
HAL Id: hal-03785926
https://uca.hal.science/hal-03785926

Submitted on 23 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete global optimization algorithms for the inverse
design of silicon photonics devices

Olivier Teytaud, Pauline Bennet, Antoine Moreau

To cite this version:
Olivier Teytaud, Pauline Bennet, Antoine Moreau. Discrete global optimization algorithms for the
inverse design of silicon photonics devices. Photonics and Nanostructures - Fundamentals and Appli-
cations, In press, 52, pp.101072. �10.1016/j.photonics.2022.101072�. �hal-03785926�

https://uca.hal.science/hal-03785926
https://hal.archives-ouvertes.fr


Discrete global optimization algorithms for the inverse design
of silicon photonics devices

Olivier Teytauda, Pauline Bennetb, Antoine Moreaub

aFacebook AI Research Paris, France,
bUniversite Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France

Abstract

The photonics community counts on inverse design approaches to provide new designs of

miniaturized photonic components. Although the structures are composed of two materials

only, the dominant method used to tackle such a problem is to make the problem continuous

through a relaxation of the binary constraint and to use a gradient-based approach. Global

optimization algorithms working on continuous problems actually often fail to produce satis-

fying solutions in such a context characterized by a large number of parameters – especially

when space is discretized into a large number of pixels or voxels. However, we show here

for three different photonics problems that global discrete optimization algorithms, which are

adapted to this kind of problems, can provide efficient solutions which are relatively regu-

lar, physically understandable and close to being buildable. Such algorithms constitute over-

looked but valuable tools for inverse design problems. Our preferred method is using a start-

ing point provided by a gradient based algorithm, and run an optimization using Lengler’s

algorithm equipped with a simple smoothing operator to make the algorithm aware of the

physical nature of the problem.
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1. Introduction

Photonic structures are increasingly integrated in electronic devices[1]. How far this may

lead us depends on whether the photonics community will be able to provide efficient minia-

turized structures to meet the various needs of electrical engineers. The main obstacle is that

there are no design rules based on a physical understanding of complex 2D or 3D structures.



All the physical analysis and design tools developed for multilayers[2] are useless in such a

context, so that we do not even know which devices can be imagined and what will be their

physical characteristics. The community has thus turned to numerical optimization to pro-

vide original designs: whenever a measure of the discrepancy between the performances of

a given design and the ideal or desired performance can be defined, then optimization algo-

rithms trying to minimize such a cost function naturally provide new structures, a process

called inverse design.

However, given the difficulty of even the simplest optimization problems, there is gener-

ally no realistic way to know whether a solution provided by an algorithm is the true optimal

minimum or a local minimum. This means that a photonic design provided by optimization is

in general not the best possible design, and it is even difficult to estimate how far it is from the

optimum[3]. The doubt easily put on any solution makes it often difficult to convince that in-

verse design is even the right path to follow. But all recent results suggest that even extremely

miniaturized devices which are not fully satisfying can present interesting performances[4, 5].

Given the complexity of any optimization problem in photonics, for a long time para-

metric optimization has been preferred in the community. The idea is globally to describe a

photonic structure as a collection of objects whose optical or geometrical characteristics can

be described using a few continuous variables (e.g. the radius of a rod, the length and width

of a block, the position of the object, its refractive index). This allows to describe the whole

design using a relatively small set of variables, making the use of standard global optimization

algorithms for continuous variables (eg PSO, DE) possible[6]. Recent results have shown that

above 50 variables typically, problems in photonics tend to become too difficult for most of

global optimization algorithms[7]. The main drawback of parametric optimization is probably

the inherent biases associated with the way the structure is described.

More recently, an approach originally used to solve mechanical problems and called topol-

ogy optimization[8] has been used to tackle problems in photonics[9, 10, 4]. Contrarily to

parametric optimization, the general idea is to constraint as little as possible the geometry

of any solution. A possibility is to divide the structure into numerous pixels (or voxels). In

mechanics as in photonics, each pixel can be filled with a material or with air making the

whole problem discrete. Such a setting is not adapted to the use of gradient-based methods

because it is then not described by continuous variables. However, for each pixel, a continuous
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variable can usually be introduced – allowing to describe intermediate optical or mechanical

properties, making the problem continuous and even differentiable. Typically, for each pixel

in photonics, the value 0 is used for air and a value of 1 is used for the high index material. The

gradient of the cost function is then cheap to compute[11, 9, 5]. Given the large number of

pixels involved (several hundreds), which makes the problem difficult for global optimization

algorithms, gradient based methods appear as an obvious choice.

In mechanics, such an approach provides solutions that are actually buildable[12] quite

easily. The results are easily reproducible, indicating the optimization problem (the so-called

”landscape”) is relatively simple, and finally the devices produced are physically understandable[13].

This is just not as simple in photonics. Even the most simple photonic structures (e.g a single

dielectric layer) are resonant, which implies the existence of numerous local minima. Solu-

tions provided are generally not buildable (with many intermediate values for the permittivity)

so that the discretization step, where the continuous variable describing each pixel needs to be

converted into 0 or 1, implies a large modification of the structure and of its optical properties.

This last step is always detrimental to the performances.

Overall, topology optimization is less successful in photonics, producing efficient but com-

plex structures with small features hindering commercialization for now[5]. This suggests that

the gradient based approach is perhaps not sufficient in that case. Numerical optimization be-

ing an incredibly dynamic field with enormous potential applications, a large number of well

tested algorithms suited to the present, discrete case are available. Optimizations (also called

experiments) can easily be run using freely available and easy to deploy libraries[14, 15, 16].

Here we show that discrete optimization algorithms can actually provide improved de-

signs, especially when they come after a first gradient-based optimization. We show this is

the case on three test cases provided in the freely available SPINS-B package[17, 18]: a waveg-

uide bend, a demultiplexer and a grating coupler. We rely on the Nevergrad platform[19, 16]

to run the experiments using several different discrete algorithms. Importantly, even though

we have not especially imposed any buildability constraint, the structures finally produced

are rather buildable and relatively regular, so that they can probably be understood physi-

cally – suggesting high quality solutions have been actually produced. We emphasize that

the present work has been made possible because the authors of previous works have taken

care to freely distribute their codes and methods, so that ours have been released too and are

3



available without any restriction[20].

2. Methods

2.1. Freely available packages

We rely on the three test cases released in the SPINS-B freely available python package[18].

The core of the package is a Finite Difference Frequency Domain (FDFD) solver allowing to

evaluate the optical response of a 2D structure divided into pixels and to compute the cost

function corresponding to three different cases (i) a square domain meant to force an incoming

guided mode to make 90 degrees turn (ii) a square domain able to separate two incoming

wavelength (under the form of a guided mode), sending them in two different waveguides and

(iii) a grating coupler, designed to couple an incoming plane wave to a guided mode, a common

problem in photonics. The cost functions are thoroughly described[17], easy to interface with

any python code and can be considered as black box functions on which different algorithms

can be compared.

The package is well documented, and constitutes a lighter version of the SPINS code[17],

meant to help design full 3D photonic components and which is not freely available. By

solving an adjoint problem, the gradient of any cost function can be computed for a low com-

putational cost, so that a Broyden–Fletcher–Goldfarb–Shanno (BFGS[21]) method can then

be implemented to generate a design by gradient based computation. More precisely, the

algorithm is a limited-memory and bounded version of the method (L-BFGS-B) particularly

adapted to handle a large number of parameters. It is simply called BFGS in the following.

For the discretization step following BFGS which transforms a structure with continuously

varying permittivity into a design with only two materials, we rely on the technique provided

in SPINS-B based on sigmoids, which has been tailored to provide relatively satisfying dis-

cretized structures. Globally, we use the BFGS method exactly as it has been implemented in

the SPINS-B package. Eventually, we catch the design before it undergoes any discretization

to evaluate the performances of the continuous structure. We underline that there are other

approaches[9] in which rely on the penalization of intermediate values of the permittivity.

Such methods were alas not implemented in the SPINS-B package.

We use the Nevergrad platform to provide us with state of the art algorithms, whether they

are meant for continuous or discrete variables. Nevergrad is a freely available benchmarking
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platform for optimization algorithms that are not based on gradient, as its name suggests[19].

2.2. Benchmarking methodology

In order to be able to compare different methods, each run is attributed only a limited

number of evaluations of the cost function (assuming this is the most costly part of the com-

putation). This is called the budget. This is the classical way to compare algorithms and

methods fairly, even though what really matters for applications is the best design overall,

whatever the method or the budget used. All the results we have obtained are averaged over

at least 5 different runs with different starting points (5 for the waveguide bend, at least 10

for the others).

The BFGS method being intrinsically a local optimization method able to converge quickly,

it then stagnates at a local minimum. The results can be vastly improved by restarts: once it

has converged to a solution, BFGS is restarted with a randomly chosen starting point. We stop

the restarts when the budget is reached and we keep only the best solution provided. We give

BFGS a slight advantage here: we count each step as only one evaluation of the cost function

whereas each step is roughly 2.5 times more costly.

Whenever we need to start anew any algorithm, we begin with a completely random

design where each pixel is randomly and independently chosen in the 0.4-0.6 refractive index

range. On some occasions (for the difficult multiplexer problem), we randomly draw the initial

point identically over blocks of h × h pixels instead of 1 × 1. The marginal distribution for

each pixel is the same as in the original SPINS-B, but instead of independence we use identical

values per block.

2.3. Discrete optimization algorithms

We have used global optimization algorithms provided in Nevergrad that work on the dis-

crete problem (problems with only two materials). We use many methods from the black-box

optimization world: simple evolutionary methods, Fast Genetic Algorithms [22], the portfo-

lio variant[23], various flavors of differential evolution [24] including Holland crossovers[25],

Lengler’s algorithm[26], particle swarm optimization[27], compact genetic algorithms [28],

covariance matrix adaptation [29], memetic algorithms based on first Lengler’s algorithm fol-

lowed by the Discrete (1 + 1), some wizards[30] and others. In some cases, we have tried to

start with a random design and to apply the algorithms directly, but as will be clear below,
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our best runs are when we use a two stages optimization: we start with a BFGS and proceed

to a discretization, to provide a sort of initial guess, then we run Nevergrad algorithms.

We insist that our discrete algorithms are completely unaware of the physical nature of

the problem: there is nothing which tells any algorithm that two pixels are actually adjacent

physically. The simplest way to make an algorithm more aware of such a situation is to in-

troduce what we call a smoothing of the structure. The process is simple: every 55 newly

generated structure, by one mean or another, we try the simplest possible filter, and keep the

result if such a filtering improves the solution. For Lengler’s algorithm, this means less than

2% of the solutions generated will be perturbed by the smoothing. This is enough to make the

algorithm aware of the bidimensional nature of the pixels, without disturbing too much the

way it functions.

For the filtering, we consider the values (0 or 1 for air and silicon respectively) of a pixel

and its 8 neighbours. The pixel’s value is set to the value which has the majority among these

9 pixels (said otherwise, we take the median of the different values), for one fourth of the

pixels, randomly chosen. This is summarized in annex in Alg. 1. Such a smoothing is the

simplest possible for a pixelized structure, but others could be thought of. This is fundamen-

tally different from a constraint and does not hinder a priori small details to appear during the

optimization.

While the two first cases in the SPINS-B code are 2D structures, the third case concerns

a grating[31, 32]. The approach in SPINS-B is then completely different: after a run of BFGS

and a discretization, a continuous parametric optimization is performed. We compare in the

following this approach to ours, which stays essentially the same (a two stage optimization

with BFGS and a discretization providing the starting point).

3. Results

3.1. Waveguide bend

The waveguide bend case provided by SPINS-B has served as a basis to compare methods

and algorithms, and to determine which one is the most adapted to photonics problems. The

main reason is that all the most successful designs have a lot of resemblance, meaning that it

is possible to tell even from the look of the solution whether it is satisfactory or not. In order

to get more interesting results, we increase the resolution of the problem to 42×42 instead of
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Budget 300

Algorithm Score

AdapDisc(1 + 1) 0.804

DiscBSO(1 + 1) 0.579

DiscLengler(1 + 1) 0.752

Disc(1 + 1) 0.636

FastGADisc(1 + 1) 0.636

PortfolioDisc(1 + 1) 0.621

BFGS continuous 1.004

BFGS discretized 0.860

Budget 1200

Algorithm Real Score

AdaptDisc(1 + 1) 0.988

DiscBSO(1 + 1) 0.711

DiscLengler(1 + 1) 0.899

Disc(1 + 1) 0.735

FastGADisc(1 + 1) 0.901

NGOpt 0.899

PSO 0.568

PortfolioDisc(1 + 1) 0.679

Disc3 0.978

BFGS continuous 1.004

BFGS discretized 0.882
Budget 9600

Algorithm Score

AdaptDisc(1 + 1) 0.997

DiscBSO(1 + 1) 0.519

DiscLengler(1 + 1) 0.999

Disc(1 + 1) 0.802

FastGADisc(1 + 1) 0.917

NGOpt 0.999

PortfolioDisc(1 + 1) 0.883

discrete3 0.997

BFGS continuous 1.004

BFGS discretized 0.860

Budget 70000

Algorithm Score

AdaptiveDiscreteOnePlusOne 1.000

DiscreteLenglerOnePlusOne 1.000

DiscreteOnePlusOne 0.970

NGOpt 1.000

RLSOnePlusOne 0.988

discrete3 0.946

discretememetic 1.000

memeticde 0.984

BFGS continuous 1.004

BFGS discretized 0.860

Table 1: Final scores for various methods on the 90 degrees bending waveguide problem, for different budgets.

The higher the score, the better, one being theoretically the maximum. Note that BFGS needs the gradient and

is therefore roughly 2.5 times slower per iteration than other methods. To be fair, for BFGS, we indicate the

score computed before the discretization (it is essentially perfect) and after. We underline that BFGS is restarted

whenever a local minimum is reached to be able to explore more.

a 16×16 resolution.

We first compare all the methods starting with random points. For low budgets (around

300), BFGS provides the best results (presented Table 1), but as the budget increases typically

above 104, most of the discrete algorithms we have considered present better scores. A score

of 1, as computed using SPINS-B is a perfect score which can theoretically not be exceeded.

However, small numerical errors allow to reach values that are slightly beyond. We insist for

instance that the score presented by BFGS before the discretization is already slightly beyond

1, but the discretization is detrimental to this score, so that the discretized structure has a

lower score around 0.86.

It seems however that considering the score reached by each optimization is not enough.
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We show (Fig. 1) the best designs obtained for budget 30000. While all of the designs seem

to exhibit some sort of periodicity, indicating there is probably physically only one type of

solution to such a problem, they are not all sufficiently smooth. This is not reflected in the

corresponding score, since most of these structures present a score close to 1. When it comes

to generating smooth structures, it seems BFGS performs the best.

BFGS AdapDisc(1 + 1) Lengler(1 + 1)

Disc(1 + 1) NGOpt RLS

Memetic Lengler/Disc(1 + 1) PortfolioDisc(1 + 1)

Figure 1: Budget 30000. Designs obtained without BFGS are not smooth: BFGS designs look better.

The cost function does not reflect the smoothness of the design, a characteristics which

is however important. In order to know whether smoother structures can reach high scores,

we combine eventually BFGS starting from a random point and then discretized and a sec-

ond stage for which we use a discrete optimization algorithm with the smoothing operator

described above.

Visually, all the solution looks better. This is especially the case for BFGS when using

the smoothing operator and the overall best is when we use BFGS first, and then a run of
8



Algorithm Score

PortfolioDiscrete(1 + 1) 0.759

SMOOTHPortfolioDiscrete(1 + 1) 0.783

SMOOTHDiscrete(1 + 1) 0.799

SMOOTHAdaptiveDiscrete(1 + 1) 0.882

Discrete(1 + 1) 0.899

BFGS (with discretization) 0.948

AdaptiveDiscrete(1 + 1) 0.965

SMOOTHDiscreteLengler(1 + 1) 0.992

DiscreteLengler(1 + 1) 0.993

SMOOTHmemetic 0.996

discretememetic 0.997

BFGS/SMOOTHDiscreteLengler(1 + 1) 0.999

BFGS (without discretization) 1.004

Table 2: Numerical results with budget 3000, averaged over 5 runs each. Besides being the smoothest visually

(Fig. 2), the combination BFGS+Lengler+Smoothing operator performs best numerically and equivalently to the

best other methods with 10 times more budget (Fig 1).
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SmoothDiscLengler(1 + 1) SmoothPortfolio(1 + 1) BFGS/SmoothLengler(1 + 1)

RestartBFGS DiscreteLengler

Figure 2: Visualization of waveguide bend designs with budget 3000, including smoothing operators. The light

arrives from the middle at the top, and leaves at the middle on the right hand side.

the Lengler[26] algorithm with a smoothing operator (Alg. 2). In that case the result is both

particularly efficient and particularly smooth. This makes this solution convincing, so that we

will apply this technique to the two other test cases proposed in SPINS-B.

3.2. Demultiplexer

The same method as described above is applied to a wavelength demultiplexer of size

2µm× 2µm that splits 1550 nm and 1300 nm wavelengths. The objective function is the sum

for both wavelength of the squared lost share of transmitted power ((1 − power)2) for the

relevant output path.

This case is fundamentally different from the previous one in that the lowest cost func-

tion physically reachable (i.e. a value of 0) is never reached by any algorithm, whereas the

maximum score of 1 is essentially reached by all algorithms in the waveguide bend case. It

could thus be considered as more difficult. We have tried several resolutions (14×14, 42×42

and 202×202).

Results for the Demultiplexer use case are presented in Tab. 3, comparing methods de-

pending on the budget and the resolution case of the structure. The progress represents the

diminution of the cost function value when Lengler’s algorithm and smoothing operator are
10



combined with BFGS method in comparison to the use of the BFGS method alone. A posi-

tive progress means the combining method outperform the BFGS method. Exactly as what

occurs in the waveguide bend, BFGS performs well for low budgets. Lengler’s algorithm and

smoothing operator however leverage larger budget to explore the surroundings in the pa-

rameter space, usually finding more efficient solutions and outperforming BFGS. While we

present only the results for the highest resolution, the same conclusions can be drawn for

lower resolutions – the progress brought by our approach is just slightly lower.

Increasing the resolution of the structure, and so the number of pixels, allows to have more

degrees of freedom but as SPINS-B originally uses random uniform pixels with complete in-

dependence to generate starting points (each pixel is randomly drawn independently of other

pixels), those starting points lack of homogeneity at the wavelength scale. The structure will

be seen as an intermediate material by the wavelength with the same characteristics what-

ever the starting structure really is. We test (gray rows) randomly drawing pixels by groups

of h× h, where h is one tenth of the size of the design. Average results and, even more, best

results, become significantly better both for BFGS and for our methods. Not only the average

value is better, but more importantly the variance is greater by 50% , leading to more progress

on best value found (over 50 runs) than with the previous random initialization procedure.

This illustrates the dependency of the results on the starting points chosen, something we

have not explored further here.

The different structures obtained during the best run we have made are shown in Fig. 3

for the highest resolution and the largest budget. The result of the first stage based on BFGS is

shown, and it is not binary at all, presenting a lot of intermediate values for the permittivity.

Once the structure has been discretized, its performances can be further improved using our

discrete optimization with smoothing. This leads to a different solution, in which however

some characteristics of the starting point provided by BFGS can be found. This shows that

the algorithm does largely modify the structure to improve its performance. Interestingly, the

structure produced is relatively smooth: few black pixels seem to be isolated, even though this

is not especially enforced in our method, making the structure easy to grasp. Two channels

leading to the two output waveguides on the right can be distinguished.
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Budget BFGS BFGS + Lengler + Smoothing Progress

High resolution case (202x202)

80 0.201 0.186 0.014

160 0.199 0.186 0.013

320 0.199 0.186 0.012

640 0.198 0.186 0.011

1280 0.197 0.185 0.012

2560 (average) 0.195 0.181 0.014

2560 (best) 0.182 0.161 0.021

Table 3: Loss (to be minimized) obtained by BFGS with restart vs BFGS followed by Lengler’s method equipped

with a smoothing operator for the demultiplexer. The progress (represented in the last column) is positive when

the combination of the three algorithms BFGS + Lengler + Smoothing is better than BFGS with restarts. The

BFGS is exactly the method used in [17]. It is generally better to use the combined method than the BFGS with

restart alone. The values presented here are averaged over 10 runs at least. The two last lines present the results

with a different random initialization as described in Section 2: instead of choosing randomly each pixel, we

chose the starting value randomly for groups of h × h pixels. The last line of the table presents however the

best result reached using BFGS and our approach, something which has more importance when solving a design

problem.
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Figure 3: The demultiplexer in the highest resolution (202×202) and for the lowest value of the cost function:

after BFGS (left), after BFGS and discretization (middle) and after having run the algorithm Lengler equipped

with the smoothing operator (right). The material with high permittivity is in black, while air is represented in

white. There are significant differences before the discrete algorithm begins and the final result.

3.3. Grating coupler

The latest case in the SPINS-B code deals with a grating coupler, able to transfer the power

of a large incident gaussian beam with a 10 degrees angle of incidence to a waveguide placed

on top of a substrate. The cost function here is simply 1 − power, meaning that the power

transmitted into the waveguide is maximized. The structure is composed of four materials :

a silicon substrate 2 µm under the grating, a silicon oxide layer, a 220 nm thick silicon layer

that can be half-etched eventually, and a superstrate of silicon oxyde[31, 32]. The method

provided by the SPINS-B package relies on two stages: first BFGS followed by a discretization,

and then a parametric optimization where the position and width of the different blocks are

modified. The parametrized design optimization is easy to apply here because the design is

a one-dimensional array of pixels: the parameters are the positions (x-axis) of the frontiers

between areas. The algorithm to reduce the cost function is the Sequential Least Squares

Programming (SLSQP). This method is referred to as (BFGS)+(SLSQP) in the following, BFGS

being followed by a discretization step and (SLSQP) standing for the discrete parametrized

design optimization. The (SLSQP) stage relies on continuous parameters (widths of blocks),

and can be deemed discrete in the sense that permittivities are discrete (the two extreme

values). We compare this method to our approach with Lengler’s algorithm and a smoothing

operator after a first stage using BFGS and discretization. (Lengler/smoothing) stands for the

Nevergrad tools, namely Lengler + Smoothing run for a budget equivalent to the (halting

criterion dependent) budget used by (BFGS).
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Figure 4: Comparison between various methods used for optimizing the grating design. The common part

based on BFGS stagnates quickly: in the original code (BFGS+SLSQP), (SLSQP) uses more time than (BFGS).

All methods based on non-differentiable optimization for improving the design were better. The best solution

is to combine all: BFGS for the beginning, then the non-differentiable optimization (Lengler+Smoothing), and

then the parametric optimization with SLSQP[17]. A suffix ×10 after a method name means how we compute

the budget for that method as follows. The budget of BFGS is determined by its halting criterion. (SLSQP) has

a halting criterion, but (SLSQP×10) means that we force 10 restarts. Lengler/Smoothing ×10 means that we

use the budget used by BFGS, but multiplied by 10. For a fair number of function evaluations for each method,

we use random restarts when an algorithm halts before its entire budget is elapsed. The original solution in

[17] was similar but without the non-differentiable optimization: in all the benchmarks from [17], adding non-

differentiable optimization leads to improved results. When a non-differentiable optimization part is applied,

the parametric (SLSQP) part provides only a minor improvement.

Fig. 4 shows the value of the cost function reached, as a function of the budget. For

each different value of the budget, new runs are launched, so that each point is independent

from the others on the same curve. The BFGS algorithm does not, here, provide a noticeable

progress. The cost function remains relatively constant until the beginning of the second stage.

While the parametric optimization provided in SPINS-B is quicker to converge, it ultimately

converges to a larger value than Lengler’s algorithm equipped with smoothing. Restarting

BFGS each time it has found a local minimum is not as efficient as for the two previous cases,

as the associated values of the cost function remain high. This makes this grating case peculiar.

It is interesting to see that our approach works finally just as well as in the two previous cases,

despite the fundamental differences.
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4. Discussion

As can be seen from the results, the combination of Lengler’s algorithm equipped with

the simplest possible smoothing operator to make the algorithm more aware of the physical

surrounding of each pixel, using a starting point provided by BFGS, provides in each case

the best possible results. It thus seems we have identified in this work a discrete algorithm

which seems particularly adapted to the optimization of binary structures (made of only two

materials) when they are divided into pixels. The starting point provided by BFGS presents

variations with typical size that are of the order of the wavelength inside the high index

material. This is very different from a purely random starting point because it is influenced

by the physics of the problem already, and this explains to our advice, why they are much

better starting points.

We have seen that the result produced by the discrete optimization is noticeably different

from the starting point provided by BFGS. However, it can be seen that the results of the

optimization are essentially composed of well defined blocks, something which we have not

imposed. The fact that we have not imposed such a constraint points to a characteristics

imposed by the physics of the problem. This is anyway good for the buildability of the design.

Not all the problems we have considered here present the same level of difficulty for the

algorithms. The waveguide bend is simple, in that the largest possible score (equivalently the

lowest physically possible cost function) is easily reached. This means it is realistic, given

the miniaturized size of the device, to have light make a 90 degrees bend. In that case the

gradient based approach (BFGS and discretization) as well as our discrete method seem to

generate very reliably efficient structures that look quite similar. It is never possible to truly

assess whether a global optimum has been reached, so that only the degree of confidence

which can be placed in a given solution has always to be discussed. This is what we call the

quality of the solution. The kind of solution provided here can be deemed to be of high quality

because (i) it emerges systematically, (ii) there is a physical limit to the lowest value of the

cost function, which is essentially reached and (iii) the solutions provided can be understood

physically, as a structure resembling a tilted Bragg mirror emerges (which is quite common

in photonics[33, 7, 34]).

The solutions produced in the demultiplexer problem do not possess the same degree of

quality, which indicates that the problem is more difficult. The BFGS algorithm provides solu-
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tions which are very sensitive to the starting point[17] and the best values of the cost function

are not found systematically. We note, as shown by results in gray in Table 3, that modify-

ing the correlation between pixels at the random initialization can strongly improve results

both for BFGS and for our methods. The solutions are more difficult to understand physically,

even if some regularity emerges spontaneously, a very important sign identified a long time

ago[33]. More precisely, as identified by the authors of SPINS-B[17], in most of the designs

produced by the algorithms, two channels leading to the two outputs emerge, which are some-

how periodical. This points to an interferential mechanism allowing to reject one wavelength

or another from each waveguide.

The grating case can, quite surprisingly, be deemed very difficult for gradient-based algo-

rithms, which are seemingly not able to produce efficient solutions – despite the numerous

restarts in the case of a large budget. This is why a second, parametric or discrete stage is ab-

solutely necessary to reach interesting performances, whereas in the previous cases restarting

BFGS proved to be largely enough. We underline, too, that even though the solution we have

found using Lengler’s algorithm is better than any reached using the parametric stage, we do

not find it is yet fully satisfying (see appendix) – which is a sign the problem is difficult.

The SPINS platform is actually more of a way to organize the optimization, setting up dif-

ferent stages. We are aware that, in the present case, we compared our algorithms to a simple

run of BFGS followed by discretization and that there could be a sequence of optimizations

based on BFGS leading to better results than the one we have presented. In their original

work, the authors of SPINS use a more complex sequence[17]. Furthermore, some authors

rely on techniques involving penalizing non binary structures – a very different approach[9].

We thus do not claim that our approach is definitely the best, but that discrete optimization

algorithms can be very serious candidates that have been so far essentially overlooked.

We are rather convinced that nobody, so far, has hardly found any high quality solution

to the problem of the multiplexer, despite its practical importance. While we begin to com-

prehend how the structures produced may work, they are still too complex to be physically

analyzed thoroughly. We think however that such a convincing solution is within our reach,

and that it can be obtained through a combination of algorithms and maybe some physical in-

put. Given the complexity and the diversity of the solutions, maybe guiding the optimizations

could lead to interesting results. In some cases[10] parts of the structure which are not very
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useful can be manually erased. This is exactly how a gradient based method stuck in a local

minimum would look like: a structure with parts that play almost no role, but whose cutting

off would be only slightly detrimental to the efficiency. Maybe the path to follow would be to

run another optimization after having modified the structure to match our physical intuition.

We underline that, generally, any physical input usually helps optimizations immensely.

As we are discussing the physics of the structure, we think an important open question

remains. Is the best possible solution a continuous one, with intermediate values of the per-

mittivity, or is it binary ? The authors of SPINS-B seem to lean towards the first answer, as they

use the results of BFGS without discretization to estimate the highest reachable efficiency[17].

However, our results show that discrete structures can be particularly efficient. We underline

that in multilayered structures it has been proven that the best structures present a maximum

index contrast, something which is found in parametric optimization and in particularly high

quality solutions[35, 7, 36].

As underlined at the very beginning of this paper, the practical importance of being able to

provide efficient photonics components can be far reaching. As widely recognized[5], we are

not there yet because the quality of the solution reached is not completely satisfying. Many in

the photonics community still doubt inverse design approaches will be up for the challenge –

mainly because no design rule can really be deduced from the solutions proposed as long as we

are not able to understand how they work in detail. Such a complex problem cannot be solved

by one individual or one team. Coming up with good designs requires a lot of work. We were

able to contribute here by identifying interesting algorithms and proposing improved designs

because we have been relying on openly available codes[17, 19]. We would like to underline

that, because this is not always the case in the field of optimization[37, 38]: the domain is

going trough a worrisome reproducibility crisis. We thus made the codes which allowed us

to produce the present results freely available[20]. We cannot stress more that open science,

and the sharing of codes and methods openly[39] is the only way we can ever overcome all

the obstacles which will arise on the road to versatile and reliable photonic components.
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Appendix A. Algorithms

We give, in this appendix, an overview of the different algorithms that we have used under

a form that will allow the reader to better grasp the details of our experiments.

We described the algorithms with the standard Ask, Tell, Initialize and Recommend

methods. The Ask method provides a new candidate or set of parameters to evaluate. Once

evaluated, the user returns the candidate and the corresponding loss through the Tell method.

The Recommend method provides the optimized set of parameters at the end of the optimiza-

tion. Each algorithm has its own methods, so that the number of parameters for each one

depends on the algorithm considered.

More details on the ”Ask and Tell” methods can be found in [40].
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Algorithm 1 Smoothing operator. This operator is applied once per 55 mutations. We use

the median: if we have two permittivities, we get one of those permittivities as a result.
for each pixel p do

if random < .25 then

Replace p by the median value of the 3× 3 pixels around p (p and its 8 neighbours)

end if

end for

Accept the mutation above if fitness is not worse
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Algorithm 2 Our combination of BFGS, Lengler and the smoothing operation. The Lengler

method starts at the point at which BFGS stagnates.
Require: an objective function f , its gradient function∇f , a domain D, a budget b

BFGS : Initialize(D, b): we initialize the algorithm given the domain D and the budget

b

for i ∈ {1, . . . , b} with interruption in case of halting criterion raised (BFGS auto-detects

its stagnation) do

The algorithm provides x← BFGS : Ask() (x ∈ D)

Compute f(x) and ∇f(x)

BFGS : Tell(x, f(x),∇f(x))

end for

b′ ← number of calls to tell

Bfgs− Recommendation← BFGS : Recommend() with discretization to two permit-

tivities

Lengler : Initialize(D, b− b′, Bfgs−Recommendation)

for i ∈ {1, . . . , b} do

Lengler provides x← Lengler : Ask() (x ∈ D)

if 55 divides i then

for each pixel p do

if random < .25 then

Replace p by the median of the 3× 3 patch around p

end if

end for

end if

Compute f(x)

Tell(x, f(x))

end for
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Appendix B. Grating design

Here is the design provided by our algorithms. In a way, it is disappointing in that no

regularity can be particularly found in the result of the optimizations despite the low values

of the cost function reached. It is thus difficult to claim the solution we have found is actually

a high quality solution (i.e. found systematically and physically understandable), but it seems

more efficient than any solution found with the parametric optimization, according to the

value of the cost function and to the field representedB.6.

Figure B.5: The black color corresponds here to the half-etched silicon embedded in silicon dioxyde.

Figure B.6: Modulus of the field showing the coupling of the incident plane wave to the resonance of the grating

and finally to the waveguide on the right.
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