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There is a growing body of evidences that brain surrogates will be of great interest for
researchers and physicians in the medical field. They are currently mainly used for
education and training purposes or to verify the appropriate functionality of medical
devices. Depending on the purpose, a variety of materials have been used with
specific and accurate mechanical and biophysical properties, More recently they have
been used to assess the biocompatibility of implantable devices, but they are still not
validated to study the migration of leaching components from devices. This minireview
shows the large diversity of approaches and uses of brain phantoms, which converge
punctually. All these phantoms are complementary to numeric models, which benefit,
reciprocally, of their respective advances. It also suggests avenues of research for the
analysis of leaching components from implantable devices.
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INTRODUCTION

The human brain is a complex organ at both functional and structural levels, which is placed in a
particular biomechanical environment, the intracranial space. In the world of materials aiming to
simulate biophysical properties of the brain, the words model, phantom, and surrogate are often used
indifferently (Reinertsen and Collins, 2006; Forte et al., 2018; Zhang et al., 2019) even if models and
phantoms should rather be representations, whereas the true surrogate should substitute the brain.
Realistically there is no true surrogate of the brain, and models and phantoms are in their infancy.
Nevertheless, few and partial structures and functions of the brain can already be surrogated. Indeed
restoration of brain, by repair and regeneration, can be feasible using biomaterials such as
bioscaffolds (Modo and Badylak, 2019) and bioengineering of the environment of stem cells
(Zimmermann and Schaffer, 2019). Brain computer interfaces working via neuronal signal
analysis and/or activation of neuronal population or body segment or exoskeleton, can surrogate
inefficient auto repairing or treatments and must deal with biomaterials (Jeong et al., 2020). The
bright future of replacements and surrogates will have to face the complexity of interactions between
multiple domains from materials to regulatory processes (Handa et al., 2020).

The physical simulation of the different dimensions of the brain is extremely challenging and
there is no model, phantom or surrogate that simulates the function, the structure, the aspect and the
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biomechanics all at the same time. The types of materials and
their assembling, in a more or less realistic way, are essentially
determined by the uses, such as imaging and biomechanical
studies, education, surgery, developments of medical devices
(MDs), and assessment of numeric models. Thus the choice of
materials is not dissociable from the purpose of the physical
representation accounting the context of the applications
and uses.

Our goal was to carry out a mini-review of the materials
proposed to simulate mechanical, chemical and biological
properties of the human brain, as well as some of its structural
elements such as architecture and aspect (Figure 1). The neural
simulation of the brain function is particular because the
functioning is so complex that it is still just not possible to
simulate all the neuronal activity of the brain simultaneously,
even with supercomputers. Recent programs illustrate the high

level of the challenge (Amunts et al., 2016; Yamaura et al., 2020).
Consequently, it was beyond our objective to integrate directly
this dimension, in term of materials. The digital aspects of models
are not addressed in this minireview. Hence we focused on the
structural, physical and chemical properties of the brain, with the
perspective of future medical applications, notably in
neurosurgery, such as innovative treatments including surgery
planning, as well as educational and training programs, which can
be linked.

HUMAN BRAINMODELS FOR EDUCATION,
TRAINING AND PLANNING OF SURGERY

The realistic aspect of models, like their precise shape, size and
colors, was largely skipped until recently. The most common

FIGURE 1 | Overview of materials, models, phantoms and surrogates simulating the human brain.
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human brain models for education are semi-realistic in the sense
that they mostly aim to show the gross anatomy of the brain, in a
more or less simplistic way (see e.g., search engine:
“brain”+“model”+“education”), with some capabilities to see
the “interior of the brain”, such as the ventricles. The targeted
population of users is mainly undergraduate or graduate non-
medical students. The models are generally made in rigid plastic
(Azer and Azer, 2016) such as thermoplastic polyurethane (Goh
et al., 2021), usually colored with different shades of pink, and
specific colors highlighting particular regions, such as the
hemispheres, functional territories or vessels. With the
introduction of 3D printing, it has become easier to produce
realistic “home-made” models, used for example, to explain
diseases and therapeutic options to patients or relatives (van
de Belt et al., 2018). Nevertheless, beyond the technological issues,
the quality of data used for the 3D printing is variable. This
quality is linked to the quality of medical images (geometrical and
contrast resolutions, adequation between the type of image and
the goal), the patience and diligence of the person in charge of the
data extraction (as the best data is still extracted by skilled users),
and the chain of data transfer from the raw data to the 3D printer.
An advantage of additive manufacturing is that it enables the
development of much more complex models, which could be able
to integrate several physical dimensions of the brain (Zhao et al.,
2020). The models used by neurosurgeons for training,
preoperative planning and intraoperative guidance are
promising (Rehder et al., 2016; Garcia et al., 2018; Qiu et al.,
2018). However these models are still limited because the
information embedded, such as topography, colors and
texture, is not precise and they compete with virtual numeric
models and historical anatomic dissections. For surgical training,
physical models should add intracranial structures such as the
vessels and the braincase (Ryan et al., 2016; Nagassa et al., 2019).
One could expect that 3D bioprinting of physiologic or pathologic
material, could be also used for training in surgery in line with the
concept of mini-brain (Heinrich et al., 2019). However molding
of synthetic materials can offer advantages such as low cost and
easy making of brain surrogates, such as polymers and gelatins
(Forte et al., 2018). More simple phantoms, made of radiopaque
printed sheets intercalated with polyethylene foam layers, enable
the design of anthropomorphic surrogates for training of
interventional radiologists, with a fair CT-scan anatomic
aspect, although they offer still limited haptic sensations
(Jahnke et al., 2018).

HUMAN BRAIN MODELS FOR THE STUDY
OF MEDICAL DEVICES

The different materials used for the simulation of biophysical
properties of the human brain aim to model at best one or more
biophysical dimensions. The phantoms and models built from
these materials depend on the usages, which are chiefly brain
imaging analysis and study of mechanical stress. Specific models
have been developed for special studies, such as agarose gel for
intraparenchymal diffusion (Chen et al., 2004) or composite gel
for dosimetry (Pavoni et al., 2015).

The phantoms used for experimental brain magnetic
resonance imaging (MRI) or ultrasonic imaging, or those
devoted to assessment of imaging, are essentially made of gels
(Hellerbach et al., 2013). They enable the measurement of
mechanical and thermic stress (Hellerbach et al., 2013;
Sammartino et al., 2016), as well as MRI parameters such as
diffusion and relaxation time (Fieremans and Lee, 2018),
irrespectively of the architecture, at least the meso-architecture
of gray nuclei, such as those of the thalamus and prethalamus,
and of white matter (WM) tracts and fascicles, such as the
cingulum and the brachium conjunctivum. Some agarose
based phantoms allow the mimicking of metabolites during 7-
T spectroscopic imaging, such as glutamic acid, creatine and
phospho-creatine, myo-inositol, gamma-aminobutyric acid
(GABA), choline chloride, sodium lactate and N-acetyl
aspartate (Jona et al., 2021). Phantoms were also developed
specifically for the neonatal brain (Kozana et al., 2018). The
main limitation of these phantoms remains their non-realistic
characteristics, notably structural, hence MRI brain models based
on anatomic specimen are still relevant (Droby et al., 2015).
Physical phantoms for ionizing imaging, CT-scan and Pet-Scan,
are anterior and were designed for imaging and radiotherapy,
notably in oncology. These phantoms can embed true bony or
resin braincases. They are also able to simulate blood infusion
(Boese et al., 2013) and they continue to be updated [e.g., (Mansor
et al., 2017; Pourmorteza et al., 2017].

Additive manufacturing or 3D-printing, already enables to
shape phantoms and to fill them with specific materials (liquid or
solid) depending on the usages (Filippou and Tsoumpas, 2018).
In the same line, the microarchitecture of WM fiber bundles
could be embedded in the near future (Altermatt et al., 2019). In
medicine, the measurement of mechanical stress distributed
within the brain tissue enables the evaluation of the risks of
lesioning and consequently of dysfunctions, although it is still
challenging to infer functions from lesions. Future robotic and
robotized surgeries will beneficiate from such data (Martin et al.,
2009; Ruby et al., 2020). Besides the measurement of stress values,
the determination of thresholds is pertinent as it enables the
conception of protective solutions such as helmets, airbags and
smart retractors. Phantoms were made of silicone (Margulies
et al., 1990; Chanda et al., 2018; Zhang et al., 2019), gel
(Reinertsen and Collins, 2006; Pomfret et al., 2013a; Awad
et al., 2015) and dual material such as gel-polymer (Alley
et al., 2011; Zhu et al., 2012). Agarose gels of 0.4–0.6% seem
close to strain and rheology of bovine brain tissue (Pervin and
Chen, 2011). Recent complex head models with a silicone rubber
brain are used to study the dynamics of impact tests (Petrone
et al., 2019). In parallel, the development of numeric models
(Gabrieli et al., 2020) and atlases (Hiscox et al., 2020) continues to
explore the complex biomechanics of the brain. It seems feasible
in the near future to embed micro models of brain components,
such as vascular tissue using silicone elastomer or hydrogel
models (Sato and Sato, 2018), blood-brain barrier using hybrid
silicone elastomer - plastic polycarbonate (Nguyen et al., 2019),
up to mini-brains, organoids and brain-cell models using true
human brain cells (Camp and Treutlein, 2017; Quadrato and
Arlotta, 2017; Korhonen et al., 2018; Lovett et al., 2020). It is
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noticeable that most phantoms and models could be used to
develop brain surrogates for education, training and surgery
planning.

The simulation of electrical conductivity of the brain tissue is
of upmost importance since the growing interest in invasive, such
as the deep brain stimulation (Fariba and Gupta, 2020), and non-
invasive, such as the transcranial magnetic stimulation
(Lefaucheur, 2019), acute or chronic stimulations at
frequencies usually below 200 Hz, of neurons and axons.
Physical head phantoms have been developed to measure in
situ computational models of electric fields, either caused by
neurons or by external sources such as transcranial electric
stimulation (Hunold et al., 2018; Magsood and Hadimani,
2021). Gel phantoms seem particularly interesting to study the
electric conductivity (Kandadai et al., 2012; Pomfret et al., 2013b;
Chew et al., 2014).

More recently, medical device biocompatibility, which relies
on the ability of materials to perform with an appropriate host
response in a specific application, gains increasingly in
significance. At the tissue-material interface, two coupled
aspects are present, the biotic factor that represents the cell
and tissue reactions against the device, and the abiotic factor
that represents the physico-chemical reactions at the surface of
the material (Gulino et al., 2019). The study of biotic reaction
relies on immortalized cells (Chapman et al., 2016; Mantione
et al., 2016; Rejmontová et al., 2016; Koss et al., 2017; O’Rourke
et al., 2017; Bradley et al., 2018; Johnson et al., 2018), organoids
(Nasr et al., 2018; Nzou et al., 2018) and cultures (Persheyev et al.,
2011; Mantione et al., 2016). Yet the study of the abiotic factor is
still to be done, the related brain models being in the infancy,
focusing on molecules and nanoparticles with animal protocols
(Gulino et al., 2021; Ojeda-Hernández et al., 2021). The
International Organization for Standardization (ISO) norm
10,993 evaluating the biocompatibility of medical devices,
precises in part 18 (Chemical characterization of medical
device materials within a risk management process, revised in
May 2020) that an exhaustive investigation of extractible
compounds must be performed and that the simulated
extraction should be only performed when the total extractable
components exceeds a tolerable limit. Anyway this approach
could be insufficient to investigate the security of use of a
medical device for two reasons: 1) exhaustive extractables need

to be completed with a simulation performed in a physiological
environment (Paskiet et al., 2013), and 2) because some leaching
component are by nature endocrine disruptors (bisphenol A for
instance) and could be more toxic in lower quantity than in high
doses (Li et al., 2015).

DISCUSSION

Our minireview on the materials used to simulate mechanical,
chemical and biological properties of the human brain, and
structural features, shows that no model fulfills all these
aspects. In parallel, the bio- mechanics and chemistry of the
brain tissue should be present ideally in each brain models
whatever the purpose. The biomechanical properties of the
viscoelastic brain medium, is characterized by moduli, such as
elastic and shear, and mechanical resonance. Recent MRI
approaches, non-invasive, in-vivo and ex-vivo, yield more and
more information, notably about theWM component such as the
myelin density (Sepehrband et al., 2015), and about the WM
anisotropy such as direction-dependent moduli (Smith et al.,
2020). More specifically magnetic resonance elastography (MRE)
enables the access to a large variety of physical parameters of the
brain (Yin et al., 2018), notably the comparison of ex vivo and
in vivo measurements of brain tissue (Chen et al., 2021) that
enables to access to frequency-dependent behavior (Lv et al.,
2020; Qiu et al., 2021). Interestingly, MRE fast analysis of regional
variations of biomechanics could measure variations of neuronal
activity as shown in rodent model (Patz et al., 2019). Whatever
the efforts done, there are still limited, robust, consensual values
of physical parameters of human brain specimen, although the
non-linearity of mechanical responses and the region dependency
of behavior seems demonstrated (Budday et al., 2017). Data from
animal have been harvested, such as the stiffness modulus of WM
1.895 ± 0.592 kPa, and of GM 1.389 ± 0.289 kPa of bovine
(Budday et al., 2015). Nevertheless, although of interest, ex
vivo data must be extrapolated carefully to in vivo human
conditions (Karimi et al., 2019). On the other hand, the mass
density is known, 1,046 ± 6, WM = 1,041 ± 2 and GM = 1,045 ± 8
[1,039–1,050] (Duck, 1990; McIntosh and Anderson, 2011). The
main chemical components of the brain, water, lipids (O’Brien
and Sampson, 1965; Dawson, 2015), other molecules such amino-

TABLE 1 | Macroscopic chemical and physical properties of the human brain.

Gray matter White matter References

Lipids concentration (in % of total
weight)

7.00 16.02 (O’Brien and Sampson, 1965; Dawson, (2015)

Of which cholestérol
concentration (%)

1.27 3.74

pH Between 6.8 and 7.2 (Xiong et al., 2004; Friese et al., 2007; Maddock et al., 2009; Orlowski et al., 2011;
Magnotta et al. (2012)

Temperature 36.9 ± 0.4°C Wang et al. (2014)

Viscoelastic behavior Linear elastic (Kaster et al., 2011; Budday et al., 2014, Budday et al., 2015, Budday et al. (2017)
Young modulus (kPa) [1.038; 1.678] [1.601; 2.487]
Poisson ratio 0.45
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acids and amides (Daković et al., 2013), and elements such as
iron, copper and zinc (Grochowski et al., 2019), are well-known.
The water content (g water/g tissue or %) ranges from 67 to 72 in
WM and 80 to 87 in GM (Alexander and Looney, 1938; Whittall
et al., 1997; Tofts, 2004; Oros-Peusquens et al., 2019). The proton
density (percentage; water = 100) ranges from 69 to 77 in WM
and 78 to 86 in GM (Tofts, 2004). Lipids’ concentration, pH,
temperature, viscoelastic behavior and Young modulus are
precised in the Table 1.

Lipid’s concentration depends on age and most are
glycerophosphatides (i.e., ethanolamine glycerophosphatides,
serine glycerophosphatides and choline glycerophosphatides)
and cholesterol (O’Brien and Sampson, 1965; Dawson, 2015).

Concerning the medical device biocompatibility, the
migration of compounds into a medium is described by the
laws of Fick (Fick, 1855; Kaufmann, 1998) that estimate the
transfer of material from an initial medium to a final medium
accounting the contact area, gradient of concentration and
diffusion coefficient. The temperature (Einstein, 1905; Demir
and Ulutan, 2013; Wei et al., 2019), lipophilicity (Stein, 1981;
Lodish et al., 2000; Brodeur and Tardif, 2005) and pH (Pinheiro
et al., 1998) of the final medium influence the migration. In
polymer, which are frequent in medical devices, the diffusion can
deviate from predicted values, as a result of interactions between
polymer and solvent slowing down the diffusion kinetics and the
polymer gelation. Hydrogels, for example, characterized by the
presence of water (or water-based solutions) in the polymer that
enters or leaves the system can give rise to volumetric
deformations. The transport of water in the glass phase is
mainly driven by diffusion, which most of the time does not
follow a pure “fickian” behavior (Caccavo et al., 2016). Another
diffusion may occur, called abnormal diffusion (Goychuk, 2009;

Yasuda et al., 2017), which is representative of viscoelastic diffusion
(diffusion in relaxing media) that is affected by the mechanics of
the system (Caccavo et al., 2018). The diffusion coefficient in a
semi-solid and the viscoelastic properties of medium are correlated
(Tanaka et al., 1973; Fujiyabu et al., 2019). For the brain viscoelastic
medium with a linear elastic behavior, it is Young’s modulus E
which is the most described. Its determination is made on the basis
of connection with the shear modulus, by estimating that the
Poisson’s ratio ʋ is equal to 0.45 (Paulsen et al., 1999; Clatz et al.,
2003; Soza et al., 2004; Miga et al., 2016). To summarize, an
adequate simulant for the study of leachables frommedical devices
must take into consideration the bicompartmental property due to
the physicochemical difference between gray matter and WM, and
must be prepared from components of high purity and meet the
physicochemical characteristics.

In conclusion, future brain models should cover a wide field of
applications in medicine, from those used for education, training
and planning of surgery to those enabling the advanced study of
medical device uses, notably their biocompatibility. Brain models,
or phantoms, and digital brain models should learn from each
other (Seo et al., 2022). It is anticipated that artificial surrogates
will integrate most biomechanical and biochemical properties of
the living tissue. Functional brain surrogates could be hybrid,
made of nonbiological and biological components, and should
communicate with the central nervous system for invasive
prosthetic applications.
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