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In this paper we address the problem of localizing a query image in a 3D map obtained using a Structure From Motion (SfM) or a visual SLAM algorithm. Many situations, such as lighting or viewpoint changes, make the estimation process very difficult. In this paper, we have tried to increase the pose accuracy by integrating semantic information in the matching step. The classical output in semantic segmentation is a single label l for each pixel. We propose either to assign more than one label to each keypoint by two different ways. We compare the proposed methods with the state of the art. For this, we use two public datasets (Dubrovnik, Rome). We show that by incorporating visual and semantic information, the pose estimation can be improved in terms of time and precision.

Introduction

Vision Based Localization (VBL) is the process of finding the pose (orientation, translation) of a query image relative to a 3D model of the environment. Furthermore, estimating the pose is a fundamental key step in computer vision algorithms for many applications such as SLAM [START_REF] Bowman | Probabilistic data association for semantic slam[END_REF], SFM [START_REF] Bao | Semantic structure from motion[END_REF]. Semantic segmentation is an image processing operation that aims to attribute each pixel to a class with a label (road, building, car ...) and is an important task in computer vision. Moreover, semantic segmentation has been widely used and has proven useful in VBL problems. The semantic information given by applying a trained deep learning network [START_REF] Zhao | Pyramid scene parsing network[END_REF] on millions of manually annotated images can improve the visual localization process. It is thus possible to find precisely the pose in difficult situations and when the matching performance suffers due to (1) hard conditions (various weather conditions, day/night,...) (2) viewpoint changes (3) presence of dynamic objects obscuring parts of the scene. Even with the increase of the performance of semantic segmentation algorithms, the output of the segmented image presents imprecise inter-class boundaries, noisy segmentation, which require the smoothing of the segmentation.

Inspired by previous research, we propose in this paper a robust visual localization framework that incorporates both standard local features extracted from images and semantic information in an effective and efficient way. Our method is able to handle a large number of outliers and to precisely and quickly find the relative pose in a large scale 3D map. We show experimentally that adding semantic information to features for both the query and 3D map clearly improves the accuracy of the retrieved pose. We tested with 2D-3D association strategy and we limited the matching only between the query features and the features extracted using visibility information from the global 3D point cloud thanks to the discriminative nearest neighbors. Traditionally, semantic segmentation gives us the opportunity to assign a class label to each pixel kp. Our approach completes image features with semantic information in order to make the feature matching procedure more robust. In this paper we suggest and evaluate two different ways to improve the keypoints labelisation. The description of the labeling methods is below.

-Fully depending on the information given from the network based semantic segmentation, we improve the labelisation based on the output of the Soft-Max layer. A keypoint is associated to more than one label if the probability of the major class is not decisive. Otherwise, the pixel is associated with a single label. -We combine the output of two convolutional neural networks to generate a set of labels for each pixel. The first network is a classical semantic segmentation network. The second one is a semantic edge detector which gives a set of labels for the pixel at the boundary between two or more classes. Then, depending on the output of these networks, We keep either a single label from the first network or a set of labels from the second one.

In addition, we exploit the semantic information to: Delete the dynamic or non-stationary classes that are considered as noise such as person, car, bus, animal... with the aim of reducing the outliers during the matching step. Select the discriminative nearest neighbors by incorporating the standard matching between two images and the semantic information.

The remainder of this paper is structured as follows: we provide a brief overview of visual localization methods related studies in Section 2. We explain our approach in Section 3. We present the experiments on different datasets in Section 4. Conclusion of our work and experiments are presented in section 5.

Related Work

Visual localization. Traditionally, in image visual localization there are two different approaches for estimating the relative pose (Rotation, Translation):

(1) Direct method (2) Indirect method. In addition, there are also two main strategies for matching the features. Features to Points (F2P or 2D-3D) [START_REF] Li | Location recognition using prioritized feature matching[END_REF]: this strategy matches the query features against the features of the 3D point cloud. Points to Features strategy (P2F or 3D-2D) matches the features of a global model against the features of the query image. Let's start with direct methods. These methods are based on the correspondences found by directly matching the features from the query with the points from the 3D point cloud. Sattler et al. [START_REF] Sattler | Fast image-based localization using direct 2d-to-3d matching[END_REF] improve the 2D-3D matching strategy based on visual vocabulary and a prioritized correspondence search. Also Sattler et al. [START_REF] Sattler | Towards fast image-based localization on a city-scale[END_REF] propose a framework based on a bag of visual words method that matches the query features and the 3D features that share the same visual word index. [START_REF] Sattler | Improving image-based localization by active correspondence search[END_REF] increase the number of inliers by applying two different strategies (features to query, query to features) between the input query and the 3D cloud. Zeisl et al. [START_REF] Zeisl | Camera pose voting for large-scale image-based localization[END_REF] present an outlier rejection algorithm based on a voting system with low complexity O(n). Graph and co-visibility [START_REF] Stumm | Robust visual place recognition with graph kernels[END_REF], [START_REF] Liu | Efficient global 2d-3d matching for camera localization in a large-scale 3d map[END_REF] have been widely used in visual localization: Raul et al. [START_REF] Díaz | Cluster-wise ratio tests for fast camera localization[END_REF] exploit co-visibility and introduce two ratio tests that are used to select the distinct matches. Indirect methods have also have been shown to be effective. These methods are based on two key steps: first, finding the nearest neighbors using CBIR (Content Based Image Retrieval) algorithm; then, matching the query features and the 3D point cloud which belongs to the retrieved key images. We can mention two main approaches from the state of the art to retrieve the closest image: BoVW (Bag of visual words) and CNN descriptors for image retrieval. Song et al. [START_REF] Song | Fast estimation of relative poses for 6-dof image localization[END_REF] propose a fast algorithm able to quickly find the relative pose without using a PnP solver with the assignment of the relative pose of the most similar key image to the input query. Based on a voting system, Sattler et al. [START_REF] Sattler | Image retrieval for image-based localization revisited[END_REF] propose an efficient algorithm that selects the discriminative nearest neighbors to compute the 6-DoF (Degrees of Freedom) pose. Moreover, deep learning architecture [START_REF] Kendall | Posenet: A convolutional network for realtime 6-dof camera relocalization[END_REF] has shown its effectiveness and robustness in pose estimation context. Semantic segmentation improves visual localization. Semantic segmentation has been widely used in different contexts and has proven useful in VBL problems. Larsson et al. [START_REF] Larsson | A cross-season correspondence dataset for robust semantic segmentation[END_REF] improve the matching step by training the CNN on the 2D-2D correspondence between a pair of images taken during favourable conditions and challenging conditions; then enforce the class labels to be the same. This idea increases the number of inliers for pose estimation when the query or key image was taken in poor conditions. Taira et al. [START_REF] Taira | Is this the right place? geometric-semantic pose verification for indoor visual localization[END_REF] present a pose verification approach composed by two steps for pose estimation and targeted to indoor scenes. In the first stage, they estimate the relative pose using indirect methods; then, during the verification stage, it exploits geometric and semantic information from the set of retrieved poses. Toft et al. [START_REF] Toft | Semantic match consistency for long-term visual localization[END_REF] propose an outlier rejection approach that assigns a score for each correspondence by incorporating both semantic information and feature matching between the input image and the 3D model. semantic information in an effective and efficient way for an accurate pose. Our framework is composed of a set of key steps. In the first, we compute the closest key images to an input query using CBIR (Content Based Image Retrieval) with the algorithm described in [START_REF] Radenović | Fine-tuning cnn image retrieval with no human annotation[END_REF]. Our goal is to utilize the nearest neighbors (KNN) to extract a region from the global model based on the shared list of visibility in which the query is probably seen. But, the list of KNN contains a set of images that are not necessarily similar to the query input due to the limit of CBIR algorithm. To select the most similar ones in a robust way, we add the semantic information to both the query and key images and we match them by assigning a score to each pair according to the number of inliers with removing the images which have fewer inliers. We obtain a list of keyframes that we augment with the neighbors in the pose graph of the SFM map. As a reminder, two poses are connected in the pose graph if they share some 3D points. Then we consider all the 3D points visible in this new list of keyframes. The next step is matching the features using 2D-3D strategy and by taking the semantic information into account. The final step is computing the relative pose.

The Proposed Method

Semantic segmentation doesn't always produce perfect segmentation and we often find some overfilling at the boundaries of some classes and a border-blur effect. Most of the time, the keypoint detector produces a lot of features on or near the borders of objects because these regions in the image satisfy the detectors constraints. We then try to reduce the semantic segmentation error at the frontier by two different robust labeling methods. In the following sections we will explain each one in more depth.

Method 1 : Multiple-label based on semantic segmentation

Affecting a label to each pixel is still a hard challenge for many to many reasons such as imperfect semantic segmentation algorithms, overfilling in border regions which generates a wrong class label... The keypoints, which are related to the visual localization problem, are widely used in VBL and the detection algorithm focuses on specific points of an image selected according to specific criteria like b) key images segmented using EncNet [START_REF] Zhang | Context encoding for semantic segmentation[END_REF] algorithm trained on ADE20K [START_REF] Zhou | Scene parsing through ade20k dataset[END_REF] datasets (c) Detect the pixels with low probability using deep learning corners and points with strong variations of texture. Usually, the positions of the detected points are around and within the object. When the segmented image contains more than one class (sky, building,...), we can't take the class label obtained by the detected point at the frontier into consideration for two main reasons (1) the probability of the major class of the detected point is not decisive (2) the overlapping prediction between two classes forces to produce an inaccurate class label as shown in figures 3, 2. The standard output in semantic segmentation is a single label l for each pixel. In this paper, we compare different ways of using the semantic information. In the first method called mono label we assign to each keypoint kp the label of the underlying pixel. Just before the final output the network contains the SOFTMAX layer. This layer is the same size as the input image with each pixel containing a vector of probabilities y = [y 1 , .., y N ]. This vector of size N corresponding to the number of classes on which the network was trained. In the mono label method the label of each pixel is given by

l = argmax(y i ) (1) 
To improve the labellisation at the borders we use the SoftMax Layer of the network to extract multiple-labels for the keypoints. We also take the neighboring pixels into account to reduce the noise given by the semantic segmentation. First we apply a mean filter to the SoftMax layer with window size ranging from 3 × 3 to 7 × 7 in experiments. For one pixel of this filtered layer we keep the label with the highest probability p * then we add all the labels with probability p so that ϵ = 0.3 in experimentation.

p/p * > ϵ (2) 

Method 2 : Multiple-label based on a combination of semantic segmentation and semantic edge

Semantic edge detection [START_REF] Yu | Casenet: Deep category-aware semantic edge detection[END_REF] [1] [START_REF] Hu | Dynamic feature fusion for semantic edge detection[END_REF] is a new field in computer vision. It is based on convolutional neural network (CNN) to detect pixels situated in contours between two or more semantic classes (figure 4). The network takes an image as input and outputs N 2D-maps where N is the number of semantic classes. Each 2D map is a matrix of probabilities of pixels belonging to a specific semantic class. In figure 6, we present an example of semantic edge detection [START_REF] Hu | Dynamic feature fusion for semantic edge detection[END_REF] output for the principal classes existing in the image. For each semantic class, we present its 2D map (in the bottom) and the corresponding pixels in the image (in the top). At that point, in the yield of semantic edge detector just the pixels at boundary have a rundown of labels. Each pixel is characterized by a vector of 150 probabilities. The index whose probabilities are above zero correspond to the labels of the pixel. In figure 6, we present two examples: (A) the pixel is assigned to three labels (Building, Sky, Vegetation) (B) the pixel is assigned to two labels (Building, Person). The difference between the previous method and this one that the border pixels are labeled using a semantic edge detector. So given an image, we start by detecting the labelisation using two neural networks(see figure 5). The first network assigns to each pixel a label (semantic segmentation). The second network assigns a set of labels for the pixels located on the edge (semantic edge detector). We combine the two deep networks results with the intend to improve the labelisation. We assign several labels to the pixel if it was detected by the semantic edge detector. Otherwise, the pixel is assigned to a single label obtained using the semantic segmentation algorithm. The advantage of using an edge detector is to increase the precision of assignment of labels to pixels between semantic classes. After assigning labels to the keypoints, the 3D point label is the mixture of all the keypoints labels. Fig. 6. Semantic Edge detection for each semantic class predicted using DFF [START_REF] Hu | Dynamic feature fusion for semantic edge detection[END_REF] algorithm trained on Ade20k. In button figure, we take two pixel (A,B) as example. Depending to the probabilities extracted from all edges output the first pixel (A) has three labels (Sky, Building, Vegetation) and the second (B) has two labels (Building, Person).

Experimental part

We evaluate our approach based on two different datasets for large scale: Dubrovnik [START_REF] Li | Location recognition using prioritized feature matching[END_REF] and Rome. Dubrovnik is a dataset composed of 800 query images with a SFM point cloud built using 6044 key images which generate 1.8 million 3D points and 9.6 million descriptors. Rome [START_REF] Li | Location recognition using prioritized feature matching[END_REF] is bigger than Dubrovnik with 1000 query images and the SFM point cloud is built using 15176 key images which generates 4.3 million 3D points and 21.5 million descriptors. To estimate the relative pose, we have used the P3P solver inside RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] (4096 iteration) on the set of correspondences obtained by matching the features query against the 3D points with a maximum reprojection error ϵ ≤ 6 pixel. Following [START_REF] Li | Location recognition using prioritized feature matching[END_REF] [15], we consider a query is successfully registered only if the number of inliers is higher than 12 after the filtering step. To obtain the semantic information, we use in this work two different convolutional neural networks. The first network EncNet [START_REF] Zhang | Context encoding for semantic segmentation[END_REF] is used to extract a class label by pixel and the SoftMax layer. The second network, DFF [START_REF] Hu | Dynamic feature fusion for semantic edge detection[END_REF] is used to detect the pixels at class boundaries. Both networks are pretrained on the ADE20K [START_REF] Zhou | Scene parsing through ade20k dataset[END_REF] dataset that contains 150 semantic categories annotated on 20210 images. We start by computing the 100 closest images to the input query, using a recent improvement on Resnet [START_REF] Radenović | Fine-tuning cnn image retrieval with no human annotation[END_REF] CNN architecture used to generate the signatures for both query and key images. We compute the similarity between the images using the FLANN [START_REF] Muja | Flann-fast library for approximate nearest neighbors user manual[END_REF] library to construct a KDtree for each input and we stop after finding 100 candidates. We apply a filter with the aim of removing the wrong images: first, we compute the score for each pair based on semantic matching and we remove the nearest neighbors with zero inliers. In most cases, we noticed that the remaining candidates are connected in the pose graph which means they have many 3D points in common. We use the Features to points (F2P) strategy for testing the performance of our approach. Our contribution clearly increases the number of inliers with a higher number of poses found. Getting more inliers positively influences the accuracy of the poses. The accuracy can be evaluated by looking at Q1, Q2, Q3 which represent the quartiles of the localization errors. We show experimentally that sharing information between neighbors and the target pixel increases the number of registered queries. Keeping the same settings, we set the window size to 3 × 3 we show that the labelling of the pixels in the borders with more than one class label reduces the error rate and increases the number of registered query images, the number of inliers and the accuracy of the computed poses (Table 2). Comparison with State-of-the-Art. In Table 3 we compare our results with the state of the art. Two methods use a priori information [START_REF] Zeisl | Camera pose voting for large-scale image-based localization[END_REF][21](known vertical direction and bounded camera height). Their retrieval results with error ≤ 18.3 m is the best. Our methods without priori information achieves slightly lower results. Now we compare our approach to methods without priori information [17] [16][5][4] [START_REF] Li | Location recognition using prioritized feature matching[END_REF]. We obtained the higher number of poses with error lower than 18.3 m. Table 4 shows additional results on the Rome datasets.

Conclusion

In this paper, we have presented a novel framework based on deep learning for camera pose estimation. Two different deep learning approach have been used in this paper : semantic segmentation algorithm and semantic edge detection. We compared our proposals on several data sets. Thanks to the use of a multiplelabel scheme, our algorithm shows state of the art results. We retrieve more poses than with a mono-label strategy and the retrieved poses are more accurate.

Figure 1

 1 Figure1illustrates our labellisation framework for improving visual localization. Our approach exploits the power of the semantic segmentation algorithm by incorporating both standard local features extracted from the images and their

Fig. 1 .

 1 Fig. 1. Global labelisation framework proposed in this paper for efficient Visual Based Localization

Fig. 2 .

 2 Fig. 2. (a) Key images used to build the SFM model (b) key images segmented using EncNet [26] algorithm trained on ADE20K [28] datasets (c) Detect the pixels with low probability using deep learning

Fig. 3 .

 3 Fig. 3. (a) Overlapping between two classes (b) The blue curve presents the probabilities of the Sky class and the red curve presents the probabilities of the Building class (c) Image contains two classes (Sky, Building) and shows the sampled points according to the curve represented in (b). (d) The segmented image shows the overlapping between two classes at the frontier. Also, the figure shows the detected keypoints: (1) keypoints with false class label (red symbol), (2) keypoints with true class label (green symbol).

Fig. 4 .

 4 Fig. 4. Examples of global semantic edge map detected using DFF[8] algorithm trained on Ade20k and their corresponding pixels.

Fig. 5 .

 5 Fig. 5. Labeling pixels between semantic segmentation and edge semantic segmentation.

  

Table 1 .

 1 Detailed results for the multiple-label method for Dubrovnik dataset with different window sizes. Q1, Q2 and Q3 are the quartiles of the localization error.

	Window size # reg images Q1 Q2 Q3 images with images with
	(pixel)		(m) (m) (m) error<18.3 m error>400 m
	1*1	797	0.35 0.92 2.86	727	7
	3*3	798	0.25 0.78 2.35	734	6
	5*5	796	0.34 0.96 2.75	729	9
	7*7	797	0.37 1.01 2.96	725	13

Table 2 .

 2 Comparison results on our framework between mono label and multiple label. Q1, Q2 and Q3 are the quartiles of the localization error.

	Labeling pixel # reg images Q1 Q2 Q3 images with images with
			(m) (m) (m) error < 18.3 m error >400 m
	Mono-label	791	0.45 1.22 3.78	715	9
	Ours(method 1)	797	0.35 0.92 2.86	727	7
	Ours(method 2)	799	0.22 0.81 2.29	738	6

Table 3 .

 3 Comparison of our approach with methods from the state of the art for Dubrovnik Dataset. Q1, Q2 and Q3 are the quartiles of the localization error.

	Methods	# reg Q1 Q2 Q3 images with images with Time
		images (m) (m) (m) error < 18.3 m error >400 m (s)
		Without a priori information		
	Ours (method 2) 798 0.24 0.78 2.35	734	6	0.72
	Sattler [15]	783 0.40 1.40 5.90	685	16	0.31
	Sattler [16]	795 0.40 1.40 5.30	704	9	0.25
	Raul [5]	800 1.09 7.92 27.76	550	10	0.62
	Youji [6]	781 0.42 1.28 4.67	-	12	0.46
	Li [11]	753 7.50 9.30 13.40	655	-	-
	Choudhary [4]	788 0.88 3.10 11.83	-	-	-
			With a priori information		
	(direction verticale et la hauteur de la caméra sont connue)
	Zeisl [25]	796 0.19 0.56 2.09	744	7	3.78
	Svarm [21]	798	-0.56 -	771	3	5.06

Table 4 .

 4 Comparison of our approach with methods from the state of the art for Rome Dataset

	Methods	# reg images inliers time
	Sattler [15]	977	100 0.29
	Sattler [16]	991	200 0.28
	Youji [6]	985	-	0.33
	Li [11]	924	-	0.87
	Ours(method 1)	995	346 0.96
	Ours(method 2)	997	387 0.89