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In environmental metagenomic experiments, a very high proportion of the microbial sequencing data (> 70%) remains largely
unexploited because rare and closely related genomes are missed in short-read assemblies. The identity and the potential
metabolisms of a large fraction of natural microbial communities thus remain inaccessible to researchers. The purpose of this study
was to explore the genomic content of unassembled metagenomic data and test their level of novelty. We used data from a three-
year microbial metagenomic time series of the NW Mediterranean Sea, and conducted reference-free and database-guided analysis.
The results revealed a significant genomic difference between the assembled and unassembled reads. The unassembled reads had
a lower mean identity against public databases, and fewer metabolic pathways could be reconstructed. In addition, the
unassembled fraction presented a clear temporal pattern, unlike the assembled ones, and a specific community composition that
was similar to the rare communities defined by metabarcoding using the 16S rRNA gene. The rare gene pool was characterised by
keystone bacterial taxa, and the presence of viruses, suggesting that viral lysis could maintain some taxa in a state of rarity. Our
study demonstrates that unassembled metagenomic data can provide important information on the structure and functioning of
microbial communities.

ISME Communications; https://doi.org/10.1038/s43705-022-00167-8

INTRODUCTION
Metagenomics studies are based on gene centric approaches
often based on assembly followed by contigs binning for
building metagenome-assembled genomes (MAGs). However, a
relatively low proportion of the reads can be assembled into
contigs or/and MAGs. Often the higher proportion of the
sequencing data (>70%) remains largely unexploited in meta-
genomes because rare and closely related genomes are missed
in short-read data assemblies [1]. Indeed, a minimum sequen-
cing depth is often needed for contig assembly. Bacterial species
with coverage below 15x in metagenomes typically result in
low-quality assemblies [2]. For Luo et al. [3], a species can only
be accurately assembled from a complex metagenome when it
shows at least 20x coverage. Since rare species within a
community typically have low sequencing coverage, they are
hardly assembled into long contigs. To reconstruct rare strains
from complex assemblages thus requires sometimes an enor-
mous dataset with a very high coverage depth exceeding
sometime 1000x [4]. The approach described by Nielsen [5]
allows, however, the reconstruction of any species with an
adequate sequencing depth (~50x according to the simulation)
and permits the binning of some rare members with the rarest
having 0.02% relative abundance. However, a minimum
sequencing depth is often needed, but not always sufficient
for accurate contig assembly. Globally, assemblers perform

poorly in the presence of multiple similar genomes from closely
related species. In that case, unassembled reads can also belong
to the flexible or accessory genome of the main components of
the community. For instance, members of the wide spread
marine Prochlorococcus genus have a huge pangenome, with
~1000 common genes (core genomes), and a ‘flexible’ genome,
which is found in only one or a few of the Prochlorococcus
genomes [6]. However, by comparing long and short reads,
Sharon et al. [1] concluded that the majority of unassembled
reads in the short-read data were left unassembled because of
low coverage and not because of the presence of multiple
similar regions.
The rare components of the metagenomics data, bacterial taxa

(i.e. rare biosphere) or individual genes (i.e. flexible genome),
which may be hard to assemble, could nevertheless play an
important role in ecosystem functioning. Regarding genes for
instance, genomic and metagenomic data have defined at least 12
major clades among Prochlorococcus and the flexible gene
distribution within these clades determines adaptation to the
local environment (light, temperature…) [6]. Genes present in the
flexible gene pool, which are not abundant, are still important
because they are often associated with specific nutritional
requirements (phosphorus, nitrogen or iron, [6]). At the taxa level,
rare populations of microorganisms, with their tremendous
diversity [7], can also play an important role in ecosystem
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functioning. The “rare microbial biosphere” [8] was first seen
mainly as a seed bank in which some members became dominant
at times depending on specific environmental factors [9]. Some
bacteria, for instance, become dominant under anthropogenic
pressure [10] or when colonizing a new substrate [11]. Other
changes in abundance can occur following climatic fluctuations
[12]. These observations illustrate a transient state of rare
microorganisms toward the abundant biosphere, or an oscillation
within a rare state [13]. Inversely, some rare taxa always remain
rare [13]. The fact that some of them exhibit high cell-level
metabolic activity [14] could indicate that they are keystone
species in ecosystems. Keystone taxa are defined by Banerjee et al.
[15] as highly connected taxa that exert a considerable influence
on microbiome structure and function, irrespective of their
abundance across space and time. Thus, some low-abundance
taxa that are highly connected in microbial communities can
explain compositional turnover better than all the taxa combined
[16]. However, the functional role of rare microorganisms remains
poorly understood, since they are often phylogenetically distant
from referenced cultured or uncultured microbes [14, 17, 18].
Therefore, the microbial rare biosphere may constitute an
important genomic reservoir or diversity pool, and a source of
genetic novelty with biotechnological potential [19, 20]. Thus, the
rare taxa are certainly an important component of the “dark
matter” [21], but the metabolic potential of the rare biosphere
remains under-explored. A limited number of studies have
focused on the genetic content of this biosphere [22, 23].
In this work, we focused on the rare genetic material defined

here as the sequencing reads that do not align with assembled
contigs. We hypothesize that this genetic material plays an
important role in the marine ecosystem functioning. For this
purpose, we analyzed a three-year metagenomic time series
based on monthly samples from the Bay of Banyuls sur Mer (NW
Mediterranean Sea).

MATERIALS AND METHODS
Sampling and sequencing
The sampling strategy was described in Galand et al. [24]. Briefly, surface
seawater (3 m) was collected monthly from January 2012 to February 2015
(40 samples) by using a 10-L Niskin bottle at the SOLA station (42°31′N,
03°11′E) in the Bay of Banyuls sur Mer (France) in the northwestern
Mediterranean. A volume of 5 L was prefiltered through 3-μm pore-size
polycarbonate filters (Millipore, Billerica, MA, USA), and the microbial
biomass was collected on 0.22-μm pore-size GV Sterivex cartridges
(Millipore) and stored at −80 °C until nucleic acid extraction. The
physicochemical parameters (Table S1) were provided by the “Service
d’Observation en Milieu Littoral” (SOMLIT). After DNA extraction [24]
samples were sequenced on eight lanes of a HiSeq 2500 “High-Output”
paired-end run (2 × 100 bp). Raw reads were archived in the ENA repository
under accession number PRJEB26919.

Assembling
Raw paired-end Illumina reads were preprocessed by removing Nextera
adapters with the bbduck program from the BBTools package (12.10.2015
release) (http://jgi.doe.gov/data-and-tools/bbtools/). Reads were then
trimmed and filtered using Trimmomatic v. 0.33 [25] based on their
quality generating a read length of ca. 85 bp. A total of 34 to 112 million
reads per sample remained after filtering (Table S2). For each metagen-
ome, high-quality reads were assembled into contigs with IDBA-UD [26]
with the default iterative k-mer assembly and k-mer length increasing from
20 to 100 in steps of 20, the correction option, and with both pair-end
reads (-r entry) and single-end reads (--long entry). Two kinds of reads were
discriminated by mapping all the reads against the built contigs (Fig. 1).
The mapping was conducted with bwa mem algorithm [27] with default
parameters, the results by sample are displayed in Table S2. Thereafter, we
term the two fractions as unassembled, as the pool of reads that do not
match with contigs formed post-assembly, and assembled reads. However,
algorithms implemented in mappers are different from assemblers and in
some cases it can exist some discrepancies between these tools.

Community composition, functional abundance table and
OTU abundance table inferred from assembled and
unassembled reads
The composition of the unassembled and assembled read fractions were
compared to each other with MetaFast [28], which allows a direct
reference-free comparison of shotgun metagenomic data. The Bray-Curtis
dissimilarity matrix computed by MetaFast was used to construct a non-
metric multidimensional scaling (NMDS) ordination with the vegan
package in R [29].
An OTU abundance table based on 16 S rRNA gene were built for

assembled and non assembled reads separately. The 16 S rRNA gene were
identified by comparing all preprocessed reads to the SILVA database [30]
with BLASTn (identity ≥ 90% and length > 80 bp). An abundance table was
built by clustering reads at a 97% similarity against the SILVA sequence
collection. In addition, a phylogenetic analysis was conducted based on
unique clade-specific marker genes for assembled and unassembled reads
with metaphlan2 [31], and the list of taxa and their relative abundance was
used with LefSe [32] to identify the taxa that best explained the differences
between the fractions. A functional abundance table was built with a
reference-guided approach based on the UNIREF (90 and 100) [33] and
KEGG databases [34]. Reads were compared against the databases using
DIAMOND [35] with the blastx mode and the following parameters: -evalue
1e-5 --sensitive --max-target-seqs 1. Each function in these tables contains
reads originating from multiple genomes. The generated abundance tables
were characterized by zero-inflation. We removed all genes present as
singletons only in the 80 samples (40 assembled and 40 unassembled), or
detected in less than 20 samples. Gene loss are presented in Table S3.
Overall, we counted 846 16 S rRNA OTUs, 6984 KOs, and 1,210,645 proteins
(UNIREF90) in the entire dataset after applying strict filters described in the
experimental procedures section (Table S3). The statistical analysis was
conducted with the ALDEx2 methods [36] that take into account the
compositional nature of the data [37]. Differences in abundance between
the two categories of genes (derived from assembled and unassembled
reads) were considered as significant (P < 0.05) when the Welch and
Wilcoxon tests were convergent. The significant results annotated against
the KEGG database were used to discriminate metabolic pathways
between assembled and unassembled fractions with the “gage” and
“pathview” functions implemented in R [38, 39].
Multivariate analyses were conducted with the R MixOmics package [40]

by using the “spca” function with centered log ratio transformation (CLR)
after replacing zeros with the “cmultRepl” function and the “czm” option
included in the zCompositions library [41].

Binning covarying gene groups with assembled and
unassembled reads
The most common approach to reconstruct genomes from metagenomes
is to build MAGs. MAG construction is based on mapping reads to contigs,
but since we cannot obtain contigs from the rare reads, we chose an
alternative approach to survey the potential genomic content of the
communities. Co-Abundance gene Groups (CAGs) were built separately for
the assembled and non assembled datasets, from the table gathering the
functional abundance (UNIREF90) and OTU (SILVA) tables, with 3 different
approaches: MSPminer [42], canopy [5] and Partial Least Squares
regression (PLS) based networks. MSPminer and canopy bin covarying
genes by a robust measure of proportionality or correlation between
genes, and give a same weight to the proteins and rRNA genes. In our
approach, unlike in the original methods cited, we used the abundance of
functions rather than a gene catalog. In addition, we introduce a new
method to bin genes from abundance tables by associating a Partial Least
Squares regression (PLS) and a bipartite network. PLS relates the OTUs
(16 S rRNA) and the protein tables. The goal was to predict the protein
variations from the OTUs dynamics. The regression was computed with the
“spls” function associated to the regression method in the MixOmics
package in R [40]. In a second step, a bipartite network based on PLS was
built linking OTUs and protein genes. The edges with a weight lower than
0.8 and orphan vertices were deleted by using the igraph package [43]. A
CAG was then defined by grouping all the protein genes associated to
one OTU.
The quality (completeness and contamination) of the CAGs built by

these 3 different approaches were checked with checkM [44] with the
option “--genes”. In a first step, 149 CAGs were defined and the taxonomy,
completeness and contamination was assessed by checkM (Table S4). The
temporal dynamics of these different CAGs were assessed from the median
of the gene counts at each sampling date, and a network was built based
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Fig. 1 Bioinformatics pipeline. Schematic showing the bioinformatic analysis conducted to separate assembled and unassembled reads from
a 3-year metagenomic time series dataset. The reads were mapped against contigs and functional and OTUs tables were built with assembled
and unassembled reads. From these tables Co-Abundance gene Groups (CAGs) were inferred.
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on Spearman correlations. CAGs were considered redundant if their weight
(i.e. correlation) in the network was higher than 0.95 to a CAG with the
same taxonomy and amino acids identity >95%. This identity was
computed with compareM (https://github.com/dparks1134/CompareM).
These criteria were based on the histogram of the edge weight (i.e.
correlations), manual inspection of the network cluster for the CAG
taxonomy and the amino acid identity. The final network, with a
correlation coefficient >0.8 or <−0.8 between edges, included 114 CAGs
as well as 3 physicochemical parameters of the water samples. The
centrality indices were computed with the package qgraph [45].

Amplicon sequencing
Amplicon sequencing data were originally published in Lambert et al. [46].
Briefly, specific primer pairs 27F (5ʹ-AGRGTTYGATYMTGGCTCAG) and 519R
(5ʹ-GTNTTACNGCGGCKGCTG) were used to target the V1-V3 regions of the
bacterial 16S rRNA gene and sequencing was carried out with Illumina
MiSeq 2 × 300 bp kits. The analysis of the raw reads was done by
constructing amplicon sequence variants (ASVs) following the standard
pipeline of the DADA2 package [47]. Abundant ASVs were defined as the
ones with a representation >0.01% within a sample, and rare ASVs as
having an abundance <0.01% within a sample [48].

RESULTS
Temporal dynamics of the assembled and unassembled reads
The reads from the three-year metagenomic time series were
classified according to their mapping or not to contigs larger
than 1 kb (i.e. assembled and unassembled) (Fig. 1). A direct
comparison of the read composition between time points showed
that for the unassembled reads the similarity between samples
was highest when samples were taken one year apart (Fig. 2), and
similarity was lowest when samples were taken six months apart
(Fig. 2A). For the assembled reads, the seasonal pattern of
similarity was noisy and the overall pattern was not as clear
(Fig. 2B).
The non-metric multidimensional scaling (NMDS) computed

from Bray-Curtis index obtained with MetaFast showed that the
read composition of the unassembled fraction was different from
the read composition of the assembled fraction (Fig. S1). We then
identified the reads that were significantly enriched in each
fraction (Table 1). From the statistical analysis (ALDEx2 methods)
we deduced that a total of 130,450 proteins (10.7% of the total)
were significantly enriched in the unassembled fraction and
125,953 (10.4%) in the assembled fraction. Furthermore, 26 16 S
rRNA (mean reads: 170.5) and 25 KEGG (mean reads: 69.8)
annotated genes were only present in the unassembled fraction.
Conversely, 2523 UNIREF genes (mean: 209.2) were present only in
the assembled fraction (Table 1).

Taxonomic composition
To study the taxonomic composition of the two fractions, we used
statistical analysis based on both unique clade-specific marker genes
(Fig. 3) and rRNA genes (Fig. S2) found in the reads. In addition, we
analyzed the results obtained from high-throughput sequencing of
the 16 S rRNA gene (Fig. S3). From the shotgun data, both analyses
showed that the taxonomic composition of the unassembled fraction
was different from that of the assembled fraction. The use of
phylogenetic marker genes highlighted differences in prokaryotic and
viral compositions (Fig. 3). The analysis showed that the assembled
fraction had one characteristic phylum, Proteobacteria. At the class
level, Rhizobiales and Betaproteobacteria with Burkholderiales domi-
nated this fraction. The unassembled community had a larger number
of signature taxa, including Verrucomicrobia, Actinobacteria, Bacter-
oidetes, and Thaumarchaeota, within Archaea. Among this fraction
Proteobacteria, Gammaproteobacteria dominated. Interestingly, this
fraction was also characterized by viruses. Since, in this study, the
microbial biomass was gathered on 0.2 µm pore-sized filters, viruses
were possibly present as prophages or particles in the lytic phase. The
ASVs from the amplicon sequencing were separated in two fractions

based on an abundance threshold of 0.01% (Fig. S3). The abundant
ASVs were dominated by the SAR11 clade whereas the rare ASVs
were also more diverse as observed for unassembled metagenomic
read fraction. In the rare ASV fraction, the Gammaproteobacteria,
Bacteroidetes Verrucomicrobia and Actinobacteria were more common
than in the abundant fraction. Finally, the two fractions based on the
assembled/unassembled reads and the reference method for
deciphering the rare biosphere based on a threshold (i.e. 0.01%)
gave similar results (Fig. 3 and Fig. S3). We can hypothesize that the
unassembled reads capture the majority of the rarest fraction of
microorganisms.

Identifying metabolic capabilities among the assembled and
unassembled fraction
The alignment data showed that for all sampling dates there was a
higher proportion of reads that aligned to the UNIREF90
references in the assembled (44.1%) than unassembled fraction
(38.5%) (Fig. S4). The overall percentage of aligned reads for both
assembled and unassembled reads was low. In addition, a higher
proportion of the assembled read alignments had high identity
values than those of the unassembled reads (Fig. 4). When
comparing both alignment scores and identities for UNIREF90 and
UNIREF100, the differences between unassembled and assembled
reads were highly significant (ANOVA two ways: assembled/
unassembled × sampling dates; Fig. S5). The main factor
explaining the variations in identity or scores was “mappability”
against contigs and not sampling date.
The sparse principal component analysis (sPCA) based on

UNIREF90 and KEGG annotated genes separated the assembled
and unassembled fractions (Fig. 5). The multivariate analysis
explained 31% (UNIREF90 clusters) and 36% (KEGG clusters) of the
variance along axes 1 and 2. By comparing pathways (KO) present
in the assembled vs. unassembled fractions, we identified two
pathways involved in photosynthesis and flagellar assembly,
which were enriched in the assembled communities (Fig. S6).
The unassembled fraction was not significantly enriched in any of
the pathways referenced in the KEGG database. This result is
congruent with the previous statistical analysis showing few KOs
enriched in this fraction (Table 1).

Covarying gene groups of the assembled and unassembled
communities
In total, 114 non-redundant CAGs were identified. The mean
completeness was 53.19% (33.47–89.71) for the 56 uCAGs and
47.27% (30.25–80.07) for the 58 aCAGs. The mean contaminations
were 4.44% and 4.06% for the uCAGs and aCAGs species, respectively.
The uCAGs consisted of 65,787 genes and 59,470 genes for the
aCAGs. The UNIREF proteins were linked to KEGG features to identify
3072 KOs in 78 CAGs. A total of 765 KOs specifically belonged to the
uCAGs (37) and 2287 to the aCAGs (41).
Of the 125,257 genes (UNIRE90+ 16 S rRNA genes) found to be

enriched in the unassembled fraction (Table 1), 16,878 were found
in the uCAGs (13.4%). This proportion reached 14.7% for genes
enriched in assembled fraction. Three CAGs contained 16 S rRNA
genes that were found to be significantly enriched in the
unassembled fraction (Gammaproteobacteria, Flavobacteriia, and
Betaproteobacteria), and one CAG included a 16 S rRNA gene
present exclusively in the unassembled reads during all sampling
dates. This CAG belonged to Alphaproteobacteria (Nisaea genus).

Key constituents in marine ecosystems deciphered by a
network approach
The network built with 49 uCAGs and 46 aCAGs was binned in 18
clusters (Louvain method), of which five had more than three
vertices (CAGs or physico-chemical parameters). All of these large
clusters included two kinds of CAGs and three were associated
with physico-chemical parameters: temperature, oxygen, and
nitrite concentration (Fig. 6 and Fig. S7). We identified the main
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metabolic pathways associated with each cluster by considering
the pathways represented by at least 25% of the KEGG orthologs
included in the pathway of interest. The major common pathways
corresponded mainly to metabolisms involved in amino acid

biosynthesis, but photosynthesis pathways also characterized one
of these clusters (Fig. S7 - Cluster 17).
When analyzing the temporal dynamics of the CAGs, the spring

and summer seasons determined their dynamics (Fig. S7). The

Fig. 2 Pairwise comparisons of similarity between communities in relation to the time separating two samples. The similarity was
measured by a direct metagenome-to-metagenome comparison of the read content for the unassembled (A) and assembled ones (B).
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Fig. 3 Cladogram showing the taxonomic position of the unassembled (orange) and assembled (blue) fractions and their relative
abundance. Each circle diameter is proportional to the taxon’s abundance, and the color represents which branch of the phylogenetic tree is
more abundant in each fraction.

Table 1. Distribution of the SILVA, UNIREF90 and KEGG clusters among the mapped and unmapped reads.

Number of
features

Only in the
unassembled
fraction

Only in the
assembled
fraction

Significant
features

Enriched in the
unassembled
fraction

Enriched in the
assembled
fraction

SILVA (16S) 846 26 0 253 142 111

KEGG 6984 25 0 1944 516 1428

UNIREF90 1,210,645 7793 2523 256,403 130,450 125,953

Differences between both categories were considered significant (P < 0.05) when the Welch and Wilcoxon tests were convergent; the enrichment were
inferred from the log fold computed by the ALDEx2 procedure.
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network parameters allow us to decipher the main “influencers” or
keystone species (Fig. 6), and temperature appears to be the main
key parameter. Among the keystone species, uCAGs and aCAGs
were present and mainly classified in the Proteobacteria phylum
(Alpha and Gammaproteobacteria). Interestingly, Archaea classified
as Euryarchaeota appeared in this top ranking.

DISCUSSION
In this paper we present an overview of the rare genomic content
of marine microbial communities based on the reads “mapp-
ability” against contigs, and defined for the first time at the taxa or
gene level. The congruence between the detection clade-specific
marker genes in the assembled and unassembled reads (Fig. 3)
and metabarcoding results (Fig. S3), separating abundant and rare
microbes, indicates that the most part of the unassembled reads
belonged to rare marine species. The unassembled reads could
also have originated from strain heterogeneity manifested as
single nucleotide variations and small insertions or deletions [4].
However, the assembler used in this paper takes into account the
coverage ratios between adjacent edges in the assembly graph
(de Bruijn Graph) to replace it with high-covered alternatives, and
acts therefore as a consensus assembly reducing information
about individual strains. As only the most abundant microbes are
assembled by common bioinformatics tools [2, 3], and because
the kind of assembler used performs poorly with strain

heterogeneity, the unassembled reads that we focused on most
certainly represent members of the rare biosphere.

Community composition of the assembled and unassembled
fractions
The comparison of the taxonomy inferred from metabarcoding in
the abundant and rare fraction (<0.01%) with those deduced from
phylogenetic markers included in assembled and unassembled
reads, revealed similar patterns between the two approaches. The
unassembled fraction, and the rare 16 S rRNA amplicons, were
both characterized by a higher community diversity and by a
higher abundance of Gammaproteobacteria, Verrucomicrobia,
Actinobacteria and Bacteroidetes. The similarity between the two
data sets is noteworthy since the approaches have different
potential biases. Metabarcoding is hampered by well-known PCR
bias and the cut-off definition of the rare biosphere is always
arbitrary (0.01% here). To date, 16 S or 18 S rRNA based studies
describing the rare biosphere have used a cut off, often ranging
between <1% [49] and <0.01% [48], which originates from the
rank-curve distribution of microbial communities that shows a
long ‘tail’ of low abundance taxa [13]. In our metagenomic
approach, the delineation between rare and abundant pool genes
does not depend on an arbitrary cut off, but on sequencing depth
and contig length. However, the delineation between rare and
abundant may still depend on the sequencing effort. Our
approach differs from an earlier metagenomics study that defined
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rare members as sequence assemblies being in the “tail” of the
contig rank abundance curve, or ~0.005% in relative abundance
[23]. The two methods that we used, metabarcoding and
metagenomic based, allowed to detect the prokaryotes character-
izing the abundant fraction, the Alphaproteobacteria phylum
(SAR11 clade), which dominates marine bacteria [50]. Its ecological
importance at our study site was underlined by the network
analysis where it appeared among the main keystone taxa.
Interestingly, the rare gene pool (unassembled data) was
characterized by viruses. These viral genes detected mainly in
the rare fraction corresponded likely to the replication of the DNA
phage before the cell lysis. The rare community can therefore
include some taxa under a strong selection pressure through viral
lysis. Earlier experimental work suggested that some rare taxa may
indeed have high susceptibility to viral attack [51]. This idea is,
however, counter intuitive within the frame of the “kill the winner”
hypothesis [52], which suggests that rare microorganisms,
because they are not abundant, have a lower probability of
encountering virus [53]. The link between predation and rare taxa
is then rather seen as an evolutionary advantage for escaping top-
down regulation [13]. Our data adds arguments for another
hypothesis which suggests that lysis or predation are maintaining
some particular taxa in a state of rarity.

Seasonal dynamics and keystone species
Our study showed that the unassembled reads of metagenomes
responded strongly to seasonal variations and corresponded
certainly to an adaptation of the communities to specific
environment conditions (light, temperature, nutrients etc…). This
unassembled gene pool, which could correspond mostly to rare
taxa as discussed above, displayed a reproducible pattern of
temporal dynamics that was stronger than that of the assembled
fraction, which in turn could represent the abundant microorgan-
isms. The rare fraction thus showed a strong seasonal pattern for
both similar and dissimilar communities (Fig. 2). Conversely, the
rhythm of the abundant fraction (i.e. assembled reads) was noisier,
with no patterns for communities sampled during opposite
seasons. The abundant gene pool could thus correspond to core
marine taxa with few temporal variations or to housekeeping
genes. Thus, the overall seasonality of the microbial communities
in response to the environment was mainly driven by the rare
gene pool. A similar observation was made from coastal sands,
where turnover in community composition was no longer
observed when 50% of the rare species were removed from the
dataset [54], and the Arctic Ocean where the rare biosphere was
sensitive to environmental heterogeneity [55]. Rare communities
can be classified according to different patterns of seasonal
abundance and activity [17]. Within this classification, there is a
group defined as rare taxa that never bloom but are active. It has
been shown in bacteria, Archaea, and Eukaryotes [14, 17, 49].
These rare but active taxa also have a temporal pattern linked to
biotic or abiotic parameters. Even though our metagenomics
approach does not allow to infer activity, the reproducible
seasonal dynamics of the continually rare community that we
observed could suggest that they are active.
Overall, the binning step allowed the reconstruction of the

main bacterial and archaeal phyla detected by the metaphlan
pipeline (Fig. 3), with the exception of Thaumarchaeota
(Table S2), and the network provided a good overview of the
microbial interactions along the seasonal dynamics. Among the
top “influencers” within this network were temperature,
abundant microorganisms, and six rare taxa belonging to
Gammaproteobacteria, Flavobacteriia, Dehalocccoidetes, and
Euryarchaeota. The temperature had a significant influence on
the microbial components of this network. Such result is not
surprising, but it can be viewed as a validation of our approach.

Fig. 5 Sparse Principal Component Analysis conducted of the
read composition annotated against the UNIREF90 (top) and the
KO databases (bottom). The ANOSIM statistics based on the Bray-
Curtis similarity were R= 0.63 (P < 0.01) for the UNIREF90 dataset
and R= 0.90 (P < 0.01) for KO results.
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Fig. 6 Network representation of the relationship between uCAG (square vertices), aCAG (circle) and physicochemical parameters
(rectangle, T: temperature, Ox: oxygen and N: nitrite) and Louvain clusters. Red lines between nodes indicate negative Spearman
correlations whereas gray edges correspond to positive correlations. The table below the graphics shows the best keystones in the network
inferred from the « ExpectedInfluence » parameter (see Fig. S8). The numbers in the first column correspond to the numbering of the vertex in
the network.

D. Debroas et al.

9

ISME Communications



This influence is also noticeable at the read scale, since
temporal variation was strongly associated with seasonality
(Fig. 2). The link between heterotrophic bacterial metabolism
and temperature is generally associated with nutrient avail-
ability, such as organic matter released from phytoplankton or
grazing [56]. Alphaproteobacteria (Rhodobacterales) appeared
twice in the top influencers, but were also challenged by other
taxa, such as Gammaproteobacteria and Bacteroidetes. Arandia-
Gorostidi et al. [57] showed that the growth of these taxa was
strongly related to temperature changes, whereas Alphaproteo-
bacteria, such as SAR11, showed the lowest temperature
sensitivity [58]. The Gammaproteobacteria class, and more
specifically the Alteromonodales, dominated the main influen-
cers in this network. After Alphaproteobacteria, this class was
the most abundant in ICoMM data [58] and Alteromonodales,
such as Oceanospirillales or Vibrionales, contains mainly marine
species. Therefore, Alteromonas could contribute significantly to
the flux of dissolved organic carbon and nutrient mineralisation
in the upper ocean [59, 60]. Furthermore, Euryarchaeota was
also found to have a key role. The CAG built in this study does
not allow for a precise taxonomy; however, a previous study on
the same site highlighted the presence of the MGII clade
[17, 61] now defined as an order lineage. The ecological success
of the MGII group could be due to the presence of light-
harvesting proteins (i.e. proteorhodopsin) [61–63]. Recently, the
partially reconstructed MGIIa genome revealed the presence of
glycoside hydrolases that are possibly involved in algal
substrate breakdown [64, 65].

Rare and abundant gene pools: many unknown functions
This study showed that there was significantly more unknown
genes in the rare fraction than in the abundant fraction (Fig. 4
and Fig. S4). The microbial rare biosphere could thus be seen as
a large pool of genes possessing known and unknown functions
and considered a reservoir of “genetic novelty” [20, 66]. Since
the rare gene pool showed strong temporal dynamics, it
indicates that this reservoir of rare functions plays a role in
ecosystem functioning. Some of the rare reads could never-
theless be mapped against database references (UNIREF or
KEGG). They corresponded to known potential functions, but
the identity of these rare genes was significantly lower than that
of the abundant ones. This suggests that the rare gene
pool harbors different variants of known genes found in
abundant microbes. It should be noted that no metabolic
pathways could be built from the identified rare KOs. The
sequencing depth may have been too shallow to detect all the
steps of the pathways present in the rare microbes, or some of
the steps may be conducted by proteins coded by
unknown genes.
For the abundant microorganisms, the fraction of the

mapped reads against the UNIREF databases (90 or 100) always
represented a low proportion of the total clean reads (<45%).
This result at the short-read scale is in agreement with previous
studies showing that 40%–60% of the coding genes cannot be
assigned to a known function in the marine environment
[67, 68]. Even in the human gut microbiome, which has been
extensively studied, approximately 40% of the genes have
unknown functions, although the “mappability” of the meta-
genomes against microbial genomes reaches ~80% [69]. The
unmapped reads can correspond to new functions harbored by
known lineages or the dark matter of unknown taxa [67]. Our
results showed that little is known about the genes and their
coded functions present in marine microbial communities.
When analyzing known functions among abundant microbes,
some metabolic pathways could be described, but they
represented the most common metabolic pathways involved
in primary metabolic processes, such as photosynthesis or
flagellar assembly (Fig. S6).

CONCLUSION
In this work, we show that the rare microbial gene pool of the
marine environment is made of key species and represents a large
number of potentially novel functions. In addition, based on
the presence of viruses in the rare fraction, we hypothesized that
the state of rarity could be maintained by viral lysis. However, the
procedures used in this study were not dedicated to the detection
of viruses and thus a large diversity may have escaped detection.
A metagenomic based approach helps the challenging character-
ization of the members of the rare biosphere and promotes the
discovery of new putative functions.

DATA AVAILABILITY
Raw reads were archived in the ENA repository under accession number PRJEB26919.
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