, opk,S,D))

:
b∗ = 1 ∧
∀ j : OWNR[j] ∈ CU =⇒
(S /∈ ATTR[j] ∨ D ∈ ATTR[j])


Anonymity. An ABC system is anonymous, if for all λ > 0, all q > 0 and all
p.p.t adversaries A having oracle access to O := {OHU, OCU, OObtain,OIssue, OShow,
OLoR} the following probability is negligible.

Pr

[
pp

$← Setup(1λ, 1q); b
$← {0, 1}; (opk, st) $← A(pp);

b∗
$← AO(st)

: b∗ = b

]
− 1

2
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7 Our ABC construction

As previously explained in Section 1.3, our ABC scheme is based on the one
from [33]. The main changes are the following:
– As we use a signature scheme that relies on a CRS, we move the parameters

of the set-commitment scheme from the organization’s key pair to the public
parameters pp that include the previous CRS. Furthermore, we instantiate
the ZKPoK’s using Pedersen commitments and the construction from [22],
as suggested in [33] (Remark 1).

– Our showing protocol can be instantiated with two sets S and D, one to com-
pute AND proofs (selective disclosure) and one to compute NAND proofs.

– We integrate the proof of exponentiation to the showing protocol 5.

Intuition. We begin explaining the difference to [33] with respect to mali-
cious organizations as it clarifies the changes introduced in the issuing protocol.
We recall that in this context the term malicious organizations refers to or-
ganizations whose key-pairs are generated in a way that trapdoor information
is included. Such trapdoor information could later be used by an organization
to break anonymity, provided that extra information (a transcript of a given
showing protocol containing a credential issued by the organization) is available.
The ABC scheme from [33] defines a ZKPoK in the issuing protocol (ΠRO ) for
which the organization needs to prove knowledge of the corresponding secret key
to avoid the previous scenario. Since the signing keys in our SPS-EQ need to
be generated using the CRS (which includes the matrix A), we do not need to
request a ZKPoK from the organization in the issuing protocol as the signature’s
verification algorithm a pairing involving the matrix A and the organization’s
public key opk = (B,C) is used to check the signature. Hence, a signature that
verifies rules out that 1) someone impersonated the issuer signing with a different
secret key, and 2) that the public key was maliciously generated. Regarding the
showing protocol, the only changes are the addition of NAND and exponentia-
tion proofs. For the latter, we require the verifier to randomly pick the challenge
and send it to the user.

For ease of exposition, we present the resulting construction (Scheme 1) in
Figure 5 considering selective disclosures only. We highlight in gray the required
changes to do NAND proofs, but both types of proofs could be computed while
executing a single showing. If so, a NAND proof increases bandwidth by 4 ele-
ments (two from G1 and two from G2), as the PoE can reuse the same challenge.

Theorem 5. Scheme 1 is correct.

Theorem 6. If the q-co-DL assumption holds, the ZKPoK’s have perfect ZK,
SCDS is sound, and SPS-EQ is EUF-CMA secure, then Scheme 1 is unforgeable.

Theorem 7. If the DDH assumption holds, the ZKPoK’s have perfect ZK, and
the SPS-EQ perfectly adapts signatures, then Scheme 1 is anonymous.

5 The security of this integration is discussed in [18] (Appendix J).
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Proof. Proof of Theorem 6 follows closely to that presented in [33] but extended
to include disjoint sets. Proof of Theorem 7 also follows that in [33] with the
exception that we work with a CRS and an accordingly modified definition of
perfect adaption. All proofs are provided in [18] (Appendix E).

7.1 Revocation strategies

The natural approach to revocation would be to follow that described in [24]
where they use the fact that randomization of a credential is compatible with the
randomization of the accumulator and its corresponding witness. This approach
requires the revocation authority to compute and maintain the witness list. As
it uses the accumulator from [1], the cost of non-membership proofs is linear
in the size of the accumulator (i.e., revoked users), and this should be done at
least once by the manager for every user. If, instead, the dynamic variant is used
(as discussed in [24]), then users could be given their non-membership witness
once and subsequently update it with a single constant size operation. Other
approaches for revocation are discussed in [18] (Appendix F).

7.2 Signer-Hiding

We recall that our signature scheme is based on the one from [41] and that we are
using the credential framework of [33]. Therefore, as we have k = 1 and ℓ = 3,
the public keys consist of two vectors [B]2 ∈ (G∗

2)
2 and [C]2 ∈ (G∗

2)
3, where the

secret keys have the form sk = (K0,K) with K0
$← (Z∗

p)
2×2 and K

$← (Z∗
p)

3×2.
With this in mind, we can naturally define equivalence relationships on the key
spaces Ssk = {(Z∗

p)
2×2 × (Z∗

p)
3×2} and Spk = {(G∗

2)
2 × (G∗

2)
3} as follows:

Rsk = {(sk, s̃k) ∈ Ssk × Ssk | ∃ ρ ∈ Z∗
p s.t s̃k = ρ · sk}

Rpk = {(pk, p̃k) ∈ Spk × Spk | ∃ ρ ∈ Z∗
p s.t p̃k = ρ · pk}

If we have a list of public keys (B1,C1), ..., (Bn,Cn) and define the equiva-
lence class of each public key as before ((B′

i,C
′
i) = (Bi,Ci)·ρ), we can efficiently

prove that a given public key (B′
i,C

′
i) belongs to the equivalence class of one

of the public keys (B1,C1), ..., (Bn,Cn) for some (Bi,Ci). The idea is to use a
generalized version of the OR-Proof from [19], and building a generalized NIZK
OR-Proof for the AND statements of the two components. The new language is
defined as follows (remember we use ℓ = 3):

L∨
(Bi∧Ci)i∈[n]

= {(B′
i,C

′
i) ∈ G2×ℓ

2 | ∃ ρ ∈ Z∗
p : ∨ (B′

i = Bi · ρ ∧C′
i = Ci · ρ)i∈[n]}

The resulting NIZK argument is given in Figure 6.

Theorem 8. The proof system given in Figure 6 is a fully-adaptive NIZK ar-
gument for the language L∨

(Bi∧Ci)i∈[n]
.

Proof. The proof follows from Theorem 19 in [19]. The only difference is that
we rely on the AND composition for sigma protocols to compile the one in [19]
using the same challenge for both proofs.
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ABC.Setup(1λ, 1q):

(BG, scdspp)
$← SCDS.Setup(1λ, q); (spspp)

$← SPS-EQ.ParGen(1λ;BG);

r
$← Z∗

p; ck← (P1, rP1); return (BG, scdspp, spspp, ck)

ABC.TSetup(1λ, 1q):

(BG, scdspp, scdstd)
$← SCDS.TSetup(1λ, q); (spspp, spstd)

$← SPS-EQ.TParGen(1λ;BG);

r
$← Z∗

p; ck← (P1, rP1); cktd ← r; return ((BG, scdspp, spspp, ck), (scdstd, spstd, cktd))

ABC.OrgKGen(pp): ABC.UsrKGen(pp):

return SPS-EQ.KGen(BG, spspp, 3) usk
$← Z∗

p; upk← uskP1

return (usk, upk)

ABC.Obtain(pp, usk, opk,X ) ABC.Issue(pp, upk, osk,X )
r1, r2

$← Z∗
p; a← r1P1

c← Commit(ck, a, r2)
c−−−−→

z ← r1 + e · usk e←−−−− e
$← Z∗

p

(C,O)← SCDS.Commit(scdspp,X ; usk) C,R,

r3
$← Z∗

p; R← r3C
z,a,r2−−−−→ if (zP1 ̸= a+ e · upk ∨

c ̸= Commit(ck, a, r2)) return ⊥
if (e(C,P2) ̸= e(upk,ChX (s)P2)
∧ ∀ x ∈ X : xP1 ̸= ek01) return ⊥

(σ,τ)←−−−− (σ, τ)← SPS-EQ.Sign((C,R, P1), osk)

check SPS-EQ.Verify(spspp, (C,R, P1), (σ, τ), opk)
return cred = (C, (σ, τ), r3, O)

ABC.Show(pp, usk, opk, ek,S, cred) ABC.Verify(pp, opk,S)
parse cred = (C, σ, r,O); µ

$← Z∗
p

if O = (1, (o1, o2)) then
O′ = (1, (µ · o1, o2)) else O′ = µO

σ′ $← SPS-EQ.ChgRep(spspp, (C, rC, P1), σ, τ, µ, opk)
(C1, C2, C3)← µ · (C, rC, P1)
cred′ ← (C1, C2, C3, σ

′)

wit← SCDS.OpenSS(scdspp, µC,S, ek, O′)

r1, r2, r3, r4
$← Z∗

p; a1 ← r1C1; a2 ← r3P1

c1 ← Commit(ck, a1, r2) cred′, wit,

c2 ← Commit(ck, a2, r4)
c1,c2−−−−→ parse cred′ = (C1, C2, C3, σ)

π ← SCDS.PoE(scdspp,S, ẽ)
e,ẽ←−−−− e, ẽ

$← Z∗
p

z1 ← r1 + e · (r · µ); z2 ← r3 + e · µ
Ω = ((zi, ai, ri)i∈{1,2}, π)

Ω−−−−→ parse Ω = ((zi, ai, ri)i∈{1,2}, π)

check
z1C1 = a1 + eC2; z2P1 = a2 + eC3

c1 = Commit(ck, a1, r2)
c2 = Commit(ck, a2, r4)
SPS-EQ.Verify(spspp, cred

′, opk)
SCDS.VerifySS(scdspp, C1,S,wit;π, ẽ)

Fig. 5: Scheme 1.
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PGen(1λ):

BG
$← BGGen(1λ); z

$← Zp; td← z

return (BG, crs, [z]1)

PPrv(crs, (Bi,Ci)i∈[n], (B
′
i,C

′
i), ρ):

// B′
i = Bi · ρ ∧C′

i = Ci · ρ
s1, s2, z1, ..., zn−1

$← Zp

[zn]1 ← [z]1 −
∑j=n−1

j=1 [zj ]1

[a1
i ]2 ← s1Bi; [a

2
i ]2 ← s2Ci

[d1i ]1 ← ρ[zi]1+[s1]1; [d
2
i ]1 ← ρ[zi]1+[s2]1

for all j ̸= i ∈ [n] do

d1j , d
2
j

$← Zp

[a1
j ]2 ← d1jBj-zjB

′
i; [a

2
j ]2 ← d2jCj-zjC

′
i

return (([ak
n]2, [d

k
n]1)

k∈[2]

n∈[n], ([zj ]1)j∈[n−1])

PSim(crs, td, (Bi,Ci)i∈[n], (B
′
i,C

′
i)):

z1, ..., zn−1
$← Zp

[zn]1 ← [td]1 −
∑j=n−1

j=1 [zj ]1

for all i ∈ [n] do

d1i , d
2
i

$← Zp

[a1
i ]2 ← d1iBi-ziB

′
i; [a

2
i ]2 ← d2iCi-ziC

′
i

return (([ak
n]2, [d

k
n]1)

k∈[2]

n∈[n], ([zj ]1)j∈[n−1])

PVer(crs, (Bi,Ci)i∈[n], (B
′
i,C

′
i), π):

parse π=(([ak
n]2, [d

k
n]1)

k∈[2]

n∈[n], ([zj ]1)j∈[n−1])

[zn]1 = [z]1 −
∑j=n−1

j=1 [zj ]1

for all i ∈ [n] check

e([d1i ]1,Bi)=e([zi]1,B
′
i)+e([1]1, [a

1
i ]2)

e([d2i ]1,Ci)=e([zi]1,C
′
i)+e([1]1, [a

2
i ]2)

Fig. 6: Fully adaptive NIZK argument for L∨
(Bi∧Ci)i∈[n]

We now explain how the above NIZK can be used to hide the identity of
a signer. First, we need to consider a scenario in which n-authorities can issue
credentials to different sets of users. As we are in the classical setting, we also
assume that every user gets a credential from one of the n-authorities and that
the organization keys are certified and publicly available.

When showing a credential, the verifier needs to check the signature using
the corresponding public key. The idea is to use the above NIZK proof so that
a user can randomize the public key and present this randomized key to the
verifier, which in turn will check the NIZK to verify that the public key is valid
(i.e., it belongs to the equivalence class of one of the n-authorities).

Signatures need to be adapted by the users so that they can be verified with
the randomized public key. Therefore, we consider the definition of mercurial
signatures [20], which includes algorithms ConvertPK, ConvertSK and ConvertSig,
and introduce the following notion.

Perfect adaption of signatures (under malicious keys in the honest pa-
rameters model) with respect to the key space; An SPS-EQ over a message
space Sm perfectly adapts signatures with respect to the key space Spk if for

all tuples (pp,[pk]j ,[m]i,(σ, τ),ρ) where pp
$← ParGen(1λ), [pk]j ∈ Spk, [m]i ∈

Sm, Verify([m]i, (σ, τ), [pk]j) = 1 and ρ ∈ Z∗
p, we have that the output of

ConvertSig([m]i, (σ, τ), ρ, [pk]j) is σ∗, with σ∗ being a random element in the
space of signatures, conditioned on Verify([m]i, σ

∗,ConvertPK([pk]j , ρ)) = 1.

ConvertSig is analogous to the ChgRep algorithm, but restricted to act on
the equivalence class defined by the key space. The algorithms ConvertPK and
ConvertSK are just defined to abstract the computation of new representatives.

As our signature construction is compatible with the joint executions of the
algorithms ChgRep and ConvertSig, we define below a general notion for perfect
adaption where the ChgRep algorithm acts on all the equivalence classes.
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Perfect adaption of signatures (under malicious keys in the honest param-
eters model); An SPS-EQ over Sm perfectly adapts signatures with respect to the

key space Spk if for all tuples (pp, [pk]j , [m]i, (σ, τ), µ, ρ) where pp
$← ParGen(1λ),

[pk]j ∈ Spk, [m]i ∈ Sm, Verify([m]i, (σ, τ), [pk]j) = 1 and µ, ρ ∈ Z∗
p we have

that the output of ChgRep([m]i, (σ, τ), µ, ρ, [pk]j) is ([µ ·m]i, σ
∗), with σ∗ be-

ing a random element in the space of signatures, conditioned on Verify([µ ·m]i,
σ∗,ConvertPK([pk]j , ρ)) = 1.

Theorem 9. The above extension applied to the SPS-EQ from Figure 4 per-
fectly adapts signatures (under malicious keys in the honest parameter model).

Proof. It follows from the security of SPS-EQ and the definition of perfect adap-
tion for mercurial signatures (Appendix D and H from [18]).

We now formalize the signer-hiding notion and show that our construction
satisfies it as it perfectly adapts signatures.

Signer-Hiding. An ABC system supports signer-hiding if for all λ > 0, all
q > 0, all n > 0, all t > 0, all X with 0 < |X | ≤ t, all ∅ ≠ S ⊂ X and ∅ ≠ D ⊈ X
with 0 < |D| ≤ t, and p.p.t adversaries A, the following holds.

Pr


pp

$← Setup(1λ, 1q);

∀ i ∈ [n] : (oski, opki)
$← OrgKGen(pp);

(usk, upk)
$← UsrKGen(pp); j

$← [n];

(cred,⊤) $← (Obtain(usk, opkj ,X ), Issue(upk, oskj ,X ));
j∗

$← AOShow(pp,S,D, (opki)i∈[n])

: j∗ = j

 ≤
1

n

where the oracle OShow is defined as in Section 6.

Theorem 10. If the underlying signature scheme is a SPS-EQ which perfectly
adapts signatures (under malicious keys in the honest parameter model), the
resulting ABC from Section 7.2 supports signer-hiding.

Proof. Let us first observe that the adversary can guess the bit j∗ with probabil-
ity 1/n. By definition of perfect adaption, for all tuples (pp, [opk]j , [m]i, (σ, τ), µ, ρ)

s.t (σ, τ)
$← Sign(pp, oskj , [m]i), we have that [µ ·m]i and [ρ ·opk]j are identically

distributed in the message and key spaces, where ([µ ·m]i, σ
∗) ← ChgRep([m]i,

(σ, τ), µ, ρ, [opk]j) and [ρ · opk]j ← ConvertPK(opkj , ρ). Furthermore, we also
have that σ∗ is a random element in the space of signatures conditioned on
Verify([µ ·m]i, σ

∗, [ρ · opk]j) = 1. Therefore, an adversary with access to [µ ·m]i,
σ∗ and [ρ · opk]j can only guess the bit j∗ with probability at most 1/n. □

Integration with our ABC scheme. As our NIZK argument is fully adap-
tive, users can choose the size of the anonymity set (i.e., the set of public keys
in the OR-Proof). We find this approach much simpler than using delegatable
credentials to achieve a similar result as users do not need to interact with the
organizations to compute the NIZK proof nor to adapt the signature. Moreover,
there is no need to use pseudonyms for public and secret keys. We essentially
compute public key’s pseudonyms “on-the-fly” guaranteeing that the signature
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adaption is done with respect to a valid public key. In other words, our NIZK ar-
gument is a proof of correct randomization, where the same randomizer is used
to adapt the signature and generate a pseudonymous public key. A complete
figure for the proposed ABC, including the signer-hiding extension as well as
NAND proofs, is given in [18] (Appendix I).

Efficiency analysis. As the proof size is 9n − 1 for an anonymity set of n-
authorities, communication bandwidth will no longer be constant. Nevertheless,
given the previously mentioned advantages we believe that this is a fair trade-off
for the added functionality. In terms of computational cost, it is also substantially
more efficient than similar variants (see, for instance, Table 2 from [19]).

8 Comparison of state-of-the-art ABC

We provide comparisons on the efficiency of state-of-the-art ABC and ours (Sec-
tion 7) on Table 3. For ease of exposition, we list the work from [33] next to
ours, and consider an instantiation of it in the CRS model, and using the same
ZKPoK’s as the ones used in Section 7.

When looking at a whole, the work from Sanders [47] presents very good
results while also allowing showings to prove relationships between attributes
and to consider malicious keys. Nevertheless, security of the related construction
is proven in the GGM model and thus, falls short in that aspect. The same also
applies to the works from [39] and [33].

While for the comparisons only the classical setting (credentials are issued by
a single authority) was considered, it is worth to mention that [39] does consider
multi-authorities. As authors point out, in order to allow multi-authorities they
base their construction on aggregate signatures, and obtain the most efficient
showing for the users. Their security model follows the game-based approach
from [33] but because of the multi-authority setting, they also consider malicious
credential issuers, with adaptive corruptions, and collusions with malicious users.
Unfortunately, this is done assuming that the keys are honestly generated.

[50] uses a set-commitment scheme which alongside an SDH-based signature,
leads to a credential system that supports a variety of show proofs for complex
statements among which AND and NAND are included. For this reason, we
also compare our work with the one from [50] considering NAND showings.
In terms of security models, authors provide a formalization for impersonation
attacks and prove their scheme secure against impersonation under active and
concurrent attacks. The security of their ABC scheme is proven in the standard
model and providing a tight reduction.

Considering the different trade-offs, our ABC provides very similar perfor-
mance when compared to [33] and it is not too distant from the most efficient
ones either. Unlike the rest, it can be adapted to different scenarios in case that
reducing the verification cost is not needed, and it can also be efficiently adapted
to provide revocation features. Furthermore, as for many practical applications
the ability to perform AND and NAND showings suffices, we also achieve a good
level of expressiveness too. Finally, the signer-hiding feature makes it suitable
for scenarios in which the rest of the alternatives struggle.
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ABC [47] [39] [50] [33] Section 7

Parameters size (n-attributes)

ek (n
2+n+2

2
)G1+nG2 (2n+ 2)G2 (n+ 1)G1+ (n+ 1)G1+ (n+ 1)G1+

(n+ 1)G2 (n+ 1)G2 (n+ 1)G2

Cred 2G2 4G1 1G1 + 6Zp 3G1+1G2 + 2Zp 18G1+6G2+3Zp

Bandwidth

Issue 4G2 + 2Zp nG1 3G1+(n+3)Zp 12G1+1G2+8Zp 14G1+11G2+7Zp

Show 2G1+2G2+1GT +2Zp 3G1+1Zp 3G1+5Zp 10G1+1G2+8Zp 18G1+14G2+4Zp

k-of-n attributes (AND)

Usr (2(n-k)+2)G1 ,2G2 , 6G1 (6+n-k)G1 (11+n-k)G1 ,1G2 , (20+n-k)G1 ,
1 8 (k-1)G2 ,19

Ver (k+1)G1 ,1GT ,5 4G1 ,2nG2 ,3 5G1 ,(k+1)G2 ,3 4G1 ,(k+1)G2 ,10 10G1 ,16

k-of-n attributes (NAND)

Usr N/A N/A (6+n)G1 N/A (31+n)G1 ,
(9+2k)G2 ,19

Ver N/A N/A (2k+5)G1 , N/A 10G1 ,17
(k+3)G2 ,3

Table 3: Efficiency of ABCs considering issuing and showing interactions (the
number of pairings is marked in bold).

9 Conclusions and Future Work

Our results explore multiple paths to extend the ABC framework of [33] to
include more applications and scenarios where it can be used. In order to improve
expressiveness of the set-commitment scheme in [33] we allow openings on sets of
attributes disjoint from those possessed by a user. We also enhance efficiency by
employing the trick of allowing the prover to compute a proof of exponentiation
leaving the verifier only to compute a polynomial division.

Our signature scheme is based on [41] where we adapt the SPS-EQ scheme by
alleviating the need to build a QA-NIZK incorporating results from the recent
framework of [19]. With this fully adaptive NIZK, we find further interesting
applications by looking at equivalence classes on the key-space. We develop a
signer-hiding notion to allow a credential-bearing user to hide their issuing or-
ganization upon presentation of the credential. As we increasingly see cases of
(algorithmic) bias against users, notions such as this are of growing importance.
Moreover, we also present interesting directions to integrate revocation features.

We worked in the classical setting where each credential is issued by a single
authority. It would be interesting to follow the related work on aggregatable
signatures to see if we could lift SPS-EQ to the multi-authority setting.

While our set-commitment scheme is more expressive than [33] it is still less
expressive than [50]. Hence, it would be interesting to see if the set-commitment
scheme introduced there would yield greater expressiveness to the ABC scheme
from this work. Likewise, to verify if the stronger security notions presented here,
could enhance the construction in [50].
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