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This paper concerns the quasi-neutral limit to the Cauchy problem for a two-fluid Euler-Poisson system in several space dimensions. When the initial data are sufficiently close to constant equilibrium states, we prove the global existence of smooth solutions with uniform bounds with respect to the Debye length in Sobolev spaces. This allows to pass to the limit in the system for all time to obtain a compressible Euler system. We also prove global error estimates between the solution of the two-fluid Euler-Poisson system and that of the compressible Euler system. These results are obtained by establishing uniform energy estimates and various dissipation estimates. A key step in the proof is the control of the quasi-neutrality of the velocities. For this purpose, an orthogonal projection operator is used.

Introduction

In a previous work [START_REF] Peng | Global quasi-neutral limit for a two-fluid Euler-Poisson system in one space dimension[END_REF], we considered the global quasi-neutral limit for a two-fluid (bipolar) isentropic Euler-Poisson system in one space dimension. In this paper, we continue to study this limit in several space dimensions. The system arises in the modeling of plasmas (or semiconductors) consisting of electrons of charge q e = -1 and a single species of ions of charge q i = 1. Denote by n e and u e (n i and u i , respectively) the scaled density and the velocity of the electrons (ions, respectively), and by φ the electric potential. The two-fluid Euler-Poisson system reads (see [START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF][START_REF] Markowich | Semiconductor Equations[END_REF][START_REF] Jüngel | Quasi-hydrodynamic Semiconductor Equations[END_REF][START_REF] Crispel | A plasma expansion model based on the full Euler-Poisson system[END_REF])

     ∂ t n ν + div(n ν u ν ) = 0, ∂ t (n ν u ν ) + div(n ν u ν ⊗ u ν ) + ∇p ν (n ν ) = -q ν n ν ∇φ -n ν u ν , ν = e, i, -λ 2 ∆φ = n i -n e , lim |x|→+∞ φ(t, x) = 0, (1.1) 
for (t, x) ∈ R + × R d . Here ⊗ is the tensor product, λ ∈ (0, 1] is the Debye length. The pressure functions p ν (ν = e, i) are supposed to be smooth and strictly increasing, namely, p ν (τ ) > 0, ∀ τ > 0, ν = e, i.

The system is supplemented by the following initial condition depending on λ :

(1.2) t = 0 : (n ν , u ν ) = n 0 ν,λ (x), u 0 ν,λ (x) , ν = e, i, x ∈ R d .

We define φ 0 λ as the initial data of φ by (1.3) -λ 2 ∆φ 0 λ = n 0 i,λ -n 0 e,λ , lim |x|→+∞ φ 0 λ (x) = 0.

We are concerned with smooth solutions to system (1.1) in the non-vacuum field, namely, n ν > 0 for ν = e, i. Then the momentum equations in (1.1) can be written equivalently as (1.4)

∂ t u ν + (u ν • ∇)u ν + ∇h ν (n ν ) = -q ν ∇φ -u ν , ν = e, i,
where the enthalpy functions h ν (ν = e, i) are defined by

h ν (n) = n 1 p ν (τ ) τ dτ, ν = e, i.
System (1.1) is composed of a symmetrizable hyperbolic system for (n ν , u ν ), ν = e, i, coupled to a linear Poisson equation. The local well-posedness of classical solutions to the Cauchy problem (1.1)-(1.2) are well-known by applying the results in [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF][START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF]. Let s > d 2 + 1 be an integer. We assume that (n 0 ν,λ -1, u 0 ν,λ , ∇φ 0 λ ) ∈ H s with n 0 ν,λ ≥ const. > 0, here and in what follows H s stands for H s (R d ). Then there exists T * > 0 such that the Cauchy problem (1.1)-(1.2) admits a unique solution (n ν , u ν , φ) on the domain [0, T * ] × R d , and we have

n ν -1, u ν , ∇φ ∈ s k=0 C k ([0, T * ]; H s-k ), inf (t,x)∈[0,T * ]×R d n ν (t, x) ≥ const. > 0, ν = e, i.
In general, T * depends on the parameter λ ∈ (0, 1]. For fixed λ, the global existence with long time behavior of smooth solutions near constant equilibrium states was proved in [START_REF] Alì | Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasma[END_REF][START_REF] Li | Global existence and asymptotic behavior of the solutions to the three-dimensional bipolar Euler-Poisson systems[END_REF], and the stability of solutions was studied in [START_REF] Cordier | Two-stream instabilities in plasmas[END_REF]. The one-fluid Euler-Poisson system for electrons (ions, respectively) is described by variables (n e , u e , φ) ((n i , u i , φ), respectively) when the plasma is in a uniform background where n i (n e , respectively) is given. For fixed λ, the global existence and the stability of solutions were investigated in [START_REF] Alì | Global existence of smooth solutions of the N-dimensional Euler-Poisson model[END_REF][START_REF] Hsiao | The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors[END_REF][START_REF] Guo | Stability of Semiconductor States with Insulating and Contact Boundary Conditions[END_REF]. When the electron density is replaced by a Boltzmann relation, we obtain a one-fluid model for ions in which the Poisson equation is semilinear [START_REF] Gérard-Varet | Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries[END_REF][START_REF] Liu | Global convergence of the Euler-Poisson system for ion dynamics[END_REF].

In plasma physics, the Debye length λ is much smaller than the length of physical variables. The quasi-neutrality means n e -n i → 0 as λ → 0. Thus, it is important to study the limit behavior in these systems as λ → 0, which is referred to as the quasi-neutral limit. An early analysis of the limit was given in [START_REF] Brezis | Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas[END_REF] for the Poisson equation coupled to a Boltzmann relation. For the drift-diffusion systems this limit was studied in [START_REF] Jüngel | A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations[END_REF] where it was revealed that the quasineutral limit is related to the quasi-Fermi potentials. See also the study of this limit for the Vlasov-Poisson system [START_REF] Brenier | Convergence of the Vlasov-Poisson system to the incompressible Euler equations[END_REF][START_REF] Han-Kwan | Quasineutral limit of the Vlasov-Poisson equation with massless electrons[END_REF], the pressureless Euler-Poisson system [START_REF] Loeper | Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems[END_REF] and the Navier-Stokes-Poisson system [START_REF] Donatelli | A quasineutral type limit for the Navier-Stokes-Poisson system with large data[END_REF]. It is well-known that the quasi-neutral limit of the one-fluid Euler-Poisson system leads to incompressible Euler equations. The justification of the limit for the one-fluid Euler-Poisson system was carried out in [START_REF] Cordier | Quasineutral limit of an Euler-Poisson system arising from plasma physics[END_REF][START_REF] Slemrod | Quasi-neutral limit for the Euler-Poisson system[END_REF][START_REF] Wang | Quasineutral limit of Euler-Poisson system with and without viscosity[END_REF] for smooth solutions on a uniform time interval and in [START_REF] Peng | Uniformly global smooth solutions and convergence of Euler-Poisson systems with small parameters[END_REF][START_REF] Liu | Global convergence of the Euler-Poisson system for ion dynamics[END_REF] for global smooth solutions near constant equilibrium states.

It was already shown in [START_REF] Peng | Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters[END_REF][START_REF] Li | From two-fluid Euler-Poisson equations to one-fluid Euler equations[END_REF][START_REF] Peng | Global quasi-neutral limit for a two-fluid Euler-Poisson system in one space dimension[END_REF]] that the quasi-neutral limit of the two-fluid Euler-Poisson system presents a different situation, since its limit system is governed by compressible Euler equations. Indeed, passing formally to the limit in (1.1) as λ → 0, we obtain from the Poisson equation that n e = n i , denoted by n. Therefore, the limit system of the first two equations in (1.1) becomes

∂ t n + div(nu ν ) = 0, ∂ t u ν + (u ν • ∇)u ν + ∇h ν (n) = -q ν ∇φ -u ν , ν = e, i.
If u e (0, •) = u i (0, •), we have u e = u i , denoted by u, at least on a local time interval, see [START_REF] Peng | Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters[END_REF]. Adding and subtracting the second equations above for ν = e, i yields compressible Euler equations ∂ t n + div(nu) = 0, ∂ t u + (u • ∇)u + ∇h + (n) = -u, (1.5) and ∇φ = ∇h -(n), where

h ± = 1 2 (h e ± h i ).
By the method of asymptotic expansions together with energy estimates, the convergence of system (1.1) to (1.5) as λ → 0 was justified for smooth solutions on uniform time intervals [START_REF] Ju | Quasi-neutral limit of the two-fluid Euler-Poisson system[END_REF][START_REF] Li | From two-fluid Euler-Poisson equations to one-fluid Euler equations[END_REF][START_REF] Ju | Quasineutral limit of the two-fluid Euler-Poisson system in a bounded domain of R 3[END_REF]. The global-in-time convergence of the two-fluid system (1.1) as λ → 0 is a challenging problem on which very few results are available. In a recent paper [START_REF] Peng | Global quasi-neutral limit for a two-fluid Euler-Poisson system in one space dimension[END_REF], we solved this problem in one space dimension. Up to our knowledge, that was the only result on this issue for (1.1). The goal of this paper is to prove this global quasi-neutral limit for (1.1) in several space dimensions.

Let (n e , ūe , ni , ūi , ∇ φ) = (1, 0, 1, 0, 0) be a constant equilibrium state. Let s > d 2 + 1 be an integer. We assume that (n 0 ν,λ -1, u 0 ν,λ , ∇φ 0 λ ) is uniformly sufficiently small in the norm of H s for ν = e, i. Moreover, let µ ν be the quasi-Fermi potentials defined by (see [START_REF] Markowich | Semiconductor Equations[END_REF][START_REF] Jüngel | Quasi-hydrodynamic Semiconductor Equations[END_REF])

(1.6) µ ν = h ν (n ν ) + q ν φ, ν = e, i, and 
(1.7) µ = µ e -µ i = h e (n e ) -h i (n i ) -2φ.
We denote n -= n e -n i , u -= u e -u i . Subtracting (1.4) for ν = e, i yields

(1.8) ∂ t u -+ (u -• ∇)u e + (u i • ∇)u -+ u -+ ∇µ = 0.
We first show our results and assumptions on the initial data. The quasi-neutrality and the formal derivation of system (1.5) from (1.1) suggest that n 0 e,λ -n 0 i,λ → 0, u 0 e,λ -u 0 i,λ → 0, as λ → 0. Hence, we assume n 0 e,λ -n 0 i,λ = O(λ 2 ), u 0 e,λ -u 0 i,λ = O(λ 2 ). From (1.8) we see formally that ∇µ and u e -u i should have the same order in λ. Therefore, we also assume ∇µ(0, •) = O(λ 2 ). Under these conditions we prove that the Cauchy problem (1.1)-(1.2) admits the global smooth solution with uniform bounds in Sobolev spaces with respect to λ, and

n e -n i = O(λ), u e -u i = O(λ), ∇µ = O(λ), ∀ t > 0.
This result is stated in Theorem 2.1. In particular, when h e = h i and the initial data are wellprepared such that (n 0 e,λ , u 0 e,λ ) = (n 0 i,λ , u 0 i,λ ), then the result in Theorem 2.1 holds, provided that (n 0 e,λ -1, u 0 e,λ ) is uniformly sufficiently small in the norm of H s . The result of the convergence of system (1.1) to (1.5) as λ → 0 is stated in Theorem 2.2. Furthermore, let (n 0 , u 0 ) be the initial data of the limit (n, u) governed by compressible Euler equations (1.5). If

n 0 ν,λ -n 0 = O(λ), u 0 ν,λ -u 0 = O(λ), ν = e, i
, we prove that the solution of (1.1)-(1.2) satisfies global error estimates

n ν -n = O(λ), u ν -u = O(λ), ∀ t > 0, ν = e, i.
This result is stated in Theorem 2.3. Remark that Theorems 2.1-2.3 are valid for all λ ∈ (0, 1] without condition h e = h i . Now let us sketch the proof of these results. First of all, the estimates to establish depend on two quantities : the Debye length λ and the size of the solution in Sobolev norms. The latter is uniformly sufficiently small with respect to λ. From the symmetrizable hyperbolic system (1.1) for (n ν , u ν ), we obtain classical uniform energy estimates of solutions and a time dissipation estimate of u ν . From the strict monotonicity of function p ν together with a standard technique, time dissipation estimates of ∇n ν and λ -1 n -can be further derived. For fixed λ, these estimates are sufficient to prove the global existence of solutions [START_REF] Alì | Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasma[END_REF]. For the one-fluid Euler-Poisson system, these estimates are also sufficient to prove the uniformly global existence of solutions and pass to the limit in the system [START_REF] Peng | Uniformly global smooth solutions and convergence of Euler-Poisson systems with small parameters[END_REF]. Unfortunately, for the two-fluid Euler-Poisson system, the energy is bounded by a quantity which also depends on λ -1 u -.

Based on the analysis of this problem, the control of the dissipation of λ -1 u -is a key step in the proof. For this purpose, we introduce a linear operator P from H s to H s for all fixed integer s ≥ 0, defined by P = ∇∆ -1 div. We will see that both P and I -P are orthogonal projection operators and the latter is the Leray projection, where I stands for the identity operator. Applying ∂ t to the Poisson equation and using the density equations in (1.1), we have

λ 2 ∆(∂ t φ) = div(n i u i -n e u e ). Therefore, the Poisson equation is equivalent to (1.9) λ 2 ∂ t ∇φ = P(n i u i -n e u e ).
Notice that

n e u e -n i u i = n -u e + n i u -= u -+ (n -u e + ñi u -), where ñi = n i -1. Then (1.10) λ 2 ∂ t ∇φ = -Pu --P(n -u e + ñi u -).
Applying ∂ t to (1.8), we have

(1.11) ∂ 2 t u -+ ∂ t u -+ 2λ -2 Pu -= F, where F = ∂ t ∇ h i (n i ) -h e (n e ) -∂ t (u -• ∇)u e + (u i • ∇)u --2λ -2 P(n -u e + ñi u -).
By the density equations in (1.1), F can be rewritten as

F = ∇ h e (n e )div(n e u e ) -h i (n i )div(n i u i ) -∂ t (u -• ∇)u e + (u i • ∇)u - -2λ -2 P(n -u e + ñi u -).
In this expression, the first term can be controlled by the dissipation of u ν and the other terms are quadratic and can be treated in a usual way. In particular, the second term depends on the time derivative of solutions. In order to control such kind of terms, we establish estimates in a stronger norm (than that of H s ) whose definition contains the mixed derivatives of solutions with respect to x and t. Moreover, since P∇ = ∇, applying I -P to (1.8) yields (1.12)

∂ t (I -P)u -+ (I -P)u -= -(I -P) (u -• ∇)u e + (u i • ∇)u -,
where the right-hand side is a quadratic term too. Equations (1.11) and (1.12) provide dissipation estimates of λ -1 Pu -and λ -1 (I -P)u -, which imply dissipation estimates of λ -1 u -by the orthogonal decomposition u -= Pu -+ (I -P)u -. The classical energy estimates and the dissipation estimates above imply the result of Theorem 2.1. The proof of Theorem 2.2 follows from the uniform estimates of solutions with respect to λ. These estimates imply strong compactness of the solution sequences and allow to pass to the limit in (1.1) as λ → 0. Finally, a key ingredient in the proof of Theorem 2.3 is to avoid the quadratic term (n e -n) 2 in the energy estimate. For this purpose, we choose a specific diagonal matrix as a symmetrizer.

In the case of one space dimension, it is less difficult to obtain the dissipation estimate of λ -1 u -. Indeed, the Poisson equation in (1.1) is equivalent to an evolution equation of the form

λ 2 ∂ t (∂ x φ) = n i u i -n e u e , t > 0, x ∈ R.
Then equation (1.11) is reduced to

∂ 2 t u -+ ∂ t u -+ 2λ -2 u -= F, where F = ∂ x h e (n e )∂ x (n e u e ) -h i (n i )∂ x (n i u i ) -∂ t u -∂ x u e + u i ∂ x u --2λ -2 (n -u e + ñi u -).
Thus, the orthogonal decomposition above for u -is not necessary. See [START_REF] Peng | Global quasi-neutral limit for a two-fluid Euler-Poisson system in one space dimension[END_REF] for more detailed analysis on this issue.

This paper is organized as follows. Theorems 2.1-2.3 are stated in the next section. Sections 3 and 4 are devoted to detailed energy estimates. The proof of Theorems 2.1-2.2 are given in section 5 and that of Theorem 2.3 is given in the last section.

Statement of main results

For a multi-index α

= (α 1 , • • • , α d ) ∈ N d , we denote ∂ α x = ∂ |α| ∂ α 1 x 1 • • • ∂ α d x d , with |α| = α 1 + • • • + α d .
Let • and • ∞ be the norms of L 2 (R d ) and L ∞ (R d ), respectively. For an integer s ∈ N, let • s be the usual norm of Sobolev space H s . For T > 0, the mixed space-time space B s,T and the norm | • | s are defined by

B s,T = s k=0 C k ([0, T ]; H s-k ), |v(t) | s = k+|α|≤s ∂ k t ∂ α x v(t, •) 2 1 2 , v ∈ B s,T , t ∈ [0, T ].
The main results of the paper consist of the following three theorems in H s for integer 

s > d 2 + 1.
N = N 0 + N 1 , with    N 0 = ν=e,i n 0 ν,λ -1 s + u 0 ν,λ s + ∇φ 0 λ s , N 1 = λ -2 n 0 e,λ -n 0 i,λ s-1 + u 0 e,λ -u 0 i,λ s-1 + |∇µ(0) | s-2 , (2.2) 
where µ is defined in (1.6)-(1.7), and |∇µ(0) | s-2 is the value of |∇µ(t) | s-2 at t = 0.

There exist constants ε 0 > 0 and C > 0 independent of λ such that if N ≤ ε 0 , then for all λ ∈ (0, 1], problem (1.1)-(1.2) admits a unique global smooth solution (n e , u e , n i , u i , φ) satisfying

(2.3) sup t∈R + ν=e,i |n ν (t) -1 | s + |u ν (t) | s + λ |∇φ(t) | s ≤ CN , (2.4 
)

ν=e,i +∞ 0 |u ν (τ ) | 2 s + |∇n ν (τ ) | 2 s-1 dτ ≤ CN 2 ,

and

(2.5) sup

t∈R + |(I -P)u -(t) | s-1 ≤ Cλ, (2.6) 
+∞ 0 |n e (τ ) -n i (τ ) | 2 s-1 + |u e (τ ) -u i (τ ) | 2 s-1 + |∇µ(τ ) | 2 s-2 dτ ≤ Cλ 2 .
Theorem 2.2. Let (n e,λ , u e,λ , n i,λ , u i,λ , φ λ ) λ>0 be the sequence of corresponding solutions given by Theorem 2.1. For ν = e, i, as λ → 0, if

n 0 ν,λ n 0 , u 0 ν,λ u 0 weakly in H s ,
then there exist functions (n, u) with

(2.7) n -1 ∈ L ∞ (R + ; H s ), u ∈ L ∞ (R + ; H s ) ∩ L 2 (R + ; H s ), such that (2.8) (n ν,λ , u ν,λ ) (n, u) weakly- * in L ∞ (R + ; H s ),
and for all T > 0,

(2.9) (n ν,λ , u ν,λ ) → (n, u) strongly in C([0, T ]; H s-1 loc ). Moreover, as λ → 0, (2.10)

∇φ λ → ∇h -(n) strongly in L 2 loc (R + ; H s-2 loc )
, where (n, u) is the global solution to compressible Euler equations

(2.11) ∂ t n + div(nu) = 0, ∂ t u + (u • ∇)u + ∇h + (n) = -u,
subject to the initial condition (2.12) t = 0 : (n, u) = (n 0 , u 0 ). 

n 0 ν,λ -n 0 s-2 + u 0 ν,λ -u 0 s-2 ≤ C 1 λ, ν = e, i,
we have the following error estimates:

(2.14) sup t∈R + n ν (t) -n(t) 2 s-2 + u ν (t) -u(t) 2 s-2 ≤ C 2 λ 2 , ν = e, i, and 
(2.15) +∞ 0 u ν (τ ) -u(τ ) 2 s-2 + ∇(n ν (τ ) -n(τ )) 2 s-3 dτ ≤ C 2 λ 2 , ν = e, i. Remark 2.1. (1) Condition N ≤ ε 0 in Theorem 2.1 implies that n 0 e,λ -n 0 i,λ s-1 + u 0 e,λ -u 0 i,λ s-1 + |∇µ(0) | s-2 ≤ ε 0 λ 2 ,
which is an initial error condition in λ. The last term on the left-hand side can be expressed as the H s-1 norm of the initial data (n 0 ν,λ , u 0 ν,λ ). For example, when d = 2, 3, Theorems 2.1-2.3 can be stated with s = 3. In this case, s -2 = 1 and

|∇µ(0) | 2 1 = ∇µ(0, •) 2 1 + ∂ t ∇µ(0, •) 2 .
From (1.7), (1.9) and (1.1), we have

∂ t ∇µ = ∇ h i (n i )div(n i u i ) -h e (n e )div(n e u e ) + 2λ -2 P(n e u e -n i u i ).
Therefore,

∇µ(0, •) = ∇ h e (n 0 e,λ ) -h i (n 0 i,λ ) -2φ 0 λ , -λ 2 ∆φ 0 λ = n 0 i,λ -n 0 e,λ , and 
∂ t ∇µ(0, •) = ∇ h i (n 0 i,λ )div(n 0 i,λ u 0 i,λ ) -h e (n 0 e,λ )div(n 0 e,λ u 0 e,λ ) + 2λ -2 P(n 0 e,λ u 0 e,λ -n 0 i,λ u 0 i,λ ). (2) If h e = h i
and the initial data are well prepared, namely, (n 0 e,λ , u 0 e,λ ) = (n 0 i,λ , u 0 i,λ ), then (2. [START_REF] Han-Kwan | Quasineutral limit of the Vlasov-Poisson equation with massless electrons[END_REF])

N 1 = 0, N 0 = 2 n 0 e,λ -1 s + u 0 e,λ s , N = N 0 . Thus, the results in Theorems 2.1-2.3 hold provided that (n 0 e,λ , u 0 e,λ ) is uniformly sufficiently close to (1, 0) in the H s norm.
In order to see this result, we let U -= (n -, u -). The Poisson equation shows that ∇φ 0 λ = 0, hence ∇µ(0, •) = 0. From (1.1), we have

∂ t U -= O(U -, ∇U -, ∇φ), ∂ t ∇φ = -λ -2 P(n -u e + n i u -). Therefore, ∂ t U -(0, •) = 0, ∂ t ∇φ(0, •) = 0, ∂ t ∇µ(0, •) = 0.

By induction, we obtain

∂ k t U -(0, •) = 0, ∂ k t ∇φ(0, •) = 0, ∂ k t ∇µ(0, •) = 0, 0 ≤ k ≤ s -2. This shows (2.

16).

(3) If the initial data are periodic with domain

T d = (R/Z) d , we replace in (1.1) condition lim |x|→+∞ φ(t, x) = 0 by T d φ(t, x)dx = 0 and H s (R d ) by H s (T d ).
Thus, the results in Theorems 2.1-2.3 still hold.

Preliminaries

A projection operator.

Let s ∈ N and f be a function from R d to R d . We consider the following Poisson equation in the whole space R d :

(3.1) ∆v = divf in R d .
We denote by

D(R d ) the space of functions in C ∞ (R d ) with compact support. Lemma 3.1. Let d ≥ 2 and f ∈ H s . The Poisson equation (3.1) admits a solution v f (week solution if f ∈ L 2 (R d )) satisfying v f ∈ L 2 loc (R d ), ∇v f ∈ H s and (3.2) ∇v f s ≤ f s .
The uniqueness of solutions holds in the class of functions v satisfying lim

|x|→+∞ v(x) = 0. Proof. Since D(R d ) is dense in H s and f ∈ H s , there is a sequence of functions (f n ) n∈N with f n ∈ D(R d ) and f n → f strongly in H s .
Define the Newtonian potential v n by the following convolution :

v n = Γ * divf n = ∇Γ * f n ,
where Γ is the fundamental solution of the Laplace equation :

Γ(x) =        1 2π ln |x|, if d = 2, - C d |x| d-2 , if d ≥ 3, ∇Γ(x) = C d x |x| d , with C d and C d being positive constants. Obviously, ∇Γ ∈ L 1 loc (R d ). A classical property of the convolution gives v n ∈ C ∞ (R d
) and v n is a solution of (3.1) (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]).

Since f n is compactly supported, as |x| is sufficiently large, we have

|x| |x -y| ≤ 2, ∀ y ∈ Suppf n which implies that ∇Γ(x -y) ≤ C d 2 d-1 |x| d-1 , ∀ y ∈ Suppf n . Therefore, as |x| is sufficiently large, |v n (x)| ≤ R d ∇Γ(x -y)f n (y) dy ≤ C d 2 d-1 |x| d-1 f n L 1 (R d ) .
Let α ∈ N d . Similarly as above, we have

∂ α x v n = ∇Γ * ∂ α x f n , ∆(∂ α x v n ) = div(∂ α x f n ), and 
|∂ α x v n (x)| ≤ C d 2 d-1 |x| d-1 ∂ α x f n L 1 (R d ) .
Let B R ⊂ R d be the ball centered at zero of radius R > 0 and S R be its sphere. The Green formula yields

B R |∂ α x ∇v n | 2 dx = S R ∂ α x v n (∇∂ α x v n • ν)ds - B R ∂ α x v n div∂ α x f n dx.
Since the surface area of S R is of order O(R d-1 ), by the estimates above, there is a constant

C > 0 such that, as R is sufficiently large, S R ∂ α x v n (∇∂ α x v n • ν)ds ≤ C R d-1 ,
which tends to zero as R → +∞. Passing to the limit in the Green formula above as R → +∞, we obtain

∂ α x ∇v n 2 = - R d ∂ α x v n div∂ α x f n dx = R d ∂ α x ∇v n • ∂ α x f n dx. Therefore, ∂ α x ∇v n ≤ ∂ α x f n , which implies that (3.3) ∇v n s ≤ f n s .
By the linearity of the Poisson equation together with (3.3), we have

∇(v n -v n ) s ≤ f n -f n s , ∀ n, n ∈ N.
This shows that (∇v n ) n∈N is a Cauchy sequence of H s . Consequently, there exists

V ∈ H s such that ∇v n -→ V strongly in H s , as n → +∞. Let φ ∈ D(R d ) satisfying divφ = 0. We have < V, φ >= lim n→+∞ < ∇v n , φ >= -lim n→+∞ < v n , divφ >= 0.
By a theorem of G. de Rham ( [START_REF] Temam | Navier-Stokes Equations[END_REF][START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF]), there exists For all fixed integer s ≥ 0, Lemma 3.1 allows us to define a linear operator P from H s to H s by Pf = ∇v f , f ∈ H s . For all j = 1, • • • , d, we denote by P j the j-th component of P, namely,

v f ∈ L 2 loc (R d ) such that ∇v f = V ∈ H s . Finally, passing to the limit in (3.3) and div(∇v n ) = divf n (in the sense of distributions if f ∈ L 2 (R d )), we see that v f satisfies (3.
P j f = ∂ x j v f .
By the Fourier transform, these operators can be formally expressed as

Pf (ξ) = F -1 |ξ| -2 ξ(ξ • Ff (ξ)) , P j f (ξ) = F -1 |ξ| -2 ξ j (ξ • Ff (ξ)) , for ξ = (ξ 1 , • • • , ξ d ).
In the next lemma we show that P is an orthogonal projection operator in H s with useful properties, which will be used to prove the dissipation estimate of λ -1 u -in the next section. For the sake of completeness, we give the proof of the lemma. We mention that the technique of projection operators is frequently used to study the Navier-Stokes equations, see for example [START_REF] Temam | Navier-Stokes Equations[END_REF][START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF][START_REF] Chemin | Localization in Fourier space and Navier-Stokes system[END_REF].

Lemma 3.2. Let s ∈ N and f, g : R d -→ R d be functions satisfying f, g ∈ H s . It holds (i) div(I -P)f = 0, (ii) < (I -P)f, Pg > H s = 0, where < •, • > H s denotes the inner product of H s , (iii) f 2 s = Pf 2 s + (I -P)f 2 s , (iv) (g • ∇)Pf = ∇(g • Pf ) -(∇g) Pf for s ≥ 1, where ∇g = ∂g i ∂x j 1≤i,j≤d , (v) 
P(∇f ) = ∇f and (I -P)∇f = 0 for a real valued function f and s ≥ 1,

(vi) Pf ∈ B s,T and ∂ k t ∂ α x Pf = P∂ k t ∂ α x f for f ∈ B s,T with ∀ k + |α| ≤ s. (vii)
The range of P, denoted by M , is a closed subspace of H s and P is an orthogonal projection operator onto M .

Proof. It is easy to check properties (i), (v) and (vi) from the definition of P, (iii) follows from (ii).

It remains to prove (ii), (iv) and (vii). For f, g ∈ H s , there exist two sequences of functions

(f n ) n and (g n ) n with f n , g n ∈ D(R d ) such that, as n → +∞, f n -→ f, g n -→ g strongly in H s .
According to the proof of Lemma 3.1 and the definition of P, we have

Pf n = ∇v n -→ ∇v f = Pf strongly in H s and
Pg n -→ Pg strongly in H s . Let v gn be defined by ∇v gn = Pg n . Since v gn ∈ C ∞ (R d ), by (i) we obtain

< (I -P)f n , Pg n > H s = -< div(I -P)f n , v gn > D(R d ),D (R d ) = 0.
Passing to the limit as n → +∞ in this relation yields (ii).

To prove (iv), we first notice that

∂ x j Pf = ∇P j f. Then, with g = (g 1 , • • • , g d ), (g • ∇)Pf = d j=1 g j ∂ x j Pf = d j=1 g j ∇P j f = d j=1 ∇ g j P j f -P j f ∇g j = ∇ g • Pf -(∇g) Pf,
which proves (iv). Now we prove (vii). By Lemma 3.1, M is a subspace of H s . Let (∇v n ) n be a sequence of M with ∇v n = Pf n and f n ∈ H s . Assume

∇v n -→ f strongly in H s , with f ∈ H s . Similarly to the proof in Lemma 3.1, there exists v ∈ D (R d ) satisfying f = ∇v. Therefore, f = Pf ∈ M ,
which implies that M is closed. Applying the projection theorem to the Hilbert space H s (see [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]), condition (ii) implies that P is an orthogonal projection operator onto M .

Estimates related to the electric field.

In what follows, s is an integer satisfying s > d 2 + 1. We first give Moser-type calculus inequalities in H s . Lemma 3.3. (Moser-type calculus inequalities in H s , see [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF][START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF])

Let α ∈ N d . If u ∈ H s-1 and v ∈ H |α| with |α| ≤ s -1, then (3.4) ∂ α x (uv) ≤ C u s-1 v |α| . If u ∈ H s and v ∈ H |α|-1 with 1 ≤ |α| ≤ s, then (3.5) ∂ α x (uv) -u∂ α x v ≤ C ∇u s-1 v |α|-1 . If f is a smooth function and u ∈ H |α| with 1 ≤ |α| ≤ s -1, then (3.6) ∂ α x f (u) ≤ C f u |α| ,
where C f is a constant which may depend continuously on u s-1 and f . Inequality (3.6) can be found in [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF][START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF] where more calculus inequalities of Moser-type are available. Inequality (3.5) was given in [START_REF] Yong | Singular perturbations of first-order hyperbolic systems with stiff source terms[END_REF] in the case of a bounded domain with an explanation of the proof by using a lemma of Kato, and (3.4) is just a variant of (3.5). In a similar way, we get Moser-type calculus inequalities in B s,T as follows. In case d ≤ 3, similar inequalities in B s,T were proved in [START_REF] Peng | Stability of non-constant equilibrium solutions for Euler-Maxwell equations[END_REF].

Lemma 3.4. (Moser-type calculus inequalities in B s,T ) Let k ∈ N and α ∈ N d . If u, v ∈ B s-1,T and k + |α| ≤ s -1, then (3.7) ∂ k t ∂ α x (uv) ≤ C |u | s-1 |v | k+|α| . If u ∈ B s,T , v ∈ B s-1,T and 1 ≤ k + |α| ≤ s, then (3.8) ∂ k t ∂ α x (uv) -u∂ k t ∂ α x v ≤ C |∂u | s-1 |v | k+|α|-1 . If f is a smooth function and u ∈ B s,T , k ≥ 1 and k + |α| ≤ s, then (3.9) ∂ k t ∂ α x f (u) ≤ C f |∂ t u | k+|α|-1 ,
where ∂u stands for the first order partial derivative with respect to t or x, C f is a constant which may depend continuously on |u | s and f .

Proof. We first prove (3.7). By the Leibniz formula, we have

∂ k t ∂ α x (uv) = l+l =k, β+β =α c kl c αβ ∂ l t ∂ β x u∂ l t ∂ β x v.
Recall the lemma of Kato ([22], Lemma 2.1) as follows. Let s 0 = [d/2] + 1, s 1 ≥ 0 and s 2 ≥ 0 be integers such that

s 1 + s 2 -s 0 ≥ 0. Define s 3 = min{s 1 , s 2 , s 1 + s 2 -s 0 }. Then the imbedding from H s 1 H s 2 to H s 3 is continuous, where H s 1 H s 2 is the set of all functions ab with a ∈ H s 1 and b ∈ H s 2 .
Applying this lemma with

s 1 = s -1 -(l + |β|), s 2 = l + |β|, s 1 + s 2 -s 0 ≥ 0, since l + l = k and β + β = α, we have ∂ l t ∂ β x u∂ l t ∂ β x v ≤ ∂ l t ∂ β x u∂ l t ∂ β x v s 3 ≤ C ∂ l t ∂ β x u s 1 ∂ l t ∂ β x v s 2 ≤ C |u | s-1 |v | k+|α| , which implies (3.7).
To prove (3.8), we still use the Leibniz formula :

∂ k t ∂ α x (uv) -u∂ k t ∂ α x v = l+l =k, β+β =α l+|β|≥1 c kl c αβ ∂ l t ∂ β x u∂ l t ∂ β x v. Then ∂ k t ∂ α x (uv) -u∂ k t ∂ α x v ≤ l+l =k, β+β =α l+|β|≥1 c kl c αβ ∂ l t ∂ β x u∂ l t ∂ β x v .
Since l + |β| ≥ 1, we may write

∂ l t ∂ β x u = ∂ l 1 t ∂ β 1 x (∂u), with l 1 + |β 1 | = l + |β| -1.
Thus, we can proceed as in the proof of (3.7) to obtain

∂ l t ∂ β x u∂ l t ∂ β x v ≤ |∂u | s-1 |v | k+|α|-1 , which implies (3.8).
Finally, (3.9) can be proved in a similar way as in the case d ≤ 3, see [START_REF] Peng | Stability of non-constant equilibrium solutions for Euler-Maxwell equations[END_REF].

Now we introduce perturbed variables

ñν = n ν -1, U ν = ñν u ν , ν = e, i, U = (U e , U i , λ∇φ). Recall that n -= n e -n i , u -= u e -u i .
Let T > 0 and (U e , U i , φ) be a smooth solution of problem (1.1)-(1.2) defined on time interval [0, T ]. We denote

(3.10) |U (t) | s = ν=e,i |U ν (t) | s + λ |∇φ(t) | s , and 
U T = sup t∈[0,T ] |U (t) | s .
When U T is sufficiently small, from the continuous embedding H s-1 → L ∞ (R d ), we see that (n ν , u ν ) is sufficiently close to (1, 0). Hence, we may assume

(3.11) 1 2 ≤ n ν ≤ 3 2 , |u ν | ≤ 1 2 .
The following Lemma plays an important role in energy estimates in sections 4-5.

Lemma 3.5. Let U T be small enough. Let k ∈ N and α, β

∈ N d . If 1 ≤ k + |α| ≤ s, it holds (3.12) λ 2 ∂ k t ∂ α x ∇φ ≤ C |n -| s-1 + |u -| s-1 , (3.13) n -∂ k t ∂ α x u e -∂ k t ∂ α x (n -u e ), ∂ k t ∂ α x (∇φ) ≤ Cλ -2 |u e | s |n -| 2 s-1 + |u -| 2 s-1 , and 
(3.14) ñi ∂ k t ∂ α x u --∂ k t ∂ α x (ñ i u -), ∂ k t ∂ α x (∇φ) ≤ Cλ -2 |ñ i | s |n -| 2 s-1 + |u -| 2 s-1 , where < •, • > denotes the inner product of L 2 (R d ).
Proof. We first prove (3.12). When k = 0 and 1 ≤ |α| ≤ s, applying the Calderon-Zygmond inequality (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) together with the Poisson equation λ 2 ∆φ = n -, we have

λ 2 ∂ α x ∇φ ≤ Cλ 2 ∆φ |α|-1 = C n -|α|-1 , which implies that λ 2 ∂ α x ∇φ ≤ C n -s-1 , 1 ≤ |α| ≤ s. When k ≥ 1 and k + |α| ≤ s, by (1.10) and Lemma 3.2 (vi) we have λ 2 ∂ k t ∂ α x (∇φ) = Pf k,α , with f k,α = -∂ k-1 t ∂ α
x (n -u e + n i u -). Since P is a projection operator, by the triangle inequality and (3.7) in Lemma 3.4, we get

λ 2 ∂ k t ∂ α x ∇φ ≤ f k,α ≤ C( |u -| s-1 + |n -| s-1
). This prove (3.12).

To prove (3.13), we write (3.8) in Lemma 3.4, we have

n -∂ k t ∂ α x u e -∂ k t ∂ α x (n -u e ) = u e ∂ k t ∂ α x n --∂ k t ∂ α x (n -u e ) + n -∂ k t ∂ α x u e -u e ∂ k t ∂ α x n -. By the continuous embedding H s-1 → L ∞ (R d ) and
u e ∂ k t ∂ α x n --∂ k t ∂ α x (n -u e ) + n -∂ k t ∂ α x u e ≤ C |n -| s-1 |u e | s + C n -∞ |u e | s ≤ C |n -| s-1 |u e | s .
It follows from (3.12) that

n -∂ k t ∂ α x u e + u e ∂ k t ∂ α x n --∂ k t ∂ α x (n -u e ), ∂ k t ∂ α x (∇φ) ≤ C |n -| s-1 |u e | s ∂ k t ∂ α x (∇φ) ≤ Cλ -2 |u e | s |n -| 2 s-1 + |u -| 2 s-1 . (3.15)
Next, using the Poisson equation λ 2 ∆φ = n -and a straightforward calculation, we have

-u e ∂ k t ∂ α x n -, ∂ k t ∂ α x (∇φ) = -λ 2 u e ∆∂ k t ∂ α x φ, ∂ k t ∂ α x (∇φ) = -λ 2 divu e , |(∂ k t ∂ α x ∇φ)| 2 + λ 2 d j=1 ∂(∂ k t ∂ α x φ) ∂x j , ∇(∂ k t ∂ α x φ) • ∂u ∂x j .
By (3.12), we get

u e ∂ k t ∂ α x n -, ∂ k t ∂ α x (∇φ) ≤ Cλ 2 ∇u e ∞ ∂ k t ∂ α x (∇φ) 2 ≤ Cλ -2 |u e | s |n -| 2 s-1 + |u -| 2 s-1 .
This together with (3.15) implies (3.13). Finally, applying (3.8) in Lemma 3.4 yields

ñi ∂ k t ∂ α x u --∂ k t ∂ α x (ñ i u -), ∂ k t ∂ α x (∇φ) ≤ C ñi ∂ k t ∂ α x u --∂ k t ∂ α x (ñ i u -) ∂ k t ∂ α x (∇φ) ≤ Cλ -2 |ñ i | s |n -| 2 s-1 + |u -| 2 s-1 , which proves (3.14).

Energy estimates

In this section, we assume that U T is sufficiently small.

Classical energy estimates.

The first lemma concerns an L 2 energy equality for system (1.1).

Lemma 4.1. For all t ∈ [0, T ], it holds that

(4.1) d dt R d ν=e,i h ν (n * ν )|ñ ν | 2 + n ν |u ν | 2 + λ 2 |∇φ| 2 dx + 2 ν=e,i R d n ν |u ν | 2 dx = 0,
where n * ν is between 1 and n ν . Proof. The energy conservation of the Euler equations is

∂ t n ν |u ν | 2 + 2H ν (n ν ) + div n ν |u ν | 2 u ν + 2n ν h ν (n ν )u ν + 2n ν |u ν | 2 = -2q ν n ν u ν • ∇φ, where H ν (n ν ) = h ν (n ν ), ν = e, i.
By the Taylor formula, we have

H ν (n ν ) = H ν (1) + h ν (1)(n ν -1) + 1 2 h ν (n * ν )(n ν -1) 2 , hence, ∂ t h ν (n * ν )|ñ ν | 2 + n ν |u ν | 2 + div n ν |u ν | 2 u ν + 2n ν (h ν (n ν ) -h ν (1))u ν + 2n ν |u ν | 2 = -2q ν n ν u ν • ∇φ.
Recall (1.9), i.e.

λ 2 ∂ t ∇φ = P(n i u i -n e u e ). Then λ 2 ∂ t |∇φ| 2 = 2P(n i u i -n e u e ) • ∇φ. It follows that ∂ t ν=e,i h ν (n * ν )|ñ ν | 2 + n ν |u ν | 2 + λ 2 |∇φ| 2 + ν=e,i div n ν |u ν | 2 u ν + 2n ν (h ν (n ν ) -h ν (1))u ν + 2 ν=e,i n ν |u ν | 2 = -2(I -P)(n i u i -n e u e ) • ∇φ.
Integrating this equation on R d and applying Lemma 3.2 (ii) and (v) yield (4.1).

Next, we study higher order energy estimates of the solution in space B s,T . For this purpose, we write the equations for (n ν , u ν ) in (1.1) as (4.2)

∂ t U ν + d j=1 A ν j (U ν )∂ x j U ν = K ν (u ν , ∇φ), ν = e, i,
where

A ν j (U ν ) = u νj n ν e j h ν (n ν )e j u νj I d , j = 1, • • • , d,
and

K ν = - 0 q ν ∇φ + u ν .
Here I d stands for the unit matrix of order d, u νj is the j-th component of u ν , (e 1 , • • • , e d ) is the canonical basis of R d and e j is the transpose of e j .

Introduce the symmetric and positive definite matrix A ν 0 (n ν ) as follows

A ν 0 (n ν ) = h ν (n ν ) 0 0 n ν I d , ν = e, i.
Then the matrix A ν j (U ν ) defined by 

A ν j (U ν ) def = A ν 0 (n ν )A ν j (U ν ) = h ν (n ν )u νj p ν (n ν )
A ν 0 ∂ k t ∂ α x U ν , ∂ k t ∂ α x U ν + λ 2 ∂ k t ∂ α x ∇φ 2 + ν=e,i 1≤k+|α|≤s ∂ k t ∂ α x u ν 2 ≤ C ν=e,i |U | s |u ν | 2 s + |∇n ν | 2 s-1 + Cλ -2 |U | s |n -| 2 s-1 + |u -| 2 s-1 . (4.3) Proof. Let 1 ≤ k + |α| ≤ s. Applying the differential operator ∂ k t ∂ α x to (4.
2), we get

∂ t ∂ k t ∂ α x U ν + d j=1 A ν j (U ν )∂ x j ∂ k t ∂ α x U ν = ∂ k t ∂ α x K ν + I k,α ν ,
supplemented by the Poisson equation

λ 2 ∆∂ k t ∂ α x φ = ∂ k t ∂ α x n -, where 
I k,α ν = d j=1 A ν j (U ν )∂ k t ∂ α x (∂ x j U ν ) -∂ k t ∂ α x (A ν j (U ν )∂ x j U ν ) .
Taking the inner product of the above equation for

∂ k t ∂ α x U ν with A ν 0 (n ν )∂ k t ∂ α x U ν in L 2 (R d ) yields a classical energy equality d dt A ν 0 (n ν )∂ k t ∂ α x U ν , ∂ k t ∂ α x U ν = div A ν (U ν )∂ k t ∂ α x U ν , ∂ k t ∂ α x U ν + 2 A ν 0 (n ν )∂ k t ∂ α x K ν , ∂ k t ∂ α x U ν + 2 A ν 0 (n ν )I k,α ν , ∂ k t ∂ α x U ν (4.4) = R k,α 1ν + R k,α 2ν + R k,α 3ν , where div A ν (U ν ) = ∂ t A ν 0 (n ν ) + d j=1 ∂ x j A ν j (U ν ).
In what follows, we control R k,α 1ν , R k,α 2ν and R k,α 3ν in (4.4).

Estimates of R k,α 1ν and R k,α 3ν . Using classical Sobolev embedding theorem, we have

∂ t n ν ∞ = div(n ν u ν ) ∞ ≤ C u ν s . Then div A ν (U ν )∂ k t ∂ α x U ν , ∂ k t ∂ α x U ν ≤ C ∂ t n ν ∞ + ∇U ν ∞ ∂ k t ∂ α x ñν 2 + |u ν | 2 s ≤ C |U | s ∂ k t ∂ α x ñν 2 + |u ν | 2 s . When α = 0, by ∂ t ñν = -div(n ν u ν ), we get ∂ k t ñν = ∂ k-1 t div(n ν u ν ) ≤ C |u ν | s .
When |α| ≥ 1, we easily see that

∂ k t ∂ α x ñν ≤ |∇n ν | s-1 . It follows that (4.5) |R k,α 1ν | = div A ν (U ν )∂ k t ∂ α x U ν , ∂ k t ∂ α x U ν ≤ C |U | s |u ν | 2 s + |∇n ν | 2 s-1 .
In view of the expression of I k,α ν , by (3.5)-(3.6) in Lemma 3.3 and (3.8)-(3.9) in Lemma 3.4, we get

(4.6) |R k,α 3ν | = 2 A ν 0 (n ν )I k,α ν , ∂ k t ∂ α x U ν ≤ C |U | s |u ν | 2 s + |∇n ν | 2 s-1 . Estimate of R k,α 2ν . From the explicit expressions of A ν 0 (n ν ), K ν and U ν , we have R k,α 2ν = 2 A ν 0 (n ν )∂ k t ∂ α x K ν , ∂ k t ∂ α x U ν = -2 n ν ∂ k t ∂ α x u ν , ∂ k t ∂ α x u ν -2 q ν n ν ∂ k t ∂ α x u ν , ∂ k t ∂ α x ∇φ . From (3.11), we have -2 n ν ∂ k t ∂ α x u ν , ∂ k t ∂ α x u ν ≤ -∂ k t ∂ α x u ν 2 .
Since n -= n e -n i and u -= u e -u i , we obtain

- ν=e,i q ν n ν ∂ k t ∂ α x u ν , ∂ k t ∂ α x ∇φ = n e ∂ k t ∂ α x u e -n i ∂ k t ∂ α x u i , ∂ k t ∂ α x ∇φ = ñe ∂ k t ∂ α x u e -∂ k t ∂ α x (ñ e u e ) -ñi ∂ k t ∂ α x u i + ∂ k t ∂ α x (ñ i u i ), ∂ k t ∂ α x ∇φ + ∂ k t ∂ α x (n e u e -n i u i ), ∂ k t ∂ α x ∇φ = n -∂ k t ∂ α x u e -∂ k t ∂ α x (n -u e ), ∂ k t ∂ α x ∇φ + ñi ∂ k t ∂ α x u --∂ k t ∂ α x (ñ i u -), ∂ k t ∂ α x ∇φ + ∂ k t ∂ α x (n e u e -n i u i ), ∂ k t ∂ α x ∇φ . (4.7)
For the first two terms on the right-hand side of (4.7), by (3.13)-(3.14) in Lemma 3.5, we have

n -∂ k t ∂ α x u e -∂ k t ∂ α x (n -u e ), ∂ k t ∂ α x ∇φ ≤ Cλ -2 |u e | s |n -| 2 s-1 + |u -| 2 s-1 , ñi ∂ k t ∂ α x u --∂ k t ∂ α x (ñ i u -), ∂ k t ∂ α x ∇φ ≤ Cλ -2 |ñ i | s |n -| 2 s-1 + |u -| 2 s-1 .
For the last term in (4.7), we apply ∂ k t ∂ α x to (1.9) and Lemma 3.2 (vi) to get

λ 2 ∂ t (∂ k t ∂ α x ∇φ) = P∂ k t ∂ α x (n i u i -n e u e ). Therefore, λ 2 2 d dt ∂ k t ∂ α x ∇φ 2 = P∂ k t ∂ α x (n i u i -n e u e ), ∂ k t ∂ α x ∇φ . Thus, Lemma 3.2 (ii) yields λ 2 2 d dt ∂ k t ∂ α x ∇φ 2 = ∂ k t ∂ α x (n i u i -n e u e ), ∂ k t ∂ α x ∇φ .
These estimates imply that (4.8)

ν=e,i R k,α 2ν + ∂ k t ∂ α x u ν 2 + λ 2 d dt ∂ k t ∂ α x ∇φ 2 ≤ Cλ -2 |U | s |n -| 2 s-1 + |u -| 2 s-1 .
Summing (4.4) for ν = e, i and all indices k ∈ N and α ∈ N d with 1 ≤ k + |α| ≤ s, by (4.5), (4.6) and (4.8), we obtain (4.3).

4.2.

Dissipation estimates of ∇n ν and λ -1 n -. Formulas (4.1) and (4.3) give a time-dissipation estimate of u ν . However, some other terms, such as

|∇n ν | 2 s-1 , λ -2 |n -| 2 s-1 and λ -2 |u -| 2 s-1
, still arise on the right-hand side of (4.3). Now we focus on the estimation of these terms. The following Lemma gives a time-dissipation of ñν and λ -1 n -. Lemma 4.3. There exists a positive constant a 0 independent of λ and t such that d dt

ν=e,i k+|β|≤s-1 ∂ k t ∂ β x u ν , ∂ k t ∂ β x ∇n ν + a 0 ν=e,i |∇n ν | 2 s-1 + λ -2 |n -| 2 s-1 ≤ C ν=e,i |u ν | 2 s + C ν=e,i |U | s |u ν | 2 s + |∇n ν | 2 s-1 . (4.9) Proof. For k ∈ N and β ∈ N d with 0 ≤ k + |β| ≤ s -1, applying ∂ k t ∂ β x to (1.

4) and taking the inner product with

∂ k t ∂ β x ∇n ν in L 2 (R d ), we obtain h ν (n ν )∂ k t ∂ β x ∇n ν , ∂ k t ∂ β x ∇n ν + q ν ∂ k t ∂ β x ∇φ, ∂ k t ∂ β x ∇n ν = -∂ t ∂ k t ∂ β x u ν + ∂ k t ∂ β x u ν , ∂ k t ∂ β x ∇n ν + S k,β , ∂ k t ∂ β x ∇n ν , (4.10) where S k,β = -∂ k t ∂ β x (u ν • ∇)u ν + h ν (n ν )∂ k t ∂ β x ∇n ν -∂ k t ∂ β x (h ν (n ν )∇n ν
). Since h ν (τ ) > 0 for τ > 0, we can choose a positive constant a 0 ≤ 1 independent of t and λ such that h ν (n ν ) ≥ 2a 0 , ν = e, i.

It follows that h ν (n ν )∂ k t ∂ β x ∇n ν , ∂ k t ∂ β x ∇n ν ≥ 2a 0 ∂ k t ∂ β x ∇n ν 2 .
By the triangle inequality and (3.7)-(3.9) in Lemma 3.4, we have

S k,β , ∂ k t ∂ β x ∇n ν ≤ C |U | s |u ν | 2 s + |∇n ν | 2 s-1 .
For the first term on the right-hand side of (4.10), by an integration by parts, we get

-∂ t ∂ k t ∂ β x u ν + ∂ k t ∂ β x u ν , ∂ k t ∂ β x ∇n ν = - d dt ∂ k t ∂ β x u ν , ∂ k t ∂ β x ∇n ν + ∂ k t ∂ β x divu ν , ∂ k t ∂ β x div(n ν u ν ) -∂ k t ∂ β x u ν , ∂ k t ∂ β x ∇n ν , with ∂ k t ∂ β x divu ν , ∂ k t ∂ β x div(n ν u ν ) + ∂ k t ∂ β x u ν , ∂ k t ∂ β x ∇n ν ≤ C |u ν | 2 s + C |u ν | s ∂ k t ∂ β x ∇n ν ≤ C |u ν | 2 s + a 0 ∂ k t ∂ β x ∇n ν 2 .
For the term

q ν ∂ k t ∂ β x ∇φ, ∂ k t ∂ β x ∇n ν , by the Poisson equation λ 2 ∆φ = n -, we have ν=e,i q ν ∂ k t ∂ β x ∇n ν , ∂ k t ∂ β x ∇φ = -∂ k t ∂ β x ∇n -, ∂ k t ∂ β x ∇φ = ∂ k t ∂ β x n -, ∂ k t ∂ β x ∆φ = λ -2 ∂ k t ∂ β x n - 2 .
Adding (4.10) for ν = e, i and all k ∈ N, β ∈ N d with k + |β| ≤ s -1 together with the estimates above gives (4.9).

Dissipation estimates of λ

-1 u -.
We make the orthogonal decomposition of u -as

u -= Pu -+ (I -P)u -.
The dissipation estimates of λ -1 Pu -and λ -1 (I -P)u -are studied in Lemma 4.4 and Lemma 4.5 below, respectively. 

∂ k+1 t ∂ β x u -+ ∂ k t ∂ β x G + 1 2 ∂ k t ∂ β x u -, ∂ k t ∂ β x u -+ 2λ -2 |Pu -| 2 s-1 ≤ C ν=e,i |u ν | 2 s + |∇n ν | 2 s-1 + Cλ -2 |U | s |n -| 2 s-1 + |u -| 2 s-1 , (4.11)
where

(4.12) G = ∇(h e (n e ) -h i (n i )) + (u -• ∇)u e + (u i • ∇)u -.
Proof. With the definition of G above, equation (1.11) can be written as

∂ 2 t u -+ ∂ t (u -+ G) + 2λ -2 Pu -= -2λ -2 P(n -u e + ñi u -). Let k ∈ N and β ∈ N d with k + |β| ≤ s -1. Applying ∂ k t ∂ β x to this equation, by Lemma 3.2 (vi), we have ∂ t (∂ k+1 t ∂ β x u -) + ∂ k+1 t ∂ β x (u -+ G) + 2λ -2 ∂ k t ∂ β x Pu -= q k,β 1 , where q k,β 1 = -2λ -2 P∂ k t ∂ β x (n -u e + ñi u -).
Taking the inner product of this equation with

∂ k t ∂ β x u -in L 2 (R d ) yields d dt ∂ k+1 t ∂ β x u -+ ∂ k t ∂ β x G + 1 2 ∂ k t ∂ β x u -, ∂ k t ∂ β x u -+ 2λ -2 ∂ k t ∂ β x Pu - 2 (4.13) = ∂ k+1 t ∂ β x u -+ ∂ k t ∂ β x G, ∂ k+1 t ∂ β x u -+ q k,β 1 , ∂ k t ∂ β x u -. In view of u -= u e -u i and k + |β| ≤ s -1, we have | ∂ k+1 t ∂ β x u -, ∂ k+1 t ∂ β x u -| ≤ C ν=e,i |u ν | 2 s .
By (4.12), the highest derivative order of ∇n ν and u ν in 

∂ k t ∂ β x G is s -1 and
| ∂ k t ∂ β x G, ∂ k+1 t ∂ β x u -| ≤ ∂ k t ∂ β x G ∂ k+1 t ∂ β x u - ≤ C ν=e,i |u ν | 2 s + |∇n ν | 2 s-1 .
Since P is a projection operator in L 2 (R d ) and k + |β| ≤ s -1, again by (3.7) in Lemma 3.4, we have

q k,β 1 ≤ 2λ -2 ∂ k t ∂ β x (n -u e + ñi u -) ≤ Cλ -2 |U | s ( |n -| s-1 + |u -| s-1 ). Therefore, q k,β 1 , ∂ k t ∂ β x u -≤ q k,β 1 ∂ k t ∂ β x u - ≤ Cλ -2 |U | |n -| 2 s-1 + |u -| 2 s-1 .
Combining the above inequalities, and summing (4.13) for all indices k, β with k + |β| ≤ s -1 yields the estimate (4.11).

Lemma 4.5. For all t ∈ [0, T ], it holds

λ -2 d dt |(I -P)u -| 2 s-1 + 2λ -2 |(I -P)u -| 2 s-1 ≤ Cλ -2 |U | s |u -| 2 s-1 . (4.14) Proof. For all index k ∈ N and β ∈ N d with 0 ≤ k + |β| ≤ s -1, applying ∂ k t ∂ β x to (1.12), we have ∂ t (∂ k t ∂ β x (I -P)u -) + ∂ k t ∂ β x (I -P)u -= (I -P)(q k,β 2 + q k,β 3 ), where q k,β 2 = -∂ k t ∂ β x (u -• ∇)u e , q k,β 3 = -∂ k t ∂ β x (u i • ∇)u -. Taking the inner product of this equation with 2∂ k t ∂ β x (I -P)u -in L 2 (R d ) yields (4.15) d dt ∂ k t ∂ β x (I -P)u - 2 + 2 ∂ k t ∂ β x (I -P)u - 2 = 2 (I -P)(q k,β 2 + q k,β 3 ), ∂ k t ∂ β x (I -P)u -.
Noticing that the highest derivative order of u -in q k,β 2 is s -1, by (3.7) in Lemma 3.4, we have

(4.16) (I -P)q k,β 2 , ∂ k t ∂ β x (I -P)u -≤ q k,β 2 ∂ k t ∂ β x (I -P)u -≤ C |U | s |u -| 2 s-1 . By Lemma 3.2 (ii), we also have (I -P)q k,β 3 , ∂ k t ∂ β x (I -P)u -= q k,β 3 , ∂ k t ∂ β x (I -P)u -.
This last term on the right-hand side is estimated as follows.

Using the decomposition u -= Pu -+ (I -P)u -, q k,β 3 can be written as

q k,β 3 = -∂ k t ∂ β x (u i • ∇)Pu --∂ k t ∂ β x (u i • ∇)(I -P)u -. Applying Lemma 3.2 (iv), we have q k,β 3 = -∂ k t ∂ β x ∇ u i • Pu -+ ∂ k t ∂ β x (∇u i ) Pu --∂ k t ∂ β x (u i • ∇)(I -P)u -.
By an integration by parts together with Lemma 3.2 (i) yields

q k,β 3 , ∂ k t ∂ β x (I -P)u -= ∂ k t ∂ β x (∇u i ) Pu -, ∂ k t ∂ β x (I -P)u - -∂ k t ∂ β x (u i • ∇)(I -P)u -, ∂ k t ∂ β x (I -P)u - = J k,β 1 + J k,β
2 . Using again the fact that P is a projection operator in L 2 (R d ) together with (3.7) in Lemma 3.4 and k + |β| ≤ s -1, we get

J k,β 1 ≤ ∂ k t ∂ β x (∇u i ) Pu -∂ k t ∂ β x (I -P)u - ≤ C |U | s |Pu -| s-1 |(I -P)u -| s-1 ≤ C |U | s |u -| 2 s-1 . Notice that (u i • ∇)∂ k t ∂ β x (I -P)u -, ∂ k t ∂ β x (I -P)u -= - 1 2 (divu i )∂ k t ∂ β x (I -P)u -, ∂ k t ∂ β x (I -P)u -. It follows that J k,β 2 = -∂ k t ∂ β x (u i • ∇)(I -P)u --(u i • ∇)∂ k t ∂ β x (I -P)u -, ∂ k t ∂ β x (I -P)u - + 1 2 (divu i )∂ k t ∂ β x (I -P)u -, ∂ k t ∂ β x (I -P)u -.
By (3.8) in Lemma 3.4 and the Cauchy-Schwarz inequality, it gives

∂ k t ∂ β x ((u i • ∇)(I -P)u -) -(u i • ∇)∂ k t ∂ β x (I -P)u -, ∂ k t ∂ β x (I -P)u - ≤ C |U | s |(I -P)u -| 2 s-1 ≤ C |U | s |u -| 2 s-1 , and 
(divu i )∂ k t ∂ β x (I -P)u -, ∂ k t ∂ β x (I -P)u -≤ div(u i ) ∞ ∂ k t ∂ β x (I -P)u - 2 ≤ C |U | s |u -| 2 s-1 . The last two estimates imply |J k,β 2 | ≤ C |U | s |u -| 2 s-1 . Therefore, (4.17) | q k,β 3 , ∂ k t ∂ β x (I -P)u -| = |J k,β 1 + J k,β 2 | ≤ C |U | s |u -| 2 s-1 .
Finally, multiplying (4.15) by λ -2 and summing it for all indices k ∈ N, β ∈ N d with k +|β| ≤ s -1, using (4.16)-(4.17), we obtain (4.14).

From Lemmas 4.1-4.5, we obtain the following estimate. Lemma 4.6. Let U T be sufficiently small. For all t ∈ [0, T ] and λ ∈ (0, 1], it holds

(4.18) |U (t) | 2 s + λ -2 |(I -P)u -(t) | 2 s-1 + t 0 D λ (τ )dτ ≤ C |U (0) | 2 s + λ -2 |u -(0) | 2 s- 1 , where (4.19) 
D λ (t) = ν=e,i |u ν (t) | 2 s + |∇n ν (t) | 2 s-1 + λ -2 |n -(t) | 2 s-1 + |u -(t) | 2 s-1 .
Proof. Let π 1 and π 2 be two sufficiently small positive constants to be chosen. We introduce a Lyapunov function

L λ (t) = R d ν=e,i h ν (n * ν )|ñ ν | 2 + n ν |u ν | 2 + λ 2 |∇φ| 2 dx + 1≤k+|α|≤s ν=e,i A ν 0 ∂ k t ∂ α x U ν , ∂ k t ∂ α x U ν + λ 2 ∂ k t ∂ α x ∇φ 2 + π 1 ν=e,i k+|β|≤s-1 ∂ k t ∂ β x u ν , ∂ k t ∂ β x ∇n ν + π 2 k+|β|≤s-1 ∂ k+1 t ∂ β x u -+ ∂ k t ∂ β x G + 1 2 ∂ k t ∂ β x u -, ∂ k t ∂ β x u -+ λ -2 |(I -P)u -| 2 s-1 .
Adding (4.1), (4.3), (4.9) multiplied by π 1 and (4.11) multiplied by π 2 and (4.14) yields the following energy estimate

(4.20) L λ (t) + D λ (t) ≤ R λ (t),
where

D λ (t) = ν=e,i 2 R d n ν |u ν | 2 dx + 1≤k+|α|≤s ∂ k t ∂ α x u ν 2 + a 0 π 1 |∇n ν | 2 s-1 + λ -2 a 0 π 1 |n -| 2 s-1 + 2π 2 |Pu -| 2 s-1 + 2 |(I -P)u -| 2 s-1 , R λ (t) =C ν=e,i (π 1 + π 2 ) |u ν | 2 s + π 2 |∇n ν | 2 s-1 + C |U | s ν=e,i |u ν | 2 s + |∇n ν | 2 s-1 + Cλ -2 |U | s |n -| 2 s-1 + |u -| 2 s-1 .
Since A ν 0 (n ν ) is positive definite, from (3.10), the first two terms in the expression of L λ (t) are uniformly equivalent to |U (t) | 2 s . From (4.12) and u -= u e -u i , we have

ν=e,i k+|β|≤s-1 ∂ k t ∂ β x u ν , ∂ k t ∂ β x ∇n ν + k+|β|≤s-1 ∂ k+1 t ∂ β x u -+∂ k t ∂ β x G+ 1 2 ∂ k t ∂ β x u -, ∂ k t ∂ β x u -≤ C |U (t) | 2 s .
Therefore, when π 1 and π 2 are sufficiently small, L λ (t) is uniformly equivalent to

|U (t) | 2 s + λ -2 |(I -P)u -(t) | 2 s-1 . Next, by Lemma 3.2 (iii), we have |u -| 2 s-1 = |Pu -| 2 s-1 + |(I -P)u -| 2 s-1 .
From the definition of D λ (t) and n ν ≥ 1/2, it is easy to see that

D λ (t) ≥ ν=e,i |u ν (t) | 2 s + a 0 π 1 |∇n ν (t) | 2 s-1 + λ -2 a 0 π 1 |n -(t) | 2 s-1 + 2π 2 |u -(t) | 2 s-1 .
This together with (4.19) shows that D λ (t) is uniformly equivalent to D λ (t). Now we choose π 1 and π 2 such that

C(π 1 + π 2 ) ≤ 1 4 , Cπ 2 ≤ 1 4 a 0 π 1 ≤ 1 4 . If CU T ≤ 1 4 min{a 0 π 1 , π 2 },
we also have CU T ≤ 1/4, hence,

R λ (t) ≤ 1 2 D λ (t).
It follows from (4.20) that

L λ (t) + 1 2 D λ (t) ≤ 0.
Integrating it in time yields (4.18).

5. Proof of Theorems 2.1-2.2

5.1. Estimates of the initial energy.

Recall that, for all integer s ≥ 1,

|v | 2 s = v 2 s + s k=1 ∂ k t v 2 s-k . Then |v | s ≤ v s + s k=1 ∂ k t v s-k ,
which will be used in the proof below.

Lemma 5.1. It holds

(5.1) |U (0) | s ≤ CN 0 + Cλ -2 |n -(0) | s-1 + |u -(0) | s-1 ,
where N 0 is defined by (2.2).

Proof. We first prove

(5.2) |∇φ(0) | s ≤ N 0 + Cλ -2 |n -(0) | s-1 + |u -(0) | s-1 .
Obviously, ∇φ(0, •) s = ∇φ 0 λ s ≤ N 0 , and by (3.12) in Lemma 3.5, we have

s k=1 ∂ k t ∇φ(0, •) s-k ≤ Cλ -2 |n -(0) | s-1 + |u -(0) | s-1 .
This proves (5.2). Next, we prove

(5.3) |U ν (0) | s ≤ CN 0 + Cλ -2 |n -(0) | s-1 + |u -(0) | s-1 , ν = e, i.
Obviously,

U ν (0, •) s = (n 0 ν,λ -1, u 0 ν,λ ) s ≤ CN 0 . From (4.
2), for ν = e, i, we have

∂ t U ν = - d j=1 A ν j (U ν )∂ x j U ν + 0 -q ν ∇φ -u ν ,
which can be written in the form

∂ t U ν = O(U ν ) + O(∇U ν ) + O(∇φ).
Therefore,

∂ k t U ν s-k ≤ C U ν s + |∇φ | s , ∀ 1 ≤ k ≤ s, which implies that ∂ k t U ν (0, •) s-k ≤ C (n 0 ν,λ -1, u 0 ν,λ ) s + |∇φ(0) | s , ∀ 1 ≤ k ≤ s.
This together with (5.2) yields (5.3).

Finally, (5.1) follows from (5.2) and (5.3) together with the definition of U and λ ≤ 1.

Lemma 5.2. It holds

(5.4) λ -2 ( |n -(0) | s-1 + |u -(0) | s-1 ) ≤ CN 1 ,
where N 1 is defined by (2.2).

Proof.

Let

U -= n - u - , B ν j (U ν ) = u νj n ν e j 0 u νj I d , j = 1, • • • , d.
We rewrite system (4.2) as

∂ t U ν = - d j=1 B ν j (U ν )∂ x j U ν - 0 ∇(q ν φ + h ν (n ν )) + u ν , ν = e, i.
Then

∂ t U -= - d j=1 B e j (U e )∂ x j U -- d j=1 B e j (U e ) -B i j (U i ) ∂ x j U i - 0 ∇µ + u - ,
where µ is defined in (1.6)-(1.7) and recalled here

µ = h e (n e ) -h i (n i ) -2φ.
Let u -j be the j-th component of u -. Since B e j (U e ) -B i j (U i ) = u -j n -e j 0 u -j I d , the equation for U -is of the form

∂ t U -= O(U -) + O(∇U -) + O(∇µ).
Therefore,

∂ k t U -s-1-k ≤ C U -s-1 + |∇µ | s-2 , ∀ 1 ≤ k ≤ s -1, which implies that ∂ k t U -(0, •) s-1-k ≤ C( n -(0, •) s-1 + u -(0, •) s-1 ) + C |∇µ(0) | s-2 , ∀ 1 ≤ k ≤ s -1.
This proves (5.4) by the definition of N 1 .

From Lemmas 5.1-5.2, since λ ≤ 1, we easily get the following Proposition.

Proposition 5.1. It holds

(5.5) |U (0) | s + λ -1 |u -(0) | s-1 ≤ CN ,
where N is defined by (2.1).

Proof of Theorem 2.1.

Since • s ≤ | • | s for all integer s, estimates (4.18) and (5.5) show that the smooth solution U is uniformly bounded in L ∞ ([0, T ]; H s ) with respect to λ and T . By the bootstrap principle (see [START_REF] Nishida | Nonlinear hyperbolic equations and related topics in fluids dynamics[END_REF][START_REF] Tao | Nonlinear Dispersive Equations. Local and Global Analysis[END_REF]), it yields uniformly global solution. In particular, these estimates give (2.3)-(2.5) and (2.6) in which the estimate for ∇µ follows from equation (1.8), i.e.

∇µ = -∂ t u --(u e • ∇)u --(u -• ∇)u i -u -.
This proves Theorem 2.1.

Proof of Theorem 2.2.

Let ν = e, i. From (2.3)-(2.4) and (2.6) together with the definition of | • | s , we have the following bounds and convergences of the solution sequences : (i) (n ν,λ -1) λ>0 and (u ν,λ ) λ>0 are bounded in L ∞ (R + ; H s ) and L ∞ (R + ; H s ) ∩ L 2 (R + ; H s ), respectively, (ii) (∂ t n ν,λ ) λ>0 and (∂ t u ν,λ ) λ>0 are bounded in L ∞ (R + ; H s-1 ) and L ∞ (R + ; H s-1 )∩L 2 (R + ; H s-1 ), respectively, (iii) n e,λ -n i,λ → 0, u e,λ -u i,λ → 0 strongly in L 2 (R + ; H s-1 ), (iv) ∂ t u e,λ -u i,λ → 0 strongly in L 2 (R + ; H s-2 ). By (i)-(ii) and a classical compactness theorem (see [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]), for all T > 0, (n ν,λ -1) λ>0 and (u ν,λ ) λ>0 are relatively compact in C([0, T ]; H s-1 loc ). This together with (iii) implies that there exist functions n and u with n -1 ∈ L ∞ (R + ; H s ) and u ∈ L ∞ (R + ; H s ) ∩ L 2 (R + ; H s ) such that (up to subsequences) (2.8) and (2.9) hold.

By the first equation in (1.1) and by adding equations (1.4) for ν = e, i, we have ∂ t n e,λ + div(n e,λ u e,λ ) = 0, ∂ t (u e,λ + u i,λ ) + u e,λ • ∇u e,λ + u i,λ • ∇u i,λ + ∇ h e (n e,λ ) + h i (n i,λ ) = -u e,λ -u i,λ .

The strong convergence of (n ν,λ ) λ>0 and (u ν,λ ) λ>0 in (2.9) allows to pass to the limit in this system in the sense of distributions to obtain (2.11). Since this convergence is uniform in time, we also have (2.12). Next, subtracting equations (1.4) for ν = e, i, we have

2∇φ λ = ∇ h e (n e,λ ) -h i (n i,λ ) + ∂ t u e,λ -u i,λ ) + (u e,λ -u i,λ ) • ∇u e,λ + u i,λ • ∇(u e,λ -u i,λ ) + u e,λ -u i,λ .
Again by (2.9) and the convergences (iii)-(iv) above, we can pass to the limit in this equality and this together with the definition of h -yields (2.10). Finally, the uniqueness of global smooth solutions to the Cauchy problem (2.11)-(2.12) implies the convergence of the whole sequences (n ν,λ , u ν,λ ) λ>0 and (∇φ λ ) λ>0 .

Proof of Theorem 2.3

Since the proof is the same for ν = e and ν = i, we only prove (2.14)-(2.15) for ν = e. We introduce new variables

N e = n e -n, U e = u e -u, W e = N e U e .
Let T > 0 and t ∈ [0, T ]. We denote

E(t) = N e (t) 2 s-2 + U e (t) 2 s-2 1 2 , D(t) = U e (t) 2 s-2 + ∇N e (t) 2 s-3 1 2 .
It is clear that the following Lemma implies the result of Theorem 2.3.

Lemma 6.1. If ε 0 introduced in Theorem 2.1 is sufficiently small and (2.13) holds, then

(6.1) sup 0≤t≤T E 2 (t) + T 0 D 2 (t)dt ≤ Cλ 2 , ∀ T > 0.
In order to prove Lemma 6.1, we rewrite (1.1) for (n e , u e ) as (the subscript λ is dropped)

∂ t n e + u e • ∇n e + n e divu e = 0, ∂ t u e + (u e • ∇)u e + ∇h + (n e ) = -u e + r e ,
where h + = 1 2 (h e + h i ) and

r e = 1 2 ∂ t u -+ (u e • ∇)u -+ (u -• ∇)u i + ∇(h i (n e ) -h i (n i )) + u -.
From (2.11) we also have 

∂ t n + u • ∇n + ndivu = 0, ∂ t u + u • ∇u + ∇h + (n) = -u. Hence, ∂ t N e + u e • ∇N e + ndivU e = -U e • ∇n -N e divu e , ∂ t U e + (u • ∇)U e + ∇ h + (n e ) -h + (n) = -U e -(U e • ∇)u e +
H s-1 → L ∞ (R d ), we have (6.4) +∞ 0 ∂ t u -+ (u e • ∇)u -+ (u -• ∇)u i + u - 2 s-2 dt ≤ C +∞ 0 |u -| 2 s-1 dt ≤ Cλ 2 .
On the other hand,

h i (n e ) -h i (n i ) = bn -, ∇(h i (n e ) -h i (n i )) = n -∇b + b∇n -, where b = 1 0 h i (sn e + (1 -s)n i )ds.
Since p i is sufficiently smooth, b is a smooth function of (n e , n i ). Therefore, by (3.6) in Lemma 3.3 and (2.6), we have (6.5)

+∞ 0 ∇ h i (n e ) -h i (n i ) 2 s-2 dt ≤ C +∞ 0 |n -| 2 s-1 dt ≤ Cλ 2 .
Thus, (6.3) follows from (6.4)-(6.5). System (6.2) can be written under the form (6.6)

∂ t W e + d j=1 A j ∂ x j W e = K,
where Recall that h ν (ν = e, i) are strictly increasing functions on (0, +∞), so is h + . Since the solutions of (1.1)-(1.2) and of (2.11)-(2.12) are sufficiently close to the equilibrium state, there exists a positive constant a 1 such that (6.7)

A j = u ej
a 0 ≤ a e (t, x) ≤ a 1 , ∀ (t, x) ∈ R + × R d ,
where a 0 is the positive constant satisfying h ν (n ν ) ≥ 2a 0 for ν = e, i. . These estimates will be used in the following discussion.

Introduce matrices

A 0 = 1 0 0 na -1 e I d , Ãj def = A 0 A j = u ej ne j ne j nu j a -1 e I d .
Obviously, A 0 is symmetric positive definite and Ãj is symmetric for all 1 ≤ j ≤ d. Consequently, system (6.6) is symmetrizable hyperbolic. Remark that for (6.2) there is no timedissipation effect on N e in L 2 (R d ), hence the quadratic term N 2 e cannot be controlled in energy estimates. The choice of A 0 above avoids the appearance of such a term. Lemma 6.2. (Energy estimate of W e ) Under the assumption of Lemma 6.1, there exists a positive constant b 0 independent of λ and t such that (6.10)

|γ|≤s-2 d dt A 0 ∂ γ x W e , ∂ γ x W e + b 0 U e 2 s-2 ≤ Cε 0 D 2 (t) + Cd e (t)E(t)D(t) + C r e 2 s-2 .
Proof. Let γ ∈ N d with |γ| ≤ s -2. Applying ∂ γ x to (6.6), we get

∂ t ∂ γ x W e + d j=1 A j ∂ x j ∂ γ x W e = ∂ γ x K + I γ , with I γ = d j=1 A j ∂ γ x (∂ x j W e ) -∂ γ x (A j ∂ x j W e ) .
Taking the inner product of this equation with Remark that a e is a smooth function of (n e , n). Then ∂ t a e can be further expressed as a linear combination of div(nu) and div(n e u e ). Therefore, (6.8) gives

A 0 ∂ γ W e in L 2 (R d ) gives (6.11) d dt A 0 ∂ γ x W e , ∂ γ x W e = (div A)∂ γ x W e , ∂ γ x W e + 2 A 0 I γ , ∂ γ x W e + 2 A 0 ∂ γ x K, ∂ γ x W e , where div A = ∂ t A 0 + d j=1 ∂ x j Ãj . A straightforward calculation gives (div A)∂ γ x W e , ∂ γ x W e = divu e , (∂ γ x N e ) 2 + 2 ∂ γ x U e •
s e ∞ ≤ C s e s-1 ≤ Cε 0 , which implies that s e ∂ γ x U e , ∂ γ
x U e ≤ Cε 0 D 2 (t). We conclude from the above estimates that (6.12) For the last term in (6.11), a straightforward calculation shows that 

(div A)∂ γ x W e , ∂ γ x W e ≤ Cε 0 D 2 (t) + Cd e ( 
A 0 ∂ γ x K, ∂ γ x W e = -

  2) and the Poisson equation (3.1). The uniqueness of solutions to (3.1) is obvious with condition lim |x|→+∞ v(x) = 0, by the Liouville's theorem for the harmonic function.

Lemma 4 . 4 .

 44 For any t ∈ [0, T ], it holds d dt k+|β|≤s-1

  s, respectively. Applying (3.4)-(3.6) in Lemma 3.3 and (3.7)-(3.9) in Lemma 3.4, it yields

  ne j a e e j u j I d , j = 1, • • • , d, and K = -U e • ∇n + N e divu e U e + (U e • ∇)u e + N e ∇a e -r e .

  t)E(t)D(t).Next, we remark that I γ = 0 if γ = 0. For 1 ≤ |γ| ≤ s -2, by (3.5)-(3.6) in Lemma 3.3 and the expression of I γ , we have (6.13)A 0 I γ , ∂ γ x W e ≤ C d j=1 ∇ x A j s-1 ∂ x j W e s-3 ∂ γ x W e ≤ Cε 0 D 2 (t).

  r e , (6.2) where ∇ h + (n e ) -h + (n) = a e ∇N e + N e ∇a e , with

	1	
	a e =	h + sn e + (1 -s)n ds.
	0	
	We first prove that	
	+∞	
	(6.3)	r e (t) 2 s-2 dt ≤ Cλ 2 .
	0	
	Indeed, by (2.6) in Theorem 2.1 and the continuous embedding

  ∇n, ∂ γ x N e + s e ∂ γ x U e , ∂ γ x U e , where s e = ∂ t (na -1 e ) + div(nua -1 e ). By an integration by parts, we have divu e , (∂ γ x N e ) 2 = 2 u e ∂ γ x N e , ∂ γ x ∇N e ≤ C u e s E(t)D(t).

	Obviously,
	∂ γ x U e • ∇n, ∂ γ x N e ≤ C ∇n s-1 E(t)D(t).
	By the density equations
	∂ t n + div(nu) = 0, ∂ t n e + div(n e u e ) = 0,
	we have
	s e = -na -2

e ∂ t a e + u • ∇a e .

  In view of n ≥ 1/2 and (6.7), there exists a positive constant b 0 independent of λ such thatna -1 e ∂ γ x U e , ∂ γ x U e ≥ b 0 ∂ γ x U e 2 .By(3.4) in Lemma 3.3, we have ∂ γ x (N e divu e ), ∂ γ x N e ≤ C divu e s-1 N e |γ| ∂ γ x N e ≤ Cd e (t)E(t)D(t). (U e • ∇n), ∂ γ x N e + na -1 e ∂ γ x (N e ∇a e ), ∂ γ x U e ≤ Cd e (t)E(t)D(t), na -1 e ∂ γ x ((U e • ∇)u e ), ∂ γ x U e ≤ Cε 0 D 2 (t). Finally, by the Young inequality, we easily get ∂ γ x K, ∂ γ x W e + b 0 ∂ γ x U e 2 ≤ Cε 0 D 2 (t) + Cd e (t)E(t)D(t) + C r e Summing these inequalities for all γ ∈ N d with |γ| ≤ s -2, we obtain (6.10). This proves Lemma 6.2. Lemma 6.3. (Dissipation estimate of ∇N e ) Under the assumption of Lemma 6.1, it holds Proof. Let γ ∈ N d with |γ| ≤ s -3. Applying ∂ γ x to the second equation in (6.2), we get a e ∂ γ x ∇N e = ∂ γ x (r e -U e ) -∂ γ x (u • ∇)U e + (U e • ∇)u e + N e ∇a e + a e ∂ γ x ∇N e -∂ γ x (a e ∇N e ) -∂ t ∂ γ x U e . Taking the inner product of this equality with ∂ γ x ∇N e in L 2 (R d ) leads to a e ∂ γ x ∇N e , ∂ γ x ∇N e = ∂ γ x (r e -U e ), ∂ γ x ∇N e (6.16) -∂ γ x (u • ∇)U e + (U e • ∇)u e + N e ∇a e , ∂ γ x ∇N e + a e ∂ γ x ∇N e -∂ γ x (a e ∇N e ), ∂ γ x ∇N e -∂ t ∂ γ x U e , ∂ γ x ∇N e . Similarly to the proof in Lemma 6.2, we also have ∂ γ Using the equation of N e in (6.2), the last term in (6.16) can be written as -∂ t ∂ γ x U e , ∂ γ x ∇N e U e , ∂ γ x ∇N e -div∂ γ x U e , ∂ t ∂ γ x N e U e , ∂ γ x ∇N e + div∂ γ x U e , ∂ γ x u e • ∇N e + N e divu e + U e • ∇n + ndivU e . By (3.4) in Lemma 3.3, we have div∂ γ x U e , ∂ γ x u e • ∇N e + N e divu e + U e • ∇n ≤ Cε 0 D 2 (t) + Cd e (t)E(t)D(t), div∂ γ x U e , ∂ γ x ndivU e ≤ C U e Cε 0 D 2 (t) + Cd e (t)E(t)D(t) + C U e Summing these inequalities for all γ ∈ N d with |γ| ≤ s -3, we obtain (6.15). Proof of Lemma 6.1. Adding (6.10) and (6.15) multiplied by a positive constant κ 0 , it gives the following estimate L e (t) + (b 0 -Cκ 0 ) U e In view of the expression of A 0 and E(t), we have (2a 2 -κ 0 )E 2 (t) ≤ L e (t) ≤ CE 2 (t), where a 2 = min 1/2, 1/4a 1 . Now we choose κ 0 > 0 such that 2Cκ 0 ≤ b 0 and κ 0 ≤ a 2 . Then a 2 E 2 (t) ≤ L e (t) ≤ CE 2 (t), and by the expression of D(t), we have Cε 0 )D 2 (t) ≤ Cd e (t)E(t)D(t) + C r e 2 s-2 .Integrating this inequality over [0, t] and using (6.3) yields a 2 E 2 (t) + (2c 0 -Cε 0 ) By the Cauchy-Schwarz inequality and the Young inequality together with (6.9), we have (τ )dτ ≤ Cε 0 E 2 T + Cλ 2 . Thus, when ε 0 is sufficiently small such that

	t		t	1	t	1
	Similarly, These estimates imply ∂ γ x na -1 e ∂ γ x r e , ∂ γ x U e ≤ (6.14) 2 A 0 2 b 0 2 ∂ γ x U e 2 + C r e 2 s-2 . s-2 . Combining (6.11)-(6.14), we obtain d dt A 0 ∂ γ x W |γ|≤s-3 d dt ∂ γ x U e , ∂ γ x ∇N e + a 0 2 ∇N e 2 s-3 (6.15) Obviously, a e ∂ γ x ∇N e , ∂ γ x ∇N e ≥ a 0 ∂ γ x ∇N e 2 , = -d dt ∂ γ x = -d dt ∂ γ x 2 s-2 . Combining the above estimates together with (6.16) yields d dt ∂ γ x U e , ∂ γ x ∇N e + a 0 2 ∂ γ x ∇N e 2 ≤ 2 s-2 + r e 2 s-2 + κ 0 a 0 2 ∇N e 2 s-3 (6.17) |γ|≤s-2 A 0 ∂ γ x W e , ∂ γ x W e + κ 0 |γ|≤s-3 ∂ γ x U e , ∂ γ x ∇N e . b 0 2 U e 2 s-2 + κ 0 a 0 2 ∇N e 2 s-3 ≥ 2c 0 D 2 (t), where c 0 = 1 4 min{b 0 , κ 0 a 0 }. It follows from (6.17) that 0 d e (τ )D(τ )dτ ≤ E T 0 d 2 e (τ )dτ 2 0 D 2 (τ )dτ 2 ≤ Cε 0 E T t 0 D 2 (τ )dτ 1 2 ≤ Cε 0 E 2 T + Cε 0 t 0 D 2 (τ )dτ. Therefore, a 2 E 2 (t) + 2(c 0 -Cε 0 ) t 0 D 2 Cε 0 ≤ 1 2 min{c 0 , a 2 }, L e (t) + (2c 0 -E T we obtain a 2 E 2 (t) + c 0 t 0 D 2 (τ )dτ ≤ a 2 2 E 2	2 s-3 .
	∂ γ x (r e -U e ), ∂ γ x ∇N e ≤	a 0 2	∂ γ x ∇N e	2 + C U e	2 s-3 + r e	2 s-3 .

na -1 e ∂ γ x U e , ∂ γ x U e -∂ γ x (N e divu e ), ∂ γ x N e -∂ γ x (U e • ∇n), ∂ γ x N e -na -1 e ∂ γ x ((U e • ∇)u e ), ∂ γ x U e -na -1 e ∂ γ x (N e ∇a e ), ∂ γ x U e + na -1 e ∂ γ x r e , ∂ γ x U e . e , ∂ γ x W e + b 0 ∂ γ x U e 2 ≤ Cε 0 D 2 (t) + Cd e (t)E(t)D(t) + C

r e 2 s-2 . ≤ Cε 0 D 2 (t) + Cd e (t)E(t)D(t) + C U e 2 s-2 + r e 2 s-3 . x (u • ∇)U e + (U e • ∇)u e + N e ∇a e , ∂ γ x ∇N e ≤ Cε 0 D 2 (t) + Cd e (t)E(t)D(t), a e ∂ γ x ∇N e -∂ γ x (a e ∇N e ), ∂ γ x ∇N e ≤ Cε 0 D 2 (t). ≤ Cε 0 D 2 (t) + Cd e (t)E(t)D(t) + C r e 2 s-2 , where L e (t) = t 0 D 2 (τ )dτ ≤ CE T t 0 d e (τ )D(τ )dτ + Cλ 2 , where E T = sup 0≤t≤T E(t). T + Cλ 2 , ∀ t ∈ [0, T ], which implies (6.1).
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