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1Université Clermont Auvergne, CNRS, Laboratoire de Mathématiques Blaise Pascal,
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Abstract. This paper concerns the quasi-neutral limit to the Cauchy problem for

a two-fluid Euler-Poisson system in several space dimensions. When the initial data

are sufficiently close to constant equilibrium states, we prove the global existence of

smooth solutions with uniform bounds with respect to the Debye length in Sobolev

spaces. This allows to pass to the limit in the system for all time to obtain a

compressible Euler system. We also prove global error estimates between the solution

of the two-fluid Euler-Poisson system and that of the compressible Euler system.

These results are obtained by establishing uniform energy estimates and various

dissipation estimates. A key step in the proof is the control of the quasi-neutrality

of the velocities. For this purpose, an orthogonal projection operator is used.
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1. Introduction

In a previous work [33], we considered the global quasi-neutral limit for a two-fluid (bipolar)
isentropic Euler-Poisson system in one space dimension. In this paper, we continue to study
this limit in several space dimensions. The system arises in the modeling of plasmas (or semi-
conductors) consisting of electrons of charge qe = −1 and a single species of ions of charge
qi = 1. Denote by ne and ue (ni and ui, respectively) the scaled density and the velocity of
the electrons (ions, respectively), and by φ the electric potential. The two-fluid Euler-Poisson
system reads (see [6, 29, 20, 10])

∂tnν + div(nνuν) = 0,

∂t(nνuν) + div(nνuν ⊗ uν) +∇pν(nν) = −qνnν∇φ− nνuν , ν = e, i,

−λ2∆φ = ni − ne, lim
|x|→+∞

φ(t, x) = 0,
(1.1)

for (t, x) ∈ R+×Rd. Here ⊗ is the tensor product, λ ∈ (0, 1] is the Debye length. The pressure
functions pν (ν = e, i) are supposed to be smooth and strictly increasing, namely,

p′ν(τ) > 0, ∀ τ > 0, ν = e, i.

The system is supplemented by the following initial condition depending on λ :

(1.2) t = 0 : (nν , uν) =
(
n0
ν,λ(x), u0ν,λ(x)

)
, ν = e, i, x ∈ Rd.

∗ The corresponding author
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We define φ0
λ as the initial data of φ by

(1.3) −λ2∆φ0
λ = n0

i,λ − n0
e,λ, lim

|x|→+∞
φ0
λ(x) = 0.

We are concerned with smooth solutions to system (1.1) in the non-vacuum field, namely,
nν > 0 for ν = e, i. Then the momentum equations in (1.1) can be written equivalently as

(1.4) ∂tuν + (uν · ∇)uν +∇hν(nν) = −qν∇φ− uν , ν = e, i,

where the enthalpy functions hν (ν = e, i) are defined by

hν(n) =

∫ n

1

p′ν(τ)

τ
dτ, ν = e, i.

System (1.1) is composed of a symmetrizable hyperbolic system for (nν , uν), ν = e, i, coupled
to a linear Poisson equation. The local well-posedness of classical solutions to the Cauchy

problem (1.1)-(1.2) are well-known by applying the results in [22, 28]. Let s >
d

2
+ 1 be

an integer. We assume that (n0
ν,λ − 1, u0ν,λ,∇φ0

λ) ∈ Hs with n0
ν,λ ≥ const. > 0, here and in

what follows Hs stands for Hs(Rd). Then there exists T∗ > 0 such that the Cauchy problem
(1.1)-(1.2) admits a unique solution (nν , uν , φ) on the domain [0, T∗]× Rd, and we have

nν − 1, uν ,∇φ ∈
s⋂

k=0

Ck([0, T∗];H
s−k), inf

(t,x)∈[0,T∗]×Rd
nν(t, x) ≥ const. > 0, ν = e, i.

In general, T∗ depends on the parameter λ ∈ (0, 1]. For fixed λ, the global existence with long
time behavior of smooth solutions near constant equilibrium states was proved in [2, 25], and
the stability of solutions was studied in [9].

The one-fluid Euler-Poisson system for electrons (ions, respectively) is described by variables
(ne, ue, φ) ((ni, ui, φ), respectively) when the plasma is in a uniform background where ni (ne,
respectively) is given. For fixed λ, the global existence and the stability of solutions were
investigated in [1, 17, 15]. When the electron density is replaced by a Boltzmann relation, we
obtain a one-fluid model for ions in which the Poisson equation is semilinear [12, 26].

In plasma physics, the Debye length λ is much smaller than the length of physical variables.
The quasi-neutrality means ne − ni → 0 as λ → 0. Thus, it is important to study the limit
behavior in these systems as λ → 0, which is referred to as the quasi-neutral limit. An early
analysis of the limit was given in [5] for the Poisson equation coupled to a Boltzmann relation.
For the drift-diffusion systems this limit was studied in [21] where it was revealed that the quasi-
neutral limit is related to the quasi-Fermi potentials. See also the study of this limit for the
Vlasov-Poisson system [3, 16], the pressureless Euler-Poisson system [27] and the Navier-Stokes-
Poisson system [11]. It is well-known that the quasi-neutral limit of the one-fluid Euler-Poisson
system leads to incompressible Euler equations. The justification of the limit for the one-fluid
Euler-Poisson system was carried out in [8, 36, 39] for smooth solutions on a uniform time
interval and in [32, 26] for global smooth solutions near constant equilibrium states.

It was already shown in [34, 24, 33] that the quasi-neutral limit of the two-fluid Euler-Poisson
system presents a different situation, since its limit system is governed by compressible Euler
equations. Indeed, passing formally to the limit in (1.1) as λ→ 0, we obtain from the Poisson
equation that ne = ni, denoted by n. Therefore, the limit system of the first two equations in
(1.1) becomes {

∂tn+ div(nuν) = 0,

∂tuν + (uν · ∇)uν +∇hν(n) = −qν∇φ− uν , ν = e, i.

If ue(0, ·) = ui(0, ·), we have ue = ui, denoted by u, at least on a local time interval, see
[34]. Adding and subtracting the second equations above for ν = e, i yields compressible Euler
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equations {
∂tn+ div(nu) = 0,

∂tu+ (u · ∇)u+∇h+(n) = −u,
(1.5)

and
∇φ = ∇h−(n),

where

h± =
1

2
(he ± hi).

By the method of asymptotic expansions together with energy estimates, the convergence of
system (1.1) to (1.5) as λ → 0 was justified for smooth solutions on uniform time intervals
[18, 24, 19].

The global-in-time convergence of the two-fluid system (1.1) as λ→ 0 is a challenging problem
on which very few results are available. In a recent paper [33], we solved this problem in one
space dimension. Up to our knowledge, that was the only result on this issue for (1.1). The goal
of this paper is to prove this global quasi-neutral limit for (1.1) in several space dimensions.

Let (n̄e, ūe, n̄i, ūi,∇φ̄) = (1, 0, 1, 0, 0) be a constant equilibrium state. Let s >
d

2
+ 1 be an

integer. We assume that (n0
ν,λ − 1, u0ν,λ,∇φ0

λ) is uniformly sufficiently small in the norm of Hs

for ν = e, i. Moreover, let µν be the quasi-Fermi potentials defined by (see [29, 20])

(1.6) µν = hν(nν) + qνφ, ν = e, i,

and

(1.7) µ = µe − µi = he(ne)− hi(ni)− 2φ.

We denote
n− = ne − ni, u− = ue − ui.

Subtracting (1.4) for ν = e, i yields

(1.8) ∂tu− +
(
(u− · ∇)ue + (ui · ∇)u−

)
+ u− +∇µ = 0.

We first show our results and assumptions on the initial data. The quasi-neutrality and the
formal derivation of system (1.5) from (1.1) suggest that

n0
e,λ − n0

i,λ → 0, u0e,λ − u0i,λ → 0, as λ→ 0.

Hence, we assume
n0
e,λ − n0

i,λ = O(λ2), u0e,λ − u0i,λ = O(λ2).

From (1.8) we see formally that ∇µ and ue − ui should have the same order in λ. Therefore,
we also assume

∇µ(0, ·) = O(λ2).

Under these conditions we prove that the Cauchy problem (1.1)-(1.2) admits the global smooth
solution with uniform bounds in Sobolev spaces with respect to λ, and

ne − ni = O(λ), ue − ui = O(λ), ∇µ = O(λ), ∀ t > 0.

This result is stated in Theorem 2.1. In particular, when he = hi and the initial data are well-
prepared such that (n0

e,λ, u
0
e,λ) = (n0

i,λ, u
0
i,λ), then the result in Theorem 2.1 holds, provided that

(n0
e,λ − 1, u0e,λ) is uniformly sufficiently small in the norm of Hs. The result of the convergence

of system (1.1) to (1.5) as λ → 0 is stated in Theorem 2.2. Furthermore, let (n0, u0) be the
initial data of the limit (n, u) governed by compressible Euler equations (1.5). If

n0
ν,λ − n0 = O(λ), u0ν,λ − u0 = O(λ), ν = e, i,

we prove that the solution of (1.1)-(1.2) satisfies global error estimates

nν − n = O(λ), uν − u = O(λ), ∀ t > 0, ν = e, i.
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This result is stated in Theorem 2.3. Remark that Theorems 2.1-2.3 are valid for all λ ∈ (0, 1]
without condition he = hi.

Now let us sketch the proof of these results. First of all, the estimates to establish depend
on two quantities : the Debye length λ and the size of the solution in Sobolev norms. The
latter is uniformly sufficiently small with respect to λ. From the symmetrizable hyperbolic
system (1.1) for (nν , uν), we obtain classical uniform energy estimates of solutions and a time
dissipation estimate of uν . From the strict monotonicity of function pν together with a standard
technique, time dissipation estimates of ∇nν and λ−1n− can be further derived. For fixed λ,
these estimates are sufficient to prove the global existence of solutions [2]. For the one-fluid
Euler-Poisson system, these estimates are also sufficient to prove the uniformly global existence
of solutions and pass to the limit in the system [32]. Unfortunately, for the two-fluid Euler-
Poisson system, the energy is bounded by a quantity which also depends on λ−1u−.

Based on the analysis of this problem, the control of the dissipation of λ−1u− is a key step
in the proof. For this purpose, we introduce a linear operator P from Hs to Hs for all fixed
integer s ≥ 0, defined by P = ∇∆−1div. We will see that both P and I − P are orthogonal
projection operators and the latter is the Leray projection, where I stands for the identity
operator. Applying ∂t to the Poisson equation and using the density equations in (1.1), we
have

λ2∆(∂tφ) = div(niui − neue).
Therefore, the Poisson equation is equivalent to

(1.9) λ2∂t∇φ = P(niui − neue).
Notice that

neue − niui = n−ue + niu− = u− + (n−ue + ñiu−),

where ñi = ni − 1. Then

(1.10) λ2∂t∇φ = −Pu− − P(n−ue + ñiu−).

Applying ∂t to (1.8), we have

(1.11) ∂2t u− + ∂tu− + 2λ−2Pu− = F,

where

F = ∂t∇
(
hi(ni)− he(ne)

)
− ∂t

(
(u− · ∇)ue + (ui · ∇)u−

)
− 2λ−2P(n−ue + ñiu−).

By the density equations in (1.1), F can be rewritten as

F = ∇
(
h′e(ne)div(neue)− h′i(ni)div(niui)

)
− ∂t

(
(u− · ∇)ue + (ui · ∇)u−

)
− 2λ−2P(n−ue + ñiu−).

In this expression, the first term can be controlled by the dissipation of uν and the other terms
are quadratic and can be treated in a usual way. In particular, the second term depends on the
time derivative of solutions. In order to control such kind of terms, we establish estimates in
a stronger norm (than that of Hs) whose definition contains the mixed derivatives of solutions
with respect to x and t. Moreover, since P∇ = ∇, applying I− P to (1.8) yields

(1.12) ∂t(I− P)u− + (I− P)u− = −(I− P)
(
(u− · ∇)ue + (ui · ∇)u−

)
,

where the right-hand side is a quadratic term too. Equations (1.11) and (1.12) provide dissi-
pation estimates of λ−1Pu− and λ−1(I−P)u−, which imply dissipation estimates of λ−1u− by
the orthogonal decomposition

u− = Pu− + (I− P)u−.

The classical energy estimates and the dissipation estimates above imply the result of Theo-
rem 2.1. The proof of Theorem 2.2 follows from the uniform estimates of solutions with respect
to λ. These estimates imply strong compactness of the solution sequences and allow to pass to
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the limit in (1.1) as λ → 0. Finally, a key ingredient in the proof of Theorem 2.3 is to avoid
the quadratic term (ne − n)2 in the energy estimate. For this purpose, we choose a specific
diagonal matrix as a symmetrizer.

In the case of one space dimension, it is less difficult to obtain the dissipation estimate of
λ−1u−. Indeed, the Poisson equation in (1.1) is equivalent to an evolution equation of the form

λ2∂t(∂xφ) = niui − neue, t > 0, x ∈ R.

Then equation (1.11) is reduced to

∂2t u− + ∂tu− + 2λ−2u− = F,

where

F = ∂x
(
h′e(ne)∂x(neue)− h′i(ni)∂x(niui)

)
− ∂t

(
u−∂xue + ui∂xu−

)
− 2λ−2(n−ue + ñiu−).

Thus, the orthogonal decomposition above for u− is not necessary. See [33] for more detailed
analysis on this issue.

This paper is organized as follows. Theorems 2.1-2.3 are stated in the next section. Sections
3 and 4 are devoted to detailed energy estimates. The proof of Theorems 2.1-2.2 are given in
section 5 and that of Theorem 2.3 is given in the last section.

2. Statement of main results

For a multi-index α = (α1, · · · , αd) ∈ Nd, we denote

∂αx =
∂|α|

∂α1
x1 · · · ∂αdxd

, with |α| = α1 + · · ·+ αd.

Let ‖ · ‖ and ‖ · ‖∞ be the norms of L2(Rd) and L∞(Rd), respectively. For an integer s ∈ N, let
‖ · ‖s be the usual norm of Sobolev space Hs. For T > 0, the mixed space-time space Bs,T and
the norm ‖| · ‖|s are defined by

Bs,T =
s⋂

k=0

Ck([0, T ];Hs−k),

‖|v(t)‖|s =
( ∑
k+|α|≤s

‖∂kt ∂αx v(t, ·)‖2
) 1

2
, v ∈ Bs,T , t ∈ [0, T ].

The main results of the paper consist of the following three theorems in Hs for integer

s >
d

2
+ 1. The first theorem shows the uniformly (with respect to λ) global existence of

smooth solutions to the Cauchy problem (1.1)-(1.2). The second one concerns the global-in-
time convergence of the solution of (1.1) to that of the compressible Euler equations (1.5) as
λ→ 0. In the last theorem, we give global convergence rates of the solutions in Hs−2.

Theorem 2.1. Let d ≥ 2 and s >
d

2
+ 1 be an integer. Assume that (n0

ν,λ − 1, u0ν,λ,∇φ0
λ) ∈ Hs

for ν = e, i. Define

(2.1) N = N0 +N1,

with  N0 =
∑
ν=e,i

(
‖n0

ν,λ − 1‖s + ‖u0ν,λ‖s
)

+ ‖∇φ0
λ‖s,

N1 = λ−2
(
‖n0

e,λ − n0
i,λ‖s−1 + ‖u0e,λ − u0i,λ‖s−1 + ‖|∇µ(0)‖|s−2

)
,

(2.2)

where µ is defined in (1.6)-(1.7), and ‖|∇µ(0)‖|s−2 is the value of ‖|∇µ(t)‖|s−2 at t = 0.
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There exist constants ε0 > 0 and C > 0 independent of λ such that if N ≤ ε0, then for all
λ ∈ (0, 1], problem (1.1)-(1.2) admits a unique global smooth solution (ne, ue, ni, ui, φ) satisfying

(2.3) sup
t∈R+

∑
ν=e,i

(
‖|nν(t)− 1‖|s + ‖|uν(t)‖|s + λ‖|∇φ(t)‖|s

)
≤ CN ,

(2.4)
∑
ν=e,i

∫ +∞

0

(
‖|uν(τ)‖|2s + ‖|∇nν(τ)‖|2s−1

)
dτ ≤ CN 2,

and

(2.5) sup
t∈R+

‖|(I− P)u−(t)‖|s−1 ≤ Cλ,

(2.6)

∫ +∞

0

(
‖|ne(τ)− ni(τ)‖|2s−1 + ‖|ue(τ)− ui(τ)‖|2s−1 + ‖|∇µ(τ)‖|2s−2

)
dτ ≤ Cλ2.

Theorem 2.2. Let (ne,λ, ue,λ, ni,λ, ui,λ, φλ)λ>0 be the sequence of corresponding solutions given
by Theorem 2.1. For ν = e, i, as λ→ 0, if

n0
ν,λ ⇀ n0, u0ν,λ ⇀ u0 weakly in Hs,

then there exist functions (n, u) with

(2.7) n− 1 ∈ L∞(R+;Hs), u ∈ L∞(R+;Hs) ∩ L2(R+;Hs),

such that

(2.8) (nν,λ, uν,λ) ⇀ (n, u) weakly- ∗ in L∞(R+;Hs),

and for all T > 0,

(2.9) (nν,λ, uν,λ)→ (n, u) strongly in C([0, T ];Hs−1
loc ).

Moreover, as λ→ 0,

(2.10) ∇φλ → ∇h−(n) strongly in L2
loc(R+;Hs−2

loc ),

where (n, u) is the global solution to compressible Euler equations

(2.11)

{
∂tn+ div(nu) = 0,

∂tu+ (u · ∇)u+∇h+(n) = −u,

subject to the initial condition

(2.12) t = 0 : (n, u) = (n0, u0).

Theorem 2.3. Let (ne, ue, ni, ui, φ) and (n, u) be the unique solutions to problem (1.1)-(1.2)
and problem (2.11)-(2.12), respectively. Assume the conditions in Theorem 2.1 with λ ∈ (0, 1].
There are constants C2 ≥ C1 > 0 independent of λ such that if

(2.13) ‖n0
ν,λ − n0‖s−2 + ‖u0ν,λ − u0‖s−2 ≤ C1λ, ν = e, i,

we have the following error estimates:

(2.14) sup
t∈R+

(
‖nν(t)− n(t)‖2s−2 + ‖uν(t)− u(t)‖2s−2

)
≤ C2λ

2, ν = e, i,

and

(2.15)

∫ +∞

0

(
‖uν(τ)− u(τ)‖2s−2 + ‖∇(nν(τ)− n(τ))‖2s−3

)
dτ ≤ C2λ

2, ν = e, i.
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Remark 2.1.
(1) Condition N ≤ ε0 in Theorem 2.1 implies that

‖n0
e,λ − n0

i,λ‖s−1 + ‖u0e,λ − u0i,λ‖s−1 + ‖|∇µ(0)‖|s−2 ≤ ε0λ
2,

which is an initial error condition in λ. The last term on the left-hand side can be expressed
as the Hs−1 norm of the initial data (n0

ν,λ, u
0
ν,λ). For example, when d = 2, 3, Theorems 2.1-2.3

can be stated with s = 3. In this case, s− 2 = 1 and

‖|∇µ(0)‖|21 = ‖∇µ(0, ·)‖21 + ‖∂t∇µ(0, ·)‖2.
From (1.7), (1.9) and (1.1), we have

∂t∇µ = ∇
(
h′i(ni)div(niui)− h′e(ne)div(neue)

)
+ 2λ−2P(neue − niui).

Therefore,

∇µ(0, ·) = ∇
(
he(n

0
e,λ)− hi(n0

i,λ)− 2φ0
λ

)
, −λ2∆φ0

λ = n0
i,λ − n0

e,λ,

and

∂t∇µ(0, ·) = ∇
(
h′i(n

0
i,λ)div(n0

i,λu
0
i,λ)− h′e(n0

e,λ)div(n0
e,λu

0
e,λ)
)

+ 2λ−2P(n0
e,λu

0
e,λ − n0

i,λu
0
i,λ).

(2) If he = hi and the initial data are well prepared, namely, (n0
e,λ, u

0
e,λ) = (n0

i,λ, u
0
i,λ), then

(2.16) N1 = 0, N0 = 2
(
‖n0

e,λ − 1‖s + ‖u0e,λ‖s
)
, N = N0.

Thus, the results in Theorems 2.1-2.3 hold provided that (n0
e,λ, u

0
e,λ) is uniformly sufficiently

close to (1, 0) in the Hs norm.
In order to see this result, we let U− = (n−, u−). The Poisson equation shows that ∇φ0

λ = 0,
hence ∇µ(0, ·) = 0. From (1.1), we have

∂tU− = O(U−,∇U−,∇φ), ∂t∇φ = −λ−2P(n−ue + niu−).

Therefore,
∂tU−(0, ·) = 0, ∂t∇φ(0, ·) = 0, ∂t∇µ(0, ·) = 0.

By induction, we obtain

∂kt U−(0, ·) = 0, ∂kt∇φ(0, ·) = 0, ∂kt∇µ(0, ·) = 0, 0 ≤ k ≤ s− 2.

This shows (2.16).
(3) If the initial data are periodic with domain Td = (R/Z)d, we replace in (1.1) condition

lim
|x|→+∞

φ(t, x) = 0 by
∫
Td φ(t, x)dx = 0 and Hs(Rd) by Hs(Td). Thus, the results in Theorems

2.1-2.3 still hold.

3. Preliminaries

3.1. A projection operator.
Let s ∈ N and f be a function from Rd to Rd. We consider the following Poisson equation

in the whole space Rd :

(3.1) ∆v = divf in Rd.

We denote by D(Rd) the space of functions in C∞(Rd) with compact support.

Lemma 3.1. Let d ≥ 2 and f ∈ Hs. The Poisson equation (3.1) admits a solution vf (week
solution if f ∈ L2(Rd)) satisfying vf ∈ L2

loc(Rd), ∇vf ∈ Hs and

(3.2) ‖∇vf‖s ≤ ‖f‖s.
The uniqueness of solutions holds in the class of functions v satisfying lim

|x|→+∞
v(x) = 0.
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Proof. Since D(Rd) is dense in Hs and f ∈ Hs, there is a sequence of functions (fn)n∈N with
fn ∈ D(Rd) and fn → f strongly in Hs. Define the Newtonian potential vn by the following
convolution :

vn = Γ ∗ divfn = ∇Γ ∗ fn,
where Γ is the fundamental solution of the Laplace equation :

Γ(x) =


1

2π
ln |x|, if d = 2,

− Cd
|x|d−2

, if d ≥ 3,
∇Γ(x) =

C ′d x

|x|d
,

with Cd and C ′d being positive constants. Obviously, ∇Γ ∈ L1
loc(Rd). A classical property of

the convolution gives vn ∈ C∞(Rd) and vn is a solution of (3.1) (see [13]).
Since fn is compactly supported, as |x| is sufficiently large, we have

|x|
|x− y|

≤ 2, ∀ y ∈ Suppfn

which implies that ∣∣∇Γ(x− y)
∣∣ ≤ C ′d2

d−1

|x|d−1
, ∀ y ∈ Suppfn.

Therefore, as |x| is sufficiently large,

|vn(x)| ≤
∫
Rd

∣∣∇Γ(x− y)fn(y)
∣∣dy ≤ C ′d2

d−1

|x|d−1
‖fn‖L1(Rd).

Let α ∈ Nd. Similarly as above, we have

∂αx vn = ∇Γ ∗ ∂αx fn, ∆(∂αx vn) = div(∂αx fn),

and

|∂αx vn(x)| ≤ C ′d2
d−1

|x|d−1
‖∂αx fn‖L1(Rd).

Let BR ⊂ Rd be the ball centered at zero of radius R > 0 and SR be its sphere. The Green
formula yields ∫

BR

|∂αx∇vn|2dx =

∫
SR

∂αx vn(∇∂αx vn · ν)ds−
∫
BR

∂αx vndiv∂αx fndx.

Since the surface area of SR is of order O(Rd−1), by the estimates above, there is a constant
C ′′ > 0 such that, as R is sufficiently large,∣∣∣∣∫

SR

∂αx vn(∇∂αx vn · ν)ds

∣∣∣∣ ≤ C ′′

Rd−1 ,

which tends to zero as R→ +∞. Passing to the limit in the Green formula above as R→ +∞,
we obtain

‖∂αx∇vn‖2 = −
∫
Rd
∂αx vndiv∂αx fndx =

∫
Rd
∂αx∇vn · ∂αx fndx.

Therefore,

‖∂αx∇vn‖ ≤ ‖∂αx fn‖,
which implies that

(3.3) ‖∇vn‖s ≤ ‖fn‖s.
By the linearity of the Poisson equation together with (3.3), we have

‖∇(vn − vn′)‖s ≤ ‖fn − fn′‖s, ∀n, n′ ∈ N.
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This shows that (∇vn)n∈N is a Cauchy sequence of Hs. Consequently, there exists V ∈ Hs such
that

∇vn −→ V strongly in Hs, as n→ +∞.
Let φ ∈ D(Rd) satisfying divφ = 0. We have

< V, φ >= lim
n→+∞

< ∇vn, φ >= − lim
n→+∞

< vn, divφ >= 0.

By a theorem of G. de Rham ([38, 14]), there exists vf ∈ L2
loc(Rd) such that ∇vf = V ∈ Hs.

Finally, passing to the limit in (3.3) and div(∇vn) = divfn (in the sense of distributions if
f ∈ L2(Rd)), we see that vf satisfies (3.2) and the Poisson equation (3.1).

The uniqueness of solutions to (3.1) is obvious with condition lim
|x|→+∞

v(x) = 0, by the Liou-

ville’s theorem for the harmonic function. �

For all fixed integer s ≥ 0, Lemma 3.1 allows us to define a linear operator P from Hs to Hs

by
Pf = ∇vf , f ∈ Hs.

For all j = 1, · · · , d, we denote by Pj the j-th component of P , namely,

Pjf = ∂xjvf .

By the Fourier transform, these operators can be formally expressed as

Pf(ξ) = F−1
(
|ξ|−2ξ(ξ · Ff(ξ))

)
, Pjf(ξ) = F−1

(
|ξ|−2ξj(ξ · Ff(ξ))

)
,

for ξ = (ξ1, · · · , ξd).
In the next lemma we show that P is an orthogonal projection operator in Hs with useful

properties, which will be used to prove the dissipation estimate of λ−1u− in the next section.
For the sake of completeness, we give the proof of the lemma. We mention that the technique
of projection operators is frequently used to study the Navier-Stokes equations, see for example
[38, 14, 7].

Lemma 3.2. Let s ∈ N and f, g : Rd −→ Rd be functions satisfying f, g ∈ Hs. It holds
(i) div(I− P)f = 0,
(ii) < (I− P)f,Pg >Hs= 0, where < ·, · >Hs denotes the inner product of Hs,
(iii) ‖f‖2s = ‖Pf‖2s + ‖(I− P)f‖2s,
(iv) (g · ∇)Pf = ∇(g · Pf)− (∇g)>Pf for s ≥ 1, where ∇g =

( ∂gi
∂xj

)
1≤i,j≤d

,

(v) P(∇f) = ∇f and (I− P)∇f = 0 for a real valued function f and s ≥ 1,
(vi) Pf ∈ Bs,T and ∂kt ∂

α
xPf = P∂kt ∂αx f for f ∈ Bs,T with ∀ k + |α| ≤ s.

(vii) The range of P, denoted by M , is a closed subspace of Hs and P is an orthogonal projection
operator onto M .

Proof. It is easy to check properties (i), (v) and (vi) from the definition of P , (iii) follows
from (ii).

It remains to prove (ii), (iv) and (vii). For f, g ∈ Hs, there exist two sequences of functions
(fn)n and (gn)n with fn, gn ∈ D(Rd) such that, as n→ +∞,

fn −→ f, gn −→ g strongly in Hs.

According to the proof of Lemma 3.1 and the definition of P , we have

Pfn = ∇vn −→ ∇vf = Pf strongly in Hs

and
Pgn −→ Pg strongly in Hs.

Let vgn be defined by ∇vgn = Pgn. Since vgn ∈ C∞(Rd), by (i) we obtain

< (I− P)fn,Pgn >Hs= − < div(I− P)fn, vgn >D(Rd),D′(Rd)= 0.
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Passing to the limit as n→ +∞ in this relation yields (ii).
To prove (iv), we first notice that

∂xjPf = ∇Pjf.
Then, with g = (g1, · · · , gd),

(g · ∇)Pf =
d∑
j=1

gj∂xjPf =
d∑
j=1

gj∇Pjf

=
d∑
j=1

[
∇
(
gjPjf

)
− Pjf

(
∇gj

)]
= ∇

(
g · Pf

)
− (∇g)>Pf,

which proves (iv).
Now we prove (vii). By Lemma 3.1, M is a subspace of Hs. Let (∇vn)n be a sequence of M

with ∇vn = Pfn and fn ∈ Hs. Assume

∇vn −→ f strongly in Hs,

with f ∈ Hs. Similarly to the proof in Lemma 3.1, there exists v ∈ D′(Rd) satisfying f = ∇v.
Therefore, f = Pf ∈ M , which implies that M is closed. Applying the projection theorem to
the Hilbert space Hs (see [4]), condition (ii) implies that P is an orthogonal projection operator
onto M . �

3.2. Estimates related to the electric field.

In what follows, s is an integer satisfying s >
d

2
+ 1. We first give Moser-type calculus

inequalities in Hs.

Lemma 3.3. (Moser-type calculus inequalities in Hs, see [28, 40])
Let α ∈ Nd. If u ∈ Hs−1 and v ∈ H |α| with |α| ≤ s− 1, then

(3.4) ‖∂αx (uv)‖ ≤ C‖u‖s−1‖v‖|α|.
If u ∈ Hs and v ∈ H |α|−1 with 1 ≤ |α| ≤ s, then

(3.5) ‖∂αx (uv)− u∂αx v‖ ≤ C‖∇u‖s−1‖v‖|α|−1.
If f is a smooth function and u ∈ H |α| with 1 ≤ |α| ≤ s− 1, then

(3.6) ‖∂αx f(u)‖ ≤ Cf‖u‖|α|,
where Cf is a constant which may depend continuously on ‖u‖s−1 and f .

Inequality (3.6) can be found in [23, 28] where more calculus inequalities of Moser-type are
available. Inequality (3.5) was given in [40] in the case of a bounded domain with an explanation
of the proof by using a lemma of Kato, and (3.4) is just a variant of (3.5). In a similar way,
we get Moser-type calculus inequalities in Bs,T as follows. In case d ≤ 3, similar inequalities in
Bs,T were proved in [31].

Lemma 3.4. (Moser-type calculus inequalities in Bs,T )
Let k ∈ N and α ∈ Nd. If u, v ∈ Bs−1,T and k + |α| ≤ s− 1, then

(3.7) ‖∂kt ∂αx (uv)‖ ≤ C‖|u‖|s−1‖|v‖|k+|α|.
If u ∈ Bs,T , v ∈ Bs−1,T and 1 ≤ k + |α| ≤ s, then

(3.8) ‖∂kt ∂αx (uv)− u∂kt ∂αx v‖ ≤ C‖|∂u‖|s−1‖|v‖|k+|α|−1.
If f is a smooth function and u ∈ Bs,T , k ≥ 1 and k + |α| ≤ s, then

(3.9) ‖∂kt ∂αx f(u)‖ ≤ Cf‖|∂tu‖|k+|α|−1,
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where ∂u stands for the first order partial derivative with respect to t or x, Cf is a constant
which may depend continuously on ‖|u‖|s and f .

Proof. We first prove (3.7). By the Leibniz formula, we have

∂kt ∂
α
x (uv) =

∑
l+l′=k, β+β′=α

cklc
′
αβ∂

l
t∂
β
xu∂

l′

t ∂
β′

x v.

Recall the lemma of Kato ([22], Lemma 2.1) as follows. Let s0 = [d/2]+1, s1 ≥ 0 and s2 ≥ 0 be
integers such that s1 + s2 − s0 ≥ 0. Define s3 = min{s1, s2, s1 + s2 − s0}. Then the imbedding
from Hs1Hs2 to Hs3 is continuous, where Hs1Hs2 is the set of all functions ab with a ∈ Hs1

and b ∈ Hs2 .
Applying this lemma with

s1 = s− 1− (l + |β|), s2 = l + |β|, s1 + s2 − s0 ≥ 0,

since l + l′ = k and β + β′ = α, we have

‖∂lt∂βxu∂l
′

t ∂
β′

x v‖ ≤ ‖∂lt∂βxu∂l
′

t ∂
β′

x v‖s3
≤ C‖∂lt∂βxu‖s1‖∂l

′

t ∂
β′

x v‖s2
≤ C‖|u‖|s−1‖|v‖|k+|α|,

which implies (3.7).
To prove (3.8), we still use the Leibniz formula :

∂kt ∂
α
x (uv)− u∂kt ∂αx v =

∑
l+l′=k, β+β′=α

l+|β|≥1

cklc
′
αβ∂

l
t∂
β
xu∂

l′

t ∂
β′

x v.

Then

‖∂kt ∂αx (uv)− u∂kt ∂αx v‖ ≤
∑

l+l′=k, β+β′=α
l+|β|≥1

cklc
′
αβ‖∂lt∂βxu∂l

′

t ∂
β′

x v‖.

Since l + |β| ≥ 1, we may write

∂lt∂
β
xu = ∂l1t ∂

β1
x (∂u), with l1 + |β1| = l + |β| − 1.

Thus, we can proceed as in the proof of (3.7) to obtain

‖∂lt∂βxu∂l
′

t ∂
β′

x v‖ ≤ ‖|∂u‖|s−1‖|v‖|k+|α|−1,

which implies (3.8).
Finally, (3.9) can be proved in a similar way as in the case d ≤ 3, see [31]. �

Now we introduce perturbed variables

ñν = nν − 1, Uν =

(
ñν

uν

)
, ν = e, i, U = (Ue, Ui, λ∇φ).

Recall that

n− = ne − ni, u− = ue − ui.
Let T > 0 and (Ue, Ui, φ) be a smooth solution of problem (1.1)-(1.2) defined on time interval
[0, T ]. We denote

(3.10) ‖|U(t)‖|s =
∑
ν=e,i

‖|Uν(t)‖|s + λ‖|∇φ(t)‖|s,

and

UT = sup
t∈[0,T ]

‖|U(t)‖|s.
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When UT is sufficiently small, from the continuous embedding Hs−1 ↪→ L∞(Rd), we see that
(nν , uν) is sufficiently close to (1, 0). Hence, we may assume

(3.11)
1

2
≤ nν ≤

3

2
, |uν | ≤

1

2
.

The following Lemma plays an important role in energy estimates in sections 4-5.

Lemma 3.5. Let UT be small enough. Let k ∈ N and α, β ∈ Nd. If 1 ≤ k + |α| ≤ s, it holds

(3.12) λ2‖∂kt ∂αx∇φ‖ ≤ C
(
‖|n−‖|s−1 + ‖|u−‖|s−1

)
,

(3.13)
∣∣〈n−∂kt ∂αxue − ∂kt ∂αx (n−ue), ∂

k
t ∂

α
x (∇φ)

〉∣∣ ≤ Cλ−2‖|ue‖|s
(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
,

and

(3.14)
∣∣〈ñi∂kt ∂αxu− − ∂kt ∂αx (ñiu−), ∂kt ∂

α
x (∇φ)

〉∣∣ ≤ Cλ−2‖|ñi‖|s
(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
,

where < ·, · > denotes the inner product of L2(Rd).

Proof. We first prove (3.12). When k = 0 and 1 ≤ |α| ≤ s, applying the Calderon-Zygmond
inequality (see [13]) together with the Poisson equation λ2∆φ = n−, we have

λ2‖∂αx∇φ‖ ≤ Cλ2‖∆φ‖|α|−1 = C‖n−‖|α|−1,
which implies that

λ2‖∂αx∇φ‖ ≤ C‖n−‖s−1, 1 ≤ |α| ≤ s.

When k ≥ 1 and k + |α| ≤ s, by (1.10) and Lemma 3.2 (vi) we have

λ2∂kt ∂
α
x (∇φ) = Pfk,α,

with
fk,α = −∂k−1t ∂αx (n−ue + niu−).

Since P is a projection operator, by the triangle inequality and (3.7) in Lemma 3.4, we get

λ2‖∂kt ∂αx∇φ‖ ≤ ‖fk,α‖ ≤ C(‖|u−‖|s−1 + ‖|n−‖|s−1).
This prove (3.12).

To prove (3.13), we write

n−∂
k
t ∂

α
xue − ∂kt ∂αx (n−ue) =

(
ue∂

k
t ∂

α
xn− − ∂kt ∂αx (n−ue) + n−∂

k
t ∂

α
xue
)
− ue∂kt ∂αxn−.

By the continuous embedding Hs−1 ↪→ L∞(Rd) and (3.8) in Lemma 3.4, we have

‖ue∂kt ∂αxn− − ∂kt ∂αx (n−ue) + n−∂
k
t ∂

α
xue‖ ≤ C‖|n−‖|s−1‖|ue‖|s + C‖n−‖∞‖|ue‖|s

≤ C‖|n−‖|s−1‖|ue‖|s.
It follows from (3.12) that∣∣〈n−∂kt ∂αxue + ue∂

k
t ∂

α
xn− − ∂kt ∂αx (n−ue), ∂

k
t ∂

α
x (∇φ)

〉∣∣ ≤ C‖|n−‖|s−1‖|ue‖|s‖∂kt ∂αx (∇φ)‖
≤ Cλ−2‖|ue‖|s

(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
.(3.15)

Next, using the Poisson equation λ2∆φ = n− and a straightforward calculation, we have〈
− ue∂kt ∂αxn−, ∂kt ∂αx (∇φ)

〉
= −λ2

〈
ue∆∂

k
t ∂

α
xφ, ∂

k
t ∂

α
x (∇φ)

〉
= −λ2

〈
divue, |(∂kt ∂αx∇φ)|2

〉
+ λ2

d∑
j=1

〈∂(∂kt ∂
α
xφ)

∂xj
,∇(∂kt ∂

α
xφ) · ∂u

∂xj

〉
.

By (3.12), we get∣∣〈ue∂kt ∂αxn−, ∂kt ∂αx (∇φ)
〉∣∣ ≤ Cλ2‖∇ue‖∞‖∂kt ∂αx (∇φ)‖2

≤ Cλ−2‖|ue‖|s
(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
.
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This together with (3.15) implies (3.13).
Finally, applying (3.8) in Lemma 3.4 yields∣∣〈ñi∂kt ∂αxu− − ∂kt ∂αx (ñiu−), ∂kt ∂

α
x (∇φ)

〉∣∣ ≤ C‖ñi∂kt ∂αxu− − ∂kt ∂αx (ñiu−)‖‖∂kt ∂αx (∇φ)‖
≤ Cλ−2‖|ñi‖|s

(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
,

which proves (3.14). �

4. Energy estimates

In this section, we assume that UT is sufficiently small.

4.1. Classical energy estimates.
The first lemma concerns an L2 energy equality for system (1.1).

Lemma 4.1. For all t ∈ [0, T ], it holds that

(4.1)
d

dt

∫
Rd

(∑
ν=e,i

(
h′ν(n

∗
ν)|ñν |2 + nν |uν |2

)
+ λ2|∇φ|2

)
dx+ 2

∑
ν=e,i

∫
Rd
nν |uν |2dx = 0,

where n∗ν is between 1 and nν.

Proof. The energy conservation of the Euler equations is

∂t

(
nν |uν |2 + 2Hν(nν)

)
+ div

(
nν |uν |2uν + 2nνhν(nν)uν

)
+ 2nν |uν |2 = −2qνnνuν · ∇φ,

where
H ′ν(nν) = hν(nν), ν = e, i.

By the Taylor formula, we have

Hν(nν) = Hν(1) + hν(1)(nν − 1) +
1

2
h′ν(n

∗
ν)(nν − 1)2,

hence,

∂t
(
h′ν(n

∗
ν)|ñν |2 + nν |uν |2

)
+ div

(
nν |uν |2uν + 2nν(hν(nν)− hν(1))uν

)
+ 2nν |uν |2

= −2qνnνuν · ∇φ.
Recall (1.9), i.e.

λ2∂t∇φ = P(niui − neue).
Then

λ2∂t|∇φ|2 = 2P(niui − neue) · ∇φ.
It follows that

∂t

(∑
ν=e,i

(
h′ν(n

∗
ν)|ñν |2 + nν |uν |2

)
+ λ2|∇φ|2

)
+
∑
ν=e,i

div
(
nν |uν |2uν + 2nν(hν(nν)− hν(1))uν

)
+ 2

∑
ν=e,i

nν |uν |2

= −2(I− P)(niui − neue) · ∇φ.

Integrating this equation on Rd and applying Lemma 3.2 (ii) and (v) yield (4.1). �

Next, we study higher order energy estimates of the solution in space Bs,T . For this purpose,
we write the equations for (nν , uν) in (1.1) as

(4.2) ∂tUν +
d∑
j=1

Aνj (Uν)∂xjUν = Kν(uν ,∇φ), ν = e, i,
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where

Aνj (Uν) =

(
uνj nνe

>
j

h′ν(nν)ej uνjId

)
, j = 1, · · · , d,

and

Kν = −

(
0

qν∇φ+ uν

)
.

Here Id stands for the unit matrix of order d, uνj is the j-th component of uν , (e1, · · · , ed) is
the canonical basis of Rd and e>j is the transpose of ej.

Introduce the symmetric and positive definite matrix Aν0(nν) as follows

Aν0(nν) =

(
h′ν(nν) 0

0 nνId

)
, ν = e, i.

Then the matrix Ãνj (Uν) defined by

Ãνj (Uν)
def
= Aν0(nν)A

ν
j (Uν) =

(
h′ν(nν)uνj p′ν(nν)e

>
j

p′ν(nν)ej nνuνjId

)
is symmetric for all 1 ≤ j ≤ d. Consequently, system (4.2) for Uν is symmetrizable hyperbolic.

Lemma 4.2. For all t ∈ [0, T ], it holds that

d

dt

∑
1≤k+|α|≤s

(∑
ν=e,i

〈
Aν0∂

k
t ∂

α
xUν , ∂

k
t ∂

α
xUν

〉
+ λ2‖∂kt ∂αx∇φ‖2

)
+

∑
ν=e,i

1≤k+|α|≤s

‖∂kt ∂αxuν‖2

≤ C
∑
ν=e,i

‖|U‖|s
(
‖|uν‖|2s + ‖|∇nν‖|2s−1

)
+ Cλ−2‖|U‖|s

(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
.(4.3)

Proof. Let 1 ≤ k + |α| ≤ s. Applying the differential operator ∂kt ∂
α
x to (4.2), we get

∂t∂
k
t ∂

α
xUν +

d∑
j=1

Aνj (Uν)∂xj∂
k
t ∂

α
xUν = ∂kt ∂

α
xKν + Ik,αν ,

supplemented by the Poisson equation

λ2∆∂kt ∂
α
xφ = ∂kt ∂

α
xn−,

where

Ik,αν =
d∑
j=1

(
Aνj (Uν)∂

k
t ∂

α
x (∂xjUν)− ∂kt ∂αx (Aνj (Uν)∂xjUν)

)
.

Taking the inner product of the above equation for ∂kt ∂
α
xUν with Aν0(nν)∂

k
t ∂

α
xUν in L2(Rd) yields

a classical energy equality

d

dt

〈
Aν0(nν)∂

k
t ∂

α
xUν , ∂

k
t ∂

α
xUν

〉
=
〈
div ~Aν(Uν)∂

k
t ∂

α
xUν , ∂

k
t ∂

α
xUν

〉
+ 2
〈
Aν0(nν)∂

k
t ∂

α
xKν , ∂

k
t ∂

α
xUν

〉
+ 2
〈
Aν0(nν)I

k,α
ν , ∂kt ∂

α
xUν

〉
(4.4)

= Rk,α
1ν +Rk,α

2ν +Rk,α
3ν ,

where

div ~Aν(Uν) = ∂tA
ν
0(nν) +

d∑
j=1

∂xj Ã
ν
j (Uν).

In what follows, we control Rk,α
1ν , Rk,α

2ν and Rk,α
3ν in (4.4).
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Estimates of Rk,α
1ν and Rk,α

3ν . Using classical Sobolev embedding theorem, we have

‖∂tnν‖∞ = ‖div(nνuν)‖∞ ≤ C‖uν‖s.
Then ∣∣∣〈div ~Aν(Uν)∂

k
t ∂

α
xUν , ∂

k
t ∂

α
xUν

〉∣∣∣ ≤ C
(
‖∂tnν‖∞ + ‖∇Uν‖∞

)(
‖∂kt ∂αx ñν‖2 + ‖|uν‖|2s

)
≤ C‖|U‖|s

(
‖∂kt ∂αx ñν‖2 + ‖|uν‖|2s

)
.

When α = 0, by ∂tñν = −div(nνuν), we get

‖∂kt ñν‖ = ‖∂k−1t div(nνuν)‖ ≤ C‖|uν‖|s.
When |α| ≥ 1, we easily see that

‖∂kt ∂αx ñν‖ ≤ ‖|∇nν‖|s−1.
It follows that

(4.5) |Rk,α
1ν | =

∣∣∣〈div ~Aν(Uν)∂
k
t ∂

α
xUν , ∂

k
t ∂

α
xUν

〉∣∣∣ ≤ C‖|U‖|s
(
‖|uν‖|2s + ‖|∇nν‖|2s−1

)
.

In view of the expression of Ik,αν , by (3.5)-(3.6) in Lemma 3.3 and (3.8)-(3.9) in Lemma 3.4, we
get

(4.6) |Rk,α
3ν | = 2

∣∣∣〈Aν0(nν)I
k,α
ν , ∂kt ∂

α
xUν

〉∣∣∣ ≤ C‖|U‖|s
(
‖|uν‖|2s + ‖|∇nν‖|2s−1

)
.

Estimate of Rk,α
2ν . From the explicit expressions of Aν0(nν), Kν and Uν , we have

Rk,α
2ν = 2

〈
Aν0(nν)∂

k
t ∂

α
xKν , ∂

k
t ∂

α
xUν

〉
= −2

〈
nν∂

k
t ∂

α
xuν , ∂

k
t ∂

α
xuν
〉
− 2
〈
qνnν∂

k
t ∂

α
xuν , ∂

k
t ∂

α
x∇φ

〉
.

From (3.11), we have
−2
〈
nν∂

k
t ∂

α
xuν , ∂

k
t ∂

α
xuν
〉
≤ −‖∂kt ∂αxuν‖2.

Since n− = ne − ni and u− = ue − ui, we obtain

−
∑
ν=e,i

〈
qνnν∂

k
t ∂

α
xuν , ∂

k
t ∂

α
x∇φ

〉
=
〈
ne∂

k
t ∂

α
xue − ni∂kt ∂αxui, ∂kt ∂αx∇φ

〉
=
〈
ñe∂

k
t ∂

α
xue − ∂kt ∂αx (ñeue)− ñi∂kt ∂αxui + ∂kt ∂

α
x (ñiui), ∂

k
t ∂

α
x∇φ

〉
+
〈
∂kt ∂

α
x (neue − niui), ∂kt ∂αx∇φ

〉
=
〈
n−∂

k
t ∂

α
xue − ∂kt ∂αx (n−ue), ∂

k
t ∂

α
x∇φ

〉
+
〈
ñi∂

k
t ∂

α
xu− − ∂kt ∂αx (ñiu−), ∂kt ∂

α
x∇φ

〉
+
〈
∂kt ∂

α
x (neue − niui), ∂kt ∂αx∇φ

〉
.(4.7)

For the first two terms on the right-hand side of (4.7), by (3.13)-(3.14) in Lemma 3.5, we have∣∣〈n−∂kt ∂αxue − ∂kt ∂αx (n−ue), ∂
k
t ∂

α
x∇φ

〉∣∣ ≤ Cλ−2‖|ue‖|s
(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
,∣∣〈ñi∂kt ∂αxu− − ∂kt ∂αx (ñiu−), ∂kt ∂

α
x∇φ

〉∣∣ ≤ Cλ−2‖|ñi‖|s
(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
.

For the last term in (4.7), we apply ∂kt ∂
α
x to (1.9) and Lemma 3.2 (vi) to get

λ2∂t(∂
k
t ∂

α
x∇φ) = P∂kt ∂αx (niui − neue).

Therefore,
λ2

2

d

dt
‖∂kt ∂αx∇φ‖2 =

〈
P∂kt ∂αx (niui − neue), ∂kt ∂αx∇φ

〉
.

Thus, Lemma 3.2 (ii) yields

λ2

2

d

dt
‖∂kt ∂αx∇φ‖2 =

〈
∂kt ∂

α
x (niui − neue), ∂kt ∂αx∇φ

〉
.
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These estimates imply that

(4.8)
∑
ν=e,i

(
Rk,α

2ν + ‖∂kt ∂αxuν‖2
)

+ λ2
d

dt
‖∂kt ∂αx∇φ‖2 ≤ Cλ−2‖|U‖|s

(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
.

Summing (4.4) for ν = e, i and all indices k ∈ N and α ∈ Nd with 1 ≤ k + |α| ≤ s, by (4.5),
(4.6) and (4.8), we obtain (4.3). �

4.2. Dissipation estimates of ∇nν and λ−1n−.
Formulas (4.1) and (4.3) give a time-dissipation estimate of uν . However, some other terms,

such as ‖|∇nν‖|2s−1, λ−2‖|n−‖|2s−1 and λ−2‖|u−‖|2s−1, still arise on the right-hand side of (4.3).
Now we focus on the estimation of these terms. The following Lemma gives a time-dissipation
of ñν and λ−1n−.

Lemma 4.3. There exists a positive constant a0 independent of λ and t such that

d

dt

∑
ν=e,i

k+|β|≤s−1

〈
∂kt ∂

β
xuν , ∂

k
t ∂

β
x∇nν

〉
+ a0

(∑
ν=e,i

‖|∇nν‖|2s−1 + λ−2‖|n−‖|2s−1
)

≤ C
∑
ν=e,i

‖|uν‖|2s + C
∑
ν=e,i

‖|U‖|s
(
‖|uν‖|2s + ‖|∇nν‖|2s−1

)
.(4.9)

Proof. For k ∈ N and β ∈ Nd with 0 ≤ k + |β| ≤ s− 1, applying ∂kt ∂
β
x to (1.4) and taking the

inner product with ∂kt ∂
β
x∇nν in L2(Rd), we obtain〈
h′ν(nν)∂

k
t ∂

β
x∇nν , ∂kt ∂βx∇nν

〉
+
〈
qν∂

k
t ∂

β
x∇φ, ∂kt ∂βx∇nν

〉
= −

〈
∂t∂

k
t ∂

β
xuν + ∂kt ∂

β
xuν , ∂

k
t ∂

β
x∇nν

〉
+
〈
Sk,β, ∂kt ∂

β
x∇nν

〉
,(4.10)

where
Sk,β = −∂kt ∂βx

(
(uν · ∇)uν

)
+ h′ν(nν)∂

k
t ∂

β
x∇nν − ∂kt ∂βx (h′ν(nν)∇nν).

Since h′ν(τ) > 0 for τ > 0, we can choose a positive constant a0 ≤ 1 independent of t and λ
such that

h′ν(nν) ≥ 2a0, ν = e, i.

It follows that 〈
h′ν(nν)∂

k
t ∂

β
x∇nν , ∂kt ∂βx∇nν

〉
≥ 2a0‖∂kt ∂βx∇nν‖2.

By the triangle inequality and (3.7)-(3.9) in Lemma 3.4, we have∣∣〈Sk,β, ∂kt ∂βx∇nν〉∣∣ ≤ C‖|U‖|s
(
‖|uν‖|2s + ‖|∇nν‖|2s−1

)
.

For the first term on the right-hand side of (4.10), by an integration by parts, we get

−
〈
∂t∂

k
t ∂

β
xuν + ∂kt ∂

β
xuν , ∂

k
t ∂

β
x∇nν

〉
= − d

dt

〈
∂kt ∂

β
xuν , ∂

k
t ∂

β
x∇nν

〉
+
〈
∂kt ∂

β
xdivuν , ∂

k
t ∂

β
xdiv(nνuν)

〉
−
〈
∂kt ∂

β
xuν , ∂

k
t ∂

β
x∇nν

〉
,

with ∣∣〈∂kt ∂βxdivuν , ∂
k
t ∂

β
xdiv(nνuν)

〉∣∣+
∣∣〈∂kt ∂βxuν , ∂kt ∂βx∇nν〉∣∣

≤ C‖|uν‖|2s + C‖|uν‖|s‖∂kt ∂βx∇nν‖
≤ C‖|uν‖|2s + a0‖∂kt ∂βx∇nν‖2.

For the term
〈
qν∂

k
t ∂

β
x∇φ, ∂kt ∂βx∇nν

〉
, by the Poisson equation λ2∆φ = n−, we have∑

ν=e,i

〈
qν∂

k
t ∂

β
x∇nν , ∂kt ∂βx∇φ

〉
= −

〈
∂kt ∂

β
x∇n−, ∂kt ∂βx∇φ

〉
=
〈
∂kt ∂

β
xn−, ∂

k
t ∂

β
x∆φ

〉
= λ−2‖∂kt ∂βxn−‖2.
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Adding (4.10) for ν = e, i and all k ∈ N, β ∈ Nd with k+ |β| ≤ s−1 together with the estimates
above gives (4.9). �

4.3. Dissipation estimates of λ−1u−.
We make the orthogonal decomposition of u− as

u− = Pu− + (I− P)u−.

The dissipation estimates of λ−1Pu− and λ−1(I−P)u− are studied in Lemma 4.4 and Lemma
4.5 below, respectively.

Lemma 4.4. For any t ∈ [0, T ], it holds

d

dt

∑
k+|β|≤s−1

(〈
∂k+1
t ∂βxu− + ∂kt ∂

β
xG+

1

2
∂kt ∂

β
xu−, ∂

k
t ∂

β
xu−

〉)
+ 2λ−2‖|Pu−‖|2s−1

≤ C
∑
ν=e,i

(
‖|uν‖|2s + ‖|∇nν‖|2s−1

)
+ Cλ−2‖|U‖|s

(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
,(4.11)

where

(4.12) G = ∇(he(ne)− hi(ni)) + (u− · ∇)ue + (ui · ∇)u−.

Proof. With the definition of G above, equation (1.11) can be written as

∂2t u− + ∂t(u− +G) + 2λ−2Pu− = −2λ−2P(n−ue + ñiu−).

Let k ∈ N and β ∈ Nd with k + |β| ≤ s − 1. Applying ∂kt ∂
β
x to this equation, by Lemma 3.2

(vi), we have

∂t(∂
k+1
t ∂βxu−) + ∂k+1

t ∂βx (u− +G) + 2λ−2∂kt ∂
β
xPu− = qk,β1 ,

where
qk,β1 = −2λ−2P∂kt ∂βx (n−ue + ñiu−).

Taking the inner product of this equation with ∂kt ∂
β
xu− in L2(Rd) yields

d

dt

(〈
∂k+1
t ∂βxu− + ∂kt ∂

β
xG+

1

2
∂kt ∂

β
xu−, ∂

k
t ∂

β
xu−

〉)
+ 2λ−2

∥∥∂kt ∂βxPu−∥∥2(4.13)

=
〈
∂k+1
t ∂βxu− + ∂kt ∂

β
xG, ∂

k+1
t ∂βxu−

〉
+
〈
qk,β1 , ∂kt ∂

β
xu−

〉
.

In view of u− = ue − ui and k + |β| ≤ s− 1, we have

|
〈
∂k+1
t ∂βxu−, ∂

k+1
t ∂βxu−

〉
| ≤ C

∑
ν=e,i

‖|uν‖|2s.

By (4.12), the highest derivative order of ∇nν and uν in ∂kt ∂
β
xG is s − 1 and s, respectively.

Applying (3.4)-(3.6) in Lemma 3.3 and (3.7)-(3.9) in Lemma 3.4, it yields

|
〈
∂kt ∂

β
xG, ∂

k+1
t ∂βxu−

〉
| ≤ ‖∂kt ∂βxG‖‖∂k+1

t ∂βxu−‖

≤ C
∑
ν=e,i

(
‖|uν‖|2s + ‖|∇nν‖|2s−1

)
.

Since P is a projection operator in L2(Rd) and k + |β| ≤ s − 1, again by (3.7) in Lemma 3.4,
we have

‖qk,β1 ‖ ≤ 2λ−2‖∂kt ∂βx (n−ue + ñiu−)‖
≤ Cλ−2‖|U‖|s(‖|n−‖|s−1 + ‖|u−‖|s−1).

Therefore, ∣∣〈qk,β1 , ∂kt ∂
β
xu−

〉∣∣ ≤ ‖qk,β1 ‖‖∂kt ∂βxu−‖
≤ Cλ−2‖|U‖|

(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
.
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Combining the above inequalities, and summing (4.13) for all indices k, β with k + |β| ≤ s− 1
yields the estimate (4.11). �

Lemma 4.5. For all t ∈ [0, T ], it holds

λ−2
d

dt
‖|(I− P)u−‖|2s−1 + 2λ−2‖|(I− P)u−‖|2s−1 ≤ Cλ−2‖|U‖|s‖|u−‖|2s−1.(4.14)

Proof. For all index k ∈ N and β ∈ Nd with 0 ≤ k + |β| ≤ s− 1, applying ∂kt ∂
β
x to (1.12), we

have
∂t(∂

k
t ∂

β
x (I− P)u−) + ∂kt ∂

β
x (I− P)u− = (I− P)(qk,β2 + qk,β3 ),

where
qk,β2 = −∂kt ∂βx

(
(u− · ∇)ue

)
, qk,β3 = −∂kt ∂βx

(
(ui · ∇)u−

)
.

Taking the inner product of this equation with 2∂kt ∂
β
x (I− P)u− in L2(Rd) yields

(4.15)
d

dt
‖∂kt ∂βx (I− P)u−‖2 + 2‖∂kt ∂βx (I− P)u−‖2 = 2

〈
(I− P)(qk,β2 + qk,β3 ), ∂kt ∂

β
x (I− P)u−

〉
.

Noticing that the highest derivative order of u− in qk,β2 is s− 1, by (3.7) in Lemma 3.4, we have

(4.16)
∣∣〈(I− P)qk,β2 , ∂kt ∂

β
x (I− P)u−

〉∣∣ ≤ ‖qk,β2 ‖‖∂kt ∂βx (I− P)u−‖ ≤ C‖|U‖|s‖|u−‖|2s−1.
By Lemma 3.2 (ii), we also have〈

(I− P)qk,β3 , ∂kt ∂
β
x (I− P)u−

〉
=
〈
qk,β3 , ∂kt ∂

β
x (I− P)u−

〉
.

This last term on the right-hand side is estimated as follows.
Using the decomposition

u− = Pu− + (I− P)u−,

qk,β3 can be written as

qk,β3 = −∂kt ∂βx
(
(ui · ∇)Pu−

)
− ∂kt ∂βx

(
(ui · ∇)(I− P)u−

)
.

Applying Lemma 3.2 (iv), we have

qk,β3 = −∂kt ∂βx∇
(
ui · Pu−

)
+ ∂kt ∂

β
x

(
(∇ui)>Pu−

)
− ∂kt ∂βx

(
(ui · ∇)(I− P)u−

)
.

By an integration by parts together with Lemma 3.2 (i) yields〈
qk,β3 , ∂kt ∂

β
x (I− P)u−

〉
=
〈
∂kt ∂

β
x

(
(∇ui)>Pu−

)
, ∂kt ∂

β
x (I− P)u−

〉
−
〈
∂kt ∂

β
x

(
(ui · ∇)(I− P)u−

)
, ∂kt ∂

β
x (I− P)u−

〉
= Jk,β1 + Jk,β2 .

Using again the fact that P is a projection operator in L2(Rd) together with (3.7) in Lemma
3.4 and k + |β| ≤ s− 1, we get∣∣Jk,β1

∣∣ ≤ ‖∂kt ∂βx((∇ui)>Pu−)‖‖∂kt ∂βx (I− P)u−‖
≤ C‖|U‖|s‖|Pu−‖|s−1‖|(I− P)u−‖|s−1
≤ C‖|U‖|s‖|u−‖|2s−1.

Notice that〈
(ui · ∇)∂kt ∂

β
x (I− P)u−, ∂

k
t ∂

β
x (I− P)u−

〉
= −1

2

〈
(divui)∂

k
t ∂

β
x (I− P)u−, ∂

k
t ∂

β
x (I− P)u−

〉
.

It follows that

Jk,β2 =−
〈
∂kt ∂

β
x (ui · ∇)(I− P)u− − (ui · ∇)∂kt ∂

β
x (I− P)u−, ∂

k
t ∂

β
x (I− P)u−

〉
+

1

2

〈
(divui)∂

k
t ∂

β
x (I− P)u−, ∂

k
t ∂

β
x (I− P)u−

〉
.
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By (3.8) in Lemma 3.4 and the Cauchy-Schwarz inequality, it gives∣∣〈∂kt ∂βx ((ui · ∇)(I− P)u−)− (ui · ∇)∂kt ∂
β
x (I− P)u−, ∂

k
t ∂

β
x (I− P)u−

〉∣∣
≤ C‖|U‖|s‖|(I− P)u−‖|2s−1
≤ C‖|U‖|s‖|u−‖|2s−1,

and ∣∣〈(divui)∂
k
t ∂

β
x (I− P)u−, ∂

k
t ∂

β
x (I− P)u−

〉∣∣ ≤ ‖div(ui)‖∞‖∂kt ∂βx (I− P)u−‖2

≤ C‖|U‖|s‖|u−‖|2s−1.
The last two estimates imply

|Jk,β2 | ≤ C‖|U‖|s‖|u−‖|2s−1.
Therefore,

(4.17) |
〈
qk,β3 , ∂kt ∂

β
x (I− P)u−

〉
| = |Jk,β1 + Jk,β2 | ≤ C‖|U‖|s‖|u−‖|2s−1.

Finally, multiplying (4.15) by λ−2 and summing it for all indices k ∈ N, β ∈ Nd with k+ |β| ≤
s− 1, using (4.16)-(4.17), we obtain (4.14). �

From Lemmas 4.1-4.5, we obtain the following estimate.

Lemma 4.6. Let UT be sufficiently small. For all t ∈ [0, T ] and λ ∈ (0, 1], it holds

(4.18) ‖|U(t)‖|2s + λ−2‖|(I− P)u−(t)‖|2s−1 +

∫ t

0

Dλ(τ)dτ ≤ C
(
‖|U(0)‖|2s + λ−2‖|u−(0)‖|2s−1

)
,

where

(4.19) Dλ(t) =
∑
ν=e,i

(
‖|uν(t)‖|2s + ‖|∇nν(t)‖|2s−1

)
+ λ−2

(
‖|n−(t)‖|2s−1 + ‖|u−(t)‖|2s−1

)
.

Proof. Let π1 and π2 be two sufficiently small positive constants to be chosen. We introduce
a Lyapunov function

Lλ(t) =

∫
Rd

(∑
ν=e,i

(
h′ν(n

∗
ν)|ñν |2 + nν |uν |2

)
+ λ2|∇φ|2

)
dx

+
∑

1≤k+|α|≤s

(∑
ν=e,i

〈
Aν0∂

k
t ∂

α
xUν , ∂

k
t ∂

α
xUν

〉
+ λ2‖∂kt ∂αx∇φ‖2

)
+ π1

∑
ν=e,i

k+|β|≤s−1

〈
∂kt ∂

β
xuν , ∂

k
t ∂

β
x∇nν

〉
+ π2

∑
k+|β|≤s−1

〈
∂k+1
t ∂βxu− + ∂kt ∂

β
xG+

1

2
∂kt ∂

β
xu−, ∂

k
t ∂

β
xu−

〉
+ λ−2‖|(I− P)u−‖|2s−1.

Adding (4.1), (4.3), (4.9) multiplied by π1 and (4.11) multiplied by π2 and (4.14) yields the
following energy estimate

(4.20) L′λ(t) + D̃λ(t) ≤ Rλ(t),

where

D̃λ(t) =
∑
ν=e,i

(
2

∫
Rd
nν |uν |2dx+

∑
1≤k+|α|≤s

‖∂kt ∂αxuν‖2 + a0π1‖|∇nν‖|2s−1
)

+ λ−2
(
a0π1‖|n−‖|2s−1 + 2π2‖|Pu−‖|2s−1 + 2‖|(I− P)u−‖|2s−1

)
,

Rλ(t) =C
∑
ν=e,i

(
(π1 + π2)‖|uν‖|2s + π2‖|∇nν‖|2s−1

)
+ C‖|U‖|s

∑
ν=e,i

(
‖|uν‖|2s + ‖|∇nν‖|2s−1

)
+ Cλ−2‖|U‖|s

(
‖|n−‖|2s−1 + ‖|u−‖|2s−1

)
.
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Since Aν0(nν) is positive definite, from (3.10), the first two terms in the expression of Lλ(t) are
uniformly equivalent to ‖|U(t)‖|2s. From (4.12) and u− = ue − ui, we have∑

ν=e,i
k+|β|≤s−1

∣∣〈∂kt ∂βxuν , ∂kt ∂βx∇nν〉∣∣+ ∑
k+|β|≤s−1

∣∣〈∂k+1
t ∂βxu−+∂kt ∂

β
xG+

1

2
∂kt ∂

β
xu−, ∂

k
t ∂

β
xu−

〉∣∣ ≤ C‖|U(t)‖|2s.

Therefore, when π1 and π2 are sufficiently small, Lλ(t) is uniformly equivalent to

‖|U(t)‖|2s + λ−2‖|(I− P)u−(t)‖|2s−1.

Next, by Lemma 3.2 (iii), we have

‖|u−‖|2s−1 = ‖|Pu−‖|2s−1 + ‖|(I− P)u−‖|2s−1.

From the definition of D̃λ(t) and nν ≥ 1/2, it is easy to see that

D̃λ(t) ≥
∑
ν=e,i

(
‖|uν(t)‖|2s + a0π1‖|∇nν(t)‖|2s−1

)
+ λ−2

(
a0π1‖|n−(t)‖|2s−1 + 2π2‖|u−(t)‖|2s−1

)
.

This together with (4.19) shows that D̃λ(t) is uniformly equivalent to Dλ(t). Now we choose
π1 and π2 such that

C(π1 + π2) ≤
1

4
, Cπ2 ≤

1

4
a0π1 ≤

1

4
.

If

CUT ≤
1

4
min{a0π1, π2},

we also have CUT ≤ 1/4, hence,

Rλ(t) ≤
1

2
D̃λ(t).

It follows from (4.20) that

L′λ(t) +
1

2
D̃λ(t) ≤ 0.

Integrating it in time yields (4.18). �

5. Proof of Theorems 2.1-2.2

5.1. Estimates of the initial energy.
Recall that, for all integer s ≥ 1,

‖|v‖|2s = ‖v‖2s +
s∑

k=1

‖∂kt v‖2s−k.

Then

‖|v‖|s ≤ ‖v‖s +
s∑

k=1

‖∂kt v‖s−k,

which will be used in the proof below.

Lemma 5.1. It holds

(5.1) ‖|U(0)‖|s ≤ CN0 + Cλ−2
(
‖|n−(0)‖|s−1 + ‖|u−(0)‖|s−1

)
,

where N0 is defined by (2.2).
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Proof. We first prove

(5.2) ‖|∇φ(0)‖|s ≤ N0 + Cλ−2
(
‖|n−(0)‖|s−1 + ‖|u−(0)‖|s−1

)
.

Obviously,

‖∇φ(0, ·)‖s = ‖∇φ0
λ‖s ≤ N0,

and by (3.12) in Lemma 3.5, we have

s∑
k=1

‖∂kt∇φ(0, ·)‖s−k ≤ Cλ−2
(
‖|n−(0)‖|s−1 + ‖|u−(0)‖|s−1

)
.

This proves (5.2).
Next, we prove

(5.3) ‖|Uν(0)‖|s ≤ CN0 + Cλ−2
(
‖|n−(0)‖|s−1 + ‖|u−(0)‖|s−1

)
, ν = e, i.

Obviously,

‖Uν(0, ·)‖s = ‖(n0
ν,λ − 1, u0ν,λ)‖s ≤ CN0.

From (4.2), for ν = e, i, we have

∂tUν = −
d∑
j=1

Aνj (Uν)∂xjUν +

(
0

−qν∇φ− uν

)
,

which can be written in the form

∂tUν = O(Uν) +O(∇Uν) +O(∇φ).

Therefore,

‖∂kt Uν‖s−k ≤ C
(
‖Uν‖s + ‖|∇φ‖|s

)
, ∀ 1 ≤ k ≤ s,

which implies that

‖∂kt Uν(0, ·)‖s−k ≤ C
(
‖(n0

ν,λ − 1, u0ν,λ)‖s + ‖|∇φ(0)‖|s
)
, ∀ 1 ≤ k ≤ s.

This together with (5.2) yields (5.3).
Finally, (5.1) follows from (5.2) and (5.3) together with the definition of U and λ ≤ 1. �

Lemma 5.2. It holds

(5.4) λ−2(‖|n−(0)‖|s−1 + ‖|u−(0)‖|s−1) ≤ CN1,

where N1 is defined by (2.2).

Proof. Let

U− =

(
n−

u−

)
, Bν

j (Uν) =

(
uνj nνe

>
j

0 uνjId

)
, j = 1, · · · , d.

We rewrite system (4.2) as

∂tUν = −
d∑
j=1

Bν
j (Uν)∂xjUν −

(
0

∇(qνφ+ hν(nν)) + uν

)
, ν = e, i.

Then

∂tU− = −
d∑
j=1

Be
j (Ue)∂xjU− −

d∑
j=1

(
Be
j (Ue)−Bi

j(Ui)
)
∂xjUi −

(
0

∇µ+ u−

)
,

where µ is defined in (1.6)-(1.7) and recalled here

µ = he(ne)− hi(ni)− 2φ.
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Let u−j be the j-th component of u−. Since

Be
j (Ue)−Bi

j(Ui) =

(
u−j n−e

>
j

0 u−jId

)
,

the equation for U− is of the form

∂tU− = O(U−) +O(∇U−) +O(∇µ).

Therefore,
‖∂kt U−‖s−1−k ≤ C

(
‖U−‖s−1 + ‖|∇µ‖|s−2

)
, ∀ 1 ≤ k ≤ s− 1,

which implies that

‖∂kt U−(0, ·)‖s−1−k ≤ C(‖n−(0, ·)‖s−1 + ‖u−(0, ·)‖s−1) + C‖|∇µ(0)‖|s−2, ∀ 1 ≤ k ≤ s− 1.

This proves (5.4) by the definition of N1. �

From Lemmas 5.1-5.2, since λ ≤ 1, we easily get the following Proposition.

Proposition 5.1. It holds

(5.5) ‖|U(0)‖|s + λ−1‖|u−(0)‖|s−1 ≤ CN ,
where N is defined by (2.1).

5.2. Proof of Theorem 2.1.
Since ‖ ·‖s ≤ ‖| ·‖|s for all integer s, estimates (4.18) and (5.5) show that the smooth solution

U is uniformly bounded in L∞([0, T ];Hs) with respect to λ and T . By the bootstrap principle
(see [30, 37]), it yields uniformly global solution. In particular, these estimates give (2.3)-(2.5)
and (2.6) in which the estimate for ∇µ follows from equation (1.8), i.e.

∇µ = −∂tu− − (ue · ∇)u− − (u− · ∇)ui − u−.
This proves Theorem 2.1. �

5.3. Proof of Theorem 2.2.
Let ν = e, i. From (2.3)-(2.4) and (2.6) together with the definition of ‖| · ‖|s, we have the

following bounds and convergences of the solution sequences :
(i) (nν,λ − 1)λ>0 and (uν,λ)λ>0 are bounded in L∞(R+;Hs) and L∞(R+;Hs) ∩ L2(R+;Hs),
respectively,
(ii) (∂tnν,λ)λ>0 and (∂tuν,λ)λ>0 are bounded in L∞(R+;Hs−1) and L∞(R+;Hs−1)∩L2(R+;Hs−1),
respectively,

(iii) ne,λ − ni,λ → 0, ue,λ − ui,λ → 0 strongly in L2(R+;Hs−1),

(iv) ∂t
(
ue,λ − ui,λ

)
→ 0 strongly in L2(R+;Hs−2).

By (i)-(ii) and a classical compactness theorem (see [35]), for all T > 0, (nν,λ − 1)λ>0 and
(uν,λ)λ>0 are relatively compact in C([0, T ];Hs−1

loc ). This together with (iii) implies that there
exist functions n and u with n− 1 ∈ L∞(R+;Hs) and u ∈ L∞(R+;Hs)∩L2(R+;Hs) such that
(up to subsequences) (2.8) and (2.9) hold.

By the first equation in (1.1) and by adding equations (1.4) for ν = e, i, we have{
∂tne,λ + div(ne,λue,λ) = 0,

∂t(ue,λ + ui,λ) + ue,λ · ∇ue,λ + ui,λ · ∇ui,λ +∇
(
he(ne,λ) + hi(ni,λ)

)
= −ue,λ − ui,λ.

The strong convergence of (nν,λ)λ>0 and (uν,λ)λ>0 in (2.9) allows to pass to the limit in this
system in the sense of distributions to obtain (2.11). Since this convergence is uniform in time,
we also have (2.12). Next, subtracting equations (1.4) for ν = e, i, we have

2∇φλ = ∇
(
he(ne,λ)− hi(ni,λ)

)
+ ∂t

(
ue,λ − ui,λ) + (ue,λ − ui,λ) · ∇ue,λ

+ui,λ · ∇(ue,λ − ui,λ) + ue,λ − ui,λ.
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Again by (2.9) and the convergences (iii)-(iv) above, we can pass to the limit in this equality
and this together with the definition of h− yields (2.10).

Finally, the uniqueness of global smooth solutions to the Cauchy problem (2.11)-(2.12) implies
the convergence of the whole sequences (nν,λ, uν,λ)λ>0 and (∇φλ)λ>0. �

6. Proof of Theorem 2.3

Since the proof is the same for ν = e and ν = i, we only prove (2.14)-(2.15) for ν = e. We
introduce new variables

Ne = ne − n, Ue = ue − u, We =

(
Ne
Ue

)
.

Let T > 0 and t ∈ [0, T ]. We denote

E(t) =
(
‖Ne(t)‖2s−2 + ‖Ue(t)‖2s−2

) 1
2 , D(t) =

(
‖Ue(t)‖2s−2 + ‖∇Ne(t)‖2s−3

) 1
2 .

It is clear that the following Lemma implies the result of Theorem 2.3.

Lemma 6.1. If ε0 introduced in Theorem 2.1 is sufficiently small and (2.13) holds, then

(6.1) sup
0≤t≤T

E2(t) +

∫ T

0

D2(t)dt ≤ Cλ2, ∀T > 0.

In order to prove Lemma 6.1, we rewrite (1.1) for (ne, ue) as (the subscript λ is dropped){
∂tne + ue · ∇ne + nedivue = 0,

∂tue + (ue · ∇)ue +∇h+(ne) = −ue + re,

where h+ = 1
2
(he + hi) and

re =
1

2

(
∂tu− + (ue · ∇)u− + (u− · ∇)ui +∇(hi(ne)− hi(ni)) + u−

)
.

From (2.11) we also have {
∂tn+ u · ∇n+ ndivu = 0,

∂tu+ u · ∇u+∇h+(n) = −u.
Hence, {

∂tNe + ue · ∇Ne + ndivUe = −Ue · ∇n−Nedivue,

∂tUe + (u · ∇)Ue +∇
(
h+(ne)− h+(n)

)
= −Ue − (Ue · ∇)ue + re,

(6.2)

where
∇
(
h+(ne)− h+(n)

)
= ae∇Ne +Ne∇ae,

with

ae =

∫ 1

0

h′+
(
sne + (1− s)n

)
ds.

We first prove that ∫ +∞

0

‖re(t)‖2s−2dt ≤ Cλ2.(6.3)

Indeed, by (2.6) in Theorem 2.1 and the continuous embedding Hs−1 ↪→ L∞(Rd), we have

(6.4)

∫ +∞

0

‖∂tu− + (ue · ∇)u− + (u− · ∇)ui + u−‖2s−2dt ≤ C

∫ +∞

0

‖|u−‖|2s−1dt ≤ Cλ2.

On the other hand,

hi(ne)− hi(ni) = bn−, ∇(hi(ne)− hi(ni)) = n−∇b+ b∇n−,



24 Y.J.Peng and C.M.Liu

where

b =

∫ 1

0

h′i(sne + (1− s)ni)ds.

Since pi is sufficiently smooth, b is a smooth function of (ne, ni). Therefore, by (3.6) in Lemma
3.3 and (2.6), we have

(6.5)

∫ +∞

0

∥∥∇(hi(ne)− hi(ni))∥∥2s−2dt ≤ C

∫ +∞

0

‖|n−‖|2s−1dt ≤ Cλ2.

Thus, (6.3) follows from (6.4)-(6.5).
System (6.2) can be written under the form

(6.6) ∂tWe +
d∑
j=1

Aj∂xjWe = K,

where

Aj =

(
uej ne>j

aeej ujId

)
, j = 1, · · · , d,

and

K = −

(
Ue · ∇n+Nedivue

Ue + (Ue · ∇)ue +Ne∇ae − re

)
.

Recall that hν (ν = e, i) are strictly increasing functions on (0,+∞), so is h+. Since the
solutions of (1.1)-(1.2) and of (2.11)-(2.12) are sufficiently close to the equilibrium state, there
exists a positive constant a1 such that

(6.7) a0 ≤ ae(t, x) ≤ a1, ∀ (t, x) ∈ R+ × Rd,

where a0 is the positive constant satisfying h′ν(nν) ≥ 2a0 for ν = e, i. By estimates (2.3)-(2.4)
in Theorem 2.1 and the convergence results in Theorem 2.2, we have

(6.8) sup
t∈R+

(
‖ne(t)− 1‖s + ‖ue(t)‖s + ‖n(t)− 1‖s + ‖u(t)‖s + ‖∇ae(t)‖s−1

)
≤ Cε0,

and

(6.9)

∫ +∞

0

d2e(τ)dτ ≤ Cε20,

with

de(t) = ‖ue(t)‖s + ‖∇n(t)‖s−1 + ‖∇ae(t)‖s−1.
These estimates will be used in the following discussion.

Introduce matrices

A0 =

(
1 0

0 na−1e Id

)
, Ãj

def
= A0Aj =

(
uej ne>j

nej nuja
−1
e Id

)
.

Obviously, A0 is symmetric positive definite and Ãj is symmetric for all 1 ≤ j ≤ d. Con-
sequently, system (6.6) is symmetrizable hyperbolic. Remark that for (6.2) there is no time-
dissipation effect on Ne in L2(Rd), hence the quadratic term N 2

e cannot be controlled in energy
estimates. The choice of A0 above avoids the appearance of such a term.

Lemma 6.2. (Energy estimate of We) Under the assumption of Lemma 6.1, there exists a
positive constant b0 independent of λ and t such that

(6.10)
∑
|γ|≤s−2

d

dt

〈
A0∂

γ
xWe, ∂

γ
xWe

〉
+ b0‖Ue‖2s−2 ≤ Cε0D2(t) + Cde(t)E(t)D(t) + C‖re‖2s−2.
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Proof. Let γ ∈ Nd with |γ| ≤ s− 2. Applying ∂γx to (6.6), we get

∂t∂
γ
xWe +

d∑
j=1

Aj∂xj∂γxWe = ∂γxK + Iγ,

with

Iγ =
d∑
j=1

(
Aj∂γx(∂xjWe)− ∂γx(Aj∂xjWe)

)
.

Taking the inner product of this equation with A0∂
γWe in L2(Rd) gives

(6.11)
d

dt

〈
A0∂

γ
xWe, ∂

γ
xWe

〉
=
〈
(div ~A)∂γxWe, ∂

γ
xWe

〉
+ 2
〈
A0Iγ, ∂γxWe

〉
+ 2
〈
A0∂

γ
xK, ∂γxWe

〉
,

where

div ~A = ∂tA0 +
d∑
j=1

∂xjÃj.

A straightforward calculation gives〈
(div ~A)∂γxWe, ∂

γ
xWe

〉
=
〈
divue, (∂

γ
xNe)2

〉
+ 2
〈
∂γxUe · ∇n, ∂γxNe

〉
+
〈
se∂

γ
xUe, ∂γxUe

〉
,

where
se = ∂t(na

−1
e ) + div(nua−1e ).

By an integration by parts, we have∣∣〈divue, (∂
γ
xNe)2

〉∣∣ = 2
∣∣〈ue∂γxNe, ∂γx∇Ne〉∣∣

≤ C‖ue‖sE(t)D(t).

Obviously, ∣∣〈∂γxUe · ∇n, ∂γxNe〉∣∣ ≤ C‖∇n‖s−1E(t)D(t).

By the density equations

∂tn+ div(nu) = 0, ∂tne + div(neue) = 0,

we have
se = −na−2e

(
∂tae + u · ∇ae

)
.

Remark that ae is a smooth function of (ne, n). Then ∂tae can be further expressed as a linear
combination of div(nu) and div(neue). Therefore, (6.8) gives

‖se‖∞ ≤ C‖se‖s−1 ≤ Cε0,

which implies that ∣∣〈se∂γxUe, ∂γxUe〉∣∣ ≤ Cε0D2(t).

We conclude from the above estimates that

(6.12)
∣∣〈(div ~A)∂γxWe, ∂

γ
xWe

〉∣∣ ≤ Cε0D2(t) + Cde(t)E(t)D(t).

Next, we remark that Iγ = 0 if γ = 0. For 1 ≤ |γ| ≤ s− 2, by (3.5)-(3.6) in Lemma 3.3 and
the expression of Iγ, we have

(6.13)
∣∣〈A0Iγ, ∂γxWe

〉∣∣ ≤ C

d∑
j=1

‖∇xAj‖s−1‖∂xjWe‖s−3‖∂γxWe‖ ≤ Cε0D2(t).

For the last term in (6.11), a straightforward calculation shows that〈
A0∂

γ
xK, ∂γxWe

〉
= −

〈
na−1e ∂γxUe, ∂γxUe

〉
−
〈
∂γx(Nedivue), ∂

γ
xNe

〉
−
〈
∂γx(Ue · ∇n), ∂γxNe

〉
−
〈
na−1e ∂γx((Ue · ∇)ue), ∂

γ
xUe
〉

−
〈
na−1e ∂γx(Ne∇ae), ∂γxUe

〉
+
〈
na−1e ∂γxre, ∂

γ
xUe
〉
.
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In view of n ≥ 1/2 and (6.7), there exists a positive constant b0 independent of λ such that〈
na−1e ∂γxUe, ∂γxUe

〉
≥ b0‖∂γxUe‖2.

By (3.4) in Lemma 3.3, we have∣∣〈∂γx(Nedivue), ∂
γ
xNe

〉∣∣ ≤ C‖divue‖s−1‖Ne‖|γ|‖∂γxNe‖
≤ Cde(t)E(t)D(t).

Similarly, ∣∣〈∂γx(Ue · ∇n), ∂γxNe
〉∣∣+

∣∣〈na−1e ∂γx(Ne∇ae), ∂γxUe
〉∣∣ ≤ Cde(t)E(t)D(t),∣∣〈na−1e ∂γx((Ue · ∇)ue), ∂

γ
xUe
〉∣∣ ≤ Cε0D2(t).

Finally, by the Young inequality, we easily get∣∣〈na−1e ∂γxre, ∂
γ
xUe
〉∣∣ ≤ b0

2
‖∂γxUe‖2 + C‖re‖2s−2.

These estimates imply

(6.14) 2
〈
A0∂

γ
xK, ∂γxWe

〉
+ b0‖∂γxUe‖2 ≤ Cε0D2(t) + Cde(t)E(t)D(t) + C‖re‖2s−2.

Combining (6.11)-(6.14), we obtain

d

dt

〈
A0∂

γ
xWe, ∂

γ
xWe

〉
+ b0‖∂γxUe‖2 ≤ Cε0D2(t) + Cde(t)E(t)D(t) + C‖re‖2s−2.

Summing these inequalities for all γ ∈ Nd with |γ| ≤ s − 2, we obtain (6.10). This proves
Lemma 6.2. �

Lemma 6.3. (Dissipation estimate of ∇Ne) Under the assumption of Lemma 6.1, it holds∑
|γ|≤s−3

d

dt

〈
∂γxUe, ∂γx∇Ne

〉
+
a0
2
‖∇Ne‖2s−3(6.15)

≤ Cε0D2(t) + Cde(t)E(t)D(t) + C
(
‖Ue‖2s−2 + ‖re‖2s−3

)
.

Proof. Let γ ∈ Nd with |γ| ≤ s− 3. Applying ∂γx to the second equation in (6.2), we get

ae∂
γ
x∇Ne = ∂γx(re − Ue)− ∂γx

(
(u · ∇)Ue + (Ue · ∇)ue +Ne∇ae

)
+
(
ae∂

γ
x∇Ne − ∂γx(ae∇Ne)

)
− ∂t∂γxUe.

Taking the inner product of this equality with ∂γx∇Ne in L2(Rd) leads to〈
ae∂

γ
x∇Ne, ∂γx∇Ne

〉
=

〈
∂γx(re − Ue), ∂γx∇Ne

〉
(6.16)

−
〈
∂γx
(
(u · ∇)Ue + (Ue · ∇)ue +Ne∇ae

)
, ∂γx∇Ne

〉
+
〈
ae∂

γ
x∇Ne − ∂γx(ae∇Ne), ∂γx∇Ne

〉
−
〈
∂t∂

γ
xUe, ∂γx∇Ne

〉
.

Obviously, 〈
ae∂

γ
x∇Ne, ∂γx∇Ne

〉
≥ a0‖∂γx∇Ne‖2,∣∣〈∂γx(re − Ue), ∂γx∇Ne

〉∣∣ ≤ a0
2
‖∂γx∇Ne‖2 + C

(
‖Ue‖2s−3 + ‖re‖2s−3

)
.

Similarly to the proof in Lemma 6.2, we also have∣∣〈∂γx((u · ∇)Ue + (Ue · ∇)ue +Ne∇ae
)
, ∂γx∇Ne

〉∣∣ ≤ Cε0D2(t) + Cde(t)E(t)D(t),∣∣〈ae∂γx∇Ne − ∂γx(ae∇Ne), ∂γx∇Ne
〉∣∣ ≤ Cε0D2(t).
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Using the equation of Ne in (6.2), the last term in (6.16) can be written as

−
〈
∂t∂

γ
xUe, ∂γx∇Ne

〉
= − d

dt

〈
∂γxUe, ∂γx∇Ne

〉
−
〈
div∂γxUe, ∂t∂γxNe

〉
= − d

dt

〈
∂γxUe, ∂γx∇Ne

〉
+
〈
div∂γxUe, ∂γx

(
ue · ∇Ne +Nedivue + Ue · ∇n+ ndivUe

)〉
.

By (3.4) in Lemma 3.3, we have∣∣〈div∂γxUe, ∂γx
(
ue · ∇Ne +Nedivue + Ue · ∇n

)∣∣ ≤ Cε0D2(t) + Cde(t)E(t)D(t),∣∣〈div∂γxUe, ∂γx
(
ndivUe

)∣∣ ≤ C‖Ue‖2s−2.
Combining the above estimates together with (6.16) yields

d

dt

〈
∂γxUe, ∂γx∇Ne

〉
+
a0
2
‖∂γx∇Ne‖2 ≤ Cε0D2(t) + Cde(t)E(t)D(t) + C

(
‖Ue‖2s−2 + ‖re‖2s−3

)
.

Summing these inequalities for all γ ∈ Nd with |γ| ≤ s− 3, we obtain (6.15). �

Proof of Lemma 6.1. Adding (6.10) and (6.15) multiplied by a positive constant κ0, it gives
the following estimate

L′e(t) + (b0 − Cκ0)‖Ue‖2s−2 +
κ0a0

2
‖∇Ne‖2s−3(6.17)

≤ Cε0D2(t) + Cde(t)E(t)D(t) + C‖re‖2s−2,
where

Le(t) =
∑
|γ|≤s−2

〈
A0∂

γ
xWe, ∂

γ
xWe

〉
+ κ0

∑
|γ|≤s−3

〈
∂γxUe, ∂γx∇Ne

〉
.

In view of the expression of A0 and E(t), we have

(2a2 − κ0)E2(t) ≤ Le(t) ≤ CE2(t),
where

a2 = min
{

1/2, 1/4a1
}
.

Now we choose κ0 > 0 such that

2Cκ0 ≤ b0 and κ0 ≤ a2.

Then
a2E2(t) ≤ Le(t) ≤ CE2(t),

and by the expression of D(t), we have

b0
2
‖Ue‖2s−2 +

κ0a0
2
‖∇Ne‖2s−3 ≥ 2c0D2(t),

where

c0 =
1

4
min{b0, κ0a0}.

It follows from (6.17) that

L′e(t) + (2c0 − Cε0)D2(t) ≤ Cde(t)E(t)D(t) + C‖re‖2s−2.
Integrating this inequality over [0, t] and using (6.3) yields

a2E2(t) + (2c0 − Cε0)
∫ t

0

D2(τ)dτ ≤ CET
∫ t

0

de(τ)D(τ)dτ + Cλ2,

where
ET = sup

0≤t≤T
E(t).
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By the Cauchy-Schwarz inequality and the Young inequality together with (6.9), we have

ET
∫ t

0

de(τ)D(τ)dτ ≤ ET
(∫ t

0

d2e(τ)dτ
) 1

2
(∫ t

0

D2(τ)dτ
) 1

2

≤ Cε0ET
(∫ t

0

D2(τ)dτ
) 1

2

≤ Cε0E2T + Cε0

∫ t

0

D2(τ)dτ.

Therefore,

a2E2(t) + 2(c0 − Cε0)
∫ t

0

D2(τ)dτ ≤ Cε0E2T + Cλ2.

Thus, when ε0 is sufficiently small such that

Cε0 ≤
1

2
min{c0, a2},

we obtain

a2E2(t) + c0

∫ t

0

D2(τ)dτ ≤ a2
2
E2T + Cλ2, ∀ t ∈ [0, T ],

which implies (6.1). �
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