N
N

N

HAL

open science

Contention-related crash failures: Definitions, agreement
algorithms, and impossibility results
Anais Durand, Michel Raynal, Gadi Taubenfeld

» To cite this version:

Anais Durand, Michel Raynal, Gadi Taubenfeld. Contention-related crash failures:
agreement algorithms, and impossibility results.
86. 10.1016/j.t¢s.2022.01.029 . hal-03746704

HAL Id: hal-03746704
https://uca.hal.science/hal-03746704v1
Submitted on 5 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Definitions,
Theoretical Computer Science, 2022, 909, pp.76-

https://uca.hal.science/hal-03746704v1
https://hal.archives-ouvertes.fr

Contention-Related Crash Failures: Definitions,
Agreement Algorithms, and Impossibility Results

Anais Durand*, Michel RaynalT’i Gadi Taubenfeld®

*LIMOS, Université Clermont Auvergne CNRS UMR 6158, Aubiere, France
fIRISA, Université de Rennes, 35042 Rennes, France
*Department of Computing, Polytechnic University, Hong Kong
§Reichman University, Herzliya 46150, Israel

Abstract

This article explores an interplay between process crash failures and concurrency. Namely, it
aims at answering the question, “Is it possible to cope with more crash failures when some number
of crashes occur before some predefined contention point happened?”. These crashes are named
A-constrained crashes, where) is the predefined contention point (known by the processes). Hence,
this article considers two types of process crashes: A-constrained crashes and classical crashes
(which can occur at any time and are consequently called any-time crashes).

Considering a system made up of n asynchronous processes communicating through atomic
read/write registers, the article focuses on the design of two agreement-related algorithms. Assuming
A =n — 1 and no any-time failure, the first algorithm solves the consensus problem in the presence
of one \-constrained crash failure, thereby circumventing the well-known FLP impossibility result.
The second algorithm considers k-set agreement for & > 2. It is a k-set agreement algorithm such
that A\ =n — £ and £ > k = m + f that works in the presence of up to (2m + ¢ — k) A-constrained
crashes and (f — 1) any-time crashes, i.e., up to ¢t = (2m + ¢ — k) + (f — 1) process crashes. It
follows that considering the timing of failures with respect to a predefined contention point enlarges
the space of executions in which k-set agreement can be solved despite the combined effect of asyn-
chrony, concurrency, and process crashes. The paper also presents agreement-related impossibility
results for consensus and k-set agreement in the context of A-constrained process crashes (with or
without any-time crashes).

Keywords: Agreement algorithm, Asynchronous system, Concurrency, Contention, Process crash.

1 Introduction

1.1 Context and Related Works

Distributed computing is about cooperation between predefined computing entities (processes). Each
entity has its own local input and must compute a local output that depends on the set of inputs [28].
It is well-known that in the presence of asynchrony and failures, some distributed computing problems
become impossible to solve, be the communication medium a message-passing network [13] or a shared
read/write memory [23].

Several approaches have been proposed to counteract such impossibilities. We consider here only
a few of them. One enriches the system with oracles that provide the processes with information on
failures [6] and, given a specific problem P, finds the weakest information on failures that allows P
to be solved [5]. Another approach consists in weakening the progress condition associated with each

cooperation operation, namely, the termination of such an operation is required only in specific circum-
stances (e.g., when there is no concurrency [19]). Another approach is based on the notions of adversary
disagreement power [9]. It consists of defining subsets of processes such that the considered problem
must be solved despite asynchrony and process crashes when the set of processes that do not crash in
execution is precisely one of the predefined subsets.! This approach has been made constructive in [16].
The interested reader will find more developments on this topic in the following articles [8, 14-16,29].
Yet another approach described in [14] consists in adapting the concurrency level to the level of syn-
chrony. In [32], the traditional notion of fault tolerance is generalized by allowing a limited number of
participating correct processes not to terminate in the presence of faults. Every process that does termi-
nate is required to return a correct result. Thus, the new definition guarantees safety but may sacrifice
liveness (termination), for a limited number of processes, in the presence of faults. Initial failures were
investigated in [34].

The present work introduces a new approach that allows impossibility results related to consensus
and k-set agreement to be circumvented. This approach, based on a predefined contention point, consid-
ers that some number of process crashes occur at the latest when a predefined contention point occurs.?
Let us notice that, while it considers a predefined contention threshold, the proposed model differs from
the k-concurrency model, which bounds the number of processes that can be concurrently active.

1.2 Processes, Communication, Participation, and Failure model

The system is composed of n asynchronous sequential processes, denoted p;, ..., pn, which communi-
cate by reading and writing atomic registers. Without loss of generality, it is assumed that the identity
of process p; is its index 7. The model parameter ¢ denotes the maximal number of processes that may
crash during a run. A process crash is a premature definitive halting. A process that crashes is called
faulty; otherwise, it is correct. All correct processes are assumed to participate, i.e., execute their lo-
cal algorithm. (Let us notice that this assumption is a classical —very often left implicit— assumption
encountered in message-passing distributed algorithms [28].)

Let us call contention the current number of processes that started executing. A process starts exe-
cuting when it writes an atomic register for the first time (i.e., from this write it starts cooperating with
the other processes). The model parameter A denotes a predefined contention threshold. So, execution
can be divided into two parts: a prefix in which the contention is < A and a suffix in which contention
is > A. Hence, we consider a failure model in which there are two types of crashes: the ones that can
occur only when contention is < A that we call “\-constrained”,® and the ones that can occur at “any
time.” If we suppress A-constrained crashes, the computing model boils down to the classical crash-
prone model. It is important to notice that any-time failures can occur before or after the predefined
contention threshold has been attained. So, it is as if there are two cooperating adversaries:

* A constrained adversary that can crash x processes, 0 < x < «, while the contention threshold
is < A (a is a predefined value depending on both the contention threshold and the agreement
problem),

* and an unconstrained adversary that can crash (¢ — x) processes, and it can crash them at any time.

1.3 Motivation: Why \-Constrained Failures?

The first and foremost motivation for this study is related to the basics of computing, namely, increasing
our knowledge of what can (or cannot) be done in the context of asynchronous failure-prone distributed

!The disagreement power of a set of processes is the biggest integer £ for which the adversary can prevent processes from
agreeing on £ values when using registers only.

?Preliminary versions of these results appeared in [10, 33].

3 \-constrained crashes were introduced in [33] under the name “weak failures”.

systems. Providing necessary and sufficient conditions for agreement problems helps us determine and
identify under which type of (weak) process failures the fundamental consensus and set-agreement prob-
lems are solvable.

As discussed in [10], the new type of A-constrained failures enables us to design algorithms that
can tolerate several traditional “any-time” failures plus several additional A-constrained failures. More
precisely, assume that a problem can be solved in the presence of ¢ traditional failures but cannot be
solved in the presence of ¢ + 1 such failures. Yet, the problem might be solvable in the presence of
t1 <t “any-time” failures plus to A-constrained failures, where t; + to > t.

Adding the ability to tolerate \-constrained failures to algorithms that are already designed to cir-
cumvent various impossibility results, such as the Paxos algorithm [22] and indulgent algorithms in
general [17, 18], would make such algorithms even more robust against possible failures. An indul-
gent algorithm never violates its safety property and eventually satisfies its liveness property when the
synchrony assumptions it relies on are satisfied. An indulgent algorithm which in addition (to being
indulgent) tolerates A-constrained failures may, in many cases, satisfy its liveness property even before
the synchrony assumptions it relies on are satisfied.

When facing a failure-related impossibility result, such as the impossibility of consensus in the pres-
ence of a single faulty process [13], one is often tempted to use a solution that guarantees no resiliency
at all. We point out that there is a middle ground: tolerating A-constrained failures enables to tolerate
failures some of the time. Notice that traditional ¢-resilient algorithms also tolerate failures only some of
the time (i.e., as long as the number of failures is at most t). After all, something is better than nothing.
As a simple example, an algorithm is described in [13], which solves consensus despite asynchrony and
up to t < n/2 processes crashes if these crashes occur initially (hence no participating process crashes).

Let us observe that the A-constrained failure model establishes a link between contention and fail-
ures, enabling us to better understand various known impossibility results, like the impossibility result
for consensus [13] and its generalizations for k-set agreement [4, 20, 30].4

1.4 Content of the Paper

The paper is composed of three parts. Considering A = n — 1, the first part (Section 2) presents an
algorithm that solves the consensus problem in the presence of one A-constrained crash failure and no
any-time crash failure, thereby circumventing the well-known FLP impossibility result [13].

The second part (Section 3) presents a generic k-set agreement algorithm for £ > 2, which copes
with the presence of both A-constrained and any-time crash failures. Its genericity dimension lies in the
value of A = n — £ where { > k = m + f, that tolerates up to 2m + ¢ — k A-constrained failures and
(f — 1) any-time failures, i.e., uptot = (2m + £ — k) + (f — 1) process crashes. When instantiated
with £ = k = m + f, we have A = n — k, the algorithm solves (m + f)-set agreement while tolerating
t = 2m+ f — 1 crash failures, up to 2m being (n — k)-constrained failures, and (f — 1) being any-time
failures. Let us observe that, in this case, the “weight” associated with a A-constrained failure appears
as being twice the “weight” associated with an any-time failure. This seems to be the price to pay to
circumvent k-set agreement impossibility result with the help of the added information provided by the
timing of process crashes with respect to process contention.

Finally, the last part of the paper (Section 4) presents agreement-related impossibility results in
the A-constrained failures model. These impossibility results involve the number of processes n, the
predefined contention threshold A, and the maximal number of values k that can be decided.

“The A-constrained failure model and the classical round-based model share a same feature, namely participation of each
process is required in both. They differ in the way the processes synchronize. The A-constrained failure model is based on a
predefined contention degree A which allows the processes to synchronize only once (namely, when the A contention degree is
attained). In the round-based model the processes must synchronize at every round.

2 Consensus

As previously announced, this section presents an algorithm that solves consensus in the presence of a
single A-constrained crash failure where A = n — 1. This bound on the number of (n — 1)-constrained
crash failures is tight. In Section 4, it is shown that there does not exist a consensus algorithm for n
processes, using read/write registers, that can tolerate two (n — 1)-constrained crash failures, for any
n > 2.

2.1 Consensus: Definition

The consensus object was defined in [24]. Such an object provides the processes with a single operation,
denoted propose(), that a process invokes once (one-shot object). This operation allows the invoking
process to propose a value and obtain a result (called decided value). Assuming each correct process
proposes a value, each process must decide on a value such that the following properties are satisfied.

* Validity. A decided value is a proposed value.
» Agreement. No two processes decide different values.

» Termination. Every correct process decides a value.

It has been shown that consensus cannot be solved in an asynchronous crash-prone system, be the
communication be through atomic read/write registers [23], or message-passing [13].

2.2 Consensus in the Presence of one (n—1)-Constrained Crash Failure: Algorithm

Without loss of generality, it is assumed that the proposed values are non-negative integers.

Shared base objects The processes communicate through atomic read/write registers. Atomic means
that the invocations of the read and write operations appear as if they have been issued sequentially.
Moreover, this total order respects real-time order, and a read returns the value written by the closest
preceding write (or the initial value if there is no such write) [21].

* STATE]1..n] is an array of atomic single-writer multi-reader registers. For any i, STATE[1..n]
contains the current state of process p;, namely a value in the set {0, 1,2,3} (initialized to 0).
STATE(i] denotes the progress of p;.

e INPUTI1..n| is an array of atomic single-writer multi-reader. INPUT[1..n| will contain the
value proposed by p;.

* DEC is a multi-writer multi-reader atomic register, the aim of which is to contain the decided
value. It is initialized to L.

Local objects Each process p; manages three local variables: counter;, max;, and round;. Their
initial values are irrelevant.

Overview of the algorithm The algorithm is based on three asynchronous rounds, the same code
being executed at each round, with the third round having additional post-fixed code.

The local counter counter; is used by p; to count the number of processes that already entered the
round p; is entering, and max; contains the greatest value proposed by the processes that started the
algorithm.

Let us observe that, as by assumption, the predefined contention threshold is A = n — 1, and at
most one process may crash, it follows that when a process p; sees that the (n — 1) other processes have
attained the round round;, it knows that no process will crash.

4

operation propose(in;) is
(1) INPUTI[] « ing;
(2) for round; =1,2,3 do
3) counter; < 0; max; < 0;
4) for j from 1 to n do % up to Line 8: STATE[i] = round; — 1
(5) if STATE[j] > round,; then counter; < counter; + 1;
max; < max(maz;, INPUT[j]) end if
(6) end for;
@) if (counter; = n — 1) then DEC <+ max;; return(max;) end if;
(8) STATE]i] < round;;
9 repeat counter; < 0;

(10) forj from 1 to n do
an if STATE[j] > round; then counter; < counter; + 1 end if
(12) end for;

(13) until counter; > n — 1V DEC # 1 end repeat;
(14) if (DEC # 1) then return(DEC) end if
(15) end for; % p; has terminated its three rounds

(16) if (counter; = n — 1) then
(17) counter; + 0; max; <+ 0;
(18) for j from 1 to n do
(19) if (STATE[j] > 2) then
counter; < counter; + 1; max; < max(maz;, INPUT]j]) end if
(20) end for;
(21) if (counter; = n — 1) then DEC < max;; return(max;) end if
(22) end if;

(23) for j from 1 to n do

(24) wait(STATE[j] = 3V DEC # 1);

(25) if (DEC # 1) then return(DEC) end if;
(26) maz; < max(mazx;, INPUT]j])

(27) end for;

(28) DEC <+ mawx;; return(max;).

Algorithm 1: Consensus with A = n — 1, one A-constrained failure and no any-time failure

Behavior of a process p; A process decides when it executes the return() statement, which occurs at
Line 7, 14, 21, 25, or 28.

Intuitively, the aim is to direct the processes to decide the highest proposed value they see. To
this end, each process first executes a sequence of rounds from 1 to 3. Initially process p; is in state
STATE]i] = 0. It will change its state according to its progress in the round numbers (Line 8). We say
“process p; is in Round r” if round; = r.

When it invokes propose(in;), process p; first deposits in; in INPUT[i] to make it known by all
the processes, and starts executing three rounds (Lines 2-15). The current round number of process p; is
saved in the atomic register STATE]i].

At each round, p; first asynchronously reads STATE|1], ..., STATE|n], and counts how many other
processes are at the same or a higher round than its round round;, and computes the highest value seen
by these processes (Line 5). If it counts (n — 1) such processes, p; is the last one in round; and max;
contains the highest value proposed by the other (n — 1) processes. So p; writes this value in DEC and

decides it (Line 7).

If p; does not decide, it updates STATE(i| (Line 8), and loops (Lines 9-13) until it sees that a value
has been decided (predicate DEC # L in Line 13), or it sees (n — 1) processes at a round equal or
greater than its current round (predicate counter; > n — 1 in Line 13). In the former case, p; decides
the value DEC (Line 14). In the latter case, it proceeds to the next round if round; < 2.

If round; = 3, p; continues executing the Lines 16-28. So, p; checks if there exists a process, say p;,
that had not written the value 2 into STATE(j] (Lines 16-20). In case of a positive answer, it concludes
that process p; will never be able to reach round three, and thus, p; will never set STATE|j] to 3. This is
so because p; will notice that (n — 1) other processes have already set their STATE]] registers to 3, and
will decide (Line 7) before increasing their STATE|] register (Line 8). Thus, process p; sets the atomic
register DEC to the maximum input value among all the processes, excluding process p;, decides on
that maximum value and terminates (Line 21).

Otherwise, if all the n processes have written the round number 2 into their STATE]] registers,
process p; concludes that all the n processes are still active and —due to the A-constrained failure
assumption— are guaranteed not to fail. So, p; waits until either a decision is made, or until all the
processes complete Round 3, whatever comes first (Lines 23-27). In the former case, p; adopts the value
of DEC (Line 24). In the latter case it decides on the maximum input value among the input values of
all the n processes (Line 28).

2.3 Proof of Algorithm 1 (Consensus)

Reminder: a process p; is in Round r if round; = r.

Lemma 1 Foreveryi € {1,...,n}, when process p; sets STATE]i] to 2 (Line 8), either the contention
point is already n or there is a j # i such that STATE|[j] will always be 0.

Proof If the contention point is not n when p; sets STATE][i] to 2 (Line 8), it follows that (1) by
definition, some process, say p;, has not taken any steps yet, and (2) except for process p;, all the other
(n — 1) processes py have already incremented their register STATE[k]. If p; is a correct process, it
will eventually reach Line 7 at which point counter; will become equal to (n — 1). Thus, p; will decide
and terminate without ever increasing the atomic register STATE[i]. Oremma 1

Lemma 2 If at some point in time, for every i € {1,...,n} STATE[i| > 2, then the n processes are
active, no process has failed before that point, and no process will fail after that point.

Proof Assume that for every i € {1,...,n}, STATE[i] > 2. It follows from this assumption and
Lemma 1 that, forevery ¢ € {1, ...,n}, when p; has set STATEi| to 2 (Line 8), the contention point was
already n. Thus, process p; will never fail since it is assumed that no process fails once the contention
point is n. O Lemma 2

Lemma 3 Foreveryi € {1,...,n}:
1. If a process p; writes into DEC' in Line 7, no other process writes into DEC in Line 7.
2. If a process p; writes into DEC' in Line 7, no other process writes into DEC' in Line 28.
3. If a process p; writes into DEC in Line 21, no other process writes into DEC' in Line 28.

Proof Suppose process p; writes into DEC in Line 7 in Round r € {1,2,3}. This means that each
other process py, has already written r into its state register STATFE[k], and hence has not written into
DEC in Line 7 in Round r or in a previous round. After p; writes into DEC, it immediately terminates.

Thus, p; will never write a value ' > r into its state register STATE[i]. Thus, for every other process
Pk, after executing the for loop in Lines 4-6, the value of countery, will be at most (n — 2), and the test
in Line 7 will fail. Also, since STATE|i] will never equal 3, no process will ever reach Line 28.
Suppose now process p; writes into DEC' in Line 21. This means that there exists a process, say
process p;, that has not written the value 2 into its state register STATE[j], at the time when p; checked
STATE]j] in Line 19. Although process p; may still set ST AT E[j] to 2 at a later time, it will never be
able to set STATE|j] to 3 at a later time because, in Round 3, the counter of p; will reach (n — 1) when
p; executes the for loop in Lines 4-6, and if continues it will terminate at Line 7. For that reason, when
some other process executes Line 24 (predicate wait(STATE[j] = 3V DEC # 1)), the waiting may
terminate only because DEC # 1. Thus, no process will ever reach and execute Line 28. Orepmma 3

Lemma 4 For every two processes p; and p;:
1. if p; writes v into DEC'in Line 7, and pj writes v’ into DEC'in Line 21, then v = v'.
2. if p; writes v into into DEC' in Line 21, and pj writes v into DEC' also in Line 21, then v = v'.
3. if p; writes v into DEC' in Line 28, and p; writes v' into DEC also in Line 28, then v = v'.

Proof
1. Assume that p; writes v into in Line 7, and p; writes v’ into DEC'in Line 21. When p; terminates,
the value of its state register STATFEi] is either 0,1 or 2. In the first two cases (0 and 1), the value
of max; that p; computes in Line 19 does not depend on the input value of p;, and hence v = v'.

Let us consider the case that when p; decides at Line 7, the value of its state register STATE[i] is
2. Thus, when p; terminates, the values of each other state register STATE[k] must be 3. When
p; starts executing the for-loop in Line 18, the value of the state registers of (n — 1) processes
must be 3. Thus, p; and p; set their max; and max; local variables max; and maz; (in Lines 6
and 19, respectively) to the same value since they both choose the maximum input value from the
set of (n — 1) input values which does not include the input value of process p;. Thus, v = v’

2. Assume that p; writes v into DEC' in Line 21, and p; writes v’ into DEC' also in Line 21. When
p; started executing the for-loop in Line 18, the value of the state register STATE]] of exactly
one process, say process py, was less than 2. Similarly, when p; started executing the for-loop in
Line 18, the value of the state register STATE]| of exactly one process, say process k', was less
than 2. Since the value of a state register never decreases, it follows that & = &’. Thus, p; and
pj set their local variables max; and max; (in Line 19) to the same value, since they choose the
maximum input value from the same set of (n — 1) input values. Thus, v = v'.

3. Assume that p; writes v into DEC in Line 28, and p; writes v’ into the DEC' in Line 28. Both p;
and p; set their local variables max; and max; in Line 26 to the same value, since they choose
the maximum input value from the set of the n input values. Thus, v = v'.

ULemma 4

Theorem 1 (agreement & validity) All the participating processes decide on the same value, and this
decision value is the input of a participating process.

Proof It follows from Lemma 3 and Lemma 4, that, whenever two processes write into the decision
register DEC, they write the same value. Also, whenever a process writes into DEC, the written value
is the input of a participating process. Each correct process decides only on a value written into DEC.

DTheorem 1

Theorem 2 (termination) In the presence of at most a single (n — 1)-constrained crash failure, every
correct process eventually decides.

Proof There are exactly two places in the algorithm where a process may need to wait for some other
process to take a step: (1) in the repeat-until loop in Lines 9-13, and (2) in the wait statement in Line 24.
In both places, whenever a process needs to wait, it continuously examines the value of the decision
register DEC, and if it finds out that DEC # L, it decides on the value written in DEC and terminates.
Thus, we can conclude that: if some process decides, then every correct process eventually decides.

So, let us assume, by contradiction, that no correct process ever decides. There are at least n — 1
correct processes. At least (n — 1) correct process will execute the for-loop in Lines 2-15 with round =
1. They all will eventually execute the assignment in Line 8; setting their state registers STATE]| to 1.
Thus, each correct process with round = 1, will eventually exit the repeat-loop in Lines 9-13, and will
move to Round 2. By a similar argument, each correct process will eventually complete Rounds 2 and 3
(i.e., will complete the for-loop in Lines 2-15).

A process reaches the for loop in Lines 23-27, only if its local variable counter; equals n, which
implies that for every ¢ € {1,...,n} STATE[i] > 2. Thus, by Lemma 2, if some process executes
the for-loop in Lines 23-27 all the n processes are active and will never fail. Since, by contradiction,
no process terminates, all the n processes must eventually get stuck in the wait statement on Line 24.
However, this is not possible since the value of the state register STATE[k] of each process py which
reaches Line 24 must be 3. Thus, all the waiting processes in Line 24 will be able to proceed beyond the
wait statement and decide. A contradiction. O heorem 2

3 k-Set Agreement (k > 2)

This section presents a k-set agreement algorithm that circumvents the known impossibility result for
solving k-set agreement in ¢-resilient crash-prone asynchronous read/write systems where ¢t > k [4, 20,
30].

3.1 k-Set Agreement: Definition

A k-set agreement (k-SA) object is a one-shot object introduced by S. Chaudhuri [7] to study the relation
linking the number of failures and the agreement degree attainable in a set of crash-prone asynchronous
processes. Such an object is similar to a consensus object. It is defined by the same validity and
termination properties, and the following weaker agreement property.

* Agreement. At most k different values are decided.

Hence, when £ = 1, k-set agreement boils down to consensus. It is shown in [4, 20, 30] that it is
impossible to solve k-set agreement in asynchronous read/write systems where up to ¢ > k processes
may crash at any time.

3.2 Basic Model and High-Level Objects

Basic model As indicated in the introduction, the basic model is the classical crash-prone model of n
processes communicating through atomic multi-writer multi-reader registers.

To make the presentation of the proposed algorithm easier, the basic read/write system is enriched
with two types of objects, namely /-mutual exclusion and snapshot. Both can be built on top of a
crash-prone asynchronous read/write system.

Deadlock-free /-mutual exclusion Such an object was first defined and solved in [11, 12]. Several
papers have proposed ¢-exclusion algorithms for solving the problem using atomic read/write registers
satisfying various progress properties (see, for example, [2,25,26]). This object provides the processes

with the operations denoted acquire() and release(). It allows up to ¢ processes to simultaneously
execute their critical section. It is defined by the following properties.

* Mutual exclusion. No more than ¢ processes can simultaneously be in their critical section.

* Deadlock-freedom. If less than ¢ processes crash and processes are invoking the operation acquire(),
at least one of them will terminate its invocation.

It is shown in [2, 11, 31] that /-mutual exclusion can be built on top of an asynchronous crash-prone
read/write system. In the one-shot version, a process invokes acquire() and release() at most once.

Atomic snapshot This object was introduced in [1, 3]. It provides the processes with two atomic
operations denoted write() and snapshot(). Such an object can be seen as an array of single-writer
multi-reader atomic register SN [1..n] such that:

(a) when p; invokes write(v), it writes v into SN[i]; and

(b) when p; invokes snapshot(), it obtains the value of the array SN [1..n] as if it simultaneously reads

and instantaneously all its entries.

Put another way, the operations write() and snapshot() appear to the processes as if they were totally
ordered. Snapshot objects can be implemented on top of asynchronous crash-prone read/write sys-
tems [1,3,27].

3.3 k-Set Agreement with \-Constrained and Any-time Crash failures: Algorithm

Shared objects The processes communicate through the following objects.
* PART[1..n]: snapshot object, initialized to [down, - - - , down], used to indicate participation.

* DEC: atomic register initialized to L (a value which cannot be proposed). It will contain values
(one at a time) that can be decided.

* MUTEX|1]: one-shot deadlock-free f-mutex object.

* MUTEX [2]: one-shot deadlock-free m-mutex object. (As we will see, no process will ever try to
access a 0-mutex M UTEX [2] object.)

Local variables Each process p; manages the following local variables: part; is used to locally store
a copy of the snapshot object PART; count; is a local counter; and group; a binary variable whose
value belongs to {1,2}.

The behavior of a process p; Algorithm 2 describes the behavior of a process p;. When it invokes
propose(in;) (where in; is the value it proposes), p; first indicates it is participating (Line 1). Then it
invokes the snapshot object until at least n—¢ (i.e., n— (2m+£¢—k)—(f — 1)) processes are participating
(Lines 2-4). When this occurs, p; enters Group 1 or Group 2 according to the value of its counter count;
(Line 5), and launches in parallel two threads 7'1 and 72 (Line 6).

In the thread T'1, p; loop forever until DEC contains a proposed value. When this happens, p;
decides it (Line 7). The execution of return() at Line 7 or 12 terminates the invocation of propose().

The thread 72 is the core of the algorithm. Process p; tries to enter the critical section controlled
by either the f-mutex or the m-mutex object MUTEX [group;| (Line 9). If it succeeds and DEC still
has its initial default value, p; assigns it the value in; it proposed (Line 10). Finally, p; releases the
critical section (Line 11), and decides (Line 12). Let us remind that, as far as MUTEX [1] (respectively,
MUTEX 2]) is concerned, up to f (respectively, m) processes can simultaneously execute Line 10.
This intuitively explains why at most k = m + f different values can be decided.

operation propose(in;) is

(1) PART .write(up);

(2) repeat part; < PART .snapshot();

3) count; < |{x such that part;[x] = up}|;

(4) until count; > n — t end repeat;

(5) if count; < X then group; < 2 else group; < 1 end if;

(6) launch in parallel the threads T'1 and 7'2.

% Both threads and the operation terminate when p; invokes return() (Line 7 or 12).

thread 7'1 is
(7) loop forever if DEC # | then return(DEC) end if end loop.

thread 72 is

8) if group; =1V m > 0 then

9) MUTEX [group;].acquire();

(10) if DEC = 1 then DEC <+ in; end if;
(11) MUTEX [group;].release();

(12) return(DEC)

(13) end if.

Algorithm 2: k-Set agreement (where K = m + f, A = n — £ and ¢ > k) tolerating up to 2m + £ — k
A-constrained failures and up to f — 1 any-time failures

total # of failures tolerated t=2m+{l—-k+f-1=m+/(-1
“A-constrained” crash failures 2m+ L —k=m+{— f
“any-time” crash failures f—1

Table 1: Tolerated crash failures of Algorithm 2 (kK = m + f)

Properties summary The fault-tolerance properties of Algorithm 2 are summarized in Table 1. The
parameters m and f allow the user to tune the type of crash failures that are dominant in the considered
application context. At one extreme, the pair of values (m, f) = (0, k) maximizes the number of any
time failures (k — 1). At the other extreme, the pair (m, f) = (k — 1, 1) maximizes the number of -
constrained failures (up to k + ¢ — 2 A-constrained failures and no any-time failure). This is summarized
in Table 2.

total # of failures m =0 m = [k/2] m==k—1
t=2m+L—k+f—1 f=k f=1k/2] f=

2m + ¢ — k “\-constrained” crash failures (—k 2[k/2] + 40—k C+k—2
f — 1 “any-time” crash failures kE—1 lk/2] — 1 0

Table 2: k-Set agreement: trade-offs “A-constrained/any-time” crash failures when A = n — ¢

Two instances of Algorithm 2 Among all its possible instances of the proposed generic algorithm, let
us consider two specific cases for which algorithms have already been proposed.

10

e Case m = 0 and ¢ = k. In this case, there are no A-constrained failures. We then have &k =
m + f = f, and (f — 1) any-time failures. This is the best that can be done in the classical
(any-time) failure model [4, 20, 30].

* Case f = 1. In this case there is no any-time failures. We have then k = m + f = m + 1 and,
asm=k—1,atmost2m + ¢ —k =2(k — 1)+ ¢ — k = £ + k — 2 \-constrained failures are
tolerated. This is what is solved by the k-set agreement algorithm proposed in [33].

3.4 Proof of Algorithm 2 (k-Set, k > 2)

In the following, it is assumed that A = n — £ and ¢ > k.

Lemma 5 At most n — £ processes have a counter less or equal to n — { when leaving the repeat loop
(Lines 2-4).

Proof Assume by contradiction that more than n — £ processes have their counter less or equal to n — £
when leaving the repeat loop (2-4). P being this set of processes, we have |P| > n — ¢ + 1. Moreover,
let p; be the last process of P that invokes PART .snapshot() (on Line 1°). It follows from the atomicity
of the write() and snapshot() operations on the object PART that count; > |P| > n—{¢+ 1, a
contradiction. Oremma 5

Lemma 6 In the presence of at mostt = 2m + € — k + f — 1 crash failures, 2m + { — k of them being
(n — {)-constrained, if processes participate in MUTEX [1], at most f — 1 of them can fail.

Proof If a process p; participates in MUTEX 1], it follows from Line 5 that count; > n — ¢ when it
exited the repeat loop (Lines 2-4). Thus, the contention was at least n — ¢ + 1 when p; exited the loop
and, due to the definition of “(n — ¢)-constrained crash failures”, there is no more such failures. As
t=2m+{—k+ f— 1, it follows that, if processes participate in MUTEX [1], at most f — 1 of them
can fail. OrLemma 6

Theorem 3 (Termination) In the presence of at mostt = 2m+{ —k+ f — 1 crash failures, 2m+{ —k
of them being (n — {)-constrained, every correct process eventually terminates.

Proof Since there are at most ¢ processes that may fail and participation is required, at least n — ¢
processes eventually set their participating flag to up in the snapshot object PART (Line 1). Thus, no
correct process remains stuck forever in the repeat loop (Lines 2-4).

First, assume m = 0. By Lemma 5, at most n — ¢ processes have a counter less or equal to n — £
when they exit the repeat loop (Lines 2-4). Thus, at most n — ¢ processes belong to Group 2. As
m = 0, there are at least n — ¢t = n — ({ — k + f — 1) correct processes. Since k = m + f = f,
n—(l—k+f—-1)=n—(—-1)=n—-{¢+1>n—{ So,among the processes participating in
MUTEX 1], at least one is correct and at most f — 1 crash before returning from MUTEX [1].release()
(Line 11). Due to the deadlock-freedom property of the one-shot f-mutex object MUTEX [1], at least
one correct process eventually enters its critical section and, if DEC' has not already been written, writes
its input into DEC'. It then follows from task 7'1 that, if it does not terminate at Line 12, every other
correct process will decide and terminate.

Now, assume m > 0. There are two cases.

5 As the snapshot object is atomic, the notion of “last process of P that ..” is well-defined.

11

o Ifatleasty > f processes participate in MUTEX 1], it follows from Lemma 6 that at most f — 1
of them crash before returning from MUTEX [1].release() (Line 11), and consequently, all other
processes participating in MUTEX [1] are correct. Asy > f — 1 and f > 0, there is at least
one such correct process, say p,.. Due to the deadlock-freedom property of the one-shot f-mutex
object MUTEX 1], p, eventually enters its critical section and, if DEC' has not already been
written, writes its input into DEC'.

¢ Otherwise, less than f processes participate in MUTEX [1]. There are two sub-cases.

— If a correct process p; participates in MUTEX [1], it follows from this sub-case assumption
and the deadlock-freedom property of the one-shot f-mutex object MUTEX 1], that p;
eventually enters its critical section and, if DEC' = L, writes its input ¢n; into this atomic

register.
— Otherwise, no correct process participates in MUTEX[1]. By Lemma 5, at most n — ¢

processes have a counter less or equal to n — ¢ when they exit the repeat loop (Lines 2-4). So
at most n — ¢ processes participate in MUTEX [2]. Since no correct process participates in
MUTEX 1], all correct processes (they are at least n — ¢) participate in MUTEX [2]. Thus,
atmost(n —¢) —(n—t) =t—L=2m+L—k+f-1—-0=2m—-k+f—-1=
2m — (m+ f) + f —1 = m — 1 processes that participate in M UTFEX [2] fail. Hence, due
to the deadlock-freedom property of the one-shot m-mutex object MUTEX [2], at least one
correct process enters its critical section and, if DEC' = L, writes its input into DEC'.

In both cases, every other correct process will decide and terminate.
UTheorem 3

Theorem 4 (Agreement and validity) Ar most k different values are decided, and each of them is the
input of some process.

Proof If a process decides (Line 7 or Line 12), it decides on the current value of DEC, which —due
to the predicates of Line 7 or Line 10— has previously been set —at Line 10— to the value proposed by
a process. Due to the predicate and the assignment of DEC' at Line 10, and the fact that MUTEX[1]
is a f-mutex object, it follows that at most f processes assign a value to DEC' in the critical section
controlled by MUTEX[1]. Due to a similar argument, at most m processes assign a value to DEC' in
the critical section controlled by MUTEX [2]. Thus, at most m + f = k different values can be written
into DEC, and each of them is a proposed value. O heorem 4

4 Impossibility Results

This section presents impossibility results in the asynchronous read/write model with A-constrained and
any-time crash failures. Let an initial crash failure be the crash of a process that occurs before it executes
its first access to an atomic read/write register.

Hence, there are three types of crash failures: initial, A-constrained, and any-time. Let us say that
a failure type T1 is more severe than a failure type T2 (denoted T1 > T2) if any crash failure of type
T2 is also a crash failure of type T1 but not vice-versa. Considering an n-process system, the following
severity hierarchy follows from the definition of the failure types: any-time > (n — 1)-constrained >
(n—2)-constrained - - - > 1-constrained > initial (let us observe that any-time is the same as n-constrained
and initial is the same as O-constrained).

Theorem 5 (k-set agreement with \-constrained failures) For every ¢/ > 0, k > 1, n > £+ k, and
A = n — ¥, there is no k-set agreement algorithm for n processes, using registers, that tolerates { + k
A-constrained crash failures (even when assuming that there are no any-time crash failures).

12

Proof Assume to the contrary that for some ¢ > 0, kK > 1,n > £+ k, and A\ = n — /, there is a k-set
agreement algorithm, say A, that tolerates £ 4+ k£ A-constrained crash failures. Given any execution of A,
let us remove any set of ¢ processes by assuming they fail initially (this is possible because ¢-constrained
> initial). Tt then follows (from the contradiction assumption) that the assumed algorithm A solves k-
set agreement in a system of n’ = n — £ processes, where n’ > k, using read/write registers. But in a
system of n/ processes, process contention is always lower or equal to n’, from which follows that, in this
execution, n/-constrained crash failures are the same as any-time failures. Thus, algorithm A generates
a read/write-based k-set agreement algorithm A’ for n” = n — ¢ processes, where n’ > k, that tolerates
k any-time crash failures. But, this is known to be impossible as shown in [4,20, 30]. Orheorem 5

For the special case of consensus, the equation n > -+ k becomes n > £+ 1. The following theorem
is then an immediate consequence of Theorem 5.

Theorem 6 (Consensus with \-constrained failures) For every 0 < ¢ <n —1and A\ = n — ¥, there
is no consensus algorithm for n processes, using registers, that can tolerate £ + 1 A-constrained crash
failures (even when assuming that there are no any-time crash failures). In particular, when ¢ = 1, there
is no consensus algorithm for n processes that can tolerate two (n — 1)-constrained crash failures.

We have shown in Section 2 that there is a consensus algorithm for n processes, using registers, that
tolerates a single (n — 1)-constrained crash failure. It follows from Theorem 6 that this bound is tight.
Consequently the consensus algorithm presented in Section 2 is resilience-optimal for A-constrained
crash failures.

Theorem 7 (k-set agreement with \-constrained and any-time failures) For every ¢ > 0, k > 1,
n>{0+k g>0, and A\ = n—{, there is no k-set agreement algorithm for n processes, using registers,
that tolerates { + k — g A-constrained crash failures and g any-time crash failures.

Proof Follows immediately from Theorem 5 by observing that any-time crash failures belong to a more
severe type of a failure than A-constrained crash failures when A\ < n, and is the same as a A-constrained
crash failure when \ = n. O7heorem 7

5 Conclusion

The paper explored a “hybrid” computational power of a model where the adversary’s power to induce
process failures depends on contention, i.e., the number of concurrently active processes. In particular,
assuming that up to ¢ processes may fail, the adversary is restricted to fail = of the processes as long as
contention remains below a predefined threshold A, and may fail the rest £ — = processes “any-time.”
The paper determines conditions under which variations of the consensus and set-agreement problems
can be solved in such a model.

It has been shown that this failure model allows impossibility results to be circumvented [33]. To
this end, the paper has first presented an algorithm that, considering the process contention threshold
A =n — 1, solves consensus in the presence of one A-constrained crash failure.

The paper has then presented a generic algorithm solving the k-set agreement problem, for £ > 2.
So, it extends the set of possible executions in which k-set agreement can be solved despite asynchrony
and process crashes. The proposed algorithm allows its users to tune it to specific failure-prone en-
vironments. This can be done by appropriately defining the pair of integers (m, f). As an example,
considering k-set agreement and a contention threshold A = n — k, these parameters control the number
of crashes allowed to occur before the contention threshold) is bypassed, namely 2m + ¢ — k, and
the number of failures which can occur at any-time, namely, f — 1. That is, it is possible to trade one

13

“any-time” failure for several “\-constrained” failures, and vice versa. The paper has also presented
impossibility results in the presence of A-constrained crash failures.

The two algorithms that have been presented are based on totally different design principles, despite
the fact that consensus is a special instance of k-set agreement where k£ = 1. Hence the question: Does
a non-trivial generic algorithm exist® that could be instantiated for any value of k& > lorisk = 1 a
“special” value?

Acknowledgments

The authors want to thank the reviewers whose constructive comments helped improve the article’s
content and presentation.

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

[9]

(10]

(1]

[12]

(13]

(14]

[15]

Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic snapshots of shared memory.
Journal of the ACM, 40(4):873-890 (1993)

Afek Y., Dolev D., Gafni E., Merritt M. and Shavit S., A bounded first-in, first-enabled solution to the
{-exclusion problem. ACM Transactions On Programming Languages and Systems, 16(3):939-953 (1994)

Anderson J., Multi-writer composite registers. Distributed Computing, 7(4):175-195 (1994)

Borowsky E. and Gafni E., Generalized FLP impossibility results for ¢-resilient asynchronous computations.
Proc. 25th ACM Symposium on Theory of Computing (STOC’93), ACM Press, pp. 91-100 (1993)

Chandra T., Hadzilacos V., and Toueg S., The weakest failure detector for solving consensus. Journal of the
ACM, 43(4):685-722 (1996)

Chandra T. and Toueg S., Unreliable failure detectors for reliable distributed systems. Journal of the ACM,
43(2):225-267 (1996)

Chaudhuri S., More choices allow more faults: set consensus problems in totally asynchronous systems.
Information and Computation, 105(1):132-158 (1993)

Delporte-Gallet C., Fauconnier H., Gafni E., and Kuznetsov P., Set-consensus collections are decidable.
Proc. 20th Int’l Conference on Principles of Distributed Systems (OPODIS’10), LIPICs Vol; 70, pp. 7:1—
7:17 (2016)

Delporte-Gallet C., Fauconnier H., Guerraoui G. and Tielmanns A., The disagreement power of an adversary.
Distributed Computing, 24(3):137-147 (2011)

Durand A., Raynal M., Taubenfeld G., Set agreement and renaming in the presence of contention-related
crash failures. 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS 2018), Springer LNCS 11201, pp. 269-283 (2018)

Fischer M.J., Lynch N.A., Burns J.E., Borodin A., Resource allocation with immunity to limited process
failure (Preliminary Report). Proc. 20th IEEE Symposium on Foundations Of Computer Science (FOCS’79),
IEEE Press, pp. 234-254 (1979)

Fischer M.J., Lynch N.A., Burns J.E., Borodin A., Distributed FIFO allocation of identical resources using
small shared space. ACM Transactions on Programming Languages and Systems, 11(1):90-114 (1989)
Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374-382 (1985)

Fraigniaud P., Gafni E., Rajsbaum S., and Roy M., Automatically adjusting concurrency to the level of
synchrony. Proc. 28th Int’l Symposium on Distributed Computing (DISC’14), Springer LNCS 8784, pp. 1-
15 (2014)

Gafni E. and Guerraoui R., Generalizing universality. Proc. 22nd Int’l Conference on Concurrency Theory
(CONCUR’11), Springer LNCS 6901, pp. 17-27 (2011)

SNon-trivial generic means here that the algorithm has not to be a case statement that directs to sub-algorithms for the two
cases k = 1 and k > 1. The code must be the same for all the values of £ > 1 (as done in Algorithm 2 for k& > 2).

14

[16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]

[24]

[25]

(26]

(27]

(28]

[29]
(30]

(31]

(32]

(33]

[34]

Gafni E. and Kuznetsov P., Turning adversaries into friends: simplified, made constructive and extended.
Proc. 14th Int’l Conference on Principles of Distributed Systems (OPODIS’10), Springer LNCS 6490, pp.
380-394 (2010)

Guerraoui R., Indulgent algorithms. Proc. 19th Annual ACM Symposium on Principles of Distributed Com-
puting (PODC’00), ACM Press, pp. 289-297 (2000)

Guerraoui R. and Raynal M., The information structure of indulgent consensus. /[EEE Transactions on Com-
puters, 53(4):453-466 (2004)

Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization: double-ended queues as an
example. Proc. 23th Int’l IEEE Conference on Distributed Computing Systems (ICDCS’03), IEEE Press,
pp- 522-529 (2003)

Herlihy M.P. and Shavit N., The topological structure of asynchronous computability. Journal of the ACM,
46(6):858-923 (1999)

Lamport L., On inter-process communications, part I: basic formalism. Distributed Computing, 1(2): 77-85
(1986)

Lamport L., The part-time parliament. ACM Transactions on Computer Systems, 16(2):133—-169 (1998)

Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable asynchronous pro-
cesses. Advances in Computing Research, 4:163-183, JAI Press Inc. (1987)

Pease M., Shostak R., and Lamport L. Reaching agreement in the presence of faults. Journal of the ACM,
27(2):228-234 (1980)

Peterson G.L., Observations on ¢-exclusion. 28th annual allerton conference on communication, control
and computing, pp. 568-577 (1990) 19

Raynal M., A distributed solution to the k£ out of m resources allocation problem. Proc. Int’l Conference on
Computing and Information (ICCI’91), Springer LNCS 497, pp. 509-522 (1991)

Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515 pages, ISBN
978-3-642-32026-2 (2013)

Raynal M., Fault-tolerant message-passing distributed systems: an algorithmic approach. Springer, 459
pages, ISBN: 978-3-319-94140-0 (2018)

Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Algorithmica, 76(2):502-535 (2016)

Saks M. and Zaharoglou F., Wait-free k-set agreement is impossible: the topology of public knowledge.
SIAM Journal on Computing, 29(5):1449-1483 (2000)

Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson Education/Prentice Hall,
423 pages, ISBN 0-131-97259-6 (2006)

Taubenfeld G., A closer look at fault tolerance. Proc. 31st ACM Symposium on Principles of Distributed
Computing (PODC(18), ACM Press, pp. 261-270 (2012)

Taubenfeld G., Weak failures: definition, algorithms, and impossibility results. Proc. 6th Int’l Conference
on Networked Systems (NETYS’18), Springer LNCS 11028, pp. 269-283 (2018)

Taubenfeld G., Katz S., and Moran S., Initial failures in distributed computations. International Journal of
Parallel Programming, 18(4):255-276 (1989)

15

