Contention-related crash failures: Definitions, agreement algorithms, and impossibility results
Anaïs Durand, Michel Raynal, Gadi Taubenfeld

To cite this version:
Anaïs Durand, Michel Raynal, Gadi Taubenfeld. Contention-related crash failures: Definitions, agreement algorithms, and impossibility results. Theoretical Computer Science, 2022, 909, pp.76-86. 10.1016/j.tcs.2022.01.029. hal-03746704

HAL Id: hal-03746704
https://uca.hal.science/hal-03746704
Submitted on 5 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Contention-Related Crash Failures: Definitions, Agreement Algorithms, and Impossibility Results

Anaïs Durand*, Michel Raynal†‡ Gadi Taubenfeld§

*LIMOS, Université Clermont Auvergne CNRS UMR 6158, Aubière, France
†IRISA, Université de Rennes, 35042 Rennes, France
‡Department of Computing, Polytechnic University, Hong Kong
§Reichman University, Herzliya 46150, Israel

Abstract

This article explores an interplay between process crash failures and concurrency. Namely, it aims at answering the question, “Is it possible to cope with more crash failures when some number of crashes occur before some predefined contention point happened?” These crashes are named \(\lambda \)-constrained crashes, where \(\lambda \) is the predefined contention point (known by the processes). Hence, this article considers two types of process crashes: \(\lambda \)-constrained crashes and classical crashes (which can occur at any time and are consequently called any-time crashes).

Considering a system made up of \(n \) asynchronous processes communicating through atomic read/write registers, the article focuses on the design of two agreement-related algorithms. Assuming \(\lambda = n - 1 \) and no any-time failure, the first algorithm solves the consensus problem in the presence of one \(\lambda \)-constrained crash failure, thereby circumventing the well-known FLP impossibility result. The second algorithm considers \(k \)-set agreement for \(k \geq 2 \). It is a \(k \)-set agreement algorithm such that \(\lambda = n - \ell \) and \(\ell \geq k = m + f \) that works in the presence of up to \((2m + \ell - k)\) \(\lambda \)-constrained crashes and \((f - 1)\) any-time crashes, i.e., up to \(t = (2m + \ell - k) + (f - 1) \) process crashes. It follows that considering the timing of failures with respect to a predefined contention point enlarges the space of executions in which \(k \)-set agreement can be solved despite the combined effect of asynchrony, concurrency, and process crashes. The paper also presents agreement-related impossibility results for consensus and \(k \)-set agreement in the context of \(\lambda \)-constrained process crashes (with or without any-time crashes).

Keywords: Agreement algorithm, Asynchronous system, Concurrency, Contention, Process crash.

1 Introduction

1.1 Context and Related Works

Distributed computing is about cooperation between predefined computing entities (processes). Each entity has its own local input and must compute a local output that depends on the set of inputs [28]. It is well-known that in the presence of asynchrony and failures, some distributed computing problems become impossible to solve, be the communication medium a message-passing network [13] or a shared read/write memory [23].

Several approaches have been proposed to counteract such impossibilities. We consider here only a few of them. One enriches the system with oracles that provide the processes with information on failures [6] and, given a specific problem \(P \), finds the weakest information on failures that allows \(P \) to be solved [5]. Another approach consists in weakening the progress condition associated with each
cooperation operation, namely, the termination of such an operation is required only in specific circumstances (e.g., when there is no concurrency [19]). Another approach is based on the notions of adversary disagreement power [9]. It consists of defining subsets of processes such that the considered problem must be solved despite asynchrony and process crashes when the set of processes that do not crash in execution is precisely one of the predefined subsets.\footnote{1} This approach has been made constructive in [16]. The interested reader will find more developments on this topic in the following articles [8, 14–16, 29]. Yet another approach described in [14] consists in adapting the concurrency level to the level of synchrony. In [32], the traditional notion of fault tolerance is generalized by allowing a limited number of participating correct processes not to terminate in the presence of faults. Every process that does terminate is required to return a correct result. Thus, the new definition guarantees safety but may sacrifice liveness (termination), for a limited number of processes, in the presence of faults. Initial failures were investigated in [34].

The present work introduces a new approach that allows impossibility results related to consensus and \(k \)-set agreement to be circumvented. This approach, based on a predefined contention point, considers that some number of process crashes occur at the latest when a predefined contention point occurs.\footnote{2} Let us notice that, while it considers a predefined contention threshold, the proposed model differs from the \(k \)-concurrency model, which bounds the number of processes that can be concurrently active.

1.2 Processes, Communication, Participation, and Failure model

The system is composed of \(n \) asynchronous sequential processes, denoted \(p_1, \ldots, p_n \), which communicate by reading and writing atomic registers. Without loss of generality, it is assumed that the identity of process \(p_i \) is its index \(i \). The model parameter \(t \) denotes the maximal number of processes that may crash during a run. A process crash is a premature definitive halting. A process that crashes is called faulty; otherwise, it is correct. All correct processes are assumed to participate, i.e., execute their local algorithm. (Let us notice that this assumption is a classical –very often left implicit– assumption encountered in message-passing distributed algorithms [28].)

Let us call \textit{contention} the current number of processes that started executing. A process starts executing when it writes an atomic register for the first time (i.e., from this write it starts cooperating with the other processes). The model parameter \(\lambda \) denotes a predefined contention threshold. So, execution can be divided into two parts: a prefix in which the contention is \(\leq \lambda \) and a suffix in which contention is \(> \lambda \). Hence, we consider a failure model in which there are two types of crashes: the ones that can occur only when contention is \(\leq \lambda \) that we call “\(\lambda \)-constrained”\footnote{3}, and the ones that can occur at “any time.” If we suppress \(\lambda \)-constrained crashes, the computing model boils down to the classical crash-prone model. It is important to notice that any-time failures can occur before or after the predefined contention threshold has been attained. So, it is as if there are two cooperating adversaries:

- A constrained adversary that can crash \(x \) processes, \(0 \leq x \leq \alpha \), while the contention threshold is \(\leq \lambda \) (\(\alpha \) is a predefined value depending on both the contention threshold and the agreement problem).
- and an unconstrained adversary that can crash \((t - x)\) processes, and it can crash them at any time.

1.3 Motivation: Why \(\lambda \)-Constrained Failures?

The first and foremost motivation for this study is related to the basics of computing, namely, increasing our knowledge of what can (or cannot) be done in the context of asynchronous failure-prone distributed

\(1\) The disagreement power of a set of processes is the biggest integer \(\ell \) for which the adversary can prevent processes from agreeing on \(\ell \) values when using registers only.

\(2\) Preliminary versions of these results appeared in [10, 33].

\(3\) \(\lambda \)-constrained crashes were introduced in [33] under the name “weak failures.”
systems. Providing necessary and sufficient conditions for agreement problems helps us determine and identify under which type of (weak) process failures the fundamental consensus and set-agreement problems are solvable.

As discussed in [10], the new type of λ-constrained failures enables us to design algorithms that can tolerate several traditional “any-time” failures plus several additional λ-constrained failures. More precisely, assume that a problem can be solved in the presence of t traditional failures but cannot be solved in the presence of $t + 1$ such failures. Yet, the problem might be solvable in the presence of $t_1 \leq t$ “any-time” failures plus t_2 λ-constrained failures, where $t_1 + t_2 > t$.

Adding the ability to tolerate λ-constrained failures to algorithms that are already designed to circumvent various impossibility results, such as the Paxos algorithm [22] and indulgent algorithms in general [17, 18], would make such algorithms even more robust against possible failures. An indulgent algorithm never violates its safety property and eventually satisfies its liveness property when the synchrony assumptions it relies on are satisfied. An indulgent algorithm which in addition (to being indulgent) tolerates λ-constrained failures may, in many cases, satisfy its liveness property even before the synchrony assumptions it relies on are satisfied.

When facing a failure-related impossibility result, such as the impossibility of consensus in the presence of a single faulty process [13], one is often tempted to use a solution that guarantees no resiliency at all. We point out that there is a middle ground: tolerating λ-constrained failures enables to tolerate failures some of the time. Notice that traditional t-resilient algorithms also tolerate failures only some of the time (i.e., as long as the number of failures is at most t). After all, something is better than nothing. As a simple example, an algorithm is described in [13], which solves consensus despite asynchrony and up to $t < n/2$ processes crashes if these crashes occur initially (hence no participating process crashes).

Let us observe that the λ-constrained failure model establishes a link between contention and failures, enabling us to better understand various known impossibility results, like the impossibility result for consensus [13] and its generalizations for k-set agreement [4, 20, 30].

1.4 Content of the Paper

The paper is composed of three parts. Considering $\lambda = n - 1$, the first part (Section 2) presents an algorithm that solves the consensus problem in the presence of one λ-constrained crash failure and no any-time crash failure, thereby circumventing the well-known FLP impossibility result [13].

The second part (Section 3) presents a generic k-set agreement algorithm for $k \geq 2$, which copes with the presence of both λ-constrained and any-time crash failures. Its genericity dimension lies in the value of $\lambda = n - \ell$ where $\ell \geq k = m + f$, that tolerates up to $2m + \ell - k$ λ-constrained failures and $(f - 1)$ any-time failures, i.e., up to $t = (2m + \ell - k) + (f - 1)$ process crashes. When instantiated with $\ell = k = m + f$, we have $\lambda = n - k$, the algorithm solves $(m + f)$-set agreement while tolerating $t = 2m + f - 1$ crash failures, up to $2m$ being $(n - k)$-constrained failures, and $(f - 1)$ being any-time failures. Let us observe that, in this case, the “weight” associated with a λ-constrained failure appears as being twice the “weight” associated with an any-time failure. This seems to be the price to pay to circumvent k-set agreement impossibility result with the help of the added information provided by the timing of process crashes with respect to process contention.

Finally, the last part of the paper (Section 4) presents agreement-related impossibility results in the λ-constrained failures model. These impossibility results involve the number of processes n, the predefined contention threshold λ, and the maximal number of values k that can be decided.

4The λ-constrained failure model and the classical round-based model share a same feature, namely participation of each process is required in both. They differ in the way the processes synchronize. The λ-constrained failure model is based on a predefined contention degree λ which allows the processes to synchronize only once (namely, when the λ contention degree is attained). In the round-based model the processes must synchronize at every round.
2 Consensus

As previously announced, this section presents an algorithm that solves consensus in the presence of a single \(\lambda \)-constrained crash failure where \(\lambda = n - 1 \). This bound on the number of \((n - 1)\)-constrained crash failures is tight. In Section 4, it is shown that there does not exist a consensus algorithm for \(n \) processes, using read/write registers, that can tolerate two \((n - 1)\)-constrained crash failures, for any \(n > 2 \).

2.1 Consensus: Definition

The consensus object was defined in [24]. Such an object provides the processes with a single operation, denoted \(\text{propose()} \), that a process invokes once (one-shot object). This operation allows the invoking process to propose a value and obtain a result (called decided value). Assuming each correct process proposes a value, each process must decide on a value such that the following properties are satisfied.

- **Validity.** A decided value is a proposed value.
- **Agreement.** No two processes decide different values.
- **Termination.** Every correct process decides a value.

It has been shown that consensus cannot be solved in an asynchronous crash-prone system, be the communication be through atomic read/write registers [23], or message-passing [13].

2.2 Consensus in the Presence of one \((n-1)\)-Constrained Crash Failure: Algorithm

Without loss of generality, it is assumed that the proposed values are non-negative integers.

Shared base objects The processes communicate through atomic read/write registers. Atomic means that the invocations of the read and write operations appear as if they have been issued sequentially. Moreover, this total order respects real-time order, and a read returns the value written by the closest preceding write (or the initial value if there is no such write) [21].

- \(\text{STATE}[1..n] \) is an array of atomic single-writer multi-reader registers. For any \(i \), \(\text{STATE}[1..n] \) contains the current state of process \(p_i \), namely a value in the set \{0, 1, 2, 3\} (initialized to 0). \(\text{STATE}[i] \) denotes the progress of \(p_i \).
- \(\text{INPUT}[1..n] \) is an array of atomic single-writer multi-reader. \(\text{INPUT}[1..n] \) will contain the value proposed by \(p_i \).
- \(\text{DEC} \) is a multi-writer multi-reader atomic register, the aim of which is to contain the decided value. It is initialized to \(\bot \).

Local objects Each process \(p_i \) manages three local variables: \(\text{counter}_i \), \(\text{max}_i \), and \(\text{round}_i \). Their initial values are irrelevant.

Overview of the algorithm The algorithm is based on three asynchronous rounds, the same code being executed at each round, with the third round having additional post-fixed code.

The local counter \(\text{counter}_i \) is used by \(p_i \) to count the number of processes that already entered the round \(p_i \) is entering, and \(\text{max}_i \) contains the greatest value proposed by the processes that started the algorithm.

Let us observe that, as by assumption, the predefined contention threshold is \(\lambda = n - 1 \), and at most one process may crash, it follows that when a process \(p_i \) sees that the \((n - 1)\) other processes have attained the round \(\text{round}_i \), it knows that no process will crash.
operation propose(i) is
(1) $\text{INPUT}[i] \leftarrow i$;
(2) for round$_i = 1, 2, 3$ do
(3) \hspace{1em} counter$_i \leftarrow 0$; max$_i \leftarrow 0$;
(4) \hspace{1em} for j from 1 to n do % up to Line 8: STATE[i] = round$_i - 1$
(5) \hspace{2em} if STATE[j] \geq round$_i$, then counter$_i \leftarrow$ counter$_i + 1$;
\hspace{2em} max$_i \leftarrow \max(\max$_i$, \text{INPUT}[j])$ end if
(6) \hspace{1em} end for;
(7) \hspace{1em} if (counter$_i = n - 1$) then DEC \leftarrow max$_i$; return(max$_i$) end if;
(8) \hspace{1em} STATE[i] \leftarrow round$_i$;
(9) \hspace{1em} repeat counter$_i \leftarrow 0$;
(10) \hspace{2em} for j from 1 to n do
(11) \hspace{3em} if STATE[j] \geq round$_i$, then counter$_i \leftarrow$ counter$_i + 1$ end if
(12) \hspace{2em} end for;
(13) \hspace{1em} until counter$_i \geq n - 1$ % DEC $\neq \bot$ end repeat;
(14) \hspace{1em} if (DEC $\neq \bot$) then return(DEC) end if
(15) \hspace{1em} end for; \hspace{1em} % p_i has terminated its three rounds
(16) if (counter$_i = n - 1$) then
(17) \hspace{1em} counter$_i \leftarrow 0$; max$_i \leftarrow 0$;
(18) \hspace{1em} for j from 1 to n do
(19) \hspace{2em} if (STATE[j] ≥ 2) then
\hspace{3em} counter$_i \leftarrow$ counter$_i + 1$; max$_i \leftarrow \max(\max$_i$, \text{INPUT}[j])$ end if
(20) \hspace{2em} end for;
(21) \hspace{1em} if (counter$_i = n - 1$) then DEC \leftarrow max$_i$; return(max$_i$) end if
(22) \hspace{1em} end if;
(23) \hspace{1em} for j from 1 to n do
(24) \hspace{2em} wait(STATE[j] = 3 \lor DEC $\neq \bot$);
(25) \hspace{2em} if (DEC $\neq \bot$) then return(DEC) end if;
(26) \hspace{2em} max$_i \leftarrow \max(\max$_i$, \text{INPUT}[j])$
(27) \hspace{2em} end for;
(28) DEC \leftarrow max$_i$; return(max$_i$).

Algorithm 1: Consensus with $\lambda = n - 1$, one λ-constrained failure and no any-time failure

Behavior of a process p_i. A process decides when it executes the return() statement, which occurs at Line 7, 14, 21, 25, or 28.

Intuitively, the aim is to direct the processes to decide the highest proposed value they see. To this end, each process first executes a sequence of rounds from 1 to 3. Initially process p_i is in state STATE[i] = 0. It will change its state according to its progress in the round numbers (Line 8). We say “process p_i is in Round r^\prime” if round$_i = r$.

When it invokes propose(i), process p_i first deposits i in INPUT[i] to make it known by all the processes, and starts executing three rounds (Lines 2-15). The current round number of process p_i is saved in the atomic register STATE[i].

At each round, p_i first asynchronously reads STATE[1], ..., STATE[n], and counts how many other processes are at the same or a higher round than its round round$_i$, and computes the highest value seen by these processes (Line 5). If it counts $(n - 1)$ such processes, p_i is the last one in round$_i$ and max$_i$ contains the highest value proposed by the other $(n - 1)$ processes. So p_i writes this value in DEC and
Lemma 3 For every \(i \in \{1, \ldots, n\}\), when process \(p_i\) sets \(STATE[i]\) to 2 (Line 8), either the contention point is already \(n\) or there is a \(j \neq i\) such that \(STATE[j]\) will always be 0.

Proof If the contention point is not \(n\) when \(p_i\) sets \(STATE[i]\) to 2 (Line 8), it follows that (1) by definition, some process, say \(p_j\), has not taken any steps yet, and (2) except for process \(p_j\), all the other \((n - 1)\) processes \(p_k\) have already incremented their register \(STATE[k]\). If \(p_j\) is a correct process, it will eventually reach Line 7 at which point \(counter_j\) will become equal to \((n - 1)\). Thus, \(p_j\) will decide and terminate without ever increasing the atomic register \(STATE[i]\).

Lemma 2 If at some point in time, for every \(i \in \{1, \ldots, n\}\) \(STATE[i] \geq 2\), then the \(n\) processes are active, no process has failed before that point, and no process will fail after that point.

Proof Assume that for every \(i \in \{1, \ldots, n\}\), \(STATE[i] \geq 2\). It follows from this assumption and Lemma 1 that, for every \(i \in \{1, \ldots, n\}\), when \(p_i\) has set \(STATE[i]\) to 2 (Line 8), the contention point was already \(n\). Thus, process \(p_i\) will never fail since it is assumed that no process fails once the contention point is \(n\).

Lemma 3 For every \(i \in \{1, \ldots, n\}\):
1. If a process \(p_i\) writes into \(DEC\) in Line 7, no other process writes into \(DEC\) in Line 7.
2. If a process \(p_i\) writes into \(DEC\) in Line 7, no other process writes into \(DEC\) in Line 28.
3. If a process \(p_i\) writes into \(DEC\) in Line 21, no other process writes into \(DEC\) in Line 28.

Proof Suppose process \(p_i\) writes into \(DEC\) in Line 7 in Round \(r \in \{1, 2, 3\}\). This means that each other process \(p_k\) has already written \(r\) into its state register \(STATE[k]\), and hence has not written into \(DEC\) in Line 7 in Round \(r\) or in a previous round. After \(p_i\) writes into \(DEC\), it immediately terminates.
Thus, \(p_i \) will never write a value \(r' \geq r \) into its state register \(\text{STATE}[i] \). Thus, for every other process \(p_k \), after executing the for loop in Lines 4-6, the value of \(\text{counter}_k \) will be at most \((n - 2) \), and the test in Line 7 will fail. Also, since \(\text{STATE}[i] \) will never equal 3, no process will ever reach Line 28.

Suppose now process \(p_i \) writes into \(\text{DEC} \) in Line 21. This means that there exists a process, say process \(p_j \), that has not written the value 2 into its state register \(\text{STATE}[j] \), at the time when \(p_i \) checked \(\text{STATE}[j] \) in Line 19. Although process \(p_j \) may still set \(\text{STATE}[j] \) to 2 at a later time, it will never be able to set \(\text{STATE}[j] \) to 3 at a later time because, in Round 3, the counter of \(p_j \) will reach \((n - 1)\) when \(p_j \) executes the for loop in Lines 4-6, and if continues it will terminate at Line 7. For that reason, when some other process executes Line 24 (predicate \(\text{wait}(\text{STATE}[j] = 3 \lor \text{DEC} \neq \bot) \)), the waiting may terminate only because \(\text{DEC} \neq \bot \). Thus, no process will ever reach and execute Line 28.

Lemma 4 For every two processes \(p_i \) and \(p_j \):

1. if \(p_i \) writes \(v \) into \(\text{DEC} \) in Line 7, and \(p_j \) writes \(v' \) into \(\text{DEC} \) in Line 21, then \(v = v' \).
2. if \(p_i \) writes \(v \) into \(\text{DEC} \) in Line 21, and \(p_j \) writes \(v' \) into \(\text{DEC} \) also in Line 21, then \(v = v' \).
3. if \(p_i \) writes \(v \) into \(\text{DEC} \) in Line 28, and \(p_j \) writes \(v' \) into \(\text{DEC} \) also in Line 28, then \(v = v' \).

Proof

1. Assume that \(p_i \) writes \(v \) into Line 7, and \(p_j \) writes \(v' \) into \(\text{DEC} \) in Line 21. When \(p_i \) terminates, the value of its state register \(\text{STATE}[i] \) is either 0,1, or 2. In the first two cases (0 and 1), the value of \(\text{max}_j \) that \(p_j \) computes in Line 19 does not depend on the input value of \(p_i \), and hence \(v = v' \).

Let us consider the case that when \(p_i \) decides at Line 7, the value of its state register \(\text{STATE}[i] \) is 2. Thus, when \(p_i \) terminates, the values of each other state register \(\text{STATE}[k] \) must be 3. When \(p_j \) starts executing the for-loop in Line 18, the value of the state registers of \((n - 1)\) processes must be 3. Thus, \(p_i \) and \(p_j \) set their \(\text{max}_i \) and \(\text{max}_j \) local variables \(\text{max}_i \) and \(\text{max}_j \) (in Lines 6 and 19, respectively) to the same value since they both choose the maximum input value from the set of \((n - 1)\) input values which does not include the input value of process \(p_i \). Thus, \(v = v' \).

2. Assume that \(p_i \) writes \(v \) into \(\text{DEC} \) in Line 21, and \(p_j \) writes \(v' \) into \(\text{DEC} \) also in Line 21. When \(p_i \) started executing the for-loop in Line 18, the value of the state register \(\text{STATE}[i] \) of exactly one process, say process \(p_k \), was less than 2. Similarly, when \(p_j \) started executing the for-loop in Line 18, the value of the state register \(\text{STATE}[j] \) of exactly one process, say process \(k' \), was less than 2. Since the value of a state register never decreases, it follows that \(k = k' \). Thus, \(p_i \) and \(p_j \) set their local variables \(\text{max}_i \) and \(\text{max}_j \) (in Line 19) to the same value, since they choose the maximum input value from the same set of \((n - 1)\) input values. Thus, \(v = v' \).

3. Assume that \(p_i \) writes \(v \) into \(\text{DEC} \) in Line 28, and \(p_j \) writes \(v' \) into the \(\text{DEC} \) in Line 28. Both \(p_i \) and \(p_j \) set their local variables \(\text{max}_i \) and \(\text{max}_j \) in Line 26 to the same value, since they choose the maximum input value from the set of the \(n \) input values. Thus, \(v = v' \).

Theorem 1 (agreement & validity) All the participating processes decide on the same value, and this decision value is the input of a participating process.

Proof It follows from Lemma 3 and Lemma 4, that, whenever two processes write into the decision register \(\text{DEC} \), they write the same value. Also, whenever a process writes into \(\text{DEC} \), the written value is the input of a participating process. Each correct process decides only on a value written into \(\text{DEC} \).

Theorem 2 (termination) In the presence of at most a single \((n - 1)\)-constrained crash failure, every correct process eventually decides.
Proof There are exactly two places in the algorithm where a process may need to wait for some other process to take a step: (1) in the repeat-until loop in Lines 9-13, and (2) in the wait statement in Line 24. In both places, whenever a process needs to wait, it continuously examines the value of the decision register DEC, and if it finds out that $DEC \neq \bot$, it decides on the value written in DEC and terminates. Thus, we can conclude that: if some process decides, then every correct process eventually decides.

So, let us assume, by contradiction, that no correct process ever decides. There are at least $n - 1$ correct processes. At least $(n - 1)$ correct process will execute the for-loop in Lines 2-15 with $round = 1$. They all will eventually execute the assignment in Line 8; setting their state registers $STATE[]$ to 1. Thus, each correct process with $round = 1$, will eventually exit the repeat-loop in Lines 9-13, and will move to Round 2. By a similar argument, each correct process will eventually complete Rounds 2 and 3 (i.e., will complete the for-loop in Lines 2-15).

A process reaches the for loop in Lines 23-27, only if its local variable $counter_i$ equals n, which implies that for every $i \in \{1, \ldots, n\}$ $STATE[i] \geq 2$. Thus, by Lemma 2, if some process executes the for-loop in Lines 23-27 all the n processes are active and will never fail. Since, by contradiction, no process terminates, all the n processes must eventually get stuck in the wait statement on Line 24. However, this is not possible since the value of the state register $STATE[k]$ of each process p_k which reaches Line 24 must be 3. Thus, all the waiting processes in Line 24 will be able to proceed beyond the wait statement and decide. A contradiction.

\square Theorem 2

3 k-Set Agreement ($k \geq 2$)

This section presents a k-set agreement algorithm that circumvents the known impossibility result for solving k-set agreement in t-resilient crash-prone asynchronous read/write systems where $t \geq k$ [4, 20, 30].

3.1 k-Set Agreement: Definition

A k-set agreement (k-SA) object is a one-shot object introduced by S. Chaudhuri [7] to study the relation linking the number of failures and the agreement degree attainable in a set of crash-prone asynchronous processes. Such an object is similar to a consensus object. It is defined by the same validity and termination properties, and the following weaker agreement property.

- **Agreement.** At most k different values are decided.

Hence, when $k = 1$, k-set agreement boils down to consensus. It is shown in [4, 20, 30] that it is impossible to solve k-set agreement in asynchronous read/write systems where up to $t \geq k$ processes may crash at any time.

3.2 Basic Model and High-Level Objects

Basic model As indicated in the introduction, the basic model is the classical crash-prone model of n processes communicating through atomic multi-writer multi-reader registers.

To make the presentation of the proposed algorithm easier, the basic read/write system is enriched with two types of objects, namely ℓ-mutual exclusion and snapshot. Both can be built on top of a crash-prone asynchronous read/write system.

Deadlock-free ℓ-mutual exclusion Such an object was first defined and solved in [11, 12]. Several papers have proposed ℓ-exclusion algorithms for solving the problem using atomic read/write registers satisfying various progress properties (see, for example, [2, 25, 26]). This object provides the processes
with the operations denoted acquire() and release(). It allows up to \(\ell \) processes to simultaneously execute their critical section. It is defined by the following properties.

- **Mutual exclusion.** No more than \(\ell \) processes can simultaneously be in their critical section.
- **Deadlock-freedom.** If less than \(\ell \) processes crash and processes are invoking the operation acquire(), at least one of them will terminate its invocation.

It is shown in [2, 11, 31] that \(\ell \)-mutual exclusion can be built on top of an asynchronous crash-prone read/write system. In the one-shot version, a process invokes acquire() and release() at most once.

Atomic snapshot This object was introduced in [1, 3]. It provides the processes with two atomic operations denoted write() and snapshot(). Such an object can be seen as an array of single-writer multi-reader atomic register \(SN[1..n] \) such that:

(a) when \(p_i \) invokes write\((v)\), it writes \(v \) into \(SN[i] \); and

(b) when \(p_i \) invokes snapshot(), it obtains the value of the array \(SN[1..n] \) as if it simultaneously reads and instantaneously all its entries.

Put another way, the operations write() and snapshot() appear to the processes as if they were totally ordered. Snapshot objects can be implemented on top of asynchronous crash-prone read/write systems [1, 3, 27].

3.3 \(k \)-Set Agreement with \(\lambda \)-Constrained and Any-time Crash failures: Algorithm

Shared objects The processes communicate through the following objects.

- \(PART[1..n] \): snapshot object, initialized to \([\text{down}, \ldots, \text{down}]\), used to indicate participation.
- \(DEC \): atomic register initialized to \(\bot \) (a value which cannot be proposed). It will contain values (one at a time) that can be decided.
- \(MUTEX[1] \): one-shot deadlock-free \(f \)-mutex object.
- \(MUTEX[2] \): one-shot deadlock-free \(m \)-mutex object. (As we will see, no process will ever try to access a 0-mutex \(MUTEX[2] \) object.)

Local variables Each process \(p_i \) manages the following local variables: \(part_i \) is used to locally store a copy of the snapshot object \(PART \); \(count_i \) is a local counter; and \(group_i \) a binary variable whose value belongs to \(\{1, 2\} \).

The behavior of a process \(p_i \) Algorithm 2 describes the behavior of a process \(p_i \). When it invokes propose\((in_i)\) (where \(in_i \) is the value it proposes), \(p_i \) first indicates it is participating (Line 1). Then it invokes the snapshot object until at least \(n - t \) (i.e., \(n - (2m + \ell - k) - (f - 1) \)) processes are participating (Lines 2-4). When this occurs, \(p_i \) enters Group 1 or Group 2 according to the value of its counter \(count_i \) (Line 5), and launches in parallel two threads \(T1 \) and \(T2 \) (Line 6).

In the thread \(T1 \), \(p_i \) loop forever until \(DEC \) contains a proposed value. When this happens, \(p_i \) decides it (Line 7). The execution of return() at Line 7 or 12 terminates the invocation of propose().

The thread \(T2 \) is the core of the algorithm. Process \(p_i \) tries to enter the critical section controlled by either the \(f \)-mutex or the \(m \)-mutex object \(MUTEX[\text{group}_i] \) (Line 9). If it succeeds and \(DEC \) still has its initial default value, \(p_i \) assigns it the value \(in_i \) it proposed (Line 10). Finally, \(p_i \) releases the critical section (Line 11), and decides (Line 12). Let us remind that, as far as \(MUTEX[1] \) (respectively, \(MUTEX[2] \)) is concerned, up to \(f \) (respectively, \(m \)) processes can simultaneously execute Line 10. This intuitively explains why at most \(k = m + f \) different values can be decided.
Algorithm 2: k-Set agreement (where $k = m + f$, $\lambda = n - \ell$ and $\ell \geq k$) tolerating up to $2m + \ell - k$ λ-constrained failures and up to $f - 1$ any-time failures

<table>
<thead>
<tr>
<th>total # of failures tolerated</th>
<th>$t = 2m + \ell - k + f - 1 = m + \ell - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“λ-constrained” crash failures</td>
<td>$2m + \ell - k = m + \ell - f$</td>
</tr>
<tr>
<td>“any-time” crash failures</td>
<td>$f - 1$</td>
</tr>
</tbody>
</table>

Table 1: Tolerated crash failures of Algorithm 2 ($k = m + f$)

Properties summary The fault-tolerance properties of Algorithm 2 are summarized in Table 1. The parameters m and f allow the user to tune the type of crash failures that are dominant in the considered application context. At one extreme, the pair of values $(m, f) = (0, k)$ maximizes the number of any time failures ($k - 1$). At the other extreme, the pair $(m, f) = (k - 1, 1)$ maximizes the number of λ-constrained failures (up to $k + \ell - 2$ λ-constrained failures and no any-time failure). This is summarized in Table 2.

<table>
<thead>
<tr>
<th>total # of failures</th>
<th>$m = 0$</th>
<th>$m = \lfloor k/2 \rfloor$</th>
<th>$m = k - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 2m + \ell - k + f - 1$</td>
<td>$f = k$</td>
<td>$f = \lfloor k/2 \rfloor$</td>
<td>$f = 1$</td>
</tr>
<tr>
<td>$2m + \ell - k$ “λ-constrained” crash failures</td>
<td>$\ell - k$</td>
<td>$2\lfloor k/2 \rfloor + \ell - k$</td>
<td>$\ell + k - 2$</td>
</tr>
<tr>
<td>$f - 1$ “any-time” crash failures</td>
<td>$k - 1$</td>
<td>$\lfloor k/2 \rfloor - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: k-Set agreement: trade-offs “λ-constrained/any-time” crash failures when $\lambda = n - \ell$

Two instances of Algorithm 2 Among all its possible instances of the proposed generic algorithm, let us consider two specific cases for which algorithms have already been proposed.
• Case $m = 0$ and $\ell = k$. In this case, there are no λ-constrained failures. We then have $k = m + f = f$, and $(f - 1)$ any-time failures. This is the best that can be done in the classical (any-time) failure model [4, 20, 30].

• Case $f = 1$. In this case there is no any-time failures. We have then $k = m + f = m + 1$ and, as $m = k - 1$, at most $2m + \ell - k = 2(k - 1) + \ell - k = \ell + k - 2$ λ-constrained failures are tolerated. This is what is solved by the k-set agreement algorithm proposed in [33].

3.4 Proof of Algorithm 2 (k-Set, $k \geq 2$)

In the following, it is assumed that $\lambda = n - \ell$ and $\ell \geq k$.

Lemma 5 At most $n - \ell$ processes have a counter less or equal to $n - \ell$ when leaving the repeat loop (Lines 2-4).

Proof Assume by contradiction that more than $n - \ell$ processes have their counter less or equal to $n - \ell$ when leaving the repeat loop (2-4). P being this set of processes, we have $|P| \geq n - \ell + 1$. Moreover, let p_l be the last process of P that invokes $PART.snapshot()$ (on Line 15). It follows from the atomicity of the write() and snapshot() operations on the object $PART$ that $\text{count}_i \geq |P| \geq n - \ell + 1$, a contradiction. \hfill \squareLemma 5

Lemma 6 In the presence of at most $t = 2m + \ell - k + f - 1$ crash failures, $2m + \ell - k$ of them being $(n - \ell)$-constrained, if processes participate in $MUTEX[1]$, at most $f - 1$ of them can fail.

Proof If a process p_l participates in $MUTEX[1]$, it follows from Line 5 that $\text{count}_i > n - \ell$ when it exited the repeat loop (Lines 2-4). Thus, the contention was at least $n - \ell + 1$ when p_l exited the loop and, due to the definition of “$(n - \ell)$-constrained crash failures”, there is no more such failures. As $t = 2m + \ell - k + f - 1$, it follows that, if processes participate in $MUTEX[1]$, at most $f - 1$ of them can fail. \hfill \squareLemma 6

Theorem 3 (Termination) In the presence of at most $t = 2m + \ell - k + f - 1$ crash failures, $2m + \ell - k$ of them being $(n - \ell)$-constrained, every correct process eventually terminates.

Proof Since there are at most t processes that may fail and participation is required, at least $n - t$ processes eventually set their participating flag to up in the snapshot object $PART$ (Line 1). Thus, no correct process remains stuck forever in the repeat loop (Lines 2-4).

First, assume $m = 0$. By Lemma 5, at most $n - \ell$ processes have a counter less or equal to $n - \ell$ when they exit the repeat loop (Lines 2-4). Thus, at most $n - \ell$ processes belong to Group 2. As $m = 0$, there are at least $n - t = n - (\ell - k + f - 1)$ correct processes. Since $k = m + f = f$, $n - (\ell - k + f - 1) = n - (\ell - 1) = n - \ell + 1 > n - \ell$. So, among the processes participating in $MUTEX[1]$, at least one is correct and at most $f - 1$ crash before returning from $MUTEX[1].release()$ (Line 11). Due to the deadlock-freedom property of the one-shot f-mutex object $MUTEX[1]$, at least one correct process eventually enters its critical section and, if DEC has not already been written, writes its input into DEC. It then follows from task $T1$ that, if it does not terminate at Line 12, every other correct process will decide and terminate.

Now, assume $m > 0$. There are two cases.

\footnote{As the snapshot object is atomic, the notion of “last process of P that ...” is well-defined.}

11
If at least \(y \geq f \) processes participate in \(MUTEX[1] \), it follows from Lemma 6 that at most \(f - 1 \) of them crash before returning from \(MUTEX[1].release() \) (Line 11), and consequently, all other processes participating in \(MUTEX[1] \) are correct. As \(y > f - 1 \) and \(f > 0 \), there is at least one such correct process, say \(p_x \). Due to the deadlock-freedom property of the one-shot \(f \)-mutex object \(MUTEX[1] \), \(p_x \) eventually enters its critical section and, if \(DEC \) has not already been written, writes its input into \(DEC \).

Otherwise, less than \(f \) processes participate in \(MUTEX[1] \). There are two sub-cases.

- If a correct process \(p_i \) participates in \(MUTEX[1] \), it follows from this sub-case assumption and the deadlock-freedom property of the one-shot \(f \)-mutex object \(MUTEX[1] \), that \(p_i \) eventually enters its critical section and, if \(DEC = \perp \), writes its input \(in_i \) into this atomic register.

- Otherwise, no correct process participates in \(MUTEX[1] \). By Lemma 5, at most \(n - \ell \) processes have a counter less or equal to \(n - \ell \) when they exit the repeat loop (Lines 2-4). So at most \(n - \ell \) processes participate in \(MUTEX[2] \). Since no correct process participates in \(MUTEX[1] \), all correct processes (they are at least \(n - t \)) participate in \(MUTEX[2] \). Thus, at most \((n - \ell) - (n - t) = t - \ell = 2m + \ell - k + f - 1 - \ell = 2m - k + f - 1 = 2m - (m + f) + f - 1 = m - 1 \) processes that participate in \(MUTEX[2] \) fail. Hence, due to the deadlock-freedom property of the one-shot \(m \)-mutex object \(MUTEX[2] \), at least one correct process enters its critical section and, if \(DEC = \perp \), writes its input into \(DEC \).

In both cases, every other correct process will decide and terminate.

Theorem 4 *(Agreement and validity)*
At most \(k \) different values are decided, and each of them is the input of some process.

Proof If a process decides (Line 7 or Line 12), it decides on the current value of \(DEC \), which —due to the predicates of Line 7 or Line 10— has previously been set —at Line 10— to the value proposed by a process. Due to the predicate and the assignment of \(DEC \) at Line 10, and the fact that \(MUTEX[1] \) is a \(f \)-mutex object, it follows that at most \(f \) processes assign a value to \(DEC \) in the critical section controlled by \(MUTEX[1] \). Due to a similar argument, at most \(m \) processes assign a value to \(DEC \) in the critical section controlled by \(MUTEX[2] \). Thus, at most \(m + f = k \) different values can be written into \(DEC \), and each of them is a proposed value.

Theorem 4

4 Impossibility Results

This section presents impossibility results in the asynchronous read/write model with \(\lambda \)-constrained and any-time crash failures. Let an initial crash failure be the crash of a process that occurs before it executes its first access to an atomic read/write register.

Hence, there are three types of crash failures: initial, \(\lambda \)-constrained, and any-time. Let us say that a failure type \(T1 \) is *more severe* than a failure type \(T2 \) (denoted \(T1 > T2 \)) if any crash failure of type \(T2 \) is also a crash failure of type \(T1 \) but not vice-versa. Considering an \(n \)-process system, the following severity hierarchy follows from the definition of the failure types: any-time \(> (n - 1) \)-constrained \(> (n - 2) \)-constrained \(\cdots > 1 \)-constrained \(> \) initial (let us observe that any-time is the same as \(n \)-constrained and initial is the same as \(0 \)-constrained).

Theorem 5 *(\(k \)-set agreement with \(\lambda \)-constrained failures)* For every \(\ell \geq 0 \), \(k \geq 1 \), \(n > \ell + k \), and \(\lambda = n - \ell \), there is no \(k \)-set agreement algorithm for \(n \) processes, using registers, that tolerates \(\ell + k \) \(\lambda \)-constrained crash failures (even when assuming that there are no any-time crash failures).
The paper has then presented a generic algorithm solving the k-set agreement problem, for $k \geq 2$. So, it extends the set of possible executions in which k-set agreement can be solved despite asynchrony and process crashes. The proposed algorithm allows its users to tune it to specific failure-prone environments. This can be done by appropriately defining the pair of integers (m, f). As an example, considering k-set agreement and a contention threshold $\lambda = n - k$, these parameters control the number of crashes allowed to occur before the contention threshold λ is bypassed, namely $2m + \ell - k$, and the number of failures which can occur at any-time, namely, $f - 1$. That is, it is possible to trade one
“any-time” failure for several “\(\lambda\)-constrained” failures, and vice versa. The paper has also presented impossibility results in the presence of \(\lambda\)-constrained crash failures.

The two algorithms that have been presented are based on totally different design principles, despite the fact that consensus is a special instance of \(k\)-set agreement where \(k = 1\). Hence the question: Does a non-trivial generic algorithm exist\(^6\) that could be instantiated for any value of \(k \geq 1\) or is \(k = 1\) a “special” value?

Acknowledgments

The authors want to thank the reviewers whose constructive comments helped improve the article’s content and presentation.

References

\(^6\)Non-trivial generic means here that the algorithm has not to be a case statement that directs to sub-algorithms for the two cases \(k = 1\) and \(k > 1\). The code must be the same for all the values of \(k \geq 1\) (as done in Algorithm 2 for \(k \geq 2\)).