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Abstract 

Health and well-being of dogs are of paramount importance to their owners. Digestion plays a key role in 
dog health, involving physicochemical, mechanical and microbial actors. However, decades of breeding 
selection led to various dog sizes associated with different digestive physiology and disease sensitivity. 
Developing new products requires the consideration of all the multi-faceted aspects of canine digestion, 
the evaluation of food digestibility, drug release and absorption in the gut. This review paper provides an 
exhaustive literature survey on canine digestive physiology, focusing on size effect on anatomy and 
digestive parameters, with graphical representation of data classified as “small”, “medium” and “large” 
dogs. Despite the huge variability between protocols and animals, interesting size effects on 
gastrointestinal physiology were highlighted, mainly related to the colonic compartment. Colonic 
measurements, transit time permeability, fibre degradation, faecal short-chain fatty acid concentration 
and faecal water content increase while faecal bile acid concentration decreases with body size. A 
negative correlation between body weight and Proteobacteria relative abundance was observed suggesting 
an effect of dog body size on faecal microbiota. This paper gathers helpful in vivo data for academics and 
industrials and supports the development of new food and pharma products to move towards canine 
personalized nutrition and health. 
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Introduction 
Canis lupus familiaris, also known as the 

domesticated dogs, belong to the Canidae family like 
the grey wolf (Canis lupus) and the dingo, a domestic 
dog returned to the wild. Descending from the grey 
wolf, dogs might have been the first animal 
domesticated by humans around 20.000 to 40.000 
years ago [1]. Dogs were initially strict carnivores, but 
during the agricultural revolution they probably 
acquired the ability to digest starch and became 
facultative carnivores. Genes playing key roles in 
starch digestion (i.e. encoding for pancreatic amylase, 
membrane-bound intestinal maltase-glucoamylase 
and gene involved in glucose uptake) were selected 

during dog domestication [2]. Depending on their 
usefulness for humans, the Canis lupus familiaris 
subspecies have differentiated slowly, with the 
development of new canine species designated for 
specific tasks, such as herd protection (Mastiff), 
hunting (Pointer), cold hardiness (Siberian husky) or 
companion (Pekinese). Nowadays, the canine species 
includes approximatively 400 breeds with high size 
variability and weight ranging from 1 kg for a 
Chihuahua to 100 kg for a Saint-Bernard [3]. Dogs 
now occupy a full place in many families. Their health 
and well-being are therefore of paramount 
importance to their owners, to the extent that 7 % of 
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French dogs have their own health insurance against 
30 % of dogs homed in the United Kingdom and 80 % 
of dogs homed in Sweden (SantéVet/Ipsos, 2018). 
Digestion, a complex process involving many 
physicochemical, mechanical, and microbial 
mechanisms, is a key parameter in dog health. In 
particular, gut microbiota and its involvement in 
canine nutrition and health have increasingly been 
studied during the last decade. Developing new food 
or pharma products needs to consider all these 
multi-faceted aspects of canine digestion, to answer 
important questions such as food digestibility, 
micronutrient bioaccessibility, probiotic survival and 
activity, or drug release and absorption in the gut. 
Petfood manufacturers and veterinary companies aim 
to develop personalized ranges adapted to size (e.g. 
long-term growth of large breeds puppies, poor 
digestive tolerance and gastric dilatation volvulus for 
large dogs) or to address certain breed predispositions 
such as obesity in Labrador Retrievers or 
enteropathies in Terriers [4–7]. Nevertheless, the 
impact of dog size or breed on digestive parameters 
remains poorly described despite its full interest in 
canine nutrition and health. 

This review paper provides for the first time an 
exhaustive survey of the literature on the impact of 
body size on dog’s digestive physiology, in the entire 
gut from mouth to colon and feces, by gathering 
digestive anatomy, physicochemical parameters and 
gut microbiota variations. Relevant studies were 
identified, and information extracted regarding 
involved dogs (i.e. number of dogs, age, weight, 
breed, sex, reproduction state, living environment), 
nutrition (i.e. food type, feeding frequency, food’s 
principal components) and analysis methods. Only in 
vivo studies on healthy adult dogs, fed with dry food 
or ingesting water were included. Here, canine body 
sizes were classified into three groups: “small” under 
10 kg, “medium” between 10-30 kg and “large” up to 
30 kg according to usual practice of main petfood 
suppliers. Then, the selected data were analyzed 
according to dog sizes and clarified through graphical 
representations to highlight a potential size effect on 
digestive parameters.  

General observations of canine digestion 
and associated organs  

External morphological differences observed 
between extreme dog sizes such as Chihuahua and 
Saint-Bernard obviously reveal internal anatomical 
modifications. The canine mature digestive tract 
length can represent 2.8 % to 7 % of the total body 
weight (BW), in a 60 kg and a 5 kg dog, respectively 
[8]. Since gastrointestinal tract (GIT) absolute length 
(in centimeters) is a reflect of dog height at the 

shoulder with a 6:1 ratio [9], it leads to the question: 
how does the size of dog impact digestive anatomy? 
Canine digestive anatomy is adapted to their 
facultative carnivorous diet (i.e. high-protein and 
high-fat diet) with a short and simple digestive tract. 
Digestion starts in the mouth with mastication 
process, helped by saliva. After swallowing, food 
boluses are transported through the esophagus into 
the stomach which is a J-shaped organ of glandular 
type, characterized by three anatomical 
compartments (i.e. fundus, corps and antrum) leading 
to the pylorus sphincter [10]. Canine gastric mucosal 
cells secrete hydrochloric acid (HCl), pepsin and 
lipase, which makes stomach essential in protein and 
lipid digestion. Canine stomach has a high dilatation 
capacity, varying from a maximal volume of 0.5 L for 
small dogs to 8 L in large dogs, which corresponds to 
the extreme quantity of food that a dog can ingest [10]. 
Digestion continues along the small intestine which is 
distributed as 10 % length for duodenum, 85 % for 
jejunum and 5 % for ileum [10,11]. Small intestine 
length measured post mortem is positively correlated 
(Pearson correlation of 0.672) to canine BW (from 240 
cm for a 5 kg to 640 cm for a 33 kg dog), as well as 
small intestine width (weaker correlation, R2 = 0.36) 
[11]. Canine small intestine, together with peripheral 
organs such as pancreas and liver, have a key role in 
canine digestion process. Pancreas produces 
pancreatic juice delivered into duodenum and 
associated with protein, carbohydrate and lipid 
digestion. Liver, coupled with gallbladder, has a 
central role in lipid digestion through bile acid (BA) 
production and induction of increased intestinal 
peristalsis [12]. Small intestine is also a central player 
in nutrient absorption, allowed by the presence of 
microvilli at the surface of enterocytes. When 
measuring intestinal wall thickness at different levels 
of the GIT (descending duodenum, proximal and 
distal jejunum, proximal and distal ileum), higher 
values were observed for male dogs compared to 
female (except for distal ileum) but no correlation was 
found with dog sizes whatever the intestinal 
compartment [13]. Regarding small intestinal villus 
length, an old study from 1978 showed no correlation 
between dog weight and mucosal dimensions [14]. In 
adult dogs from various sizes, duodenal villus length 
was 722 ± 170 µm [15]. Jejunal villi were longer in 
small dogs like Pomeranian and Fox Terrier (900 μm) 
than in medium ones such as Newfoundland (500 µm) 
[16]. Lastly, ileal villus length was measured in 
medium size Greyhound female and values around 
796-823 µm were found [17]. Canine large intestine 
measures around 20-80 cm with 2-3 cm diameter in 
medium dogs [10]. The three parts of the canine colon 
(i.e. ascending, transverse and descending) are not so 
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well defined when compared to humans, with the 
particularity to be non-sacculated and devoid of 
sigmoid colon [10]. Ascending colon represents in 
medium size dog 20% of the colon length, while 
transverse and descending correspond to 30 % and 50 
%, respectively. The two first parts are used for 
transport, electrolyte and water modification as well 
as for bacterial fermentation and storage areas, while 
descending colon mainly functions as conduit ending 
with rectum. Canine large intestine is involved in 
water and electrolyte absorption but also degradation 
of residual nutrients thanks to the fermentation 
activity of resident microorganisms called gut 
microbiota. Large intestine total length appears to 
vary according to dog’s BW, from 32 cm for Miniature 
Poodles to 99 cm for Great Danes [18]. Volume and 
surface are also increased from Miniature Poodle to 
Great Dane (volume of 92 versus 2106 cm3, surface of 

191 versus 1612 cm2). As the large intestine length 
increases with BW, the same positive relation is 
observed for absorption surface with a higher number 
of villi in large compared to small dogs [18]. Colonic 
crypts length was around 500-600 µm but without 
correlation with dog size [16]. To conclude, scarce 
anatomy data (only five publications) evidenced 
morphological differences depending on dog’s BW 
(mainly related to the colonic compartment), even if 
important parameters have not been evaluated such 
as gastric wall thickness, intestinal microvilli 
characteristics (i.e. length or number) or peripheral 
organs anatomy and functions. Variations in digestive 
anatomy can obviously affect physicochemical 
parameters such as pH, digestive secretions and 
transit time, and consequently gut microbiota. 

Methods of literature research 
Our literature search was performed using 

PubMed (https://pubmed.ncbi.nlm.nih.gov) and 
Google Scholar (https://scholar.google.fr) with the key 
words “dog” OR “canine” AND “stomach”, “small 
intestine”, “intestine”, “duodenum”, “jejunum”, “ile-
um”, “ileal”, “colonic”, “large intestine”, “rectum”, 
“feces”, AND “anatomy”, “digestion”, “pH”, 
“enzyme”, “digestive secretion”, “digestibility”, 
“permeability”, “absorption”, “microbiota”, “bile 
acids”, “transit time”, “fatty acids”, “fermentation”, 
“gas”, “mucus” in all available years. The online 
database search was last performed in January 2022 
on titles, abstracts and key words including original 
articles, reviews, thesis, and books. Relevant studies 
were identified after consultation of the main text, 
figures, and supplementary materials. Information 
regarding involved dogs (i.e. number of dogs, age, 
weight, breed, sex, reproduction state, living 
environment), diet (i.e. type of food, feeding 

frequency, composition of food), health (i.e. healthy 
dogs only) and analysis methods were collected. Only 
in vivo studies on adult dogs, fed with dry food or 
ingesting water were included in the literature 
survey. 

We found a total of 163 studies, including 87 
providing information on a single dog size, with only 
small dogs involved in 7 publications, only medium 
dogs in 71 and only large dogs in 9 (Figure S1). The 
three dog sizes (i.e. small, medium and large dogs) 
were compared together in 8 additional studies. In the 
remaining 68 studies, 45 integrated dogs without 
specifying their characteristics and other 22 included 
different sizes of dogs but didn’t discriminate them in 
their analysis (both classed in the “unclassified” 
group). Concerning publication date, 40 studies were 
performed over 30 years, 76 studies have been done 
between 5 and 30 years ago and 47 were performed in 
the last 5 years. Only 10 studies were directly 
targeting the influence of dog size on canine digestive 
physiology.  

Impact of body size on digestive 
physicochemical parameters 
Gastrointestinal pH 

Gastrointestinal pH changes along the dog 
digestive tract (Fig. 1, Table S1). Mean salivary pH of 
medium dogs is around 7.3-7.8 and quickly decreases 
by 0.5 point with a stimulation using a piece of solid 
sugar on the tongue [19–21]. In the stomach, the 
arrival of food bolus stimulates HCl production. This 
compartment shows the lowest pH value along the 
GIT, allowing dogs to partially digest bones [22] and 
putrescent meat and largely depends on feed status. 
However, due to the paucity of data, it remains 
difficult to know how BW affects gastric, small 
intestinal and colonic pH (Fig. 1, Table S1). To date, 
gastric pH has not been assessed in small and large 
dogs [23–26]. Regarding medium dogs under fasted 
conditions, mean gastric pH of Beagles is around 1.5 
(range 0.9-2.5), punctuated by occasional pH spikes 
with high frequency changes due to inter-individual 
variability [27]. Those values measured in laboratory 
animals are in accordance with pH found in 
mixed-breed owner dogs [28]. Small intestinal pH 
increases to value close to the neutrality because of the 
buffering capacity of pancreatic juice enriched in 
bicarbonate ions and bile [10]. It also increases from 
the proximal to the distal parts, from 6.5 to 8 in 
medium size dogs [29]. To date, there is no available 
study that investigates the influence of the dog size on 
duodenal and ileal pH [30]. The few studies 
investigating the canine jejunal pH measured a mean 
pH of 6.8 and 6.0 for medium and large dogs, 
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respectively [31,32]. Only few studies investigated 
colonic pH using colonic cannula or wireless capsules, 
and once new, most of them do not discriminate dogs 
in terms of BW. Colonic pH is more acidic than the 
small intestine one, with mean values of 5-6.5 and 6.2, 
respectively for medium and large dogs, whereas 
there is no data concerning small dogs [29,33–35]. 
Most of the time, colonic pH is estimated using faeces 
and there is no information on how pH varies 
depending on colonic sections. The average canine 
faecal pH values are in accordance with colonic pH, 
mainly around 6.4-6.6, as observed in Fig. 1. For small 
dog group, three studies used faeces of 43 dogs and 
pH values vary weakly from 6.4 to 6.8 [36–38]. There 
are also plenty of data on the faecal pH of medium 
(more than 121 dogs) and large (18 dogs) size dogs, 
with a pH range of 6-6.9 and 5.6-6.5, respectively [39–
42]. This is an accordance with some studies reporting 
that colonic and faecal pH of large dogs are more 
acidic than that of other size dogs fed with the same 
diet [18,43].  

Digestive secretion 
Enzymes. First digestion step occurs in the oral 

cavity with salivary enzymes (Table S2). Numerous 
recent studies measured amylase activity in saliva of 
healthy dogs [44–49]. Mean amylase activity varies 
from 26.5 to 37.3 UI/L of saliva in medium dogs 
according to literature (Table S2). One study involves 
75 dogs from 8 to 42 kg (52 mixed breeds and 23 pure 
breeds) and measured 35.9 ± 41 UI/L amylase in 
saliva but results weren’t discussed regarding dog 
sizes [48]. Lactate dehydrogenase and adenosine 
deaminase activities were also quantified in saliva, 
without classification with canine BW [45,48,50]. 
Gastric mucosa secretes gastric juice containing 
proteolytic (pepsin, chymosin) and lipolytic (lipase) 
enzymes [20,51]. In laboratory Beagles, gastric juice 
volume output increases with meal viscosity, from a 
total of 37.2 mL secreted for a low viscosity to 190 mL 
for a high viscosity meal [52]. Pancreatic juice, 
discharged in canine duodenum, has an alkaline pH 
(7.4-8.3). It contains amylase (2013 U/kg BW), lipase 
(9.8-33.3 mL 0.05 N NaOH/mL -no longer used unit 
of measure), phospholipases, cholesterases, proteases 
(old value of 407.5-2440 mg tyrosin/mL -no longer 
used unit of measure) and nucleases, without further 
detailed information [12,53]. Digestive secretions 
were mainly studied before 2000s, but values were not 
discriminated depending on dog sizes, and no study 
focuses on small and large dogs. However, enzymatic 
activities may vary according to the different diet 
composition (i.e. protein, lipid, fiber contents) 
adapted to each dog size.  

  Bile salts. Bile is produced by liver, 
partially stored in gallbladder then discharged to 
duodenum during postprandial phase, allowing 
stimulation of intestinal motility, intestinal lipids 
saponification and vitamins A, D, E and K absorption. 
In liver, primary BA such as cholic acid (CA) and 
chenodeoxycholic acid (CDCA) are synthesized from 
cholesterol and conjugated to taurine or glycine [54]. 
Studies evaluating bile production in healthy dogs 
never discriminate dog sizes. Bile production was 
only evaluated in medium dogs and was found to be 
29 mL/kg/24 h [55]. Once reached gallbladder, bile is 
up to 10 fold more concentrated than in liver with a 
total concentration around 50 (40-90) mmol/L 
[10,54,56,57]. Here, it contains up to 15 different BA 
but the three majors count for 99% of total pool, with 
72.8% taurocholic acid, 20.3% taurodeoxycholic acid 
and 6.2% taurochenodeoxycholic acid [58]. In the 
small intestine, BA are deconjugated by gut 
microbiota and converted into secondary BA. 95% of 
BA are reabsorbed in ileum, return into liver and the 
5% remaining fraction crosses colon [56]. Faecal BA 
concentrations were measured in three recent studies 
involving all dog sizes but curiously without BW 
distinction (Fig. 2A, Table S2). Authors found 
coherent results with concentrations ranged from 5.8 
to 7.5 µg of total BA per mg of dry faeces [59–61]. 
Another recent study evaluated faecal BA 
concentrations in 24 healthy dogs [62]. After data 
retreatment (classification in size groups), small, 
medium and large dogs present respectively 5.1, 4.7 
and 3.4 µg/mg of total BA per mg of dry faeces. This 
suggests a decrease in faecal BA concentrations with 
BW increase. Further analysis from 8 studies (Fig. 2B) 
indicates that relative percentages of faecal secondary 
BA (BA II: 84.9%) are higher than primary BA (BA I: 
15.5%). Moreover, proportions of primary BA such as 
CA and CDCA seem to be inversely correlated to 
canine BW whereas the contrary is observed for 
secondary BA (only one study) (Fig. 2C). These results 
suggest that the microbiota activity, and notably the 
BA recycling, differs from small to large breed sizes.  

Mucins. Mucins are produced by goblet cells all 
along the dog GIT [10]. Mucus thickness has been 
evaluated only in gastric compartment and stomach 
presents a mucosa covering mucin-layer of 576 μm 
and 425 μm, respectively in the antrum and fundus 
[10,63,64]. This mucin-layer allows protection of the 
epithelium against acidic pH of stomach and 
withstands bone fragments [65]. Influence of dog size 
on mucin secretion and mucin-layer thickness 
whatever the digestive compartment has never been 
assessed. 
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Figure 1. Impact of dog sizes on pH values in all digestive compartments. Results from studies measuring in dog’s pH values in the stomach (under fasted or fed 
conditions), small intestine, large intestine and faeces are presented. Small dogs are plotted in green, medium dogs in yellow, large dogs in orange and unclassified dogs in grey. 
Raw data were pooled in “all” group (in black). Calculated median values are in italic bold, values for a single point in italic. Black bars represent 95% confidence intervals. The 
number of dogs involved in studies is indicated as “N=” 

 

 
Figure 2. Impact of dog sizes on faecal bile acids. Results from studies in dog faeces quantifying total bile acids (BA) are represented in (a), further separated into primary 
(blue crosses) and secondary BA (red crosses) in (b). Detailed composition in cholic acid (CA), chenodeoxycholic acid (CDCA), lithocholic acid (LCA) and deoxycholic acid 
(DCA) is shown in (c). The same caption as used in Fig. 1 was applied 
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Figure 3. Diet composition and impact of dog sizes on total apparent digestibility. Nutritional composition of dry food diet used in canine studies is represented in 
(a). Results from studies investigating in dogs’ total digestibility of proteins, lipids and fibres are presented in (b), (c) and (d), respectively. The same caption as used in Fig. 1 was 
applied 

 

Nutrient digestibility  
Digestibility defines the degree to which organic 

matter is digested by an animal. Its measure provides 
a qualitative and quantitative indicator of food’s 
quality, i.e. the more digestible a food is, the higher 
the proportion of absorbed nutrients will be. Figure 
3A gives an overview of canine dry food composition 
in dogs according to BW. Digestibility performances 
can be evaluated in dogs by measuring ileal or total 
(in faeces) apparent digestibility of a tested diet, and 
standardized digestibility could be obtained by 
deducing endogen products such as enzymes or 
metabolites delivered from intestinal cell desquama-
tion. As previously observed for physicochemical 
parameters, digestibility studies are mainly focused 
on medium dogs and there are only two publications 
on small [66,67] and one on large dogs [66] (Table S3). 

Due to their invasive nature, only 4 studies have been 
performed with ileal cannula (to measure ileal 
digestibility), including 3 on medium dogs [68–71]. 
Lipid digestibility seems to be almost complete at the 
ileum level (i.e. 89.3-96.5%), with only around 3-5% 
increased digestibility when evaluating total 
digestibility in faecal samples. Ileal protein 
digestibility appears to be lower (51.3-76.2%), with 
higher variations certainly related to protein quality 
which largely influences this parameter [67,72–74]. 
Surprisingly, the only study investigating total 
dietary fibre digestibility found an ileal digestibility of 
17.8%, while according to their definition fibres are 
only degraded in the large intestine [68]. Given the 
lack of data, it is impossible to conclude on a possible 
effect of dog BW on ileal nutrient digestibility. Total 
apparent protein (82-88%) and lipid (95-95.8%) 
digestibilities appear to be equal between different 
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dog sizes, whatever the initial proportion of dietary 
proteins or lipids (Fig. 3B-C). In contrast, total 
apparent dietary fibre digestibility (Fig. 3D) appears 
to be higher in large than in small and medium dogs 
(52.5 ± 4% for Great Dane versus 39 ± 7.4% for 
Miniature poodle, and 26-38% for medium dogs) 
[42,75,76]. Indeed, it seems that fibre digestibility 
would be quite similar between small and medium 
dogs, while it would be improved in large dogs. In 
addition, faecal apparent digestibility of dry matter, 
organic matter and gross energy appears to be 
significantly higher for large compared to small dogs 
[66]. All in all, those results mean that the colonic 
fermentation seems to be more important in large 
than in medium and small breed size dogs. 

Intestinal absorption  
Permeability. During digestion process, food is 

broken down into small soluble compounds (amino 
acids, fatty acids, monosaccharides, minerals and 
vitamins), able to be absorbed mainly through the 
villi-covered wall of the small intestine. Nutrient 
passage through the epithelial wall is modulated by 
intestinal permeability, which is the property of 
epithelium to allow some molecules to be absorbed 
passively or actively through mucosa while avoiding 
the passage of microorganisms and macromolecules. 
Lactulose to L-rhamnose or lactulose to sucralose 
urinary ratios could be used to monitor changes in 
canine small and large intestine permeability, 
respectively [77]. A higher lactulose to L-rhamnose 
ratio is associated with a leakier small intestine, while 
a lower lactulose to L-rhamnose ratio indicates a 
higher colonic permeability. Using these methods, 
Weber et al. [78] observed an increased intestinal 
permeability in Giant Schnauzer and Great Danes 
(large dogs; lactulose to L-rhamnose ratio: 0.31) 
compared to small dogs (0.16), and Hernot et al. [77] 
found a higher colonic permeability in large dogs 
(lactulose to sucralose ratio: 0.35) than in small ones 
(0.51). Those differences could be related to 
modifications associated with dog size in intestinal 
area, pore size, frequency of tight junctions, 
differences in tightness of tight junctions or 
accessibility of luminal content to intestinal crypts 
[79]. Of note, breed differences were particularly 
noticed with a higher colonic permeability in Great 
Danes, as previously described [80,81]. An increased 
permeability could affect both nutrient, metabolite 
and electrolyte absorption but also microorganism’s 
translocation. This may explain the weaker digestive 
tolerance of resistant-starch and higher digestive 
sensibility of large dogs compared to small ones, as 
discussed by Goudez et al. [82]. 

Passive absorption. Water, electrolytes and 

vitamins are absorbed through passive mechanisms in 
the small and large intestinal lumen. In healthy dogs, 
around 90% fluids crossing the colon are reabsorbed 
by mucosa [20,83]. Meyer et al. [81] demonstrated that 
total faecal water increases with dog BW, but the 
percentage of free faecal water decreases. This is of 
high interest because an increase in free faecal water 
content is associated with a higher colonic water 
content that can in turn influence in vivo drug 
dissolution, in the case of poorly soluble drugs for 
which dissolution continues in the large intestine [43]. 
Whereas small dogs tend to have drier stools, a 
tendency of poorer faecal consistency and higher 
water content is observed in larger dogs. Potassium 
and bicarbonate ions are secreted into the colonic 
lumen, whereas sodium and chloride ions are 
passively absorbed from luminal contents [83]. 
Uptake of sodium ions creates an hypertonic 
environment next to crypts, generating an electro-
chemical gradient across colonic mucosa which drives 
water uptake from luminal contents by osmosis [83]. 
Based on observation that large digestibility 
variations are observed within the same breed and 
between different breeds, Zentek and Meyer [80] 
compared mineral digestibility of four food types in 
Great Danes and Beagles. There was no breed 
difference for calcium, magnesium and phosphorous 
absorption (Table S3), while net colonic sodium 
absorption tended to be 9-23% lower in Great Danes 
compared to Beagles. These data were further 
supported by Weber et al. [36] describing an increase 
in sodium faecal content with an increase in BW 
(2.1 ± 0.7 g/kg DM in Miniature Poodle versus 6.1 ± 
1.3 g/kg DM in Great Dane), traducing a lower 
sodium absorption by large dogs. Moreover, a 
reduction of colonic absorption of sodium has been 
particularly observed in Beagle, Labrador Retriever, 
Springer Spaniel and Münsterländer, suggesting a 
breed sensitivity [18]. Besides, Neri et al. [84] reported 
a significantly greater faecal potassium concentration 
in large compared to smaller dogs. Independently of 
dog sizes, 90% vitamin D, 80-90% vitamin A, 40-90% 
vitamin K and 35-50% vitamin E are absorbed by 
passive absorption in the proximal small intestine 
[20].  

Active absorption. Active absorption processes 
in the small intestine implicate co-transporters (e.g. 
glucose or sodium-dependent transports) and 
concerns monosaccharides from carbohydrate 
degradation and peptides from protein degradation. 
Thus, 95% of monosaccharides are absorbed in the 
duodenum and proximal jejunum [20], and 30% of 
amino acids and 70% of tripeptides are absorbed and 
assimilated in the proximal jejunum [12]. Regarding 
lipids, 80% of fatty acids and monoglycerides are 
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absorbed in form of micelles in the small intestine and 
resulting in chylomicrons that passed into the 
intestinal lymphatic capillary of villus by endocytosis. 
There is no available information on the influence of 
dog size on nutrient absorption. Moreover, the overall 
active transport capacity of small intestine has been 
assessed by examining urinary excretion ratio of 
D-xylose to 3-O-methyl-D-glucose [78]. Non-signifi-
cantly different ratios of 0.57, 0.58 and 0.59 for small, 
medium and large dogs respectively have been 
reported, suggesting that small intestinal active 
transport is relatively consistent between sizes.  

Mechanical digestion and gastrointestinal 
transit time 

Motility. Canine gut motility was firstly 
evaluated using radiopaque markers, plastic beads or 
breath test. Recently, wireless motility capsule was 
developed to measure pressure, forces and gut 
contractions frequency. Using this method, Boscan et 
al. [85] observed in fed medium dogs a lower maximal 
amplitude contraction in the stomach compared to 
small intestine (52 mmHg versus 75 mmHg, 
respectively), coupled with higher gastric contraction 
frequency, with 3.7 contractions/min in the 
stomach versus 0.5 contraction/min in the small 
intestine. Another study involving dogs from 
different sizes observed similar tendency on maximal 
amplitude contraction (lower in stomach than in small 
intestine, with 0.2 versus 4.1 mmHg), but opposite 
results on frequency (0.8 in stomach versus 10.9 
contractions/min in small intestine) [86]. Moreover, in 
this study, large intestinal contraction frequency 
seems to be similar to the gastric ones (0.6 
contraction/min). Authors also calculated a motility 
index defined as the area under the pressure curve 
and the higher motility index was observed in small 
intestine (306.2 compared to 20 in stomach and 76.1 in 
colon). Using wireless motility capsule, Farmer et al. 
[87] found that motility indexes were higher in large 
intestine (199 mmHg*second/min) compared to small 
intestine (134 mmHg*second/min) and stomach (55 
mmHg*second/min) with a similar maximum of 3.7 
contractions/min in gastric compartment [88]. Lastly, 
no study has investigated how dog BW or size 
influences gut peristalsis. 

Transit time. There is no available data on the 
duration of oral phase in dogs, but they are well 
known to quickly swallow their whole food. Data on 
gastric emptying time (GET), small intestinal transit 
time (SITT), orocaecal transit time (OCTT), large 
intestinal transit time (LITT) and total transit time 
(TTT) can be found in the literature with 
homogeneous definition between studies (Fig. 4, 
Table S4). Three different studies evaluate the impact 

of dog size on GET fed animals. Weber et al. [75] 
showed no significant difference in half-gastric 
emptying time between four breeds dogs (i.e. 
Miniature Poodle, Standard Schnauzer, Giant 
Schnauzer and Great Danes) using radiopaque 
markers ingested with food (T50 = 6.4-7.8 h). Without 
specifying any values, Bourreau et al. [89] concluded 
on a longer GET in large compared to small breeds 
after ingestion of a dry food meal using breath test 
method. Contrarily, Boillat et al. [4] described a 
shorter GET in large compared to medium breeds 
(range 6.8-15 h), using wireless motility capsule 
immediately administered after a dry food meal. 
Thus, there is apparently no relationship between BW 
and GET not only in fed, but also in fasted animals 
(Fig. 4). Besides, a liquid meal conduced to a shorter 
GET compared to meat, with 90% emptying in 0.4 h 
and 50% in 1-3 h, respectively (unknown dog size and 
method) [90]. This suggests that canine gastric 
emptying is influenced by food consistency [91]. 
There is also no consensus on the effect of dog size on 
SITT. Oswald et al. [43] and Weber et al. [8] found no 
influence of breed or BW, while Boillat et al. [4] 
measured a shorter SITT in largest dogs, ranging 
1.6-3.7 h without linking transit time and dog size 
[4,8,43]. OCTT was evaluated in dogs using very 
different methods. Some studies used sulfasalazine 
(converted into sulfapyridine in plasma) but do not 
employ the same threshold to define OCTT, i.e. either 
50% conversion or first appearance in plasma [75,92], 
whereas more recent studies used wireless motility 
capsule. As a consequence, extremely variable results 
of OCTT are provided, from 2.2-2.8 h with 
sulfapyridine [75,92] to 20.7 h with capsule [93]. 
Whatever the method used, these authors conclude to 
an absence of correlation between OCTT and BW. 
Studies of Boillat et al. [4] and Warrit et al. [94] 
assessed LITT in dogs from several breeds and 
various BW using wireless motility capsule. Both 
works conclude on the absence of correlation between 
LITT and BW (Fig. 4), with T1/2 ranged 7.1-42.9 h [4] 
and 25.0 h (1.1-49.1 h) [86]. However, using plastic 
beads, researches revealed a longer LITT in large dogs 
(29.3 h for great Dane) than in small dogs (9.1 h for 
Miniature Poodle) and a significant positive 
correlation between LITT and BW, but also between 
LITT and shoulder height was demonstrated [92]. In 
this study, LITT accounts for 39% of mean TTT for 
small breed dogs and 70% for large ones, which 
means that longer transit times observed in large dogs 
could be related to a longer LITT. Lastly, TTT showed 
a clear positive correlation with BW, as highlighted in 
Fig. 4 [18]. When gathering the data obtained in all the 
available studies, TTT ranged from 22.9-31 h 
(calculated median 24 h) in small dogs, 19.1-55 h 
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(median 32.9 h) in medium dogs and 18.2-45 h 
(median 43.2 h) in large dogs. Especially, using plastic 
beads in small and large breeds, TTT observed was 
22.9 h in Miniature Poodle and 43.3 h in Great Dane, 
whilst giant Schnauzer showed an even higher TTT of 
55 h [95]. This result was explained by the authors 
through a high stress sensitivity of giant Schnauzer 
that could influence their transit time in refraining 
their defecation, emphasizing a breed effect in 
addition to body size influence. 

Impact of body size on microbial 
parameters 
Gut microbiota composition 

Longitudinal variations. In dogs like in other 
mammals, microorganisms colonize the entire GIT 
from mouth to rectum. All along GIT, there are 
longitudinal variations in gut microbiota composition 
due to changes in pH, substrate concentrations 
(including oxygen and nutrient availability) and 
transit time [64,96,97]. Gut microbiota has been 
weakly described in dogs (compared to humans) and 
most of available studies have been performed since 
2003 (for detailed information see Table S5). Canine 
oral microbiota present similar number (around 350 
bacterial taxa from 148 genera) but significantly 
different populations compared to the human ones 
[98] and is mainly colonized by Proteobacteria (45%), 
Bacteroidetes (25%) and Firmicutes (19%). Most 
abundant species are Porphyromonas cangingivalis and 
Porphyromonas gulae [99,100]. Regarding the other 
digestive compartments, studies have been mostly 
performed on faeces to avoid invasive procedures. 
Stomach is the less colonized compartment with 104 to 
105 colony forming units (CFU) per gram of content in 
medium dogs, mainly composed by Proteobacteria 

(Fig. 5A) including Helicobacter spp. that are potential 
pathogenic strains [31,96,101]. Small intestine contains 
105 to 107 CFU/g of content [31,101]. Duodenum (Fig. 
5A) is colonized by Firmicutes (calculated median 
47%), Proteobacteria (27%), Bacteroidetes (9%), 
Fusobacteria (3%) and Actinobacteria (1%), whereas 
jejunum is characterized by a higher abundance in 
Proteobacteria (37%), Actinobacteria (11%) and 
Fusobacteria (10%), together with lower percentages of 
Firmicutes (33%) and Bacteroidetes (7%) [28,102,103]. 
Ileum (Fig. 5A) is dominated by 31% Fusobacteria, 24% 
Firmicutes, 23% Bacteroidetes and 22% Proteobacteria 
[104]. These abundances should be considered with 
caution as they have been found in a single study 
performed in 6 medium dogs. As for other mammals, 
large intestine is the most colonized part of the GIT, 
with up to 109 to 1011 CFU/g of content [96]. 
According to a unique publication using 16S Illumina 
sequencing to investigate microbiota composition 
from 6 healthy Hound dogs [104], colonic digesta is 
dominated by 37% Firmicutes, 33% Bacteroidetes, 29% 
Fusobacteria and 1% Proteobacteria including E. coli-like 
organisms (Fig. 5A). It’s interesting to highlight that 
majority of taxa colonizing the colon are also found in 
canine faeces [105] which seems to be rather different 
from the human situation where a significant number 
of mucus-adherent bacteria from the colon are not 
found in faeces [105]. No study has investigated dog 
size effect on gut microbiota composition elsewhere 
than in stools, and the main variations in faeces are 
presented in Figure 5B and 5C. Whatever dog sizes, 
faecal microbiota of healthy dogs is dominated by 
three main bacterial phyla: Firmicutes, Bacteroidetes 
and Fusobacteria [105]. Bacteria from Actinobacteria and 
Proteobacteria phyla are also found in canine faeces but 
in a lesser proportion. Of interest, a variable relative 
abundance of Bacteroidetes was reported and was 

 
Figure 4. Impact of dog sizes on gastrointestinal transit time. Results from studies in dogs evaluating gastric emptying time (GET) under fasted or fed status, small 
intestinal transit time (SITT), large intestinal transit time (LITT) and total transit time (TTT) are represented. The same caption as used in Fig. 1 was applied 
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inversely correlated to Fusobacteria relative abundance 
indicating they might occupy the same ecological 
niches [106]. Fusobacteria and Proteobacteria seem to be 
more abundant in dogs than in other omnivorous, 
probably related to diet changes [107]. Unlike in 
human where Fusobacterium is frequently associated 
with diseases, in dogs this genus is related to 
non-stressful conditions and is therefore probably a 
marker of an healthy state, especially because its 
abundance increases when dogs have access to the 
outside [43]. In small dogs faeces (Fig. 5B), average 
Firmicutes proportions vary widely from 30 to 80%, 
followed by 13-28% Bacteroidetes, while a lower 
abundance of Proteobacteria (1-15%), Fusobacteria 
(1-16%) and Actinobacteria (1-3%) was detected [108–
110]. Medium dogs display similar value ranges of 
Firmicutes (15-98%), Bacteroidetes (0.1-34%), 
Proteobacteria (0.1-27%) and Actinobacteria (1%), but a 
larger proportion of Fusobacteria (0.1-40%) compared 

to small dogs [108,111]. Only one study investigated 
faecal microbiota composition in 8 large dogs and 
quantified 71% Firmicutes, 22% Bacteroidetes, 5% 
Fusobacteria, and 1% Actinobacteria, with interestingly 
a much lower abundance of Proteobacteria (1%) than in 
small and medium dogs [40]. In few studies, canine 
faecal diversity was followed with Shannon index and 
calculated medians seem to be higher in medium dogs 
(4.8, four studies) compared to small (3.5, five studies) 
and large dogs (2.9, a single study) (Fig. 5C). In 
addition to Bacteria (representing 98%), canine faecal 
microbiota also contains 1.1% Archaea, 0.4% Fungi 
and 0.4% viruses, mainly bacteriophages [112,113]. 
Fungal part of the faecal microbiota is composed by 
97.9% Ascomycota and 1% Basidiomycota [114]. Even if 
methanogen Archaea have been detected in healthy 
dogs faeces, there is no information on their 
methanogen potential [114].  

 

 
Figure 5. Variations in gut microbiota composition along the canine digestive tract and impact of dog sizes. Main bacteria populations found in the different 
compartments of the dog gastrointestinal tract are represented in (a). Bacteria counts are expressed in colony forming units (CFU) per gram of digestive content. Results from 
studies exploring by 16S rRNA Illumina sequencing canine microbiota composition (regardless of dog size) in the different digestive compartments are presented in (b). Influence 
of dog sizes on faecal microbiota composition at the phylum level is shown in (c) and corresponding Shannon index in (d). Canine main phyla are Firmicutes (Firm), Bacteroidetes 
(Bact), Fusobacteria (Fuso), Proteobacteria (Proteo) and Actinobacteria (Actino). The same caption as used in Fig. 1 was applied 
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Figure 6. Impact of dog sizes on faecal microbial products production. Results from studies in dogs measuring total faecal major short-chain fatty acids (SCFA, i.e. 
acetate, propionate and butyrate) are presented in (a) and detailed in (b). Similarly, influence of dog size on major branched-chain fatty acids production (BCFA, i.e. isobutyrate, 
isovalerate and valerate) is shown in (c) and detailed in (d). Effect of dog size on other microbial metabolites are presented in (e) for phenols and indoles and (f) for ammonia. The 
same caption as used in Fig. 1 was applied 

 
Radial variations. In addition to longitudinal 

variations, there are also radial changes in gut 
microbial composition that starts to be described in 
human [115] but are still in infancy in dogs. Indeed, 
the entire gut epithelium is covered by a mucus layer 
that offers an alternative source of host-derived 
nutrients. This mucus is colonized by a specific 

mucus-adherent microbiota (namely mucosal 
microbiota) and seems to play a key role in host 
homeostasis [116]. Of note, there is a lack of studies on 
the canine mucosal microbiota. Only two studies 
investigated the mucosa-associated bacteria on the 
outer mucus layer in the colon of healthy dogs, using 
targeted FISH approach [117,118]. Analysis of colonic 
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biopsy samples from healthy Boxers revealed that 
bacteria appear to be restricted to the outer mucus 
layer, as no bacteria was detected within the mucosa 
[117]. In addition, Cassmann et al. [118] demonstrated 
that free ileal and colonic mucus of healthy young 
dogs (< 2 years old) was mainly colonized by 
Bacteroidetes spp. and Eubacteria, while Eubacteria 

represented the major bacteria attached to adherent 
mucus. Authors reported that there were almost no 
bacteria attached to surface epithelium or contained 
within mucosa. Of interest, Akkermansia muciniphila, a 
well-known mucin-degrading bacteria in humans, 
inversely correlated to obesity, was not yet identified 
in canine faeces [119]. 

 

 
Figure 7. Overview of the impact of dog sizes on digestive physiology and faecal microbiota composition and activity. Key parameters of the oral, gastric, intestinal and colonic 
compartments from the canine digestive tract are summarized. Specified values were obtained from reports comparing in a same study the results obtained for small and large 
dogs. Lack of data are represented by “?”, BA: bile acid, SCFA: short chain fatty acids. *: Lactulose/L-rhamnose ratio, **: Lactulose/sucralose ratio 
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Gut microbiota metabolic activities and 
functions 

Gut microbiota is known to play a key role in 
host homeostasis and health maintenance, as it is 
implicated in many nutritional (e.g. vitamin synthesis, 
fibre degradation), immunological (immune system 
maturation) and physiological processes (e.g. 
vascularization, epithelium integrity, “barrier” effect 
against pathogens and lipid digestion via the 
metabolism of primary BA into secondary BA) 
[20,120]. At a functional level, whatever the type of 
food, identified gene content of microbiome from 
medium dogs was not modified and was associated 
with the metabolism of carbohydrates (12.5-13%), 
proteins (8.1-9.1%), DNA (7.1-7.4%), cell wall and 
capsule (7-7.6%), amino acids and derivatives 
(6.8-6.9%), cofactors, vitamins, prosthetic groups and 
pigments (5.7-6%) and bacterial virulence (6.2-7.2%) 
[112]. These results underline that all microbiota 
functions are far to be already discovered, as proved 
by the remaining 42.8% non-affiliated genes. Guard 
and Suchodolski [121] have studied faeces from 8 
healthy dogs (2.7 to 31.8 kg) and observed high 
inter-variability microbiota composition between 
animals, while bacteria’s functions were very 
consistent. Thus, even if gut microbiota composition 
highly vary between dogs, the functional potential 
seems to be unchanged whatever dog sizes [20]. Gut 
microbiota metabolic activity leads to gas and 
short-chain fatty acid (SCFA) production from soluble 
fibres. SCFAs stimulate intestinal motility and can be 
further used as an energy source for colonocytes, liver 
and brain. The three main SCFAs are acetate, 
propionate and butyrate, with faecal relative 
percentages of 60:25:15 [122]. Non-digested protein 
from diet and endogen proteins are also metabolized 
by gut microbiota, leading to the production of 
branched chain fatty-acids (BCFA), ammonia, indoles 
and phenols [18]. Canine faecal protein degradation 
products are associated with deleterious effects, such 
as poor faecal quality, inflammation and kidney 
diseases in dogs and colorectal cancer in humans 
[123,124]. Canine SCFA production was only 
evaluated in faecal samples (Fig. 6A-B, Table S6). 
Values were mainly obtained in medium dogs 
(especially Beagles) and are widely variable due to 
many differences in design study (e.g. type of food, 
food composition in carbohydrates, methods, type of 
units). However, in a study performed by Weber et al. 
[36] , the authors compared SCFA production 
between small, medium and large dogs and 
demonstrated that total SCFA concentration in stool 
significantly increased with BW, with 448 ± 67, 894 ± 
80 and 1184 ± 259 mmol/kg of lyophilized faeces for 

small, medium and large dogs respectively. This is 
consistent with a longer LITT in large breed dogs that 
may promote microbial fermentation. Large quantity 
of organic acids produced could thus exceeds colonic 
mucosa absorption capacity, thereby leading to an 
accumulation in lumen, a decrease of colonic pH and 
an increased faecal excretion [18]. Similarly, total 
BCFAs were measured only in faecal samples, and 
mainly in medium dogs (Fig. 6C, Table S6). BCFA 
concentrations seem to be lower in small dogs (a 
unique value of 17.1 µmol/g) compared to medium 
ones (calculated median of 22.2 µmol/g). Moreover, 
BCFA composition was only studied in medium dogs, 
with a calculated median concentration of 6.8 µmol/g 
isobutyrate, 10.5 µmol/g isovalerate and 0.8 µmol/g 
valerate (Fig. 6D). Phenols, indoles and ammonia 
concentrations were also poorly studied in small and 
medium dogs and to our knowledge never measured 
in large dogs (Fig. 6E-F). Based on our calculated 
medians, it appears that these products are found in 
higher concentrations in medium than in small dogs. 
Lastly, to our knowledge there is no data on gas 
production in dogs and the two studies on gas 
composition focused on malodorous compounds such 
as hydrogen sulphide [125,126].  

Discussion and general conclusion 
In an original way, this review gives an overview 

of available literature concerning the effect of dog 
sizes (i.e. “small”, “medium” and “large” sizes) on 
digestive anatomy and associated physicochemical 
and microbial parameters, illustrating data with both 
synthetic graphs (Fig. 1 to Fig. 6) and exhaustive tabs 
(Table S1 to S6). Even if our conclusions may be 
hampered by the paucity and old age of many data, as 
well as the huge variability between experimental 
protocols (diet composition, measurement methods 
and data analysis processes) and animals (live or 
dead, anesthetized or not, companion or laboratory 
animals, environment), we evidenced clear effects of 
dog’s BW on gastrointestinal physiology, mainly in 
relation with the colonic compartment (Fig. 7). Large 
intestine length, area and volume clearly increase 
with dog size. This seems to be associated with a 
higher colonic transit time that can affect nutrient and 
water absorption, gut microbiota composition and 
activity, as well as faecal moisture. Thus, sodium and 
potassium absorption are lower in larger dogs 
resulting in a higher concentration in faecal samples. 
Large dogs are also characterized by a higher 
intestinal permeability that can induce a backflow of 
absorbed electrolytes into the colonic lumen, 
translated into a luminal retention of electrolytes and 
water [18]. Besides, a longer colonic residence time in 
large dogs should promote microbial fermentations 
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and especially a higher fibre degradation by resident 
bacteria. This higher fermentation capacity results in a 
stronger production of SCFAs leading to a diminution 
in faecal pH, and to a potential disturbance of water 
absorption due to the high osmotic power of SCFAs 
[36]. Together with an increased colonic permeability, 
excessive SCFAs production would induce water 
retention in the colon, associated with higher faecal 
water content and loose watery stools frequently 
observed in large dogs [43,127]. In addition, faecal 
concentrations of microbial degradation products 
from proteins (phenol, indole, ammonium and 
BCFAs) seem to be positively associated with dog BW, 
which again may be explained by a longer transit 
time. Moreover, our data analysis suggests an 
increase in Fusobacteria according to BW (observed 
between small and medium dogs), which can be 
related to an increase in protein metabolites [65,124]. 
As certain bacteria are fully involved in BA 
deconjugation, changes in microbiota composition 
depending on dog’s BW can also be linked to 
modifications in BA concentrations, inversely 
correlated with BW.  

Further studies would be necessary to enhance 
available data on physicochemical parameters, 
especially in the upper GIT, but also on gut 
microbiota that remains very poorly described in each 
digestive compartment and not described at all in the 
mucus layer. Lastly, our bibliographic review 
revealed the large predominance of some breeds (i.e. 
Miniature Poodle, Beagle, Standard and Giant 
Schnauzer and Great Dane) and breeds showing 
well-known specific digestive particularities (like 
German Shepherd) or specific energy needs (like 
Husky, Great Danes or Terriers) [80]. It would be 
therefore of high interest to further analyze current 
data by considering not only the effect of body size 
but also that of breeds. Taken together, all the 
specificities raised in large dog digestive physiology 
may be correlated to their high sensitivity to diet and 
digestive diseases [18]. Finally, all these data 
concerning the effect of dog size on their digestive 
physiology can be helpful for the development of new 
food or veterinary products at the individual level, in 
accordance with a personalization step intended by 
petfood and pharma companies. In full accordance 
with the 3R rules (aiming to reduce animal 
experiments), such in vivo data also provide key 
information necessary to develop and validate in vitro 
gut models adapted to each dog sizes for in-depth 
mechanistic studies on dog digestive physiology 
[128]. 
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